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Abstract: There has been an explosion of interest in statistical models for
analyzingnetwork data, and considerable interest in the class of exponential
random graph (ERG) models, especially in connection with difficulties in
computing maximum likelihood estimates. The issues associated with these
difficulties relate to the broader structure of discrete exponential families.
This paper re-examines the issues in two parts. First we consider the clo-
sure of k-dimensional exponential families of distribution with discrete base
measure and polyhedral convex support P. We show that the normal fan of
P is a geometric object that plays a fundamental role in deriving the statis-
tical and geometric properties of the corresponding extended exponential
families. We discuss its relevance to maximum likelihood estimation, both
from a theoretical and computational standpoint. Second, we apply our
results to the analysis of ERG models. By means of a detailed example,
we provide some characterization of the properties of ERG models, and, in
particular, of certain behaviors of ERG models known as degeneracy.
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1. Introduction

Our motivation for the work described in this paper comes from the analysis of
network data using models representable by graphs, where the nodes correspond
to individuals and the edges to relations or linkages among them. Such graphical
representation has a long history, dating back to Moreno (1934), and was recast
within the exponential family framework by Holland and Leinhardt (1981) and
Frank and Strauss (1986) (see also Strauss and Ikeda, 1990). Their work led to
the development of the broader class of exponential random graph (ERG), or p∗,
models for social networks (see, e.g. Wasserman and Pattison, 1996), but likeli-
hood methods for their analysis remained out of reach until earlier this decade.
For a broad review of these and other network models, see Goldenberg et.al.
(2009). Recent work on maximum likelihood estimation for ERG models, how-
ever, has pointed to difficulties that have been characterized as “degeneracies” or
“near degeneracies” by Handcock (2003) and Hunter et al. (2008). The explana-
tion for these difficulties lies within broader characterizations of “degeneracies”
for discrete exponential families.

Exponential families are one of the most important and widespread class of
parametric statistical models, whose remarkable properties have long been es-
tablished in the statistical literature (see, e.g., Bardoff-Nielsen, 1978; Brown,
1986; Letac, 1992). Among the most interesting features of exponential families
is the notion of the closure of the family, known as the extended exponential
family, whose mathematical theory has been recently worked out in great gener-
ality (see Csiszár and Matúš, 2001, 2003, 2005, 2008). The study of the extended
families is particularly important, as it may directly pertain to the existence of
the maximum likelihood estimates and to the estimability of the natural param-
eters. This is the case for discrete exponential families, for which the maximum
likelihood estimates may not exist with some positive probability. A notable
instance is the class of log-linear models, for which existence of the MLE and
closure of the family can be characterized in a purely geometric fashion (see,
e.g., Eriksson et al., 2006; Geiger et al., 2006; Rinaldo, 2006a).

In this article we are concerned with discrete linear exponential families. In
the first part of the paper, we show that the geometric and statistical properties
of the extended family depend in a fundamental way on the normal fan of the
convex support. In particular, the normal fan can be used to characterize non-
identifiability of the families in the closure, to represent the densities in the
extended family as almost sure limits of the densities in the original family
along certain directions of the parameter space and to describe the directions
of recession of the (negative) log-likelihood function.

As an application of our results, in the second part of the paper we turn
our attention to exponential random graph models, a particular class of discrete
linear exponential families. Our discussion is based an the detailed analysis of
the simple ERG model on the graphs on 9 nodes with two-dimensional natural
sufficient statistics consisting of the number of edges and the number of triangles
that we learned from Handcock (2003). We use Shannon’s entropy function to il-
lustrate graphically how concentrated the distributions in this family are, viewed
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as functions of both the natural and mean value parameters. Besides illustrating
the theoretical results derived in the first part of the article, our analysis sheds
some light on a variety of pathological behaviors observed in practice while fit-
ting some ERG models known as degeneracy (see, e.g., Handcock, 2003), and,
we believe, more generally, on the qualities and attributes of ERG models. Our
study suggests that degeneracy should not be regarded as a set of pathological
features, rather it can be explained by the properties of exponential families
with polyhedral support. Although our conclusions and observations reflect a
somewhat common perception in the social network community, our arguments
are rigorous.

The remainder of this article is organized as follows. In section 2 we pro-
vide the derivation of our key theoretical results. In section 2.1, we begin by
describing our settings and briefly review the theory of extended exponential
families and their fundamental properties. In section 2.2, we introduce the no-
tions of normal cones and the normal fan to the convex support of the family.
In section 2.3 we state our main result and a discussion of its corollaries, while
section 2.4 presents come computational considerations concerning maximum
likelihood estimation for extended exponential families. Section 3 consists of an
application of our results to ERG models. First in section 3.1 we introduce the
class of ERG models and then in section 3.2 we present our running example
of an ERG model on the set of all graphs on 9 nodes. We next introduce the
concept of degeneracy for ERG models in section 3.3, while in section 3.4 we use
our theoretical results to illustrate graphically the features of the model in the
running example of section 3.2 to show how degeneracy arises. The appendices
contain the proofs and some additional results on how to establish existence of
the maximum likelihood estimates in discrete linear exponential families using
linear programming.

2. Extended exponential families with polyhedral support

We use the following notation throughout this section and the remainder of the
paper:

• For two vectors x and y in Rd, denote their inner product by 〈x, y〉 =∑d
i=1 xiyi.

• The Euclidean norm of a vector x is ‖x‖2 =
√
〈x, y〉.

• For any A ⊂ Rd, we denote with convhull(A) its convex hull, i.e. the set of
all convex combinations of points in A; similarly we denote with cone(A)
its conic hull, i.e. the set of all of conic combinations of points in A.

• For any A ⊂ Rd, we denote its relative interior and relative boundary with
respect to the affine space spanned by A, by ri(A) and rb(A), respectively.

2.1. Statistical and geometric background

In this section we introduce the statistical and geometric background needed for
our results and review the basic concepts from the general theory of exponential
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families and polyhedral geometry. For more complete treatments we refer the
reader to Bardoff-Nielsen (1978), Brown (1986) and Csiszár and Matúš (2001,
2003, 2005, 2008) for material on exponential families, and Ziegler (1996) and
Schrijver (1998) for introductions to polyhedral geometry.

We consider an exponential family of distributions EP on Rk with densities

pθ(x) = exp {〈x, θ〉 − ψ(θ)} , θ ∈ Θ,

with respect to some σ-finite base measure ν , where

Θ ⊆ {θ ∈ Rk :

∫

Rk

exp〈x,θ〉 dν(x) <∞}

is the natural parameter space and ψ(θ) = log
∫

Rk exp〈x,θ〉 dν(x) the log-partition
function. The support of EP is the closure of the set {x : ν(x) > 0}, while the
convex support P is the closure of the convex hull of the support of EP. We will
assume throughout that

(A1) ν has countable support;
(A2) P is a full-dimensional polyhedron in Rk, that is, P does not belong to any

proper affine subspace of Rk;
(A3) for each face F of P, F = convhull(SF ), for some set SF ⊂ supp(ν);
(A4) the natural parameter space Θ is an open set in Rk.

Assumptions (A1) and (A2) imply, in particular, that the family is in minimal
form and, therefore, identifiable. We remark that full-dimensionality of P in
assumption (A2) is not necessary and is imposed to simplify the exposition;
our results would still hold with some minor changes, at the cost of additional
technicalities in the proofs. In fact, any degenerate exponential family can be
made full by taking appropriate affine transformations, a procedure known as
reduction to minimality (see, e.g., theorem 1.9 in Brown, 1986 or lemma 8.1 in
Bardoff-Nielsen, 1978). Assumptions (A1) and (A3) are needed to guarantee the
existence of probability distributions supported over the boundary of P, which
is an indispensable feature of the extended exponential family, described in the
next section. Condition (A3) could be relaxed by allowing some faces to have
zero ν measure. Finally, assumption (A4) is a standard. In particular, for our
discussion of ERG models, Θ = Rk.

Assumption (A2) means that P can be represented as the intersection of a
finite number of half-spaces. Formally, there exists a m × k matrix A and a
vector b ∈ Rm such that

P = {x ∈ Rk : Ax ≤ b}, (1)

where the system contains no implicit equalities (meaning that no inequality is
in fact an equality satisfied by all the points in P). A proper face F of P is a
subset of P defined by

F = {x ∈ P: AFx = bF }, (2)

for some subsystem AFx ≤ bF of Ax ≤ b and, therefore, it is itself a polyhedron.
The whole polyhedron P is regarded as the improper face of itself associated to
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the full system of inequalities, so that P is representable as the disjoint union of
the relative interiors of all its faces. The dimension of a face F , dim(F ), is the
dimension of the affine subspace it generates or, equivalently, the dimension of
the null space of AF . Faces of dimension k− 1 are called facets of P and, if the
system (1) has no redundant inequality, something which can always be assumed
without loss of generality, the number m of rows of A matchs the number of
facets. Equation (1) is known as the H-representation of P. Alternatively, P
could be described using the V-representation as

P = Q + C, (3)

where the symbol + denotes the Minkowski sum, Q = convhull(Q) and C =
cone(C), with Q and C two finite sets of vectors in Rk. The Minkowski sum of
two subsets A and B of Rk is the set A + B = {x + y, x ∈ A, y ∈ B} ⊂ Rk.
If, in the V-representation of P, C = {0}, then P is a bounded polyhedron, or
a polytope; similarly, if Q = {0}, P is a polyhedral cone, an unbounded set.
Throughout the paper, we will typically rely on the H-representation (1), which
we find more suited to our purposes, although our results could be established
using (3).

