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Sufficient dimension reduction methods often require stringent condi-
tions on the joint distribution of the predictor, or, when such conditions are
not satisfied, rely on marginal transformation or reweighting to fulfill them
approximately. For example, a typical dimension reduction method would
require the predictor to have elliptical or even multivariate normal distribu-
tion. In this paper, we reformulate the commonly used dimension reduction
methods, via the notion of “central solution space,” so as to circumvent the
requirements of such strong assumptions, while at the same time preserve
the desirable properties of the classical methods, such as

√
n-consistency

and asymptotic normality. Imposing elliptical distributions or even stronger
assumptions on predictors is often considered as the necessary tradeoff for
overcoming the “curse of dimensionality,” but the development of this paper
shows that this need not be the case. The new methods will be compared with
existing methods by simulation and applied to a data set.

1. Introduction. Dimension reduction for regression [Li (1991, 1992), Cook
and Weisberg (1991), Cook (1994, 1996)] is aimed at finding a lower dimensional
vector of linear combinations of the predictors, which retains as much as possible
the information in the relationship between the response and the original predic-
tors. Let X be a p-dimensional random vector representing the predictor, and let Y

be a random variable representing the response. If there is a p × q (q ≤ p) ma-
trix β such that Y and X are independent conditioning on βT X (henceforth writ-
ten as Y ⊥⊥ X|βT X), then the column space of β is called a dimension reduction
space. Under very mild conditions, such as given in Cook (1998), Chiaromonte and
Cook (2001) and recently further relaxed by Yin, Li and Cook (2008), the intersec-
tion of all such spaces is itself a dimension reduction space. In this case we call the
intersection the Central Space and denote it by SY |X [Cook (1994, 1996)]. A basic
problem of dimension reduction is to estimate and make statistical inference about
SY |X .

Commonly used dimension reduction methods, such as those based on inverse
conditional moments, require rather strong conditions on the joint distribution

Received July 2007; revised February 2008.
1Supported in part by NSF Grant DMS-07-04621.
AMS 2000 subject classifications. 62H12, 62G08, 62G09.
Key words and phrases. Canonical correlation, central solution spaces, kernel inverse regression,

inverse regression, sliced inverse regression, parametric inverse regression.

1272

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/08-AOS598
http://www.imstat.org
http://www.ams.org/msc/


DIMENSION REDUCTION 1273

of X. For example, first-moment-based methods such as Sliced Inverse Regres-
sion [Li (1991)] and Ordinary Least Squares [Li and Duan (1989)] require the
linear conditional mean assumption. That is, E(X|βT X) is a linear function of X.
Second-moment-based methods such as Sliced Average Variance Estimator [Cook
and Weisberg (1991)], Principal Hessian Directions [Li (1992)] and Directional
Regression [Li and Wang (2007)] require, in addition, the constant conditional
variance assumption. That is, Var(X|βT X) is a nonrandom matrix. Since β is un-
known, these conditions are assumed to hold for all possible β . If the first condition
holds for all β , then X has an elliptically-contoured distribution [Eaton (1986)], if
both conditions hold for all β , then X has a multivariate normal distribution. Thus,
in effect, either elliptically-contoured or multivariate normal distribution has to be
assumed when applying these methods.

If the actual predictors do not satisfy these conditions, current practice often re-
lies on transformation—that is, transform the p components of X, (X1, . . . ,Xp),
to (h1(X1), . . . , hp(Xp)) by some functions h1, . . . , hp , so that the scatter plot
matrix of the transformed predictors resembles that of a multivariate normal dis-
tribution. While transformation is a pragmatic—and often effective—strategy, it
has both theoretical and practical difficulties. Theoretically, such transformations
are intrinsically marginal. It targets the marginal distributions of X1, . . . ,Xp, and
as such does not guarantee that E(X|βT X) has desired linearity when βT X is
not a set of Xi’s. Indeed, there can be hidden nonlinearity among the predictors
even if their scatter plot matrix looks perfectly linear. On the other hand, mar-
ginal transformations may also be excessive: that E(X|βT X) is linear in X does
not require every component of X to be linear against every other component.
Practically, whether a transformation has succeeded in transforming a set of ob-
served predictors to an elliptical shape often relies entirely on subjective judge-
ment. Moreover, transforming a high dimensional predictor may be tedious or even
infeasible. Another way of dealing with nonellipticity is reweighting [Cook and
Nachtsheim (1994)]. However, like transformation, it is not focused on that part of
the nonlinearity in the predictors that is relevant to dimension reduction. It is also
computationally intensive, especially if the dimension p is high.

When the linear conditional mean and/or constant conditional variance assump-
tions are satisfied, however, the above-mentioned methods share properties that
make them uniquely desirable among nonparametric methods. First, the slicing
(or smoothing) involved in these estimators is over the response Y , which is al-
ways one-dimensional, regardless of the dimension of X. It is well known that
smoothing over a high dimensional vector space is undesirable, because the data
points within a slice (or a region covered by a smoothing kernel) become sparse
at an exponential rate as the dimension increases—a phenomenon often referred
to as the “curse of dimensionality” [Bellman (1961)]. Second, the size of the slice
(or bandwidth of the kernel) for the above methods need not decrease with the
sample size for consistency. These properties make the above methods resemble
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parametric estimators—they are
√

n-consistent regardless of the dimension of X

and have simple asymptotic structure—even though the problems they tackle are
in fact nonparametric, in the sense that virtually no assumption is imposed on the
conditional distribution of Y |X.

In this paper, we introduce a method that does not require linear conditional
mean or constant conditional variance, while at the same time preserves all the
desirable properties described in the foregoing paragraph. Although the basic idea
can potentially apply to methods based on first and second inverse conditional
moments (such as SIR, the Sliced Average Variance Estimator and Directional
Regression), here we will focus on first inverse conditional moments. The new
method is akin to inverse regression, but it is adapted in an automated fashion to
the nonlinearity in the predictors, and only that part of the nonlinearity relevant for
dimension reduction.

In Section 2, we introduce the key idea of Central Solution Space, a construction
that circumvents the linear conditional mean assumption. We study its relation with
the Inverse Regression Space and the Central Space. In Section 3 we give a gen-
eral formulation of inverse regression, which accommodates in a simple form five
different dimension reduction methods in the literature and in doing so provides a
platform on which to generalize them to the nonelliptical situations. This general-
ization is then carried out in Section 4. Section 5 is devoted to issues involved in
implementation, such as parameterization and optimization. The asymptotic distri-
bution of the estimator is developed in Section 6. Sections 7 and 8 are concerned
with simulation comparison and application. Finally, the proofs of the asymptotic
results are given in the Appendix.

2. Central solution space: The principle. The best way to explain the central
idea of this paper is to explain it in comparison with Sliced Inverse Regression.
Assume, without loss of generality, that E(X) = 0 and E(Y ) = 0. Let � be the
covariance matrix of X, assumed to be positive definite. Suppose the Central Space
has dimension d , and let β be a p × d matrix whose columns form a basis in SY |X .
Sliced Inverse Regression is based on the following fact. If

E(X|βT X) is linear in X (linear conditional mean),(1)

then the random vector �−1E(X|Y) belongs to SY |X almost surely. To see this,
let P(�) be the projection on to SY |X with respect to the inner product 〈a, b〉 =
aT �b (this will be called the �-inner product); that is, P(�) = β(βT �β)−1βT �.
Condition (1) implies E(X|βT X) = P T (�)X. Hence,

�−1E(X|Y) = �−1E[E(X|βT X,Y )|Y ] = �−1E[E(X|βT X)|Y ]
(2)

= �−1P T (�)E(X|Y) = P(�)�−1E(X|Y).

