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It has long been known that for the comparison of pairwise nested mod-
els, a decision based on the Bayes factor produces a consistent model selec-
tor (in the frequentist sense). Here we go beyond the usual consistency for
nested pairwise models, and show that for a wide class of prior distributions,
including intrinsic priors, the corresponding Bayesian procedure for variable
selection in normal regression is consistent in the entire class of normal linear
models. We find that the asymptotics of the Bayes factors for intrinsic priors
are equivalent to those of the Schwarz (BIC) criterion. Also, recall that the
Jeffreys–Lindley paradox refers to the well-known fact that a point null hy-
pothesis on the normal mean parameter is always accepted when the variance
of the conjugate prior goes to infinity. This implies that some limiting forms
of proper prior distributions are not necessarily suitable for testing problems.
Intrinsic priors are limits of proper prior distributions, and for finite sample
sizes they have been proved to behave extremely well for variable selection in
regression; a consequence of our results is that for intrinsic priors Lindley’s
paradox does not arise.

1. Introduction. Bayesian estimation of the parameters of a given sampling
model is, under wide conditions, consistent. That is, the posterior probability of
the parameter is concentrated around the true value as the sample size increases,
assuming that the true value belongs to the parameter space being considered. The
case where the dimension of the parameter space is infinite can be an exception
[see Diaconis and Friedman (1986) for examples of inconsistency of Bayesian
methods].

When several competing models are deemed possible, so that we have uncer-
tainty among them, consistency of a Bayesian model selection procedure is much
more involved. For instance, it is well known that improper priors for the model
parameters cannot be used for computing posterior model probabilities. Therefore,
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the priors need be either proper or limits of sequences of proper priors. Further-
more, not every limit of proper priors is appropriate for a Bayesian model selection.

The so-called Lindley paradox is an example of this [Lindley (1957) and Jef-
freys (1967)]; it shows that when testing a point null hypothesis on the normal
mean parameter we always accept the null if a conjugate prior is considered on
the alternative and the variance of this conjugate prior goes to infinity. As Robert
(1993) has pointed out, this is not a mathematical paradox since the prior sequence
is giving less and less mass to any neighborhood of the null point as the prior vari-
ance goes to infinity. However, an important consequence of the paradox is that
some limiting forms of proper priors might not be suitable for testing problems as
they could provide inconsistency of the corresponding Bayes factors. We remark
that intrinsic priors are limits of sequences of proper priors [Moreno, Bertolino
and Racugno (1998)] and for finite sample sizes an intrinsic Bayesian analysis has
been proved to behave extremely well for variable selection in regression [Casella
and Moreno (2006), Girón, Moreno and Martinéz (2006) and Moreno and Girón
(2008)]. Consequently, showing that the Lindley paradox does not occur when us-
ing intrinsic priors is an important point.

For nested models and proper priors for the model parameters, the consis-
tency of the Bayesian pairwise model comparison is a well established result
[see O’Hagan and Forster (2004) and references therein]. Assuming that we are
sampling from one of the models, say M1, which is nested in M2, consistency
is understood in the sense that the posterior probability of the true model tends
to 1 as the sample size tends to infinity. We observe that the posterior probabil-
ity is defined on the space of models {M1, M2}. An equivalent result is that the
Bayes factor BF21 = m2(Xn)/m1(Xn) tends in probability [P1] to zero, where
Xn = (X1, . . . ,Xn).

The extension of this result to the case of a collection of models {Pi : i =
1,2, . . .}, for which the condition limn→∞ mi(Xn)/m1(Xn) = 0, [P1] holds for
any i ≥ 2, has been established by Dawid (1992). We note that this condition is
satisfied when the model P1 is nested in any other. For nonnested models the con-
dition does not necessarily hold. As far as we know, a general consistency result for
the Bayesian model selection procedure for nonnested models has not yet been es-
tablished. This paper is a step forward in this direction and proves the consistency
of Bayesian model selection procedures for normal linear models and a wide class
of prior distributions, including the intrinsic priors.

For pairwise comparison between nested linear models the consistency of the
intrinsic Bayesian procedure has already been established [Moreno and Girón
(2005)]. The present paper is an extension of this result, and we prove here consis-
tency of the intrinsic model posterior probabilities in the class of all linear models,
where many of the models involved are nonnested. We also extend this result to a
wide class of prior distributions. In proving consistency we take advantage of the
nice asymptotic behavior of the Bayes factors arising from intrinsic priors. It is
important to note we are assuming that the total number of regressors, k, is fixed
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and hence does not grow with n. For a consistency analysis where k also grows
with n, see Shao (1997).

The rest of the paper is organized as follows. In Section 2 we review methods for
variable selection based on intrinsic priors and the expressions of Bayes factors and
posterior model probabilities. In Section 3 we derive the sampling distributions of
the statistic Bn

ij , the statistic on which the Bayes factor for comparing two nested
models depends, and we also describe its limiting behavior. This will be the tool
we use in Section 4 to find out an asymptotic approximation of the Bayes factor
for intrinsic priors, and to prove consistency of the variable selection procedure.
Section 5 provides an evaluation of the intrinsic Bayes procedure and BIC for small
sample sizes, and Section 6 contains a concluding discussion. There is also a short
technical Appendix.

2. Intrinsic Bayesian procedures for variable selection. Suppose that Y

represents an observable random variable and X1,X2, . . . ,Xk a set of k potential
explanatory covariates related through the normal linear model

Y = α1X1 + α2X2 + · · · + αkXk + ε, ε � N(0, σ 2).