2.1.1. Basics of extended exponential families

Let x ∈ Rk be the observed sample corresponding to a random vector X having
an unknown distribution in EP, which we will refer to as the natural sufficient
statistics. The random set

θ̂(x) = θ̂ =

{
θ∗ ∈ Θ: pθ∗(x) = sup

θ∈Θ
pθ(x)

}
(4)

is the maximum likelihood estimate, or MLE, of θ. If θ̂ = ∅ the MLE is said to
be nonexistent. Existence of the MLE is determined by the geometry of P, as
indicated by the following well-known, fundamental result (see, e.g., theorem
5.5 in Brown, 1986 or proposition 4.2 Rinaldo, 2006a for different proofs).

Theorem 2.1. Under conditions (A1)–(A4), the MLE θ̂ exists and is unique
if and only if x ∈ ri(P).

Setting Eθ(X) =
∫

Rk zpθ(z)dν(z), because of the minimality of EP , one can
obtain the fundamental identity

∇ψ(θ) = Eθ(X), (5)

valid for each θ ∈ Θ, where ∇ indicates the gradient. The map ∇ψ : Θ 7→
ri(P) given by (5) is, in fact, a homeomorphism, so that one can equivalently
represent any distribution in EP using the natural parameter θ or the mean
value parameter µ = µ(θ) = Eθ(X) ∈ ri(P). This alternative parametrization is
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is known as the mean value parametrization. In particular, if the MLE exists, it
is determined by the equation

θ̂ = (∇ψ)−1(x),

which translates into the moment equation E
θ̂
(X) = x.

For any proper face F , let νF be the restriction of ν to F . Then, νF determines
a new exponential family of distributions EF , with densities with respect to νF
given by

pFθ (x) = exp
{
〈x, θ〉 − ψF (θ)

}
, θ ∈ ΘF ,

where the natural parameter space is ΘF = {θ ∈ Θ:
∫

Rk exp〈x,θ〉 dνF (x) < ∞}

and the log-partition function is ψF (θ) = log
∫

Rk exp〈x,θ〉 dνF (x). Notice that,

since
∫

Rk exp〈x,θ〉 dνF (x) ≤
∫

Rk exp〈x,θ〉 dν(x), Θ = ΘF . By assumption (A3), the
convex support of this new family is F and the existence result of theorem 2.1
carries over: the MLE exists if and only if the observed sample x belongs to ri(F ).
Since EF is supported on a lower-dimensional affine subspace of Rk, however,
it is no longer minimal. Hence, the MLE is not unique, and it consists instead
of many solutions to (4); see corollary 2.9 below for details. Nonetheless, via
reduction to minimality (see, e.g., Brown, 1986, theorem 1.9), we can verify

that, when θ̂ is not empty, it consists exactly of those θ satisfying the first order
optimality conditions

x = ∇ψF (θ), (6)

with the corresponding moment equations EFθ (X) =
∫

Rk zp
F
θ (z)dνF (z) = x still

holding, ∀θ ∈ θ̂. In fact, lack of minimality bears no effect on the mean value
parametrization: for every θ ∈ ΘF , there exists one point x ∈ ri(F ) such that

Eθ(X) = x, (7)

and, similarly, for any x ∈ ri(F ), there exists a set θF ⊂ ΘF , depending on x,
such that (7) holds for all θ ∈ θF . See equation (10) below for a characterization
of θF .

The collection of distributions

E =
⋃

F

EF

as F ranges over all the faces of P, including P itself, is known as the extended
exponential family of distributions. With respect to the extended family E , for
any observed sample x, the MLE, or extended MLE, is always well defined and
is the set of solutions to (6), where F is the unique face containing x in its
relative interior.

2.2. Extended exponential families and the normal fan of P

In this section we introduce the notion of normal fan of P and establish its
relevance for the extended family E . See lemma B2 in Appendix B for some
basic properties of the normal cones and of the normal fan.
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For every face F of P, let

NF =
{
c ∈ Rk : F ⊆ {x ∈ P: 〈c, x〉 = max

y∈P
〈c, y〉}

}

be the polyhedral cone consisting of all the linear functionals on P that are
maximal over F , known as the normal cone of F . Then, dim(NF ) = k−dim(F ),
so that larger faces of P correspond to smaller normal cones. By lemma B2 part
5., the normal cone of a proper face F can be equivalently defined as

NF = cone (a1, . . . , amF
) ,

where ai denotes the transpose of the i-th row of the submatrix AF given in (2),
i = 1 . . . , mF .

The collection of cones

N (P) = {NF , F is a face of P}

forms a polyhedral complex in Rk (see, e.g. Sturmfels, 1995), known as the nor-
mal fan of P. Notice that, since dim(P) = k, NP = {0} and N (P ) is pointed,
which implies that none of the normal cones contains a linear subspace. Fur-
thermore, ⊎

NF ∈N(P)

int(NF ) = C∗,

where C∗ = {x ∈ Rk : 〈x, y〉 ≤ 0, ∀y ∈ C} is the polar of C in the V-represen-
tation (3) of P and

⊎
denotes disjoint union. In particular, if C = {0}, i.e. if P

is a full-dimensional polytope, the cones in N (P) partition Rk:

⊎

NF ∈N(P)

int(NF ) = Rk. (8)

We mention that, more generally, if full-dimensionality in assumption (A2) is
not in force, then NP is a linear subspace of Rk of codimension k − dim(P).

Let lin(NF ) denote the subspace generated by NF , which is the linear sub-
space spanned by the vectors (a1, . . . , amF

). The following lemma shows that,
for every face F of the convex support, the parameter space of the extended
family EF can be fully described using lin(NF ). Below, for two linear sub-
spaces S1 and S2 of Rk, the quotient space of S1 modulo S2 is the vector
subspace {[x], : x ∈ S1} consisting of the equivalence classes on S1 of the form
[x] = {y ∈ S1 : x− y ∈ S2}.

Lemma 2.2. The family EF is non-identifiable and ΘF is the quotient space of
Θ modulo lin(NF ). Furthermore, for any ζ ∈ lin(NF ),

rank (IF (θ + ζ)) = dim(F ), (9)

where I(·) and IF (·) denote the Fisher information matrices for EP and EF ,
respectively.
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The previous result characterizes ΘF as the vector subspace of equivalence
classes of points in Θ, where θ1 and θ2 are in the same class if and only if
θ1 − θ2 ∈ lin(NF ), and the class containing θ ∈ Θ is the set

θF ≡ {θ + ζ ∈ Θ, ζ ∈ lin(NF )}. (10)

Notice that if Θ = Rk, then ΘF is comprised of affine subspaces of dimension
dim(NF ) = k−dim(F ) parallel to lin(NF ), each identifying a single distribution.
In particular, when F = P, lin(NF ) = {0}, so that θF is an atomic set and we
recover the original, fully identifiable family EP.

By lemma 2.2, for any θ ∈ θF , pFθ is the same density. For the remainder
of the article, we will denote this density with pFθF

; similarly, we will write

EθF
(X) =

∫
Rk zp

F
θF

(z)dνF (z).

2.3. Main result

We will utilize the normal fan N (P) to describe various cases in which the
following convergence statements will hold or fail:

pθn
→ pFθF

, a.e. ν, and µn → µF ∈ ri(F ), (11)

where {θn} is a sequence of parameters in Θ, µn = Eθn
(X), µF = EθF

(X), and
F is any proper face of P. Characterizing the cases in which (11) is verified is
of relevance as these statements explicitly provide equivalent representations of
the extended family E as the closure of the original family EP in both natural
and mean value parameterization, and also in terms of almost sure limits of the
densities in EP. Thus, the geometric analysis of (11) we are about to present is
a more powerful representation of E than the traditional construction described
in section 2.1.1. We take note that, because of the one-to-one correspondence
between natural and mean value parameters for the families comprising E , the
two conditions in (11) imply each other. Of course, if F = P, this is just a
restatement of the mean value parametrization homeomorphism (5) between Θ
and ri(P).

As a preliminary observation, we point out that (11) holds true only if the
parameters θn have diverging norms, so that pFθF

cannot belong to EP. Formally,

Lemma 2.3. If (11) is verified for some proper face F , then ‖θn‖2 → ∞.

In our main result, we establish sufficient conditions under which (11) holds
or fails, based on the cones in the normal fan of P.

Theorem 2.4. Assume that conditions (A1)–(A4) hold. Let {θn} ⊂ Θ be a se-
quence of natural parameters satisfying θn = η+ρndn, where {ρn} is a sequence
of non-negative scalars tending to infinity, η ∈ θF ∩ Θ and {dn} is a sequence
of unit vectors.