Thus the random vector �−1E(X|Y) belongs to the range of the projection oper-
ator P(�), which is SY |X . Consequently, the column space of the matrix

�−1 cov[E(X|Y)]�−1(3)
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is a subspace of SY |X . This column space will be called the Inverse Regression
space, and written as SIR; the matrix (3) will be written as AIR.

At the first sight, linear conditional mean seems crucial in the foregoing argu-
ment. However, note that it is the second equality in (2) that reflects the condi-
tional independence Y ⊥⊥ X|βT X, and it requires virtually no condition. The next
two equalities in (2), which require linear conditional mean, merely serve to make
�−1E(X|Y) an explicit vector in SY |X . This leads us to pay special attention to
the equation

E(X|Y) = E[E(X|βT X)|Y ] a.s.(4)

That is, the inverse (L2-) regression of X on Y is the same as the double (L2-) re-
gressions of X on βT X and then on Y . Because of the importance of this equation,
we will call it the Inverse Regression Equation. Note that if β solves this equation,
then so does βA for any d × d nonsingular matrix A. That is, the above equation
is identified only up to the column space of β .

DEFINITION 2.1. If β is a matrix of p rows that satisfies the inverse regression
equation (4), then span(β) is called a solution space of inverse regression equation.

It is easy to see that if β1 satisfies (4) and β2 is another matrix such that
span(β1) ⊆ span(β2), then β2 also satisfies (4). For maximum dimension reduc-
tion we would like to seek β of lowest rank. This leads to the notion of Central
Solution Space.

DEFINITION 2.2. If the intersection of any two solution spaces of (4) is itself
a solution space of (4), then the intersection of all such spaces will be called the
Central Solution Space of the inverse regression equation and written as SCSS.

By construction, if η is a matrix of dimension p × d1 with d1 greater than the
dimension of SCSS, and if it solves equation (4), then span(η) contains SCSS.

Central Solution Space is defined under the premise that the intersection of two
solution spaces of (4) is again a solution space of (4). The similar premise also
underlies the construction of the Central Space, which was recently proved under
very weak assumptions by Yin, Li and Cook (2008) in that context. The proof in
our context is similar and is omitted.

The next proposition reveals the relation among SCSS, SIR and SY |X , which
is the theoretical foundation of our method. We will say that condition (1) holds
for a subspace S of R

p if it holds for a matrix η whose columns form a basis
in S. Henceforth, Pη(�) will denote the orthogonal projection on to span(η) with
respect to the �-inner product.

THEOREM 2.1. Suppose that Y and the elements of X are square integrable
and E(X) = 0. Then:



1276 B. LI AND Y. DONG

1. SCSS ⊆ SY |X;
2. If, in addition, condition (1) holds for both SCSS and SIR, then SIR = SCSS.

PROOF. 1. Let β be p-row matrix such that span(β) = SY |X . Then, Y ⊥⊥
X|βT X, which, by (2), implies (4). Thus, SY |X is a solution space of (4), and
assertion 1 follows.

2. Let η be a p-row matrix whose columns form a basis in SCSS. If condition
(1) holds for η, then

E(X|Y) = E[E(X|ηT X)|Y ] = P T
η (�)E(X|Y) = �Pη(�)�−1E(X|Y).

Hence, �−1E(X|Y) = Pη(�)�−1E(X|Y), and consequently

�−1 Var[E(X|Y)]�−1 = Pη(�)�−1 Var[E(X|Y)]�−1P T
η (�).(5)

Thus, we have SIR ⊆ SCSS.
Conversely, let ξ be a p-row matrix whose columns form a basis in SIR. Then,

E‖�−1E(X|Y) − Pξ (�)�−1E(X|Y)‖2

= tr(AIR) − tr[AIRP T
ξ (�)] − tr[Pξ (�)AIR] + tr[Pξ (�)AIRP T

ξ (�)],
where AIR is as defined in (3). Because span(AIR) = span(ξ) and because AIR is
symmetric, the last three terms on the right (without sign) all reduce to tr(AIR).
Consequently, the above quantity is 0, implying

�−1E(X|Y) = Pξ (�)�−1E(X|Y) a.s.

Because E(X|ξT X) is linear in ξ , the right-hand side is

Pξ (�)�−1E(X|Y) = �−1P T
ξ (�)E(X|Y) = �−1E[E(X|ξT X)|Y ].

Hence, SCSS ⊆ SIR.
�

Observe that part 1 of the theorem holds without any assumption except the
existence of moments; the linearity assumption is required only when SIR enters
the picture. Thus, if we target SCSS instead of SIR, then we can avoid the linearity
assumption.

3. A general formulation of inverse regression. Several important dimen-
sion reduction methods are directly or indirectly related to the fundamental fact
that SIR ⊆ SY |X under condition (1). These include Ordinary Least Squares (OLS)
[Li and Duan (1989)], Sliced Inverse Regression (SIR) [Li (1992)], Parametric In-
verse Regression (PIR) [Bura and Cook (2001)], Canonical Correlation [Fung et
al. (2002)] and Kernel Inverse Regression (KIR) [Zhu and Fang (1996), Ferre and
Yao (2005)]. All these methods rely on the condition (1) for their consistency. The
original form of PIR of Bura and Cook (2001) was introduced under the assump-
tion that an inverse parametric regression model is true and under that assumption
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no restriction needs to be imposed on X. However, PIR is in fact consistent when
the parametric inverse model is not true, and, in this case, condition (1) is needed
for its consistency. This fact is noted in Fung et al. (2002) in a different context.
The goal of this paper is to use the general mechanism of the Central Solution
Space to extend these methods so that their consistency does not rely on condi-
tion (1). For this purpose, we now give a brief outline of the construction of these
estimators and synthesize them into a common form.

In the literature, the following estimators are typically described in terms of
the standardized predictor. But for our purpose it is easier to describe them in
terms of the original predictor (assuming EX = 0). This makes no difference at
the population level (though it does make a difference at the sample level, where
our experience indicates that it is often better to work with standardized predictor).

The OLS estimator is based on the following matrix:

AOLS = �−1E(YX)E(YXT )�−1.

Let {J1, . . . , Jk} be a (measurable) partition of �Y , the sample space of Y , and
define the discretized version of Y as

δ(Y ) =
k∑

�=1

�I (Y ∈ J�).

The SIR estimator is based on the following matrix:

ASIR = �−1 Var[E(X|δ(Y ))]�−1.

Let ψ : R+ → R
+ be a probability density function h > 0 and y ∈ �Y . Let

κ(y, ỹ) = ψ(h−1|y − ỹ|)/E[ψ(h−1|Y − ỹ|)].(6)

Because h will be treated as fixed throughout the theoretical development, we sup-
press the dependence on h from the notation. Let Ỹ be a random variable having
the same distribution as Y with Ỹ ⊥⊥ (X,Y ). The KIR estimator is based on the
following matrix:

AKIR = �−1E{E[Xκ(Y, Ỹ )|Ỹ ]E[XT κ(Y, Ỹ )|Ỹ ]}�−1.(7)

Finally, let h1, . . . , hs be square integrable functions from �Y to R, one of
which (say h1) must be taken to be 1 if Y is not centered. Let H(y) =
(h1(y), . . . , hs(y))T . Let

ρ(y, ỹ) = HT (y)E[H(Y)HT (Y )]−1H(ỹ).(8)

The matrix

APIR = �−1E{E[Xρ(Y, Ỹ )|Ỹ ]E[XT ρ(Y, Ỹ )|Ỹ ]}�−1

is sufficiently general to accommodate (the population versions of) both PIR and
Canonical Correlation estimator, though their original forms were quite different.
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We also note that both estimators allow Y to be a vector, but this is not considered
in this paper.

It turns that out all four matrices can be written in the same form, which will
greatly simplify the subsequent development and provide insights into the rela-
tionship among these methods. Henceforth, for two random elements U and V ,

U
D= V means that they have the same distribution.