The variable selection problem consists of reducing the complexity of this model
by identifying a subset of the αi coefficients that have a zero value based on an
available dataset (y,X), where y is a vector of observations of size n and X an
n × k design matrix of full rank.

This is by nature a model selection problem where we have to choose a model
among the 2k possible submodels of the above full one. It is common to set X1 = 1
and α1 �= 0 to include the intercept in any model. In this case the number of pos-
sible submodels is 2k−1. The class of models with i regressors will be denoted as
Mi and hence the class of all possible submodels can be written as M = ⋃

i Mi .

2.1. Methods of encompassing. A fully Bayesian objective analysis for model
comparison in linear regression has been given in Casella and Moreno (2006). It
consists of considering the pairwise model comparison between the full model
MF and a generic submodel Mi

3 having i (< k) nonzero regression coefficients.
Formally, they test the hypothesis

H0 : Model Mi versus HA : Model MF .(1)

Since Mi is nested in the full model MF , it is possible to derive the intrinsic priors
for the parameters of both models. Then, in the space of models {Mi,MF } the
intrinsic posterior probability of Mi is computed using

P(Mi |y,X) = mi(y,X)

mi(y,X) + mk(y,X)
= BFik

1 + BFik

,

3We use Mi to denote any model with i regressors; there are
(k−1

i

)
such models. However, the

development in the paper will be clear using this somewhat ambiguous, but simpler, notation.
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where BFik is the Bayes factor for comparing model Mi to model MF . By doing
this for every model an ordering of the set of models, in accordance to their pos-
terior probabilities {P(Mi |y,X) = BFik/(1 + BFik),Mi ∈ M}, is obtained. The
interpretation is that the submodel having the highest posterior probability is the
most plausible reduction in complexity from the full model, the second highest
the second-most plausible reduction and so on. This intrinsic Bayesian method for
variable selection will be called Variable Selection from Above (VSA).

If we normalize the Bayes factors for intrinsic priors {BFik, i ≥ 1}, we obtain a
set of probabilities on the class M as

P(Mi;y,X) = BFik

1 + ∑
i′ �=k BFi′k

, Mi ∈ M,(2)

but we note that these probabilities are not true posterior probabilities of the models
in the class M, although the ordering of the models they provide is exactly the
same than that given by the above pairwise variable selection from above.

However, the manner of encompassing the models is not unique, and a quite
natural alternative to VSA is to consider the pairwise model comparison between
a generic submodel Mj and the model

Y = α1 + ε, ε � N(·|0, σ 2),

that contains the intercept only, which is denoted as M1. Formally, this comparison
is made through the hypothesis test

H0 : Model M1 versus HA : Model Mj.(3)

Notice that M1 is nested in Mj , for any j , so that the corresponding intrinsic priors
can be derived. In the space of models {M1,Mj } the intrinsic posterior probability

P(Mj |y,X) = BFj1

1 + BFj1

is computed and it gives a new ordering of the models {Mj,Mj ∈ M}.
Although this alternative procedure is also based on multiple pairwise compar-

isons it is easy to see that it is equivalent to ordering the models according to the
intrinsic model posterior probabilities computed in the space of all models M as

P(Mj |y,X) = BFj1

1 + ∑
j ′ �=1 BFj ′1

, Mj ∈ M.(4)

This intrinsic Bayesian procedure will be called Variable Selection from Be-
low (VSB), and has previously been considered by Girón, Moreno and Martinéz
(2006).

For finite sample sizes, the orderings of the linear models provided by both VSA
and VSB intrinsic Bayesian procedures are quite close to each other [Moreno and
Girón (2008)].
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2.2. Intrinsic priors and Bayes factors. The intrinsic priors utilized in the vari-
able selection methods of Section 2.1 are defined from the comparison of two
nested linear models, and we now give a general expression of the intrinsic priors
and the Bayes factor associated with them.

Suppose we want to choose between the following two nested linear models

Mi : y = Xiαi + εi , εi ∼ Nn(0, σ 2
i In)

and

Mj : y = Xjβj + εj , εj ∼ Nn(0, σ 2
j In).

We again can do this formally through the hypothesis test

H0 : Model Mi versus HA : Model Mj,(5)

where Mi is nested in Mj . Since the models are nested, this implies that the n × i

design matrix Xi is a submatrix of the n × j design matrix Xj , so that Xj =
(Xi |Zij ). Then, model Mj can be written as

Mj : y = Xiβi + Zijβ0 + εj , εj ∼ Nn(0, σ 2
j In).

Comparing model Mi versus Mj is equivalent to testing the hypothesis H0 :β0 = 0
against H1 :β0 �= 0. A Bayesian setup for this problem is that of choosing between
the Bayesian models

Mi : Nn(y|Xiαi , σ
2
i In), πN(αi , σi) = ci

σi

and

(6)
Mj : Nn(y|Xjβj , σ

2
j In), πN(βj , σj ) = cj

σj

,

where πN denotes the improper reference prior and ci, cj are arbitrary constants
[Berger and Bernardo (1992)].

The direct use of improper priors for computing model posterior probabilities is
not possible since they depend on the arbitrary constant ci/cj ; however, they can
be converted into suitable intrinsic priors [Berger and Pericchi (1996)]. Intrinsic
priors for the parameters of the above nested linear models provide a Bayes factor
[Moreno, Bertolino and Racugno (1998)] and, more importantly, posterior proba-
bilities for the models Mi and Mj , assuming that prior probabilities are assigned
to them. Here we will use an objective assessment for this model prior probability,
P(Mi) = P(Mj) = 1/2.