1. If {dn} ⊂ R, with R a compact subset of ri(NF ), then (11) holds
2. Conversely, if {dn} ⊂ R, with R a compact subset of N c

F , then (11) fails.
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3. If {dn} ⊂ R, with R a compact subset (N (P))
c
, then

‖µn‖2 → ∞, (12)

which, in particular, implies that (11) is not verified.

Remark

1. The condition ‖dn‖2 = 1 for all n is imposed to guarantee that ‖ρndn‖2 →
+∞ and it does not entail any loss in generality.

2. The theorem shows that (11) will hold or fail uniformly over compact
subsets of ri(NF ), for all faces F of P.

Below, we will concern ourselves with sequences {θn} of natural parameters
of a certain simplified form, as described below.

Definition 2.5. A sequence of natural parameters {θn} ⊂ Θ is a (θ, d, {ρn})-
sequence if

θn = θ + ρnd,

where θ ∈ Θ, d ∈ Rk \ {0} and {ρn} is a sequence of non-negative numbers
tending to infinity.

The restriction to (θ, d, {ρn})-sequences is a strong enough condition to yield
a full characterization of (11), as described in the next corollary, and yet suffi-
ciently mild to unveil some of the fundamental features of the extended family
E . Furthermore, it will allow us to recast some of our results in the language
of convexity theory and gain some insights on the computational aspects of
calculating the extended MLE.

Corollary 2.6. Let {θn} be a (θ, d, {ρn})-sequence.

1. The convergence statements in (11) hold if and only if d ∈ ri(NF ).
2. If d 6∈ N (P), then (12) is verified.

In essence, corollary 2.6 characterizes the extended family E as the compactifi-
cation of the original family EP under both natural and mean value parametriza-
tions. For the natural parametrization, each density in EF is obtained as the
point-wise limit of sequences of densities parametrized by sequences of points
in Θ along any direction in ri(NF ) with norms diverging to infinity. In contrast,
the corresponding sequence of mean value parameters converges to the corre-
sponding point of finite norm on the boundary of P. This is a striking difference
between natural and mean value parametrization, which is entirely captured by
the normal fan of P. See figures 3 and 4 in section 3.4 and related discussion for
more details in the context of ERG models. See also the short movies available
at http://www.stat.cmu.edu/~arinaldo/ERG/ for a more intuitive graphical
illustration.

In the remaining of this section, we will explore some of the consequences
of theorem 2.4 and, in particular, of corollary 2.6, with the goal of illustrating
some of the key properties of the extended family E .

http://www.stat.cmu.edu/~arinaldo/ERG/
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We begin by observing that, as shown in equation (20) in the proof of theorem
2.4, if d 6∈ NF , the sequence of distributions parametrized by the points θn =
θ+ρnd corresponds to distributions in the original family EP whose mean value
parameters µn ∈ ri(P) are such that ‖µn‖2 → ∞, with µn bounded away from
rb(P). It is clear that this can occur only if C 6= {0}, i.e. if the convex support is
unbounded. In fact, when P is a polytope, we have N (P) = Rk (see equation 8),
so that corollary 2.6 further yields that each density in the family EF can be
obtained as limn pθn

, where {θn} is any (θ, {ρn}, d)-sequence with θ ∈ Θ and
d ∈ ri(NF ). Formally,

Corollary 2.7. If P is a polytope, then, for any d ∈ Rk, any (θ, {ρn}, d)-
sequence {θn} and any face F ,

pθn
→ pFθF

, a.e. ν, and µn → µF ∈ ri(F ),

if and only if d ∈ ri(NF ).

In fact, our analysis of exponential random graph models of section 3.4 is
almost entirely an illustration of the previous corollary.

Another implication of corollary 2.6 is that, when the MLE does not exist,
the directions of increase of the likelihood function for a given observed sample
x ∈ ri(F ) are precisely the points in the associated normal cone NF . Formally,
let x be the observed natural sufficient statistics and ℓx : Θ 7→ R be the log-
likelihood function, given by ℓx(θ) = logpθ(x). Then, −ℓx is a strictly convex
function. This follows from minimality and the well-known convexity properties
of the cumulant generating function ψ (see, e.g., Brown, 1986, theorem 1.13).
Then, following Rockafellar (1970, Chapter 8), d ∈ Rk \ {0} is a direction of
recession for −ℓx if

lim infρ→∞ − ℓx(θ + ρd) <∞, (13)

for one, and thus for all, θ ∈ dom(ℓx) = Θ. The set of all directions of recession
of −ℓx, along with the point d = 0, is called the recession cone of −ℓx. It is clear
that convex functions admitting directions of recession might not achieve their
infimum at any point in their effective domain. On account of the next result,
the recession cone of −ℓx is a cone of the normal fan of P, almost everywhere ν .

Corollary 2.8. For any observable natural sufficient statistics x ∈ P, the poly-
hedral cone NF is the recession cone of the negative log-likelihood function −ℓx,
where F is the unique, possibly improper, face of P such that x ∈ ri(F ).

In particular, when x ∈ ri(P), i.e. when the MLE exists, the corresponding
recession cone is just the point {0} (since dim(P) = k), so that the negative log-
likelihood function does not have any direction of recession and, therefore, its
infimum is achieved at one parameter point θ̂ ∈ Rk with finite norm, namely the
MLE. On the other hand, when the MLE is nonexistent, the likelihood function
increases for any sequence of natural parameters with norm diverging to infinity
along any nonzero direction d ∈ NF , where NF is the normal cone of the face
of P containing the observed natural sufficient statistics in its relative interior.
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During the preparation of the paper, we learned of similar results in Geyer
(2008), which are based on the characterization of the convex support in term of
the tangent cones and normal cones. While his analysis applies to more general
classes of exponential families, our results are more refined, as we take full ad-
vantage of the polyhedral assumption and establish a direct connection between
the extended families and the cones in the normal fan.

By combining the results derived so far, we next show that, when x ∈ ri(F ),

the extended MLE will be the affine subspace of dimension dim(NF ) given by θ̂F ,
where E

θ̂F
= x. Though not entirely a new result (see Brown, 1986, Chapter 6),

our proof and the characterization of θ̂F in terms of NF is novel.

Corollary 2.9. Let x ∈ ri(F ) and θ̂F be given as in (10) and such that
E
θ̂F

(X) = x. Then,

sup
θ∈Θ

pθ(x) = pF
θ̂F

(x).

For completeness, we conclude this section by linking our discussion with
alternative characterizations of the closure of the family EP existing in the lit-
erature, which could be easily obtained using theorem 2.4 (see, in particular,
Csiszár and Matúš, 2001, 2003, 2005, 2008).

Corollary 2.10. For any (θ, {ρn}, d)-sequence {θn} with d ∈ ri(NF ),

i) Pθn

TV
→ P FθF

, where
TV
→ denotes convergence in total variation;

ii) limnK(P FθF
, Pθn

) = 0, where K(P,Q) is the Kullback-Lieber divergence of
P from Q;

iii) Pθn
⇒ P FθF

, where the ⇒ denotes convergence in distribution.

2.4. Computational considerations

Based on our findings, we can make a few observations regarding the computa-
tional difficulties of finding the extended MLE, some of which are exemplified
in the next result.

Corollary 2.11. Let {θn} be a (θ, {ρn}, d)-sequence, with d ∈ ri(NF ). Then,
for every ζ ∈ lin(NF ),

I(θn) → IF (θ + ζ), (14)

where convergence is pointwise.

From this corollary and equation (9), we can infer that, when the MLE does
not exist, maximizing the log-likelihood function using the Newton-Raphson
method, as well as virtually any other ascent methods, may fail due to numer-
ical instabilities. In fact, the Newton-Raphson algorithm proceeds by finding a
sequence {θn} of natural parameters along which ℓx increases; at each step of
the procedure, the next point in the sequence is determined along the direction
specified by the inverse of the Hessian, i.e. by the inverse of I(θn), times the
gradient of pθ(x). (These are directions of fastest ascent measured in the Fisher
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information norm). However, for all n large enough, the Hessian matrices will
be badly conditioned, since, at the optimum, the Fisher information matrix is
not invertible (see equation 9). These singularity issues become more severe if
the observed statistics x belong to the relative interior of a face of small di-
mension. Furthermore, unless x lies on a the relative interior of a facet, there is
an infinite number of directions along which the likelihood function increases.
It is apparent that these problems are even more common in high-dimensional
settings or whenever the data are sparse.

From the statistical standpoint, equations (14) and (9) further imply that,
when the MLE does not exist, the standard error may be quite large, and
that the number of degrees of freedom should be adjusted to reflect the non-
estimability of some parameters. As a result, any hypothesis testing or model
selection procedure that rely solely on these estimates should be regarded, at
the very least, unreliable. Based on these considerations, it is clear that not
only is the task of computing the extended MLE particularly daunting, but the
statistical interpretation of these quantities is also rather delicate.