THEOREM 3.1. The matrices AOLS, ASIR, AKIR, APIR can be written in the
following form:

�−1E{E[Xg(Y, Ỹ )|Ỹ ]E[XT g(Y, Ỹ )|Ỹ ]}�−1,(9)

where g :�Y × �Y → R, Ỹ ⊥⊥ (X,Y ), and Ỹ
D= Y .

PROOF. That AKIR and APIR have the form (9) follows from their definitions.
Also, if we let g(y, ỹ) = y, then

E(XY) = E(XY |Ỹ ) = E[Xg(Y, Ỹ )|Ỹ ].
Thus, AOLS conforms to (9).

For ASIR, note that, for any j ∈ {1, . . . , k},

E[X|δ(Y ) = j ] = E[XI (δ(Y ) = j)]
P(δ(Y ) = j)

= E[XI (δ(Y ) = δ(Ỹ ))|δ(Ỹ ) = j ]
P(δ(Y ) = δ(Ỹ )|δ(Ỹ ) = j)

.

Because Y
D= Ỹ , the above equality implies that

E[X|δ(Y )] D= E[XI (δ(Y ) = δ(Ỹ ))|δ(Ỹ )]/P [δ(Y ) = δ(Ỹ )|δ(Ỹ )].
Let g(Y, Ỹ ) = I (δ(Y ) = δ(Ỹ ))/P [δ(Y ) = δ(Ỹ )|δ(Ỹ )]. Then,

E[X|δ(Y )] D= E[Xg(Y, Ỹ )|δ(Ỹ )].(10)

In the meantime,

Ỹ ⊥⊥ (X,Y ) ⇒ (Ỹ , δ(Ỹ )) ⊥⊥ (X,Y )

⇒ (X,Y ) ⊥⊥ Ỹ |δ(Ỹ ) ⇒ (X,Y ) ⊥⊥ Ỹ |{δ(Ỹ ), δ(Ỹ )},
which, together with δ(Ỹ ) ⊥⊥ Ỹ |δ(Ỹ ), implies that

(X,Y, δ(Ỹ )) ⊥⊥ Ỹ |δ(Ỹ ).

See, for example, Dawid (1979) and Cook (1998), Proposition 4.6. Hence, the
right-hand side of (10) reduces to E[Xg(Y, Ỹ )|Ỹ ], and equality (10) reduces to

E[X|δ(Y )] D= E[Xg(Y, Ỹ )|Ỹ ].
Thus, ASIR also has the form (9). �
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4. Extension to nonlinear predictor cases. The synthesis of the last section
provides us a platform on which to extend the five methods to situations where
the linear conditional mean condition (1) does not hold. We now carry out this
extension.

4.1. Central solution spaces. While Theorem 2.1 lays out the basic principle
of Central Solution Space, as we have noticed in Section 3, various versions of
inverse regressions do not take the exact form Var[E(X|Y)]. We now extend The-
orem 2.1 to accommodate the various forms of inverse regressions, as synthesized
in Section 3.

Denote the matrix (9) by AIR(g) and its column space by SIR(g), where g stands
for the function g(Y, Ỹ ) in Theorem 3.1. Consider the following equation:

E[Xg(Y, Ỹ )|Ỹ ] = E[E(X|βT X)g(Y, Ỹ )|Ỹ ],(11)

where, recall that Ỹ
D= Y and Ỹ ⊥⊥ (X,Y ). Let SCSS(g) be the Central Solution

Space of this equation.

THEOREM 4.1. Suppose that g :�Y ×�Y → R is a measurable function such
that the elements of Xg(Y, Ỹ ) are square integrable. Suppose Y and the elements
of X are square integrable with E(X) = 0 and E(Y ) = 0. Then:

1. SCSS(g) ⊆ SY |X;
2. If, in addition, condition (1) holds for both SCSS(g) and SIR(g), then SIR(g) =

SCSS(g).

PROOF. 1. Let β be a matrix such that span(β) = SY |X . Because Ỹ ⊥⊥ (X,Y ),
we have

Ỹ ⊥⊥ (X,Y,βT X) ⇒ Ỹ ⊥⊥ (X,Y )|βT X.

The expression on the right-hand side, together with Y ⊥⊥ X|βT X, implies that
X ⊥⊥ Y ⊥⊥ Ỹ |βT X, and hence that X ⊥⊥ (Y, Ỹ )|βT X. It follows that E(X|Y, Ỹ ,

βT X) = E(X|βT X), and consequently

E[Xg(Y, Ỹ )|Ỹ ] = E[E(X|βT X,Y, Ỹ )g(Y, Ỹ )|Ỹ ]
(12)

= E[E(X|βT X)g(Y, Ỹ )|Ỹ ].
Thus, SY |X is a solution space of (11), and assertion 1 follows.

2. Let η be a matrix such that span(η) = SCSS(g). Since (1) holds for η, we have
E(X|ηT X) = P T

η (�)X, and so (11) becomes

E[Xg(Y, Ỹ )|Ỹ ] = P T
η (�)E[Xg(Y, Ỹ )|Ỹ ] = �Pη(�)�−1E[Xg(Y, Ỹ )|Ỹ ],
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which implies AIR(g) = Pη(�)AIR(g)P T
η (�). Hence, SIR(g) ⊆ SCSS(g). Con-

versely, let ξ be a matrix such that span(ξ) = SIR(g). Then,

E‖�−1E[(Xg(Y, Ỹ )|Ỹ ] − Pξ (�)�−1E[(Xg(Y, Ỹ )|Ỹ ]‖2

= tr[AIR(g)] − tr[AIR(g)P T
ξ (�)]

− tr[Pξ (�)AIR(g)] + tr[Pξ (�)AIR(g)P T
ξ (�)].

Because span[AIR(g)] = span(ξ) and because AIR(g) is symmetric, the last three
terms on the right (without sign) all reduce to tr[AIR(g)]. Consequently, the above
quantity is 0, implying

�−1E[(Xg(Y, Ỹ )|Ỹ ] = Pξ (�)�−1E[(Xg(Y, Ỹ )|Ỹ ] a.s.

Because E(X|ξT X) is linear in X, the right-hand side reduces to

Pξ (�)�−1E[(Xg(Y, Ỹ )|Ỹ ] = �−1P T
ξ (�)E[(Xg(Y, Ỹ )|Ỹ ]

= �−1E[E(X|ξT X)g(Y, Ỹ )|Ỹ ].
Hence, SCSS(g) ⊆ SIR(g). �

Let SOLS, SSIR, SKIR, SPIR be the columns spaces of AOLS, ASIR, AKIR, AIR. Let
SCSS–OLS, SCSS–SIR, SCSS–KIR, SCSS–PIR be the column spaces of AIR(g) with g

taken to be the four g(Y, Ỹ ) functions described in the proof of Theorem 3.1. The
following corollary follows immediately from Theorem 4.1.

COROLLARY 4.1. Suppose all the moments involved in the definitions of
SOLS, . . . , SPIR and SCSS–OLS, . . . , SCSS–PIR are finite. Then:

1. SCSS–OLS ⊆ SY |X,SCSS–SIR ⊆ SY |X,SCSS–KIR ⊆ SY |X,SCSS–PIR ⊆ SY |X;
2. If (1) holds for SOLS, . . . , SPIR and SCSS–OLS, . . . , SCSS–PIR, then

SOLS = SCSS–OLS, SSIR = SCSS–SIR,

SKIR = SCSS–KIR, SPIR = SCSS–PIR.

Again, note that inclusions in part 1 hold without linearity condition (1). Part 2
says that when condition (1) does hold, using Central Solution Space based meth-
ods will not lose information as compared to the inverse regression based methods.