Application of the standard intrinsic prior methodology yields the intrinsic prior
distribution for the parameters βj , σj of model Mj , conditional on a fixed para-
meter point αi , σi of the reduced model Mi ,

πI (βj , σj |αi , σi) = 2

πσi(1 + σ 2
j /σ 2

i )
Nj

(
βj |α̃j , (σ

2
j + σ 2

i )W−1
j

)
,
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where α̃′
j = (0′,α′

i ) with 0 being the null vector of j − i components and

W−1
j = n

j + 1
(X′

j Xj )
−1.

The unconditional intrinsic prior for (βj , σj ) is obtained from πI (βj , σj ) =∫
πI (βj , σj |αi , σi)π

N(αi , σi) dαi dσi , yielding the intrinsic priors for comparing
models Mi and Mj as {πN(αi , σi),π

I (βj , σj )}. The computation of the Bayes
factor to compare these models using the intrinsic priors is a straightforward cal-
culation (see the Appendix) and turns out to be

BFn
ij =

(
2

π
(j + 1)(j−i)/2

(7)

×
∫ π/2

0

sinj−i ϕ(n + (j + 1) sin2 ϕ)(n−j)/2

(nBn
ij + (j + 1) sin2 ϕ)(n−i)/2

dϕ

)−1

,

where the statistic Bn
ij is the ratio of the residual sum of squares

Bn
ij = RSSj

RSSi

= y′(I − Hj )y
y′(I − Hi )y

.

Note that as Mi is nested in Mj the values of the statistic Bn
ij lie in the interval

[0,1] and all of the above expressions are valid.

3. Sampling distribution of Bn
ij . If we denote the true model by MT , so that

the distribution of the vector of observations y follows Nn(y|XT αT , σ 2
T In), the

sampling distribution of the statistic Bn
ij is given in the following theorem.

THEOREM 1. If Mi is nested in Mj and MT is the true model, then the sam-
pling distribution of Bn

ij is the doubly noncentral beta distribution

Bn
ij |MT � Be

(
n − j

2
,
j − i

2
;λ1, λ2

)
,

where the noncentrality parameters are

λ1 = 1

2σ 2
T

α′
T X′

T (I − Hj )XT αT

and

λ2 = 1

2σ 2
T

α′
T X′

T (Hj − Hi )XT αT .

PROOF. The quadratic form of the denominator of the Bn
ij can be decomposed

as

y′(I − Hi)y = y′(I − Hj )y + y′(Hj − Hi )y.
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As the matrices (I−Hi) and (Hj −Hi ) are idempotent of ranks n−j and j − i, re-
spectively, it follows from the generalized Cochran theorem that the quadratic form
y′(I − Hj )y and y′(Hj − Hi )y are independent and distributed as χ ′2(n − j ;λ1)

and χ ′2(j − i;λ2), respectively. From this the distribution of the statistic Bn
ij fol-

lows, and Theorem 1 is proved. �

Note that the models Mi and Mj need not be nested in the true model MT , and
the true model is not necessarily nested in Mi or Mj . However, the distribution of
Bn

ij simplifies whenever Mi or Mj is the true model. Thus we have the following
corollary.

COROLLARY 1. (i) If the smaller model Mi is the true one, then

Bn
ij |Mi � Be

(
n − j

2
,
j − i

2

)
.

(ii) If the larger model Mj is the true one, then

Bn
ij |Mj � Be

(
n − j

2
,
j − i

2
;0, λ

)
,

where

λ = 1

2σ 2
j

α′
j X′

j (Hj − Hi)Xjαj .

PROOF. Part (i) follows from the fact that X′
iHj = X′

iHi and part (ii) from
X′

j (Hj − Hi ) = X′
j (I − Hi ). �

The limiting value of Bn
ij is important because it bears directly on the evalua-

tion of the consistency of the Bayes factors. That value is given in the following
theorem.

THEOREM 2. Let {Xn,n ≥ 1} be a sequence of random variables with distri-
bution Be((n − α0)/2, β0/2;nδ1, nδ2), where α0, β0, δ1, δ2 are positive constants.
Then:

(i) the sequence Xn converges in probability to the constant

1 + δ1

1 + δ1 + δ2
;

(ii) if δ1 = δ2 = 0, then Xn degenerates in probability to 1. However, the ran-
dom variable −n/2 logXn does not degenerate and has an asymptotic Gamma
distribution, Ga(β0,1).
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PROOF. Part (i). By definition Xn is

Xn =
(

1 + χ ′2(β0, nδ2)

χ ′2(n − α0, nδ1)

)−1

,

where χ ′2(β0, nδ2) and χ ′2(n − α0, nδ1) are independent random variables with
noncentral chi-square distributions. If we divide the numerator and denominator
by n we get

Xn =
(

1 + Vn

Wn

)−1

,

where Vn = χ ′2(β0, nδ2)/n and Wn = χ ′2(n − α0, nδ1)/n. Their means and vari-
ances are

E(Vn) = δ2 + β0

n
, E(Wn) = 1 + δ1 − α0

n

and

Var(Vn) = 4δ2

n
+ 2β0

n2 , Var(Wn) = 2(1 + δ1)

n
− 2α0

n2 .

Since the variances go to zero as n goes to infinity, Xn degenerates in probability
to (1 + δ1)/(1 + δ1 + δ2) as asserted.