We refer the reader to Geyer (2008) and Rinaldo (2006b) for different al-
gorithmic approaches to computing the extended MLE for certain types of
exponential models with polyhedral support for which a V-representation of
P of the form (1) or (3) is either available or easily computable. We remark
that, in order to determine the extended MLE, it is necessary not only to
have an explicit representation of P but, in addition, to be able to have in
closed form the log-partition functions ψF , for each face F . A class of mod-
els for which both conditions are satisfied is the class of the log-linear models.
If this information is not available, one may resort to MCMC techniques for
computing the MLE or a pseudo-MLE, as for the class of models to be de-
scribed in the next section. See Geyer and Thompson (1992), and Handcock
(2003), Snijders (2002), Wasserman and Robins (2004), Handcock et al. (2006),
Hunter et al. (2008) and references therein.

As a final comment, we point out that, while computing the extended MLE
is very often a hard problem, deciding whether the MLE exists is typically
more feasible, and can be accomplished using linear programming, provided an
explicit representation, namely a H- or a V-representation, of P is available.
See Appendix C for details and also Eriksson et al. (2006) for an application to
hierarchical log-linear models.

3. Application to exponential random graph models

We now apply some of the results from the previous section to the class of
exponential random graph models. The motivation for our choice is the attempt
to explain certain features of ERG models that have been observed empirically
and have been collectively labeled as degeneracy (see, e.g., Handcock, 2003).
Our point of view is simply that there is nothing degenerate or unusual about
these models, whose behavior can in fact be explained in a direct way using
the properties of exponential families with polyhedral support as described in
section 2.3.
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Table 1

Some information about the complexity of some ERG models on small graphs

Number of nodes: g Possible number of edges:
(

g

2

)
Number of graphs: |Gg|

7 21 2,097,152
8 28 268,435,456
9 36 68,719,476,736
10 45 35,184,372,088,832

Our arguments rely on a thorough analysis of one ERG model, described
below in section 3.2, and on graphical renderings of corollary 2.7, which we find
particularly effective and elucidative of our results. We looked at a variety of
other ERG models on 7,8 and 9 nodes, using different choices of the network
statistics described below, and arrived to the same kind of conclusions we are
about to present.

Finally, we would like to emphasize that, as the log-partition function is not
available in closed form, an exact analysis of ERG models on larger graphs is
almost impossible. This is due to the need to enumerate all possible graphs
with a given number of nodes in order to evaluate that function, a task whose
computational computationally becomes prohibitive very rapidly as the number
nodes grow; see equation (15) below and Table 1.

3.1. Introduction to ERG models

There is an extensive literature on ERG models and their use in social network
analysis. A partial but representative list of references is: Holland and Leinhardt
(1981), Frank and Strauss (1986), Wasserman and Pattison (1996), Wasserman
and Robins (2004), Robins et al. (2007a,b) and references therein. Below we
briefly describe the settings for ERG models, in order to make explicit the
connections with the material in the previous sections.

Consider the set Gg of all possible simple, i.e. unweighted, undirected and
without loops, graphs on g nodes. Every such graph x can be described by a 0-1
symmetric g × g adjacency matrix, whose (i, j)-th entry is 1 if there exists an
edge between the nodes i and j and 0 otherwise. Thus, x can be represented as
a

(
g
2

)
-dimensional 0-1 vector. The cardinality of Gg grows super-exponentially

in the number of nodes, namely

|Gg| = 2(g
2), (15)

so that network modeling entails constructing probability distributions over very
large discrete spaces (see Table 1).

Let T : Gg 7→ Rk be a vector valued function of network statistics quantifying
the key features of interest of a given observed graph. In this article we are
mostly concerned with ERG models arising from network statistics that capture
rather general and aggregate features of the network. Typical examples of such
statistics are (see, e.g., Goodreau, 2007, for more details):
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1. the number of edges:
∑
i<j xij

2. the number of triangles:
∑

i<j<h xijxjhxih
3. the k-degree statistic: Dk(x) =

∑g

i=1 1{di = k}, where di =
∑

j xij is the
degree of the i-th node and 0 ≤ k ≤ n− 1;

4. the number of k-stars:
∑g−1

i=k

(
i
k

)
Di(x), 2 ≤ k ≤ n− 1, i.e. the number of

distinct edges that are incident to the same node, where Di(x) is the i-th
degree statistic given above;

5. the alternating k-star statistic

g−1∑

i=2

(−1)i−1Si(x)

λ2−i
,

where λ is a positive parameter.

For all modeling purposes, these network statistics are effectively regarded
as sufficient statistics and, by the Koopman-Pitman-Darmois theorem (see, e.g.
Brown, 1986; Bardoff-Nielsen, 2006), the resulting exponential family of distri-
butions provides a convenient statistical model for Gg. Formally, given a set of
network statistics in the form of a k-valued function T (·) on Gg, the ERG model
P ≡ {Qθ, θ ∈ Θ ⊆ Rk} is the exponential family of probability distributions
over Gg with natural sufficient statistics T (x) and base measure µ given by the
counting measure on Gg. Thus, for θ ∈ Θ, the density of Qθ with respect to µ is

dQθ
dµ

(x) = qθ(x) = exp{〈T (x), θ〉 − ψ(θ)} = Prob{X = x}.

Let T = {t ∈ Rk : t = T (x), x ∈ Gg} be the range of T (·) and ν the measure
on T induced by µ, namely

ν(t) = µ{x ∈ Gg : T (x) = t} = |{x ∈ Gg : T (x) = t}| , t ∈ T .

Then, the distribution of T (X) belongs to the exponential family of distributions
on T with base measure ν , natural parameter space Θ and densities

pθ(t) = exp{〈t, θ〉 − ψ(θ)}, θ ∈ Θ.

Furtheremore, because of the discreteness of the problem,

Prob(T (X) = t) =

∫

{x∈Gg : T (x)=t}

qθ(x)dµ(x) =
∑

{x∈Gg : T (x)=t}

qθ(x) = pθ(t)ν(t).

Provided that the network statistics are affinely independent, as it is the case for
the examples given above and as it can always be assumed through reduction to
minimality, the convex support P = convhull(T ) is a k-dimensional polytope.
Furthermore, since ν has finite support, it is easy to see that the assumptions
(A1)–(A4) of section 2.1 are verified, and the theory developed above applies.

Despite its simplicity and interpretability, we need to emphasize that ERG
modeling based on simple, low dimensional network statistics such as the ones
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described above can be rather coarse. In fact, those ERG models are invariant
with respect to the relabeling of the nodes and even to changes in the graph
topologies, depending on the network statistics themselves. As a result, they do
not specify distributions over graphs per se, but rather distributions over large
classes of graphs having the same network statistics. Consequently, as elucidated
in the example we are about to present (and as we repeatedly observed in our
experiments using other network statistics, not reported here), it may very well
be the case that many graphs having very different topologies still belong to the
same class and, therefore, are considered as equivalent. While this feature may
be well suited for defining distributions over large thermodynamic ensembles in
statistical physics, its use in other contexts in which the nodes are not inter-
changeable may be questionable. This is certainly not a common feature of all
ERG models: for example, the p1 model by Holland and Leinhardt (1981) and
the Markov graphs by Frank and Strauss (1986) are based on much finer net-
work statistics whose dimension, unlike the aggregate statistics reported above,
increases with the size of the network. These more complex models represent ex-
plicitly distributions of individual networks rather than of classes on networks:
both p1 and Markov graph models are log-linear models over the probability of
edges (see Fienberg and Wasserman, 1981). However, they also present difficul-
ties. In fact, not only is the MLE not likely to exist if the observed network is
even moderately sparse, but the asymptotics of these models as g grows remains
unknown (see, e.g. Haberman, 1981, for some comments on p1 models). While
the theory developed in the previous sections apply to all ERG models, our
analysis below is more directly relevant to models arising from simpler network
statistics quantifying macroscopic properties of the network.

3.2. Our running example

We will be using throughout the example of a ERG model on G9 with two-
dimensional network statistic T (x) = (T1(x), T2(x)) ∈ N2, where T1(x) is the
number of edges and T2(x) is the number of triangles. Note that this model is
not hierarchical in the sense of Bishop et al. (1975) and Lee and Nelder (1996),
since we do not include the network statistic for the number of 2-stars, which
lie intermediate to edges and triangles. The lack of hierarchical model structure
affects the interpretation of the exponential family parameters corresponding to
T (x) but turns out not to be the cause of the degeneracies we illustrate. We
have actually produced similar results for models which are fully hierarchical,
but the results are easier to demonstrate in the context of this ERG model with
a two-dimensional network statistic.