4.2. Objective functions. We now introduce a population-level objective func-
tion whose minimizer yields the solution to (11) for each given g. We will also
describe how it can be estimated based on an i.i.d. sample of (X,Y ). The next
theorem will provide a guiding principle for defining the objective function.
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THEOREM 4.2. Suppose that SCSS(g) has dimension d ≤ p, and let β be
a p × d matrix whose columns form a basis in SCSS(g). Let f (ηT X) be a
square-integrable function such that, whenever span(η) = span(β), f (βT X) =
E(X|βT X), and whenever span(η) �= span(β),

P {E[f (ηT X)g(Y, Ỹ )|Ỹ ] �= E[f (βT X)g(Y, Ỹ )|Ỹ ]} > 0.(13)

Let η0 ∈ R
p×d be the minimizer of

L(η) = E‖E{[X − f (ηT X)]g(Y, Ỹ )|Ỹ }‖2(14)

over R
p×d . Then, span(η0) = SCSS(g).

PROOF. If span(η) = span(β), then

E[f (ηT X)g(Y, Ỹ )|Ỹ ] = E[E(X|βT X)g(Y, Ỹ )|Ỹ ] = E(Xg(Y, Ỹ )|Ỹ ) a.s.

Hence, L(η) = 0. If span(η) �= span(β), then, by assumption (13),

E‖E{[f (ηT X) − f (βT X)]g(Y, Ỹ )|Ỹ }‖2 > 0.

In the meantime,

L(η) = E‖E{[X − f (βT X)]g(Y, Ỹ )|Ỹ }‖2

+ E‖E{[f (βT X) − f (ηT X)]g(Y, Ỹ )|Ỹ }‖2

+ 2E
(
E{[X − f (βT X)]g(Y, Ỹ )|Ỹ }T
× E{[f (βT X) − f (ηT X)]g(Y, Ỹ )|Ỹ }).

Because span(β) = SCSS(g), the last term is 0. Therefore,

L(η) ≥ E‖E{[f (βT X) − f (ηT X)]g(Y, Ỹ )|Ỹ }‖2 > 0.

Hence, the minimizer of L(η) must satisfy span(η) = span(β). �

Rather than assuming E(X|βT X) to be linear in βT X at the outset, as we do
for classical methods such as SIR, here we model E(X|βT X) parametrically. Let
f1, . . . , fk be functions from R

d to R. We will assume that E(X|βT X) lies in the
space spanned by f1(β

T X), . . . , fk(β
T X). That is, each component of E(X|βT X)

is a linear combination of f1(β
T X), . . . , fk(β

T X). Under this assumption, the
conditional expectation E(X|βT X) can be expressed explicitly as

E(X|βT X) = E[XGT (βT X)]{E[G(βT X)GT (βT X)]}−1G(βT X),

where

G(βT X) = (f1(β
T X), . . . , fk(β

T X))T .
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Note that we are not assuming—and we do not need to assume—that E(X|ηT X)

is a linear function of f1(η
T X), . . . , fk(η

T X) for every η in R
p×d . All we need is

that this holds at the true β . We use the function

E[XGT (ηT X)]{E[G(ηT X)GT (ηT X)]}−1G(ηT X)(15)

as the f (ηT X) in the definition (14) of the objective function L(η).
We now construct the sample estimate Ln(η) of L(η). Suppose that (X1, Y1),

. . . , (Xn,Yn) are an i.i.d. sample of (X,Y ). For a function r(X,Y ), let Enr(X,Y )

denote the sample average n−1 ∑n
i=1 r(Xi, Yi).

1. Center Y1, . . . , Yn and X1, . . . ,Xn as

Ŷi = Yi − En(Y ), X̂i = Xi − En(X).

2. Select {f1, . . . , fk} that we deem sufficiently flexible to describe the conditional
mean E(X|βT X). For example, based on our experience, it often suffices to
include linear and quadratic functions of βT X. In this case, the set {f1, . . . , fk}
includes the following d(d + 3)/2 + 1 functions

{1} ∪ {ηT
i X : i = 1, . . . , d} ∪ {ηT

j XηT
k X : 1 ≤ j ≤ k ≤ d},

where η1, . . . , ηd are columns η. Let

f̂ (ηT X̂) = En[X̂GT (ηT X̂)]{En[G(ηT X̂)GT (ηT X̂)]}−1G(ηT X̂).

3. If using OLS, define Ln(η) as

En

∥∥(
X̂ − f̂ (ηT X̂)

)
Ŷ

∥∥2
.

If using SIR, define Ln(η) as

1

n

k∑
�=1

En[I (Ŷ ∈ J�)]
∥∥En

[(
X̂ − f̂ (ηT X̂)

)|Ŷ ∈ J�

]∥∥2
,

where

En

[(
X̂ − f̂ (ηT X̂)

)|Ŷ ∈ J�

] = En

[(
X̂ − f̂ (ηT X̂)

)
I (Ŷ ∈ J�)

]
/En[I (Ŷ ∈ J�)].

If using KIR, PIR or the Canonical Correlation estimator, define Ln(η) as

n−1
n∑

j=1

∥∥∥∥∥n−1
n∑

i=1

{[X̂i − f̂ (ηT X̂i)]g(Ŷi, Ŷj )}
∥∥∥∥∥

2

,

where g is either the function κ defined in (6) or the function ρ defined in (8).
Note that, for PIR and the Canonical Correlation estimator, g(Ŷi, Ŷj ) can be
factorized into functions of Ŷi and Ŷj , and thus the above double sum can be
simplified as a single sum. We will come back to this in Section 6.
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In the following, we refer to the CSS-based modification of a classical estimator
as that estimator preceded by the prefix “CSS.” For example CSS–SIR is the CSS-
modification of SIR.

That the CSS-based methods do not require linearity condition (1) also implies
that they are no longer restricted to continuous predictors, because all we need
is that {f1(β

T X), . . . , fk(β
T X)} be sufficiently flexible to describe E(X|βT X)

whether or not X is continuous. In fact, the application in Section 8 shows that
CSS–PIR handles a binary predictor effectively.

5. Parameterization of objective function. In this section, we discuss spe-
cial issues that arise in the minimization of Ln(η). The number

E
∥∥(

X − E(X|βT X)
)
g(Y, Ỹ )

∥∥2

depends on β only through its column space and not its specific form. This raises
the question of how to parameterize the column space parsimoniously. The similar
problem arises frequently in dimension reduction; for example, it arises also in
Xia et al. (2002), Cook and Ni (2005) and Cook (2007). The most parsimonious
parameterization is via the Grassmann manifold, whose importance in dimension
reduction computation is first noted in Cook (2007).

Here, we use a more elementary but rather intuitive parameterization—we as-
sume that columns of β to be a set of d orthonormal vectors and parameterize them
by the polar coordinate system. First, we represent the class of all orthogonal ma-
trices, denoted by O

p×p , using the polar coordinate system. Note that any matrix
in O

2×2 can be represented as(
cos(α) − sin(α)

sin(α) cos(α)

)
.(16)

For an arbitrary dimension p, the space R
p consists of

(p
2

)
two-dimensional or-

thogonal hyperplanes, and an orthogonal matrix should be able to rotate a vector
along all of them. Thus, any matrix in O

p×p is the product
(p

2

)
orthogonal matri-

ces, each resembling the above matrix. In symbols, for 1 ≤ i < j ≤ p, let θij be
an angle in [0, π] and Bij (θij ) be the matrix in O

p×p constructed by replacing the
(i, j) × (i, j) submatrix of the identity matrix Ip with the matrix of the form (16).
That is,

Rij (θij ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0 · · · 0 · · · 0
...

...
...

...

0 · · · cos(θij ) · · · − sin(θij ) · · · 0
...

...
...

...

0 · · · sin(θij ) · · · cos(θij ) · · · 0
...

...
...

...