The remainder of the proof is straightforward and hence is omitted. �

4. Consistency of the VSA and VSB intrinsic Bayesian procedures. The
steps in proving consistency of the intrinsic Bayesian procedures are:

1. Derive an asymptotic approximation for the Bayes factor for nested models
given in expression (7).

2. From this approximation derive another that is valid for any arbitrary pair
of models.

3. Use Theorems 1 and 2 to prove consistency of the VSB procedure.

It will also be seen that the asymptotic behavior of the Bayes factor for VSA is
exactly the same as VSB, and hence the consistency of the former procedure also
holds.

This is a useful property of the intrinsic methodology for variable selection
since any way of encompassing the models to derive the intrinsic priors produces
essentially the same answer for finite sample sizes and for large sample sizes.

4.1. Asymptotic approximation of BFn
ij . For large n, we can get an approx-

imation of BFn
ij of (7) that is valid whenever model Mi is nested in Mj . The

approximation turns out to be equivalent to the Schwarz (1978) Bayes factor ap-
proximation.
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THEOREM 3. When Mi is nested in Mj , for large values of n the Bayes factor
given in (7) can be approximated by

BFn
ij ≈

π

2
(j + 1)(i−j)/2I (Bn

ij )
−1 exp

(
j − i

2
logn + n − i

2
logBn

ij

)
,(8)

where

I (Bn
ij ) =

∫ π/2

0
sinj−i (ϕ) exp

[
j + 1

2
sin2(ϕ)

(
1 − 1

Bn
ij

)]
dϕ

= 1

2
Be

(
1

2
,
j − i + 1

2

)

× 1F1

(
j − i + 1

2
; j − i + 2

2
; j + 1

2

(
1 − 1

Bn
ij

))
,

and 1F1(a;b; z) denotes the Kummer confluent hypergeometric function [see
Abramowitz and Stegun (1972), Chapter 13].

PROOF. We can write the integrand of (7) as

sinj−i ϕ exp
{
n − j

2

[
logn + log

(
1 + j + 1

n
sin2 ϕ

)]}

× exp
{
i − n

2

[
logn + logBn

ij + log
(

1 + j + 1

nBn
ij

sin2 ϕ

)]}

= sinj−i ϕ exp
(

i − j

2
logn + i − n

2
logBn

ij

)

× (1 + (j + 1)/n sin2 ϕ)(n−j)/2

(1 + (j + 1)/(nBn
ij ) sin2 ϕ)(n−i)/2

.

For large n the numerator of the last factor can be approximated by

(
1 + j + 1

n
sin2 ϕ

)(n−j)/2

≈ exp
{
j + 1

2
sin2 ϕ

}
,

and the denominator by

(
1 + j + 1

nBn
ij

sin2 ϕ

)(n−i)/2

≈ exp
{
j + 1

2Bn
ij

sin2 ϕ

}
.

Therefore, for large n the integrand can be approximated by

sinj−i ϕ exp
(

i − j

2
logn + i − n

2
logBn

ij

)
exp

(
j + 1

2
sin2 ϕ

(
1 − 1

Bn
ij

))
,



1216 CASELLA, GIRÓN, MARTÍNEZ AND MORENO

and thus the Bayes factor (7) by

BFn
ij ≈

π

2
(j + 1)(i−j)/2I (Bn

ij )
−1 exp

(
j − i

2
logn + n − i

2
logBn

ij

)
,

where

I (Bn
ij ) =

∫ π/2

0
sinj−i ϕ exp

[
j + 1

2
sin2 ϕ

(
1 − 1

Bn
ij

)]
dϕ.

This proves Theorem 3. �

We note that I (Bn
ij )

−1 has a finite value for all values of the statistic Bn
ij except

when it goes to zero. However, we can see in the proof of Theorem 4 that Bn
ij tends

to a strictly positive number with probability 1 as n → ∞ [see expression (14)], so
I (Bn

ij )
−1 is finite for all n.

Therefore, BFn
ij can be approximated, up to a multiplicative constant, by the ex-

ponential function in (8). This exponential function turns out to be the Schwarz ap-
proximation Sn

ij to the Bayes factor for comparing linear models [Schwarz (1978)].
Of course, the normal linear models are regular so the Laplace approximation can
be applied to obtain the Schwarz approximation although for intrinsic priors the
ratio BFn

ij /S
n
ij does not go to 1 [this holds only for particular priors; see Kass and

Wasserman (1995)].
However, for proving consistency we can ignore terms of constant order and the

Bayes factor for intrinsic priors can be approximated by the Schwarz approxima-
tion

BFn
ij ≈ Sn

ij = exp
(

j − i

2
logn + n

2
logBn

ij

)
.(9)

We note that Sn
ij could provide a crude approximation to BFn

ij for small or mod-
erate sample sizes. In Section 5 we look at small-sample behavior of both the
Schwarz approximation and the Bayes factor for intrinsic priors.

4.2. Consistency of the VSB intrinsic Bayesian procedure. Given an arbitrary
model Mj and the true model MT in the class MT , we will assume the design
matrix of the linear models satisfy the following condition (D): the matrix

SjT = lim
n→∞

X′
T (I − Hj )XT

n
(10)

is a positive semidefinite matrix. This is not a too demanding condition as the
following example shows.