The number of distinct graphs for this G9 example is 236, while the number of
two-dimensional distinct network statistics is only 444. The natural parameter
space is R2. The support of the distribution of T (X) is shown in figure 1. The
convex support for the induced family of distributions of network statistics is a
polygon with 6 edges, whose boundary is depicted with the red solid line. Out
of the possible 444 points, 29 actually lie on the boundary. The fully connected
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Fig 1. Support of the distribution of the network statistics for the ERG model on G9 described
in section 3.2. The color shading indicates the square root of the relative frequency of each
point, namely ν(t) (darker colors correspond to higher-frequency values of t). The solid red
line is the boundary of the convex support.

graph has
(
9
2

)
= 36 edges and

(
9
3

)
= 84 triangles. The induced base measure

ν for this family, i.e. the frequencies of each possible pair of network statistics,
is indicated by the color shading of the circles. The maximal value of ν(t) is
1, 876, 664, 161, the median value is 2, 741, 130, while the first and third quartiles
are 545, 265 and 79, 674, 084, respectively. Figure 2 shows a plot of the empirical
quantile function for ν(t), t ∈ T , which indicates that few network configurations
are much more frequent than others.

3.3. Degeneracy

The notion of degeneracy is central to ERG modeling, and has been inves-
tigated in various forms in the more recent literature. See Snijders (2002),
Robins et al. (2007b), Robins et al. (2007a) and, in particular, Handcock (2003)
and Hunter et al. (2008), just to mention a few. Degeneracy refers quite broadly
to a variety of features, typically undesirable and surprising, of ERG models that
have been observed empirically. In the literature, degeneracy (or near degener-
acy) is used to describe any of the following, often interrelated, phenomena:

1. when a combination of ERG parameters θ implies that only a small number
of graphs have substantial non-zero probabilities; often, these graphs are
radically different from each other, for example the empty graph and the
fully connected graph;
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Fig 2. Empirical quantiles of the values {ν(t), : t ∈ T } for the base measure of the family
described in section 3.2.

2. when the MLE of θ does not existent or is hard to obtain, or the MLE of θ
as computed by MCMC methods fails to converge or appears to converge
extremely slowly;

3. when the estimate of θ would make the observed network very unlikely.

Each of the situations just described offers strong evidence of misspecifcation
or, at the very least, of the inability of the model to describe in a realistic
fashion the observed network. To our knowledge, Handcock (2003) is the only
attempt to characterize degeneracy in a theoretical way, at least the kind of
degeneracy yielding unstable maximum likelihood estimates, with emphasis on
MCMC-based MLE methods.

3.4. Degeneracy via entropy functions

We base our analysis on a basic observation: a common feature of all the various
instances of degenerate ERG models is that the corresponding distributions are
highly concentrated on network configurations associated to a small number of
network statistics. Therefore, in order to capture the overall degree of concen-
tration of the family P, we turn to Shannon’s entropy function, the rationale
being that degenerate models have lower entropy.

Shannon’s entropy function S : Θ → R is defined as

S(θ) = −
∑

x∈Gg

qθ(x) log qθ(x) = −
∑

t∈T

pθ(t) log pθ(t)ν(t),
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where the second summation involves a much smaller number of terms. Notice
that, for every θ ∈ Θ,

0 ≤ S(θ) ≤

(
g

2

)
log 2,

the lower and upper bounds corresponding to a degenerate distribution with
point mass at one graph, and to the uniform distribution over Gg (which is within
the family if ν(t) is constant across T and θ = 0), respectively. Furthermore, as
ψ is an analytic function of θ, for every θ ∈ Θ, S(θ) is a smooth function of θ.

Noting that limx→0 x logx = 0 and using the fact that S(θ) is bounded, by the
dominated convergence theorem corollary 2.6 yields that, for every (θ, {ρn}, d)-
sequence {θn} with d ∈ ri(NF ),

lim
n
S(θn) = SF (θF ) ≡ −

∫

T

pθF
(t) log pθF

(t)dνF (t), (16)

for every face F of P.
On the other hand, because of the correspondence between natural and mean

value parameters, the entropy function can be equivalently represented as a
function over P. More precisely, we define V : P 7→ R as follows: if µ ∈ ri(P),

V (µ) = S(θ),

where µ = ∇ψ(θ), while, for µF ∈ ri(F ),

VF (µF ) = SF (θF ),

where µF = ∇ψF (θF ). Thus, if {θn} is a (θ, {ρn}, d)-sequence with d ∈ ri(NF )
and if µn = Eθn

(T (X)), from equation (16) we obtain that

lim
n
V (µn) = VF (µF ),

where µF = limn µn, with V (µ) a smooth function of µ. Thus, we conclude that
S(·) and V (·) have homeomorphic graphs and, therefore, they convey the same
information.

Below, we use both entropy functions to illustrate the theory developed in
section 2.3 and to provide some characterizations of degeneracy.

We start with figures 3 and 4. The latter displays the entropy function S(θ)
for the ERG model on G9 with network statistics taking values in N2, as de-
scribed in section 3.2, and for values of θ in the rectangle [10, 25]× [−25, 10].
The equivalent entropy function over the mean value space V (µ) is displayed in
figure 3, for the mean value parameters {µ : µ = ∇ψ(θ), θ ∈ [10, 25]× [−25, 10]}.
Figures 4 and 3 offer two equivalent views of the exponential family P via the
entropy functions S(θ) and V (µ). The mean value view in figure 3 is straight-
forward to interpret: the entropy function is a well behaved, strictly concave
function that changes smoothly as the mean parameter varies inside the rela-
tive interior of P. Distributions with mean value parameters lying well inside
the cloud of points describing the support of the family have higher entropy, as
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(a)

(b)

Fig 3. Plots of the entropy function V (·) under mean value parametrization for the ERG
model of section 3.2. Part a): 2-dimensional plot over the convex support P; the points cor-
respond to the support of the family. Part b): surface plot.

their mass is distributed across a larger number of network configurations. In
contrast, distributions with mean value parameters that are far removed from
that cloud, including points very close to or on the boundary of P, have lower
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(a)

(b)

Fig 4. Plots of the entropy function S(·) under natural parametrization for the ERG model
of section 3.2. Part a): 2-dimensional plot over a square of the natural parameter space. Part
b): surface plot.

entropy. It is worth pointing out that, for this specific family, the points in the
support are closer to the lower boundary of the polygon P, while the side of P
determined by the convex hull of points corresponding to the empty and com-
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plete graph is significantly distant from the support. This phenomenon becomes
more pronounced as g grows, so that this family will include many distributions,
whose mean value parameters belong to a region far removed from the support,
that would not provide a satisfactory or realistic explanation of any observed
network, a feature that is often associated with degeneracy.

In striking contrast, the natural parameter view of figure 4 does not lend
itself to immediate interpretations. In fact, although S(θ) and V (µ) are smooth
functions related via the homeomorphism (5), S(θ) displays drastic localized
behaviors, including multiple local maxima. In particular, the function S(θ) ex-
hibits sharp changes and high-peaked ridges shooting at infinity along which
it remains roughly constant. Furthermore, small variations in the natural pa-
rameter values cause big changes in the values of the entropy function, thus
making this ERG model rather unstable, in the sense that neighboring param-
eters specify very different distributions, or at least distributions with different
entropies. These features may in fact fall under the general umbrella of degen-
eracy, as described in section 3.3. Finally, we remark that the portion of the
natural parameter space containing parameter points that produce more realis-
tic distributions with higher entropy values is relatively small, a characteristic
that emerged from the inspection of figure 3 as well. In addition, the entropy
function remains relatively high along some rays leaving the origin and shooting
to infinity. We remark that figure 4 matches quite closely analogous plots, not
based on Shannon’s entropy, for the same ERG model on graphs with 7 nodes by
Handcock (2003), although the interpretation of the plots using normal cones,
as described below, is missing.

Figure 5 shows all the possible MLEs corresponding to the 415 points in the
support of EP that are in he interior of P. These points are all the estimates
that can be obtained by the maximum likelihood procedure, so that, although
the family EP contains many other distributions, inference is only restricted to
the 415 distributions identified by the MLEs, whose entropies are displayed in
the figure.

Part of the seemingly strange behavior of S(θ) can however be explained using
the results derived in the previous section. To that end, the convex support of
figure 1, can be represented in V form either as the convex hull of its vertices,
namely

P = convhull {(0, 0), (20, 0), (27, 27), (30, 44), (32, 56), (36, 84)}

or, equivalently, using the H-representation, as the solution set of a system of
linear inequalities, i.e.

P = {t ∈ R2 : At ≤ b},

where

A =





0 −1
27 −7
17 −3
6 −1
7 −1

−21 9




and b =





0
540
432
136
168
0




.
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Fig 5. All possible MLEs of the natural parameters for the ERG model of section 3.2 super-
imposed over the entropy plot of S(·).

The rows of A identify the outer normals to the 6 sides of the polygon P and
generate the normal cones to the edges of P. The normal cone of a vertex of P
is the conic hull of the outer normals to the edges incident to that vertex. For
example, the normal cone of the vertex (0, 0) is

cone {(0,−1), (−21, 9)}

The convex support P and its outer normals are shown in figure 6. The normal
fan of P, i.e. the collections of all the cones with apex at 0 identified by the outer
normals of P, is displayed in figure 7. It is immediate to see that the normal
fan induces a partition of R2 in 6 regions, which are all polyhedral cones. Every
region corresponds to one vertex of P. The boundaries between adjacent regions
are rays emanating from the origin (thus, they are also polyhedral cones); every
such ray corresponds to one edge of P.