0 · · · 0 · · · 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ith row

j th row
.

ith column j th column



1284 B. LI AND Y. DONG

Then, any orthogonal matrix can be represented as

B = ∏
1≤i<j≤p

Bij (θij ).(17)

We use the first d columns of B as the polar parameterization of η.
In this parameterization η depends on θ , but not all of them. Let us see what is

the subset of the θij ’s that appear in η. To begin, consider the case of p = 5 and
d = 2. Then,

B = (B12B13B14B15B23B24B25)(B34B35B45),(18)

where the parentheses are added artificially to assist discussion. Note that the first 2
columns of B34,B35,B45 are the same as those of Ip . Therefore, the first 2 columns
of B34B35B45 are the same as those of Ip . This implies that the first 2 columns of B

and B12 · · ·B25 are the same. In other words, B34B35B45 can be ignored without
changing the first 2 columns of B . In general, η depends only on the following
θij ’s:

{θij : 1 ≤ i ≤ d, i < j ≤ p} ≡ θ.(19)

There are pd − d(d + 1)/2 ≡ m parameters in this set. We write the parameter-
ized η as η(θ). That is, η(θ) comprises the first d columns of∏

1≤i≤d,1≤j≤p,i<j

Bij (θij ).

Using this parameterization, we minimize Ln(η(θ)) over θ . Because θij and
θij ± π give the same direction, we maximize θ over the set [0, π]m. For the ini-
tial value of θ , we recommend using the corresponding classical methods such as
OLS, SIR, KIR and PIR, or the Outer Product Gradient estimator (OPG) by Xia et
al. (2002). Many softwares are available for minimizing functions like Ln(η(θ)).
For example, the OPTIM function in R works well for our purpose. All it requires
is a subroutine that evaluates the objective function and an initial value of θ . We
use span{η(θ̂)}, where θ̂ is the minimizer of Ln(η(θ)) as the estimator of SCSS(g).

We should note that the polar coordinate system is not the most parsimonious
parameterization, in the sense that span(θ) does not uniquely determine θ , even
though θ has much lower dimension of η. Numerically, this causes no difficulty
with an appropriately chosen initial value such as described above. However, this
does mean that the objective function has a singular Hessian matrix, and this must
be taken into account when we derive the asymptotic distribution of θ̂ , as we do in
the next section.

It is possible for Ln(η(θ)) to possess multiple minimizers, and we do occa-
sionally run into this problem. However, this is mitigated by the judicious choice
of an initial value. For example, OPG, which is easy to compute, seems to work
very well. Furthermore, our experience indicates that as long as Ln(η(θ)) is de-
creased (from the initial value) the performance of the CSS estimators tends to
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be enhanced regardless of convergence of the algorithm. Thus, if we use a robust
minimization algorithm that guarantees to decrease the objective function at each
step, the issue of local minima should not cause serious concern. For example,
the Nelder–Mead simplex algorithm [Nelder and Mead (1965)], as implemented
in OPTIM mentioned previously, is robust in this sense.

6. Asymptotic distribution. We now derive the asymptotic distributions of θ̂ .
Because of limited space, in this paper we will only tackle the asymptotic analysis
of CSS–PIR, which includes CSS–OLS as a special case. To further simplify com-
putation, we only consider the case where h1(y), . . . , hs(y) are monomials of y

and f1(η
T X), . . . , fk(η

T X) are monomials of ηT
j X. Furthermore, we require that

both sets of functions must contain the function that is constantly 1. Under this
assumption, there is no need to assume E(X) = 0 and E(Y ) = 0 (i.e., no need to
center X as X − EX and Y as Y − EY ) because, for example,

{1, y, . . . , ys−1} and {1, y − EY, . . . , (y − EY)s−1}
span the same functional space. The development of the general case is parallel to
this simplified case but will have much more terms in the asymptotic expansion,
complicating an otherwise transparent argument. Note that this restriction does not
apply to estimation, where centering causes no additional complication.

For bookkeeping, we first give a one-to-one correspondence between the double
index in (19) and a single index. Let J = {(i, j) : j = i + 1, . . . , p, i = 1, . . . , d}.
For each (i, j) ∈ J , let

t = t (i, j) = p(i − 1) − (i − 1)i/2 + (j − i).

Conversely, for each t ∈ {1, . . . ,m}, let

i(t) = max{i :p(i − 1) − (i − 1)i/2 ≤ t},
j (t) = t − [

p
(
i(t) − 1

) − (
i(t) − 1

)
i(t)/2

] + i(t).

In this arrangement, as the double index (i, j) runs through J with j changing
first, the single index t runs through 1 to m and vice versa. Let

φt(i,j) = θij , Dt(i,j) = Bij .

Let φ = (φ1, . . . , φm)T . The η can be equivalently parameterized by φ as

η(φ) =
m∏

t=1

Dt(φt ).

Denote the range of φ, [0, π]m by �φ .
Let F be a convex class of distributions of (X,Y ), which contains the true

distribution F0 and all empirical distributions. Let EF (·) denote the expectation
under F and E(·) denote the expectation under F0. We can reexpress L(η(φ)) and
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Ln(η(φ)) defined in Section 4.2 as evaluations of a mapping from �φ × F to R,
evaluated at the true distribution F0 and the empirical distribution Fn, respectively.
Let

�(φ,F ) = tr
{
EF

[(
X − f (ηT (φ)X)

)
HT (Y )

]
(20)

× [EF (H(Y )HT (Y ))]−1EF

[
H(Y)

(
X − f (ηT (φ)X)

)T ]}
.

In this notation, L(η(φ)) and Ln(η(φ)) becomes �(φ,F0) and �(φ,Fn).
As we have noted in Section 5, φ is not uniquely determined by the subspace

span(η(φ)). Our asymptotic result reflects this fact by allowing the Hessian matrix
of �(φ,F0) to be singular. Let

g(φ0,F ) =
[
∂�(φ,F )

∂φ

]
φ=φ0

, W = W(φ0,F0) =
[
∂2�(φ,F0)

∂φ ∂φT

]
φ=φ0

.

Let PW be the projection on to the column space of W , and let QW = Im − PW .
By Taylor expansion, it is easy to see that

�(φ0 + n−1/2δ,F0) = n−1δT Wδ + o(n−1),

�(φ0 + n−1/2PWδ,F0) = n−1δT Wδ + o(n−1).

That is, in a contiguity neighborhood of φ0, �(·,F0) is unaffected by the component
QWδ of the parameter. In other words, locally at φ0, it is PWδ that parameterizes
the subspace span(η(φ0 + n−1/2PWδ)), and the component QWδ has no effect on
this subspace. Similarly, at the sample level, it can be shown that (not presented
here)

�(φ̂,Fn) = �
(
φ0 + PW(φ̂ − φ0),Fn

) + op(n−1), �(φ̂,Fn) = Op(n−1).

Thus, QW(φ̂ −φ0) has no effect on the sample objective function �(·,Fn). For this
reason, the asymptotic distribution of relevance is that of

√
nPW(φ̂ − φ0), rather

than that of the full parameter
√

n(φ̂ −φ0). The next theorem gives the asymptotic
expansion of

√
nPW(φ̂ − φ0). Its proof will be given in the Appendix.

THEOREM 6.1. Suppose that the regularity conditions described in Sec-
tion A.1 are satisfied. Let W † be the Moore–Penrose inverse of W , and let
g∗(X,Y,φ0,F0) be the influence function of the mapping F �→ g(φ0,F ) evalu-
ated at F0. Then,

PW(φ̂ − φ0) = −W †Eng
∗(X,Y,φ0,F0) + op(n−1/2).(21)

The explicit expression for W is given by (32) through (35), and that for
g∗(X,Y,φ0,F0) is given by (36) through (38) in the Appendix.