EXAMPLE 1 [Berger and Pericchi (2004)]. Consider the case of testing
whether the slope of a linear regression is zero. Suppose that the true model MT is
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the model with regression coefficients (α1, α2), and thus there is only one alterna-
tive model M1, the model with only the intercept term α1. Suppose that there are
2n + 1 observations yielding the design matrix

Xt =
(

1 . . . 1 1 . . . 1 1
0 . . . 0 δ . . . δ 1

)
,

where δ is different from zero. Easy calculations show that

S1T = lim
n→∞

X′
T (I − H1)XT

2n + 1
=

(
0 0
0 δ2/4

)
,

which obviously is a positive semidefinite matrix for any positive |δ|, no matter
how close to zero it is.

Thus, condition (D) is satisfied even when the samples are coming from a model
MT , which is as close to M1 as we want.

To characterize the asymptotic behavior of the model posterior probabilities, we
can work with BFn

ij of (8), ignoring the positive terms that do not depend on n as
we are only interested in limiting values of 0 or ∞.

To test the hypothesis (3) with data (y,X), we note that the intrinsic model
posterior probability of model Mj , defined in the class of all models M given
by (4), is an increasing function of BFj1, where BFj1 denotes the Bayes factor for
intrinsic priors for comparing the nested models M1 versus Mj . Hence, from the
asymptotic approximation (8) we can write

P(Mj |y,X) = BFj1

1 + ∑
j ′ �=1 BFj ′1

=
(
cj1I (Bn

1j )
−1 exp

{
−j − 1

2
logn − (n/2) logBn

1j

})

(11)

×
(

1 + ∑
j ′ �=1

cj ′1I (Bn
1j ′)−1 exp

{
−j ′ − 1

2
logn

− (n/2) logBn
1j ′

})−1

.

Similarly, for the true model MT we can write

P(MT |y,X)

= cT 1I (Bn
1T )−1 exp{−((T − 1)/2) logn − (n/2) logBn

1T }
1 + ∑

j ′ �=1 cj ′1I (Bn
1j ′)−1 exp{−((j ′ − 1)/2) logn − (n/2) logBn

1j ′ } ,

where cj1 and cT 1 do not depend on n, and I (Bn
1j )

−1 and I (Bn
1T )−1 are finite

for all n. We are concerned with the limiting behavior of the ratio of these two
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probabilities, and specifically if the limit is 0 or ∞. Thus, in the following we can
ignore the finite terms and approximate the ratio with

P(Mj |y,X)

P (MT |y,X)
≈ exp

{
T − j

2
logn + n

2
log

Bn
1T

Bn
1j

}
,(12)

because the denominators cancel. (As a curiosity, note that this formula provides
an exact approximation to the ratio for the case when Mj = MT , when its value is
exactly equal to one.)

We now have the following theorem.

THEOREM 4. In the class of linear models M with design matrices satisfying
condition (D), the intrinsic Bayesian variable selection procedure VSB is consis-
tent. That is, when sampling from MT we have that

P(Mj |y,X)

P (MT |y,X)
→ 0, [Pt ],

whenever the model Mj �= MT .

PROOF. Assuming MT �= M1, from Corollary 1(ii), we have that

Bn
1T |MT � Be

(
n − T

2
,
T − 1

2
;0, λ

)
,

where

λ = 1

2σ 2
T

α′
T X′

T (I − H1)XT αT

and from Theorem 1 that

Bn
1j |MT � Be

(
n − j

2
,
j − 1

2
;λ1, λ2

)
,

where the noncentrality parameters are

λ1 = 1

2σ 2
T

α′
T X′

T (I − Hj )XT αT ,

(13)

λ2 = 1

2σ 2
T

α′
T X′

T (Hj − H1)XT αT .

From Theorem 2(i), we have

Bn
1T |MT → 1

1 + 1/(2σ 2
T )α′

T S1T αT

and

(14)

Bn
1j |MT → 1 + 1/(2σ 2

T )α′
T SjT αT

1 + 1/(2σ 2
T )α′

T S1T αT

,
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so that

Bn
1T

Bn
1j

∣∣∣MT → 1

1 + 1/(2σ 2
T )α′

T SjT αT

< 1.

Therefore, the expression

n

2
log

Bn
1T

Bn
1j

goes to −∞ with order O(n). This means that expression (12) converges to zero
regardless of whether T − j is positive or negative.

When MT = M1, then for any j > 1 we have

P(Mj |y,X) ∝ BFn
j1 ≈ exp

(
−j − 1

2
logn − n

2
logBn

1j

)
.

From Corollary 1(i) and Theorem 2(ii) it follows that −n/2 logBn
1j is as-

ymptotically distributed as a Gamma distribution. Therefore, for any j > 1,

P (Mj |y,X) tends, in probability, to zero. The proof is complete. �

4.3. Consistency of the VSA intrinsic Bayesian procedure. In the VSA intrin-
sic Bayesian procedure we use the fact that every model Mj is nested in the full
model Mk . Then, for large values of n the posterior probability of model Mj in the
space of models {Mj,Mk} is proportional to

P(Mj |y,X) ∝ BFn
jk ≈ exp

(
k − j

2
logn + n

2
logBn

jk

)
.

Similarly, for the true model MT we have

P(MT |y,X) ∝ BFn
T k ≈ exp

(
k − T

2
logn + n

2
logBn

T k

)
.

Thus, the ratio of Bayes factors can be approximated by

P(Mj |y,X)

P (MT |y,X)
∝ BFn

jk

BFn
T k

≈ exp
(

T − j

2
logn + n

2
log

Bn
1T

Bn
1j

)

where the last expression is exactly that given in (12) so that it tends to zero for
any j ≥ 1. We thus have the following corollary to Theorem 4.