Figure 8 shows the entropy plot over the subset [10, 25] × [−25, 10] of the
natural parameter space with, superimposed, the normal fan of P, which we
centered at the origin, the point of maximal entropy. As prescribed by corollary
2.6, the outer normals to P are precisely the directions along which the closure
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Fig 6. Convex support and its outer normals for the ERG model of section 3.2.
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Fig 7. Normal fan of the convex support for the ERG model of section 3.2. For this particular
example, the normal fan is constructed by collecting all the outer normals of P shown in
figure 6 and displaying them as rays leaving the origin. Note that the scales of the axes are
set differently.
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Fig 8. Entropy plot of S(·) with, superimposed, the normal fan of P for the ERG model of
section 3.2.

of the original family EP is realized, by adding the families EF , as F ranges over
the proper faces (in this case, edges and vertices) of P. These directions, starting
at the origin, match perfectly the ridges of figure 4, along which the entropy
function seems to converge to some fixed value. This is the case because any
sequence {θn} along the outer normal of some edge F will eventually no longer
identifies distributions from the original family EP, but just one distribution
in EF supported on F . Consequently, the entropy function does not change
because, for all n large enough, θn specifies almost the same distribution.

Figures 9, 10 and 11 offer other two pictorial representations of corollary 2.6.
These plots were obtained using the MATLAB GUI available at http://www.
stat.cmu.edu/∼arinaldo/ERG/ (see section 4 below). The left side of each plot
shows the entropy function for the family of section 3.2 along with the outer
normals of P leaving the original. The white circles represent the selected natural
parameter. The plots on the right show the support of the family. The red stars
indicate the mean parameter values corresponding to the natural parameters
indicated by the white circles on the left side of the figure. Points with darker
shaded colors correspond to network statistics receiving high probability under
the selected natural parameter.

Part (a) of figure 9 shows a distribution with high entropy, corresponding
to a mean value parameter in the relative interior of P. In contrast, in parts
(b), (c) and (d) the natural parameter is selected as d, with d a point in the
relative interior of the 2-dimensional normal cone of the vertex of coordinates
(0, 0), which identifies the empty graph. Consequently, the entropy is almost 0,

http://www.stat.cmu.edu/~arinaldo/ERG/
http://www.stat.cmu.edu/~arinaldo/ERG/
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as the associated distribution will put almost all its mass on that vertex of P.
Notice that, even though the selected natural parameters from part (b), (c)
and (d) are very different from each other, because they are far away from the
set of parameters producing nondegenerate distributions and because they all
to lie inside the normal cone of the vertex (0, 0), they parametrize essentially
the same degenerate distribution on the empty graph.

Figure 10 part (a) shows the same phenomenon, but for the different degen-
erate distribution putting virtually all its mass on the complete graph, which
corresponds to the vertex (36, 84). As with figure 9, notice that the natural
parameter is a point inside the normal cone of that vertex and essentially any
point in the upper triangular blue part of the entropy plot (which is, effectively,
the relative interior of the associated normal cone) would parametrize this dis-
tribution. Part s(b) and (c) show other degenerate distributions over the vertex
of P identified by points inside the interiors of the corresponding normal cones.
Figure 11 instead displays similar plots for a selection of natural parameters
corresponding to directions lying on the normal cones, i.e. the outer normals, of
some of the edges of P.

4. Discussion

The purpose of this article is two-fold. First, for the class of discrete linear ex-
ponential families with polyhedral convex support, we have characterized the
extended family using the normal fan to the convex support. While deep and
exhaustive results about closures of general exponential families exist in the lit-
erature, our restriction to families with polyhedral support allowed us to obtain
a more refined and explicitly geometrical description. In particular, our findings
allowed us to gain a better understanding of the geometric and statistical prop-
erties of these families, as well as on the theoretical and algorithmic aspects of
computing extended maximum likelihood estimates. v Our second goal was to
study the behavior and statistical properties of ERG models, that have seen
widespread use in the statistical analysis of social networks data. To that end,
we applied the theoretical results derived in the first part of the article to one
ERG model on the set of graphs with 9 nodes. Despite our analysis being mostly
graphical (due to the lack of a closed-form expression for the log-partition func-
tion), it captures a few interesting features of this model, some of which accounts
for the seemingly strange behaviors that ERG models have been known to ex-
hibit in practice, and generically termed degeneracy. Our investigation indicated
that this type of behavior is, in fact, not unusual, and can be explained by the
properties of linear discrete exponential families.

Although by no means do we mean to imply that all ERG models exhibit the
same type of features we have indicated for the one example we study in this
article, nonetheless we believe our conclusions are not just specific to this model
and could apply more widely to ERG models in which the nodes are treated as
interchangeable and whose individual characteristics are not taken into account.
This position seems to be corroborated by some of the empirical and theoretical
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(a)

(b)

(c)

(d)

Fig 9. Various distributions parametrized by points in the natural parameter space for the
ERG model of section 3.2. The plots on the left are the entropy plots; the white points indicate
the selected distributions. The plots on the right all display convex support. The red crosses
represent the mean value parameters corresponding to the selected natural parameters, while
the darker shading indicates network statistics configurations that are very probably under
the selected parameters. Part (a): distribution with high-entropy with mean value parameter
inside P. Parts (b), (c) and (d): natural parameters all specifying distributions with virtually
all of the total mass on the empty graph.
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(a)

(b)

(c)

Fig 10. Three degenerate distributions over three vertices of P. See the caption of figure 9.

analyses of ERG models existing in the social network literature we have cited,
as well as by similar experimentations we conducted with other ERG models (for
example using k-stars statistics). On a related note, the application presented
here are particularly relevant to ERG models built around network statistics
that describes macroscopic features of the networks and whose dimension does
not grow with the number of nodes. However, our results are relevant to more
complex models, such as the p1 model of Holland and Leinhardt (1981), which
has node-specific parameters and whose likelihood is based on an assumption
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(a)

(b)

(c)

Fig 11. Three degenerate distributions supported over three different edges of of P. See the
caption of figure 9.

of dyadic independence. For these models with many parameters, degeneracy is
typically due to nonexistence of the MLE, which is very likely to occur if the
network is even mildly sparse.

Appendix A: Proofs

Proof of Lemma 2.2. Let θ1 ∈ ΘF and ζ ∈ lin(NF ) and consider the point
θ2 = θ1 + ζ. We first show that θ2 ∈ ΘF and Pθ1 = Pθ2 . Because ζ ∈ lin(NF ),
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there exist some scalars c1 . . . , cmF
such that

ζ =

mF∑

i=1

ciai.

Therefore, almost everywhere νF ,

〈ζ, x〉 =

mF∑

i=1

cibi ≡ C.

Then,

ψF (θ2) = log

∫

F

exp〈θ1+ζ,x〉 dνF (x) = log

∫

F

exp〈θ1,x〉 dνF (x)+C = ψF (θ1)+C.

As both ψF (θ1) and C are finite, it follows that ψF (θ2) < ∞ and, therefore,
θ2 ∈ ΘF . It is now easy to conclude that Pθ1 = Pθ2 because, almost everywhere
νF ,

pθ2(x) = exp〈θ1+ζ,x〉−ψF (θ2) = exp〈θ1,x〉+C−ψF (θ1)−C = pθ1(x).

We now show that if Pθ1 = Pθ2 and θ1 6= θ2, then θ1 − θ2 ∈ lin(NF ). By
Radon-Nykodin theorem, this occurs if and only if

〈x, θ1 − θ2〉 = ψF (θ1) − ψF (θ2) = D

for some constant D, almost everywhere νF . As νF has support contained in F
and F is defined by (2), the previous equality is equivalent to θ1 −θ2 ∈ lin(NF ),
thus completing the proof of the lemma.

As for (9), since P is full-dimensional and, almost everywhere νF , AFx = bF ,
we have, for any θ ∈ ΘF ,

0 = Varθ (〈a,X〉) = a⊤IF (θ)a

if and only if a = lin(NF ). This implies that rank(IF (θ)) = dim
(
lin(NF )⊥

)
=

dim(F ).

Proof of Lemma 2.3. Arguing by contradiction, suppose that, for all n large
enough, θn belongs to a compact, hence bounded, set C. The facts that ∇ψ(θ) =
Eθ[X] ∈ ri(P) Θ, for each θ ∈ Θ with finite norm, and that ri(P) and Θ are
homeomorphic, imply that {∇ψ(θ), : θ ∈ C} is a compact subset of ri(P).
Then, because ‖∇ψ(θ) − µF ‖2 is a continuous function of θ, for all θ ∈ Θ,
infθn∈C ‖∇ψ(θn)−µF ‖2 = ‖∇ψ(θ∗)−µF ‖2 for some θ∗ ∈ C. But then, ∇ψ(θ∗) ≡
µ∗ ∈ ri(P) so that, ‖µ∗ − µF‖2 > ǫ > 0 for some ǫ, which produces a contradic-
tion.