From expansion (21), we can easily derive the asymptotic distributions of√
nPW(φ̂ − φ0).
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COROLLARY 6.1. Under regularity conditions described in Section A.1,
√

nPW(φ̂ − φ0)
D−→ N(0,�(φ0,F0)),

where �(φ0,F0) = W †E{g∗(X,Y,φ0,F0)[g∗(X,Y,φ0,F0)]T }W †.

In practice, we can estimate �(φ0,F0) by replacing W with its sample estimate
W(φ̂,Fn) and replacing E{g∗(X,Y,φ0,F0)[g∗(X,Y,φ0,F0)]T } with

n−1
n∑

i=1

{g∗(Xi, Yi, φ̂,Fn)[g∗(Xi, Yi, φ̂,Fn)]T }.

7. Simulation comparisons. In this section, we compare the CSS-based
methods with their classical counterparts as well as two adaptive estimators when
the predictor X has a nonelliptical distribution. We consider the following three
models:

Model I: Y = eX3 + (X4 + 1.5)2 + ε,

Model II: Y = 0.4X2
3 + 3 sin(X4/4) + 0.5ε,

Model III: Y = X3/[0.5 + (X4 + 1.5)2] + 0.1ε,

where ε ∼ N(0,1) and ε ⊥⊥ X. We first take the sample size to be n = 100. The
dimensions of X are chosen to be p = 4,6,8. Note that, in all three models, d = 2
and SY |X is spanned by (0,0,1, . . . ,0)T and (0,0,0,1, . . . ,0)T .

We introduce nonlinearity in the predictor as follows: X1 ∼ N(0,1), X2 ∼
N(0,1),

X3 = 0.2X1 + 0.2(X2 + 2)2 + 0.2δ,
(22)

X4 = 0.1 + 0.1(X1 + X2) + 0.3(X1 + 1.5)2 + 0.2δ,

where δ ⊥⊥ (X,Y ) and δ ∼ N(0,1). When p = 6,8, X5 through X8 are taken to
be independent of N(0,1) and to be independent of (X1, . . . ,X4). Figure 1 shows
the scatter plot matrix of X1, . . . ,X4. Predictors of this type are very common in
practice.

We apply three methods based on Central Solution Space CSS–SIR, CSS–PIR
and CSS–KIR, as well as their classical counterparts, SIR, PIR and KIR, to the
three models. Because CSS–OLS and OLS can only estimate one-dimensional
Central Spaces (d = 1), we do not include them in the comparison. We also com-
pare with OPG and the Minimum Averaged Variance Estimator (MAVE) intro-
duced by Xia et al. (2002). The simulation sample size is N = 200. For SIR and
CSS–SIR, the number of slices is taken to be 10, with each slice having equal
number of observations. For PIR and CSS–PIR, the function H(Y) is

H(Y) = (1, Y,Y 2).
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FIG. 1. Scatter plot matrix for the 4-dimensional, nonelliptically-distributed predictor X.

For all three CSS methods, the function G(ηT X) is taken to be

G(ηT X) = (1, ηT
1 X,ηT

2 X, (ηT
1 X)2, . . . , (ηT

2 X)3).

For the KIR and CSS–KIR, the function ψ in (6) is taken to be the standard normal
density, and the bandwidth h in (6) is taken to be 0.4. The kernel function for
OPG and MAVE is taken to be the normal density, with standard deviation (kernel
width) taken to be 0.7 for p = 4,6 and 0.8 for p = 8. These parameters perform
reasonably well in several pilot trial runs.

To assess the accuracy of each method, we use the squared multiple correlation
coefficient. Specifically, suppose U and V are d dimensional random vectors, and
�UV , �U and �V are the covariance matrix between U and V , the covariance
matrix of U and the covariance matrix of V , respectively. Then the square multiple
correlation coefficient is defined by

ρ2 = tr[�−1/2
U �UV �−1

V �V U�−1/2] = tr[�−1/2
V �V U�−1

U �UV �−1/2].(23)

See Hall and Mathiason (1990). The measure takes maximum value d if U and V

have a linear relation and takes minimum 0 if the components of U and V are
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uncorrelated. At the sample level, given an estimator β̂ of β , we use the sample
version of the above measure based on

{β̂T X1, . . . , β̂
T Xn} and {βT X1, . . . , β

T Xn}.
Note that the larger value of this criterion corresponds to a better dimension reduc-
tion estimate.

We compute the errors of estimation by the eight methods, for three models and
three choices of p and across the 200 simulated samples. The results are presented
in Table 1.

Each entry of Table 1 is formatted as a(b), where a is the average of the above
criterion across the 200 simulated samples and b is the standard error of the av-
erage. From the table we see that the CSS-based methods are substantially more
accurate than their classical counterparts across all 9 cases, indicating that there is
much to be gained by correcting the bias caused by nonellipticity. OPG and MAVE
perform competently under nonellipticity, but on the whole their improvements are

TABLE 1
Comparison of CSS and classical estimators

Model Method p = 4 p = 6 p = 8

I PIR 1.366 (0.017) 1.336 (0.017) 1.264 (0.015)
CSS–PIR 1.658 (0.021) 1.631 (0.017) 1.393 (0.017)

SIR 1.112 (0.013) 1.100 (0.011) 1.064 (0.007)
CSS–SIR 1.735 (0.018) 1.423 (0.020) 1.293 (0.019)

KIR 1.701 (0.014) 1.661 (0.015) 1.618 (0.015)
CSS–KIR 1.832 (0.010) 1.711 (0.014) 1.637 (0.017)

OPG 1.581 (0.023) 1.377 (0.020) 1.282 (0.016)
MAVE 1.785 (0.016) 1.602 (0.018) 1.382 (0.017)

II PIR 1.400 (0.015) 1.346 (0.015) 1.349 (0.013)
CSS–PIR 1.755 (0.018) 1.558 (0.021) 1.476 (0.021)

SIR 1.302 (0.022) 1.256 (0.017) 1.208 (0.017)
CSS–SIR 1.789 (0.013) 1.439 (0.021) 1.333 (0.021)

KIR 1.514 (0.018) 1.468 (0.016) 1.437 (0.015)
CSS–KIR 1.794 (0.015) 1.551 (0.022) 1.480 (0.020)

OPG 1.604 (0.023) 1.406 (0.023) 1.302 (0.020)
MAVE 1.622 (0.022) 1.397 (0.021) 1.265 (0.018)

III PIR 1.149 (0.014) 1.115 (0.011) 1.065 (0.009)
CSS–PIR 1.839 (0.014) 1.694 (0.018) 1.557 (0.020)

SIR 1.265 (0.020) 1.171 (0.014) 1.116 (0.013)
CSS–SIR 1.833 (0.008) 1.552 (0.020) 1.454 (0.019)

KIR 1.146 (0.014) 1.113 (0.011) 1.063 (0.009)
CSS–KIR 1.862 (0.013) 1.705 (0.019) 1.613 (0.019)

OPG 1.742 (0.017) 1.584 (0.022) 1.453 (0.020)
MAVE 1.803 (0.016) 1.584 (0.021) 1.375 (0.019)
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TABLE 2
Comparison KIR, CSS–KIR, OPG and MAVE for larger n’s

Method n = 200 n = 300 n = 400 n = 500

KIR 1.704 (0.011) 1.725 (0.010) 1.797 (0.005) 1.781 (0.005)
CSS–KIR 1.816 (0.009) 1.846 (0.005) 1.854 (0.004) 1.861 (0.004)

OPG 1.506 (0.023) 1.614 (0.022) 1.681 (0.020) 1.730 (0.021)
MAVE 1.824 (0.014) 1.885 (0.012) 1.847 (0.013) 1.922 (0.009)

not as sharp as the CSS-based methods. In particular, the accuracy of CSS–KIR
dominates that of OPG and MAVE in all 9 cases by substantial margins (relative
to the standard deviations). CSS–PIR also performs better than OPG and MAVE
in most (8 out of 9) cases. The performance of CSS–SIR is somewhat similar to
OPG and MAVE. This is partly due to the fact that slicing is somewhat inefficient,
because the inter-slice information is not used—an aspect that cannot be improved
by the CSS correction. The loss of intra-slice information by SIR is noticed by
Cook and Ni (2006), who proposed a method to reduce it.