COROLLARY 2. In the class of linear models M with design matrices sat-
isfying condition (D), the intrinsic Bayesian variable selection procedure VSA is
consistent. That is, when sampling from MT we have that

P(Mj |y,X)

P (MT |y,X)
→ 0, [Pt ],

whenever the model Mj �= MT .
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Recall that in Section 2.1 we noted that for VSA, the probabilities

P(Mi |y,X) = BFn
ik

1 + ∑
i′ �=k BFn

i′k
, Mi ∈ M,

were not true posterior probabilities of the models in the class M. However, from
Corollary 2, this set of probabilities [utilized as a tool for variable selection in
Casella and Moreno (2006)], is a consistent sequence of probabilities. Further, we
recall that the ordering of the models they provide is exactly the same as that given
by the VSA pairwise variable selection. Therefore, the intrinsic model posterior
probabilities from above form a set of consistent probabilities in the class of all
linear models M.

4.4. Extensions. The consistency of the intrinsic Bayesian variable selection
procedure for the class of linear models can be extended to any other Bayesian pro-
cedure for a wide class of prior distributions. We observe that all we have used to
prove consistency of the intrinsic Bayesian procedures is the Schwarz approxima-
tion, and the distribution of the ratio of the residuals of two nested linear models
when sampling from a linear model that does not necessarily coincide with any
of the two. Therefore, for any prior for which the Schwarz approximation for lin-
ear models is valid, the consistency of the associated Bayesian procedure can be
asserted. Hence, we can prove the following theorem.

THEOREM 5. In the class of linear models M with design matrices satisfying
condition (D), assume that the priors πi , πj for any i, j , are such that

0 < lim
n→∞

πi(α̂i, σ̂i)

πj (α̂j , σ̂j )
< ∞, [PT ],

where α̂i , σ̂i and α̂j , σ̂j are the respective MLEs. Then the Bayesian variable se-
lection procedure is consistent, that is, when sampling from MT ∈ M, we have
that

P(Mj |y,X)

P (MT |y,X)
→ 0, [Pt ],

whenever the model Mj �= MT .

We note that priors of the form πN
i (αi , σ

q
i ) = ci/σ

q
i , where q is a positive

number, which includes the reference priors for q = 1 and the Jeffreys priors for
q = i, satisfy the condition required in Theorem 5. Indeed, from (14), it follows
that

lim
n→∞

πN
i (α̂i , σ̂i)

πN
j (α̂j , σ̂j )

=
(

ci

cj

lim
n→∞Bn

ij

)q/2

=
(

ci

cj

)q/2(
2σ 2

T + α′
T SjT αT

2σ 2
T + α′

T SiT αT

)q/2

, [PT ]
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which clearly is a real positive quantity.
Hence, even though for finite sample sizes the above priors only provide Bayes

factors defined up to a multiplicative constant, asymptotically they behave consis-
tently.

5. Small sample comparisons. Although for large sample sizes the variable
selection procedure based on the Bayes factor for intrinsic priors is equivalent
to that based on the Schwarz approximation, an open question is how good the
Schwarz asymptotic approximation and the Bayes factor for intrinsic priors behave
for small or moderate sample sizes. To answer this question we recall that, in the
case of encompassing from below, the ordering of the models provided by the
pairwise intrinsic model posterior probabilities

P(Mj |y,X) = Bn
j1

1 + Bn
j1

for j ≥ 2

is exactly the same as that provided by the intrinsic model posterior probabilities
in the whole space M.

Therefore, for comparing the intrinsic Bayes factor Bn
ij and the Schwarz approx-

imation Sn
ij for any i and j it is enough to compare Bn

j1 and Sn
j1 for j ≥ 2. It seems

appropriate to compare Bn
j1 and Sn

j1 in a probabilistic scale, that is, to compare the
intrinsic posterior model probability P(Mj |y,X) and the Schwarz approximation
posterior probability

P S(Mj |y,X) = Sn
j1

1 + Sn
j1

for j ≥ 2.

A model selection procedure operates by choosing the model with the highest
value of the criterion, so in our case this is equivalent to accepting model Mj , and
hence rejecting M1, when the posterior probability of Mj is greater than 1/2. It is
important to realize that this is not the way a classical frequentist hypothesis test
is set up. In the classical case a test is calibrated to a specified Type I error α, and
then the power is examined. The model selector is defined by the decision rule,
and for the given rule we can examine the resulting Type I and II errors to assess
how the model selector is controlling them.

We recall that both the intrinsic posterior probability P(Mj |y,X) and the
Schwarz approximation P S(Mj |y,X) depend on the sample observations (y,X)

through the statistic Bn
1j . Therefore, any point in the regions

R1j (n) = {Bn
1j :P(Mj |Bn

1j ) ≥ 1/2} and

RS
1j (n) = {Bn

1j :P S(Mj |Bn
1j ) ≥ 1/2}

contain empirical evidence in favor of Mj under the intrinsic Bayesian procedure
and the Schwarz approximation.