Proof of theorem 2.4. Throughout the proof, we will write Sk−1 = {x ∈ Rk :
‖x‖2 = 1}.
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In the proof we will make use repeatedly of the following decomposition. For
any point x0 ∈ P and proper face F of P, we will write

pθn
(x0) =

exp〈η,x0〉

A0,n(x0, F ) + A>,n(x0, F ) + A<,n(x0, F )
, (17)

where

A0,n(x0, F ) =

∫

{x : AF (x−x0)=0}
exp〈η,x〉+ρn〈dn,x−x0〉 dν(x),

A>,n(x0, F ) =

∫

{x : AF (x−x0)>0}

exp〈η,x〉+ρn〈dn,x−x0〉 dν(x),

and

A<,n(x0, F ) =

∫

{x : AF (x−x0)<0}

exp〈η,x〉+ρn〈dn,x−x0〉 dν(x).

Notice that, for all n, if x0 ∈ F , then A>,n(x0, F ) = 0, since ν{x : AF (x−x0) >
0} = 0. We will also use the following fact, which stems directly from lemma

2.2: exp〈η,x〉−ψF (η) = exp〈θ,x〉−ψF (θ) = pFθF
(x), almost everywhere νF .

1. Part 1.
We will begin by showing sufficiency. First, we consider the case of a
generic point x0 ∈ F . If, dn ∈ ri(NF ), then, by part 1. of lemma B2,
〈dn, x− x0〉 = 0 for all x ∈ F , which implies that

A0,n(x0, F ) =

∫

F

exp〈η,x〉 dν(x) = expψ
F (η),

for all n. On the other hand, for any x 6∈ F , since R is a compact subset
of ri(NF ) ∩ Sk−1 and {dn} ∈ R, we have

sup
n

〈dn, x− x0〉 ≤ sup
d∈R

〈d, x− x0〉 = 〈d∗x, x− x0〉,

for some d∗x ∈ R, which may depend on x. Furthermore, by part 2. of
lemma B2, 〈d∗x, x− x0〉 < 0. Thus, ρn〈dn, x− x0〉 → −∞, for each x 6∈ F .
for each x ∈ {x : AF (x− x0) < 0},

exp〈η,x〉+ρn〈dn,x−x0〉 ≤ exp〈η,x〉,

whereby
∫

{x : AF (x−x0)<0}

exp〈η,x〉 dν(x) ≤

∫

Rk

exp〈η,x〉 dν(x) = expψ(η) <∞.

Then, by the dominated convergence theorem, we obtain

A<,n(x0, F ) ց 0.

Therefore,

A0,n(x0, F ) + A<,n(x0, F ) ց expψ
F (η),
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which implies that

limpθn
(x0) ր exp〈η,x0〉−ψ

F (η) = pθF
(x0). (18)

Next, let x0 ∈ P ∩ F c and notice that

A>,0(x0, F ) + A0,n(x0, F ) +A<,n(x0, F )

≥ A>,n(x0, F ) ≥

∫

F

exp〈η,x〉+ρn〈dn,x−x0〉 dν(x),

since F ⊆ {x : AF (x− x0) > 0}. For any x ∈ F , since {dn} ∈ R and R is
a compact subset of ri(NF ) ∩ Sk−1, we get

inf
n
〈dn, x− x0〉 ≥ inf

d∈R
〈d, x− x0〉 = 〈d∗x, x− x0〉,

for some d∗x ∈ R, which may depend on x. By lemma B2, part 2., ρn〈d∗x, x−
x0〉 → ∞, for all x ∈ F . But then, as ν(F ) > 0 by assumption (A3), we
obtain ∫

F

exp〈η,x〉+ρn〈dn ,x−x0〉 dν(x) → ∞,

by the monotone convergence theorem. Thus,

A>,0(x0, F ) + A0,n(x0, F ) +A<,n(x0, F ) → ∞, (19)

and, therefore, pθn
(x0) → 0 = pFθF

(x0).
2. Part 2.

Suppose that, {dn} ⊂ R, where R is a compact subset of N c
F . Then, there

exists a subsequence {dnk
} ⊂ {dn} such that, for all k large enough, dnk

belongs to a compact set R∗ such that either R∗ ⊂ ri(NF ′ ), for some
F ′ 6= F , or R∗ ⊂ (N (P))c. In the latter case, by part 3., proven below, the
numbers ‖µnk

− µF ‖2 grow unbounded and, therefore, (11) is violated.
In the former case, by part 1. of the proof, (11) is verified for F ′, so it
cannot be simultaneously verified for F as well. Indeed, pθn

cannot con-
verge pointwise to both pFθF

and pF
′

θF ′ , which identify different probability
distributions with different supports.

3. Part 3.
We will show that, if {dn} ⊂ R for some compact subset of (N (P))

c
, then,

pθn
(x0) → 0, ∀x0 ∈ P. (20)

This implies that ‖µn‖2 → ∞. Let x0 ∈ P. As P is full-dimensional and
dn 6∈ N (P), by lemma B2, part 3., the set Sn = {x ∈ P: 〈dn, x− x0〉 > 0}
is non-empty, for each n. Furthermore, since, by assumption,

inf
d∈R

inf
d′∈N(P)

‖d− d′‖2 > 0,

the set S = lim infnSn is non-empty as well. We now claim that ν(S) > 0.
In fact, arguing by contradiction, suppose that ν(S) = 0. Then, there
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exists a subsequence {dnk
} ⊂ {dn} such that no point x ∈ supp(ν)

can satisfy limk〈dnk
, x − x0〉 > 0. However, since, by assumption (A3),

P = convhull(supp(ν)), this implies that P ⊆ {y : limk〈dnk
, y − x0〉 ≤ 0},

which in turn implies that limk dnk
∈ N (P), violating the condition that

{dn} is bounded away from N (P). Thus, ν(S) > 0, from which we can con-
clude that lim infnν(Sn) ≥ ν(S) > 0. Then, by the monotone convergence
theorem, ∫

Sn

exp〈η,x〉+ρn〈dn,x−x0〉 dν(x) → ∞,

Therefore,

pθn
(x0) =

exp〈η,x〉

∫
Sn

exp〈η,x〉+ρn〈dn,x−x0〉 dν(x)+
∫
Sc

n
exp〈η,x〉+ρn〈dn,x−x0〉 dν(x)

→ 0,

as claimed.

Proof of Corollary 2.6. Any direction d ∈ Rk is either in N (P), in which case,
it must belong to ri(NF ) for one face F of P or in (N (P))

c
. The results then

follow directly from theorem 2.4.

Proof of Corollary 2.8. If x ∈ ri(P), then the MLE exists, is unique and is given

by the vector θ̂ ∈ Θ such that ∇ψ(θ̂) = x. Equivalently, since in this case
NP = {0}, invoking corollary 2.6, part 1., −ℓx has no direction of recession.
Thus consider the case of x ∈ rb(P) and let F be the unique face such that
x ∈ ri(F ). If d ∈ ri(NF ), then by corollary 2.6 part 1.,

lim
ρ→∞

pθ+ρd(x) > 0, (21)

so (13) holds. Suppose now that d ∈ rb(NF ). Let Fx = {F ′ : x ∈ rb(F ′)}, with
F ′ being a face of P. By lemma B2, part 4.,

⊎

F ′∈Fx

ri(NF ′ ) = rb(NF ),

so, if d ∈ rb(NF ), then d ∈ ri(NF ′ ), for some F ′ ∈ Fx. By corollary 2.6, part 1.,
almost everywhere νF ′ ,

lim
ρ→∞

pθ+ρd = pF
′

θF ′ .

Since x ∈ F ′, we have νF ′ (x) > 0, which implies, pF
′

θF ′ (x) > 0 and, conse-
quently, (21). Thus d is also a direction of recession and we have shown that
any point in NF is a direction of recession for −ℓx,

It remains to be shown that equation (13) is not verified if d 6∈ NF . If d 6∈
N (P) corollary 2.6 part 2. yields

lim
ρ→∞

pθ+ρd(x) = 0,
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hence −ℓx(θ) → ∞, so d is not a direction of recession. If instead d ∈ N (P)∩N c
F ,

then it must be the case that d ∈ ri(N∗
F ), for some face F ∗ such that F ∩F ∗ = ∅,

otherwise NF∗ ⊂ rb(NF ) (see, e.g., lemma B2, part 4.). Thus, by corollary 2.6,
part 1.,

lim
ρ→∞

pθ+ρd(x) = pF
∗

θF∗ (x) = 0,

because x 6∈ F ∗, while pF
∗

θF∗ (x) > 0 only if x ∈ F ∗. As a result, (21) does not
hold, so that d does not satisfy (13) and is not a direction of recession.