For larger sample sizes, the performances of all estimators improve, and MAVE
and the CSS-based methods become more similar. Table 2 compares CSS–KIR
with KIR, OPG and MAVE for p = 6 and n = 200,300,400,500. The kernel
width (of X) for OPG and MAVE are taken to be 0.6,0.5,0.4,0.4, and the kernel
width (of Y ) for KIR and CSS–KIR are 0.3,0.2,0.1,0.1. The basis functions in
H(y) now include third polynomials, and the basis functions in G(ηT X) include
fourth polynomials. We see that, while OPG and KIR still trail behind CSS–KIR,
MAVE catches up with CSS–KIR at around n = 400 and surpasses it at n = 500.
This is because, as we can see from (22), the dependence of X1 and X2 on X3 and
X4 involves the square root function, and as a consequence E(X|X3,X4) does not
belong to the polynomials of ηT X. We have also performed simulation compar-
isons parallel to those presented in Tables 1 and 2 with Y depending on X1 and
X2 instead of X3 and X4, in which case E(X|ηT X) does belong to the polyno-
mial family. In this comparison the advantage of the CSS-based methods is more
striking, and, for larger n, MAVE no longer has the mentioned advantage. These
results are not presented for the lack of space.

8. Application. We consider data collected for Massachusetts four-year col-
leges in 1995, which are attempted to study how the percentage of freshmen that
graduate (Grad) depends on variables measuring quality of incoming students and
features of the colleges. The data is provided as an example data set in MINITAB
(release 15, data directory STUDNT12). We restricted attention to n = 46 colleges
and p = 8 predictors, which are: the percentage of freshmen that were among the
top 25% percent in their graduating high school class (Top25), the median math-
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ematics SAT score (MSAT), the median verbal SAT score (VSAT), the percentage
of applicants accepted by the college (Accept), the percentage of accepted appli-
cants who enroll (Enroll), the student-to-faculty ratio (SFRatio), the out-of-state
tuition (Tuition) and whether the college is public or private (PubPriv). Since PIR
does not apply to binary data, we first compare PIR and CSS–PIR ignoring the
PubPriv variable, and then incorporate PubPriv in the CSS–PIR analysis to see
how the latter handles a binary predictor.

The scatter-plot matrix in Figure 2 reveals nonlinearity among predictors—for
example, in the relations between Top25 and Accept, Accept and Tuition, VSAT
and tuition. The upper panels of Figure 3 present the scatter plots of Y (Grad) ver-
sus the first predictors obtained from PIR (left panel) and CSS–PIR (right panel).

FIG. 2. Scatter-plot matrix for the seven continuous predictors of the Massachusetts college data.
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FIG. 3. Sufficient plots for the Massachusetts college data.

Since the true model is unknown, we can no longer use criterion (23) to com-
pare the performances of PIR and CSS–PIR. We will use instead a leave-one-out
cross validation criterion to compare their performances [see, e.g., Allen (1974),
Stone (1974)]. Let β̃−k and β̂−k be the estimated β by PIR and CSS–PIR when
(Xk,Yk) is deleted from the sample. From Figure 3, we see that the scatter plots
are roughly linear. So, for each of the 46 leave-one-out samples, we fit linear mod-
els using both the PIR and the CSS–PIR predictors and predict the deleted Yk by
β̃T−kXk and β̂T−kXk using their respective linear models. The sums of squared pre-
diction errors over the 46 samples for PIR and CSS–PIR are, respectively, 6145
and 5203, indicating a respectable improvement by CSS–PIR.

We now incorporate PubPriv and repeat the CSS–PIR analysis. The 9 public
schools are indicated by 1 and the 37 private schools are indicated by 0. The lower
panel in Figure 3 is the scatter plot of Y versus the first CSS–PIR predictor after in-
corporating PubPriv. The cross validation criterion is now further reduced to 4345,
another appreciable drop, indicating that CSS–PIR handles the binary predictor
effectively.
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APPENDIX: ASYMPTOTIC ANALYSIS

A.1. Regularity conditions, notation and preliminaries. The estimator φ̂

in Theorem 6.1 is a function of the empirical distribution Fn of (X1, Y1), . . . ,

(Xn,Yn). That is, it has the form A(Fn), where A is a vector. Let F0 be the true
distribution of (X,Y ) and, for any α ∈ [0,1], Fn,α = (1−α)F0 +αFn. Then, under
regularity conditions,

A(Fn) − A(F0) = [dA(Fn,α)/dα]α=0 + op(n1/2).(24)

See von Mises (1947), Fernholz (1983) and McCullagh (1987). When an estimator
satisfies (24), it is called an asymptotically linear estimator [Bickel et al. (1993)].
A wide class of estimators fall into this category. In the following proof, we will
assume at the outset that expansion (24) holds for Theorem 6.1. This means that we
will omit the proof of consistency and smoothness of the statistical functional A(·).
General conditions for estimators defined by minimization of objective functions
can be found in van der Vaart (1998), Chapter 5.

The underlying sufficient condition for expansion (24) is that the mapping
F �→ A(F) is Frechet differentiable at F0 (or more generally Hadamard differ-
entiable), with respect to the ‖ · ‖∞ in a convex family of distributions F that
contains F0 and all empirical distributions. This is not a strong assumption. All
estimators discussed in this paper are either themselves functions of sample mo-
ments or solutions to equations constructed from sample moments. For example,
the key components of SIR and CSS–SIR are the sample conditional moment
En[XI (Y ∈ Jk)]/En[I (Y ∈ Jk)], which is a ratio of sample moments. Statistics
of this form are typically Frechet differentiable under mild conditions. See, for
example, Fernholz (1983), Chapter 2.

In our context, the Frechet derivative of A(·) at F0 can always be represented as
the linear mapping

F → EF A∗(X,Y,F0),(25)

where A∗(X,Y,F0) satisfies EF0A
∗(X,Y,F0) = 0, with its elements belonging to

L2(F0). When it causes no ambiguity, we will abbreviate A∗(X,Y,F0) by A∗(F0).
Because of the one-to-one correspondence between the random element A∗(F0)

and mapping (25), we will refer to A∗(F0) itself as the Frechet derivative. More-
over, the Frechet derivative, when it exists, coincides with Gateaux derivative, de-
fined as the mapping

F → [
DαA

(
(1 − α)F0 + αF

)]
α=0.

Hence [
DαA

(
(1 − α)F0 + αF

)]
α=0 = EF A∗(F0),(26)

and consequently the expansion (24) can be rewritten as

A(Fn) = A(F0) + EnA
∗(F0) + op(n−1/2).(27)
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The next lemma provides some basic formulas for Frechet derivatives, defined
as the random element A∗(F0). Let ρ :F → � ⊆ R

s be a Frechet differentiable
mapping and τ(ρ(F ),F ) be a real, vector or matrix-valued Frechet differentiable
function on F . Let ρ0 = ρ(F0). The symbol τ ∗(ρ0,F0) denotes the Frechet deriv-
ative of the mapping F → τ(ρ0,F ) at F0; whereas τ ∗(F0, ρ0(F0)) denotes the
Frechet derivative of the mapping F → τ(ρ(F ),F ) at F0.