1222 CASELLA, GIRÓN, MARTÍNEZ AND MORENO

TABLE 1
Type I error probabilities for the intrinsic procedure and the Schwarz approximation. In each cell,

the left probability is the Type I error of the intrinsic procedure and the right probability is the
Type I error of the Schwarz approximation

n = 7 n = 10 n = 15 n = 40 n = 80

j = 2 0.16, 0.26 0.13, 0.19 0.10, 0.130 0.06, 0.06 0.04, 0.04
j = 3 0.19, 0.33 0.14, 0.20 0.099, 0.114 0.04, 0.03 0.02, 0.02
j = 4 0.23, 0.42 0.16, 0.22 0.104, 0.102 0.03, 0.02 0.02, 0.02
j = 5 0.29, 0.55 0.18, 0.25 0.111, 0.097 0.03, 0.01 0.01, 0.002
j = 6 0.40, 0.75 0.21, 0.31 0.121, 0.097 0.03, 0.006 0.01, 0.001
j = 9 0.41, 0.71 0.17, 0.15 0.03, 0.002 0.007, 
0
j = 12 0.26, 0.36 0.04, 0.001 
 0, 
 0
j = 38 0.32, 0.46 0.001, 
0
j = 78 0.32, 0.44

Since M1 is nested in Mj for any j ≥ 2, it follows that R1j (n) ⊂ (0,1), and
RS

1j (n) ⊂ (0,1). Furthermore, R1j (n) and R2j (n) are intervals since P(Mj |Bn
1j )

and P S(Mj |Bn
1j ) are monotone increasing functions of Bn

1j .
The distribution of Bn

1j is easily computed (see Corollary 1), and we can exam-
ine the Type I errors of the intrinsic Bayesian variable selection procedure and the
Schwarz approximation, respectively. For a range of values of j and sample sizes
n > j , Table 1 presents the Type I error probabilities under the intrinsic Bayesian
procedure and the Schwarz approximation.

We see in Table 1 that for small sample sizes the Schwarz approximation has
a very high Type I error (as high as 75%), which soon becomes very small as n

increases. Thus, the Schwarz approximation will be biased away from the null
model for small n, or more generally, in the cases where j is close to n. As n

increases the Type I error goes rapidly to 0, and the Schwarz approximation will
then be biased toward the null model. In contrast, the intrinsic procedure has a less
variable Type I error, being smaller than that of the Schwarz approximation for
small n and somewhat larger for large n.

Examination of Figure 1 shows a very interesting story. There, we plotted Type I
errors and power as a function of n for j = 5, which was chosen as a representative
case. Note that the decrease in the power, as a function of n, reflects the fact that
the Type I error decreases as a function of n.

For small n the Schwarz approximation has higher power resulting from its
large Type I error, while the intrinsic procedure tends to moderate both errors. As n

increases, both Type I errors decrease, with the more dramatic decrease being that
of the Schwarz approximation. The Type I errors cross at n = 13, and for n > 13
the intrinsic procedure has higher power, reaching 0.573 at n = 40 versus 0.385
for the Schwarz approximation. The interesting point is that, although the intrinsic
procedure has higher Type I error, both Type I errors are very small (e.g., at n = 29
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FIG. 1. For j = 5 and n = 6, . . . ,40, Type I errors and power curves of the intrinsic procedure
(solid) and Schwarz approximation (dashed) as a function of n. The power curves are computed for
noncentrality parameter λ = 10.

they are 0.05 and 0.02). However, the effect of Schwarz approximation, by driving
the Type I error so close to zero, is a dramatic decrease in power. Thus, the intrinsic
procedure does a much better job of controlling the errors. By moderating the
Type I error it avoids the faults of the Schwarz approximation, which has very
large Type I error for small n, and for large n decreases the Type I error to an
unnecessarily low value to the detriment of its power.

6. Discussion. It has long been known that when choosing between two mod-
els, when one of which is true, selecting according to Bayes factors provides a
consistent decision function in the sense that the frequentist probability of select-
ing the true model approaches 1 as n → ∞. In this paper, for the case of variable
selection, we have extended this result to selection among an entire class of linear
models and a wide class of priors, and shown that selecting according to Bayes
factors yields a decision rule with the property that the frequentist probability of
selecting the true model approaches 1 as n → ∞, and the frequentist probability
of selecting any other model approaches 0 as n → ∞.

We have, specifically, worked with intrinsic priors, although our results hold
for a wide class of priors. However, intrinsic priors provide a type of objective
Bayesian prior for the testing problem. They seem to be among the most diffuse
priors that are possible to use in testing, without encountering problems with in-
determinate Bayes factors, which was the original impetus for the development of
Berger and Pericchi (1996). Moreover, they do not suffer from “Lindley paradox”
behavior. Thus, we believe they are a very reasonable choice for experimenters
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looking for an objective Bayesian analysis with a frequentist guarantee. This is
very much in the spirit of the calibrated Bayesian, as described by Little (2006).

Intrinsic priors have been used successfully in both variable selection and
changepoint problems [Casella and Moreno (2006), Girón, Moreno and Martinéz
(2006), Girón, Moreno and Casella (2007)], where excellent small-sample proper-
ties were exhibited. Some other properties of the variable selection rules consid-
ered here are as follows:

1. All models Mj that contain model MT , and hence have λ1 = 0 [see (13)],
will have the same value of Bn

1T |MT in (14). This means that the posterior prob-
ability of models Mj that contain model MT (11) is decreasing in j , and models
with larger j will have smaller probabilities. Thus, VSB will tend to select smaller
models. The same holds for VSA.

2. To gain further insight in the large-sample approximation of the Bayes
factors for comparing arbitrary models, say Mj and Mj ′ , we look a bit closer at
the importance of some geometric considerations in the space of all models, as the
one played by a distance that we can define between a generic model Mj and the
true, though unknown, model MT .