Proof of Corollary 2.9. The only interesting case is when x ∈ ri(F ), for some
proper face F , otherwise N (P) = {0}, and −ℓx has no directions of recession,
as the MLE exists. For every θ ∈ Θ, let {θn} be a (θ, {ρn}, d)-sequence. By
corollary 2.8, we need to consider only the case d ∈ NF . If d ∈ ri(NF ), by
lemma B1, pθn

(x) ր pFθF
(x). Now suppose that d ∈ rb(NF ). Then, d ∈ ri(NF∗)

for some face F ∗ such that F ⊂ F ∗. Another application of lemma B1, yields
pθn

(x) ր pF
∗

θF∗
(x). However,

pF
∗

θF∗
(x) = exp〈θ,x〉−ψF∗

(θ) < exp〈θ,x〉−ψF (θ) = pFθF
(x),

since

expψ
F∗

(θ) =

∫

F∗

exp〈θ,z〉 dν(z) ≥

∫

F

exp〈θ,z〉 dν(z) = expψ
F (θ) .

Thus, supθ∈Θ pθ(x) = pFγF
(x) for some γF ∈ ΘF . But supγF ∈ΘF

pγF
(x) =

pF
θ̂F

(x), since only the points θ ∈ θ̂F satisfy the first order optimality condi-

tions (6). The result follows.

Proof of Corollary 2.10. Parts i) and ii) follow from lemma 2.2 and results of
Csiszár and Matúš (2003, 2005). Part iii) is a direct consequence of part i).

Proof of Corollary 2.11. For any θ ∈ Θ, the (i, j)-th entry of I(θ) is (see, e.g.,
corollary 2.3 in Brown, 1986)

Ii,j(θ) =
∂

∂θi∂θj
ψ(θ).

From the proof of theorem 2.4, ψ(θn) → ψF (θ+ζ), for every ζ ∈ lin(NF ). Then,
by the analytic properties of the cumulant generating function (see, e.g. Brown,
1986, Chapter 2), we obtain

lim
n

∂

∂θi∂θj
ψ(θn) =

∂

∂θi∂θj
lim
n
ψ(θn) =

∂

∂θi∂θj
ψF (θ + ζ) = IF (θ + ζ),

for every ζ ∈ lin(NF ), hence the statement is proved.
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Appendix B: Additional proofs

We need the following lemma in the proof of corollary 2.9

Lemma B1. Under the conditions of corollary 2.6, pθn
ր pFθF

, a.e. νF , if and
only if d ∈ ri(NF ).

Proof. The claim follows from equation (18) in the proof of theorem 2.4, which
holds for all x ∈ F , thus almost everywhere νF .

Below, we collect some basic facts about the normal fan and normal cones
needed in our proofs. We will say that a vector d is normal to the hyperplane
H if 〈d, x− y〉 = 0 for all x, y ∈ H .

Lemma B2. Let P be full-dimensional and let F be a face of P.

1. For any x0 ∈ F , 〈aF , x−x0〉 = 0 for all x ∈ F and 〈aF , x−x0〉 < 0 for all
x 6∈ F if and only if aF ∈ ri(NF ).

2. For any x0 6∈ F , 〈aF , x−x0〉 > 0 for all x ∈ F and 〈aF , x−x0〉 ≤ 0 for all
x 6∈ F if and only if aF ∈ ri(NF ).

3. If d 6∈ N (P), then, for any x0 ∈ P,

P = S>,x0
⊎ S=,x0

⊎ S<,x0

where S>,x0
, S=,x0

and S<,x0
are disjoint, non-empty sets given by {x ∈

P: 〈d, x−x0〉 > 0}, {x ∈ P: 〈d, x−x0〉 = 0} and {x ∈ P: 〈d, x−x0〉 > 0},
respectively.

4. rb(NF ) =
⊎
F ′ : F ′⊃F ri(NF ′ ), where the disjoint union ranges over all the

faces F ′ of P.
5. NF = cone (a1, . . . , amF

), where ai denotes the transpose of the i-th row
of the submatrix AF given in (2), i = 1 . . . , mF .

Proof. Recall that, since P is full-dimensional, there is no vector d 6= 0 such
that 〈d, x− x0〉 = 0 for all pairs x, x0 ∈ P.

1. First we show sufficiency. If aF ∈ ri(NF ), then aF is a conic combination
of all the rows of AF with positive coefficients. Therefore, 〈aF , x−x0〉 = 0
for all x ∈ F , by the definition of F , and 〈aF , x− x0〉 < 0 for all x 6∈ F ,
since, in this case, 〈a, x−x0〉 < 0 for some row a of AF . As for necessity, if
aF ∈ NF , then 〈aF , x−x0〉 < 0 for all x ∈ ri(P). However, if aF ∈ rb(NF ),
then 〈aF , x− x0〉 = 0 for all x ∈ F ′, where F ′ is the face of P such that
aF ∈ ri(NF ′ ). But then, since F ⊂ F ′, there exists a x 6∈ F for which
〈aF , x−x0〉 = 0, which would produce a contradiction. Thus aF 6∈ rb(NF ).

2. The proof is analogous to the previous case and is omitted.
3. Since d is not normal to any supporting hyperplane, the hyperplane H =

{x : 〈d, x−x0〉 = 0} intersects P is in its relative interior, and P must have
non-empty intersections with both the halfspaces {x ∈ Rk : 〈d, x−x0〉 > 0}
and {x ∈ Rk : 〈d, x− x0〉 < 0} cut out by H .

4. The claim follows directly from the definition of NF and the fact that
N (P) is a polyhedral complex (see, e.g., Sturmfels, 1995), thus the relative
boundary of NF is the disjoint union of the relative interiors of all its faces.
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5. Let c ∈ cone (a1, . . . , amF
), so that c = A⊤

Fλ, where λ ∈ Rk has nonnega-
tive coordinates. Then, for all x ∈ F and y ∈ P ∩ F c,

〈c, x〉 = 〈λ, AFx〉 = 〈λ, bF 〉 ≥ 〈λ, AF y〉 = 〈A⊤
Fλ, y〉 = 〈c, y〉

since AFx = bF and AF y < bF . Thus, c ∈ NF and we have shown that
cone (a1, . . . , amF

) ⊆ NF . Conversely, assume that c is a nonzero vector in
NF but c 6∈ cone (a1, . . . , amF

). Then, c is not normal to any supporting
hyperplane of F , which implies that there exists a x ∈ F and y ∈ P ∩ F c

such that 〈c, x− y〉 < 0, producing a contradiction. Thus, it must be the
case that c ∈ cone (a1, . . . , amF

) as well, yieldingNF ⊆ cone (a1, . . . , amF
).

Appendix C: Checking for the existence of the MLE via Linear
Programming.

Deciding whether the MLE exists, that is, whether the vector of observed natural
sufficient statistics x is such that x ∈ ri(P) is particularly simple if one has access
to a H-representation of P as in (1), as indicated in the next result, of immediate
verification.

Lemma C1. The MLE exists if and only if the system Ax ≤ b is satisfied with
strict inequalities.

Unfortunately, this type of representation is typically not available or pro-
hibitively hard to compute, even when k is small, since P may have a number
of faces that grow super-exponentially in k (see, for example, Ziegler, 2001).

If instead only a V-representation (3) is available or computable, the existence
of the MLE can be established using linear programming, as outlined below. Let
B be a matrix whose columns contain the vertices and extreme rays of P, namely
the vectors in Q and C from equation (3). Then x ∈ ri(P) if and only if x can
be obtained as a linear combinations of the vectors in Q and C with strictly
positive coefficients.

Lemma C2. The MLE exists if and only if x = Bz, for a vector z with strictly
positive coordinates.

This is a feasibility problem which can be decided by solving the linear pro-
gram

max s
s.t. Bz = x

zi − s ≥ 0
s ≥ 0,

where zi denotes the i-th coordinate of z and s is a scalar. If (s∗, z∗) is the
optimum, then the MLE exists if and only if s∗ > 0.
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An alternative linear program, which may be computationally preferable, can
be formulated based on theorem 4, whose proof can be found in Schrijver (1998),
as follows:

max〈1, y〉
s.t. B⊤y = 0

y ≥ 0
y ≤ 1.

If y∗ is the optimum, the MLE does not exist if and only if 〈1, y∗〉 > 0.

Theorem C3 (Gordan’s Theorem of Alternatives). Given a matrix B,
the following are alternatives:

1. Bx > 0 has a solution x.
2. B⊤y = 0, y 
 0, has a solution y.

Appendix D: Software

The code used for the analysis and for the figures of the paper is available on
the web at

http://www.stat.cmu.edu/~arinaldo/ERG/

The software includes:

1. the MATLAB GUI used for creating figures 9, 10 and 11 and some short
movies showing the relationship between sequences of natural parameters
moving along the outer normals of P and the corresponding sequences of
mean values;

2. an MPI C++ program for complete enumeration of all undirected graphs
on n nodes and for counting the number of edges, triangles, k-stars and al-
ternating k-stars. However, complete enumeration is only feasible only for
very small graph. Using our program, which can certainly be be improved,
it took about 1 hour on a 64-node cluster to enumerate all graphs on 9
nodes, but for the 10-node graph, the estimated running time is about
26.5 days.
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