The subsequent expansions demand an efficient notation system for differenti-
ation. We will frequently encounter mappings of the form Q(ρ(Fα),Fα), where
Fα = (1 − α)F0 + αF for some distribution F ∈ F and some vector-valued func-
tion ρ(·) defined on F . We use DαQ(ρ(Fα),Fα) to denote the (total) derivative
dQ(ρ(Fα)Fα)/dα and ∂αQ(ρ,Fα) the partial derivative ∂Q(ρ,Fα)/∂α. We use
∂ρi

Q(ρ,Fα) to denote ∂Q(ρ,Fα)/∂ρi , where ρi is the i component of ρ, and use
∂ρ to denote the vector of differential operators (∂ρ1, . . . , ∂ρm)T . We use ∂2

ρ to de-
note the matrix ∂ρ∂T

ρ . For a single operator such as ∂ρi
, both ∂ρi

Q and Q∂ρi
are to

be understood as the derivative ∂Q/∂ρi . This is so that differential operation be-
haves, to a degree, like matrix multiplication. For example, if q is a vector-valued
function of ρ, then q∂T

ρ represents the matrix

(q∂ρ1, . . . , q∂ρm) = (∂ρ1q, . . . , ∂ρmq)

and ∂ρqT denotes the transpose of the above matrix. This notation is helpful in
tracking the dimensions of derivative arrays and the ways in which derivatives
are arranged in an array. Note, however, that the associative law does not apply:
(q1∂

T )q2 �= q1(∂
T q2). For this reason, we will always use parentheses to associate

a differential array with the function on which it operates.

LEMMA A.1. The following relations hold:

1. If the mappings F �→ ρ(F ) and F �→ τ(ρ(F ),F ) are Frechet differentiable
with respect to F at F0, then

τ ∗(ρ(F0),F0) =
s∑

i=1

[∂ρi
τ (ρ,F0)]ρ=ρ0ρ

∗
i (F0) + τ ∗(ρ0,F0);(28)

2. If ρ(F ) is a linear functional of F , that is, if ρ(F ) = EF [r(X,Y )] for some
square-integrable (and vector-valued) function r of (X,Y ) that does not depend
on F , then

ρ∗(F0) = r(X,Y ) − E[r(X,Y )].

PROOF. Part 2 is well known; [see Fernholz (1983), page 8]. By differentia-
tion,

[Dατ(ρ(Fα),Fα)]α=0 =
s∑

i=1

[∂ρi
τ (ρ,F0)]ρ=ρ0 [Dαρi(Fα)]α=0 + ∂ατ(ρ0,F0).
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By (26), [Dαρi(Fα)]α=0 = EF ρ∗
i (F0) and [∂ατ(ρ0,Fα)]α=0 = EF τ ∗(ρ0,F0).

Hence,

[Dατ(ρ(Fα),Fα)]α=0 = EF

[
s∑

i=1

[∂ρi
τ (ρ,F0)]ρ=ρ0 ρ∗

i (F0) + τ ∗(ρ0,F0)

]
.

By (26) again, the expression inside the brackets on the right-hand side is
τ ∗(ρ(F0),F0). �

A.2. Proof of Theorem 6.1. Let

R1(F ) = EF [XHT (Y )],
R2(φ,F ) = EF [XGT (ηT (φ)X)],
R3(φ,F ) = EF [G(ηT (φ)X)GT (ηT (φ)X)],(29)

R4(φ,F ) = EF [G(ηT (φ)X)HT (Y )],
R5(F ) = EF [H(Y)HT (Y )].

Note that only R2(φ,F ), R3(φ,F ) and R4(φ,F ) depends on φ. Let

R(φ,F ) = R1(F ) − R2(φ,F )R−1
3 (φ,F )R4(φ,F ).

Then, by the definition (15) of f (ηT X), the �(φ,F ) in (20) can be reexpressed as

�(φ,F ) = tr{[R1(F ) − R2(φ,F )R−1
3 (φ,F )R4(φ,F )]R−1

5 (F )

× [R1(F ) − R2(φ,F )R−1
3 (φ,F )R4(φ,F )]T }(30)

= tr[R(φ,F )R−1
5 (F )RT (φ,F )].

Let φ(F ) be the minimizer of �(φ,F ). In this notation, φ̂ and φ0 defined in Sec-
tion 6 are expressed as φ(F0) and φ(Fn), respectively. Recalling that g(φ,F ) =
∂φ�(φ,F ), we have

g(φ(F ),F ) = 0

for all F ∈ F . Take Frechet derivative on both sides, using (28) to obtain

Wφ∗(F0) + g∗(φ0,F0) = 0.

Here, g∗(φ0,F0) is to be understood as the Frechet derivative of F → g(φ0,F )

at F0 [recall that g∗(φ0,F0) is the abbreviation of g∗(X,Y,φ0,F0)]. Multiply both
sides of the above equality by W †, and use the fact W †W = PW to obtain

PWφ∗(F0) = −W †g∗(φ0,F0),(31)

which, by (27), implies (21).
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It remains to compute the m × m nonrandom matrix W and the m-dimensional
random vector g∗(φ0,F0). Because R = R1 − R2R

−1
3 R4 = 0 at (φ0,F0), and be-

cause R5 does not depend on φ, the (t, u)th element of ∂2
φ�(φ0,F0) is

Wtu = 2 tr[(∂φt R)R−1
5 (∂φuR)T ].(32)

Here and below, symbols such as ∂φt R and R5 abbreviate functions ∂φt R(φ,F )

and R5(F ) evaluated at (φ0,F0). Because R1(F ) does not depend on φ,

∂φt R = −(∂φt R2)R
−1
3 R4 + R2R

−1
3 (∂φt R3)R

−1
3 R4 − R2R

−1
3 (∂φt R4).(33)

Let η̇φt denote the p × d derivative matrix dη/dφt evaluated at φ0. Then,

∂φt R2 = E[(X − EX)(X − EX)T η̇φt Ġ
T ],

∂φt R3 = E
(
Ġη̇T

φt
(X − EX)GT ) + E

(
G(X − EX)T η̇φt Ġ

T )
,(34)

∂φt R4 = E
(
Ġη̇T

φt
(X − EX)HT )

.

The derivative η̇φt (φ) can be conveniently computed as follows:

η̇φt (φ) = B1(φ1) · · ·Bt−1(φt−1)[∂φt Bt (φt )]Bt+1(φt+1) · · ·Bm(φm),(35)

where ∂φt Bt (φt ) is a p × p matrix whose (i(t), j (t)) × (i(t), j (t)) submatrix is(− sin(φt ) − cos(φt )

cos(φt ) − sin(φt )

)
and whose other elements are all 0.

We now derive g∗(φ0,F0). Differentiating �(φ,F ) with respect to φt , and eval-
uating it at φ0, we have

gt (φ0,F ) = 2 tr{[∂φt R(φ0,F )]R−1
5 (F )RT (φ0,F )}.

Hence, the t th component of g∗(φ0,F0) is

g∗
t (φ0,F0) = 2 tr[(∂φt R)R−1

5 (R∗)T ].(36)

By Frechet differentiation of F → R(φ0,F ), evaluated at F0, we have

R∗ = R∗
1 − R∗

2R−1
3 R4 + R∗

2R−1
3 R∗

3R−1
3 R4 − R2R

−1
3 R∗

4 .(37)

Here, symbols such as R∗
2 denote the Frechet derivative of the mapping F �→

R2(φ0,F ) evaluated at φ0. Using part 2 of Lemma A.1, we deduce that

R∗
1 = XHT (Y ) − E[XHT (Y )],

R∗
2 = XGT (ηT (φ0)X) − E[XGT (ηT (φ0)X)],

R∗
3 = G(ηT (φ0)X)GT (ηT (φ0)X) − E[G(ηT (φ0)X)GT (ηT (φ0)X)],(38)

R∗
4 = G(ηT (φ0)X)HT (Y ) − E[G(ηT (φ0)X)HT (Y )],

R∗
5 = H(Y)HT (Y ) − E[H(Y)HT (Y )].

This completes the proof.
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