If we define this distance as

δ(Mj ,MT ) = α′
T SjT αT

σ 2
T

,

we note that it is equal to 0 if either Mj = MT or MT is nested in Mj ; otherwise,
it is strictly positive by condition (D). Also, if model Mi is nested in Mj then
δ(Mi,MT ) < δ(Mj ,MT ), because Hj − Hi is positive semidefinite.

3. From (11) we have that

P(Mj |y,X)

P (Mj ′ |y,X)
≈ exp

(
j ′ − j

2
logn − n

2
log

Bn
1j

Bn
1j ′

)

and from (14)

log
Bn

1j

Bn
1j ′

∣∣∣MT → log
1 + δ(Mj ,MT )/2

1 + δ(Mj ′,MT )/2
.

Hence,

P(Mj |y,X)

P (Mj ′ |y,X)

∣∣∣MT ≈ exp
(

j ′ − j

2
logn − n

2
log

1 + δ(Mj ,MT )/2

1 + δ(Mj ′,MT )/2

)

and it follows that

P(Mj |y,X)

P (Mj ′ |y,X)

∣∣∣MT →
{

0, if δ(Mj ′,MT ) < δ(Mj ,MT ),
∞, if δ(Mj ′,MT ) > δ(Mj ,MT ).

Thus, the model that is closer to MT is always preferred.
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4. If the distance from both models to the true one is the same, that is,
δ(Mj ′,MT ) = δ(Mj ,MT ), then the limiting behavior of the quotient of posterior
model probabilities only depends on the number of covariates of the models. We
have that

P(Mj |y,X)

P (Mj ′ |y,X)

∣∣∣MT →
⎧⎨
⎩

0, if δ(Mj ′,MT ) = δ(Mj ,MT ) and j ′ < j ,
1, if δ(Mj ′,MT ) = δ(Mj ,MT ) and j ′ = j ,
∞, if δ(Mj ′,MT ) = δ(Mj ,MT ) and j ′ > j .

(15)

When the true model is nested in Mj and Mj ′ , so δ(Mj ′,MT ) = δ(Mj ,MT ), (15)
says that the smaller model is then preferred. Thus, the intrinsic Bayes procedure
naturally leans toward a more parsimonious solution.

5. We also address the important point of what happens when the true model
is a linear model but it does not belong to M. This happens when, for example,
the true model includes some covariates or interactions among the existing or new
ones not previously considered. From the preceding discussion it follows easily
that the preference of the models in M solely depends on their distances to the
true model, regardless of whether the latter does or does not belong to the set of
models we are considering.

Lastly, we note that implementation of the model selection procedure is best
done with a stochastic search algorithm. As there are 2k−1 possible models, enu-
meration quickly becomes infeasible. We have implemented Metropolis-Hastings
driven stochastic searches for both variable selection [Casella and Moreno (2006)]
and changepoint problems [Girón, Moreno and Casella (2007)] with good results.

APPENDIX: DERIVATION OF THE INTRINSIC BAYES FACTOR

Here we outline the calculations to justify the intrinsic Bayes factor of (7). For
comparing the models in (6) with

πI (βj , σj |αi , σi) = 2

πσi(1 + σ 2
j |σ 2

i )
Nj

(
βj |α̃j , (σ

2
j + σ 2

i )W−1
j

)
,

πI (βj , σj ) =
∫

πI (βj , σj |αi , σi)π
N(αi , σi) dαi dσi

and

W−1
j = n

j + 1
(X′

j Xj )
−1,

the Bayes factor is given by (7).
The derivation of this expression is similar to that in Casella and Moreno (2006),

but there different default priors were used and a generic Wj was derived. Here, we
are using the reference prior πN(η, σ ) = c/σ instead, which seems to be a better
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choice as discussed in Girón et al. (2006), and thus we obtain a slightly different
Bayes factor given by

BFn
ji = 2

π
|X′

iXi |1/2(
y′(In − Hi )y

)(n−i)/2
I0,

where

I0 =
∫ π/2

0

dϕ

|A(ϕ)|1/2|B(ϕ)|1/2E(ϕ)n−i
,

B(ϕ) = sin2 ϕIn + Xj W−1
j X′

j ,

A(ϕ) = X′
iB(ϕ)−1Xi

and

E(ϕ) = y′(B(ϕ)−1 − B(ϕ)
)−1XiA(ϕ)−1X′

iB(ϕ)−1y.

Now, taking

W−1
j = n

j + 1
(X′

j Xj )
−1

we have, after some algebra, the following equalities:

(i)

B(ϕ)−1 = 1

sin2 ϕ

(
In − n

n + (j + 1) sin2 ϕ
Hj

)
,

(ii)

A(ϕ) = j + 1

n + (j + 1) sin2 ϕ
X′

iXi ,

(iii)

XiA(ϕ)−1X′
i = n + (j + 1) sin2 ϕ

j + 1
Hi ,

(iv)

E(ϕ) = j + 1

n + (j + 1) sin2 ϕ

(
n

(j + 1) sin2 ϕ
RSSj + RSSi

)
,

(v)

|A(ϕ)| =
(

j + 1

n + (j + 1) sin2 ϕ

)i

|X′
iXi |,

(vi)

|B(ϕ)| = (sin2 ϕ)n−j

(
n + (j + 1) sin2 ϕ

j + 1

)j

.

Plugging these values into I0 and making some simplifications we get expres-
sion (7).
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