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The purpose of time series analysis via mechanistic models is to recon-
cile the known or hypothesized structure of a dynamical system with observa-
tions collected over time. We develop a framework for constructing nonlinear
mechanistic models and carrying out inference. Our framework permits the
consideration of implicit dynamic models, meaning statistical models for sto-
chastic dynamical systems which are specified by a simulation algorithm to
generate sample paths. Inference procedures that operate on implicit models
are said to have the plug-and-play property. Our work builds on recently de-
veloped plug-and-play inference methodology for partially observed Markov
models. We introduce a class of implicitly specified Markov chains with sto-
chastic transition rates, and we demonstrate its applicability to open problems
in statistical inference for biological systems. As one example, these models
are shown to give a fresh perspective on measles transmission dynamics. As a
second example, we present a mechanistic analysis of cholera incidence data,
involving interaction between two competing strains of the pathogen Vibrio
cholerae.

1. Introduction. A dynamical system is a process whose state varies with
time. A mechanistic approach to understanding such a system is to write down
equations, based on scientific understanding of the system, which describe how
it evolves with time. Further equations describe the relationship of the state of
the system to available observations on it. Mechanistic time series analysis con-
cerns drawing inferences from the available data about the hypothesized equations
[Brillinger (2008)]. Questions of general interest include the following. Are the
data consistent with a particular model? If so, for what range of values of model
parameters? Does one mechanistic model describe the data better than another?

The defining principle of mechanistic modeling is that the model structure
should be chosen based on scientific considerations, rather than statistical conve-
nience. Although linear Gaussian models give an adequate representation of some
processes [Durbin and Koopman (2001)], nonlinear behavior is an essential prop-
erty of many systems. This leads to a need for statistical modeling and inference
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techniques applicable to rather general classes of processes. In the absence of alter-
native statistical methodology, a common approach to mechanistic investigations
is to compare data, qualitatively or via some ad-hoc metric, with simulations from
the model. It is a challenging problem, of broad scientific interest, to increase the
range of mechanistic time series models for which formal statistical inferences,
making efficient use of the data, can be made. Here, we develop a framework in
which simulation of sample paths is employed as the basis for likelihood-based
inference. Inferential techniques that require only simulation from the model (i.e.,
for which the model could be replaced by a black box which inputs parameters
and outputs sample paths) have been called “equation free” [Kevrekidis, Gear and
Hummer (2004), Xiu, Kevrekidis and Ghanem (2005)]. We will use the more de-
scriptive expression “plug and play.”

Plug-and-play inference techniques can be applied to any time series model for
which a numerical procedure to generate sample paths is available. We call such
models implicit, meaning that closed-form expressions for transition probabilities
or sample paths are not required. The goal of this paper is to develop plug-and-play
inference for a general class of implicitly specified stochastic dynamic models,
and to show how this capability enables new and improved statistical analyses
addressing current scientific debates. In other words, we introduce and demonstrate
a framework for time series analysis via mechanistic models.

Here, we concern ourselves with partially observed, continuous-time, nonlinear,
Markovian stochastic dynamical systems. The particular combination of properties
listed above is chosen because it arises naturally when constructing a mechanis-
tic model. Although observations will typically be at discrete times, mechanistic
equations describing underlying continuous time systems are most naturally de-
scribed in continuous time. If all quantities important for the evolution of the sys-
tem are explicitly modeled, then the future evolution of the system depends on
the past only through the current state, that is, the system is Markovian. A sto-
chastic model is pre-requisite for mechanistic time series analysis, since chance
variability is required to explain the difference between the data and the solution
to noise-free deterministic equations. Statistical analysis is simpler if stochasticity
can be confined to the observation process (the statistical problem becomes nonlin-
ear regression) or if the stochastic dynamical system is perfectly observed [Basawa
and Prakasa Rao (1980)]. Here we address the general case with both forms of
stochasticity. Despite considerable work on such models [Anderson and Moore
(1979), Liu (2001), Doucet, de Freitas and Gordon (2001), Cappé, Moulines and
Rydén (2005)], statistical methodology which is readily applicable for a wide
range of models has remained elusive. For example, Markov chain Monte Carlo
and Monte Carlo Expectation-Maximization algorithms [Cappé, Moulines and Ry-
dén (2005)] have technical difficulties handling continuous time dynamic models
[Beskos et al. (2006)]; these two approaches also lack the plug-and-play property.

Several inference techniques have previously been proposed which are compat-
ible with plug-and-play inference from partially observed Markov processes. Non-
linear forecasting [Kendall et al. (1999)] is a method of simulated moments which
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approximates the likelihood. Iterated filtering is a recently developed method
[Ionides, Breté and King (2006)] which provides a way to calculate a maximum
likelihood estimate via sequential Monte Carlo, a plug and play filtering technique.
Approximate Bayesian sequential Monte Carlo plug-and-play methodologies [Liu
and West (2001), Toni et al. (2008)] have also been proposed.

In Section 2 we introduce a new and general class of implicitly specified mod-
els. Section 3 is concerned with inference methodology and includes a review
of the iterated filtering approach of Ionides, Breté and King (2006). Section 4
discusses the role of our modeling and inference framework for the analysis of
biological systems. Two concrete examples are developed, investigating measles
(Section 4.1) and cholera (Section 4.2). Section 5 is a concluding discussion. The
motivating examples in this paper have led to an emphasis on modeling infec-
tious diseases. However, the issue of mechanistic modeling of time series data
occurs in many other contexts. Indeed, it is too widespread to give a compre-
hensive review and we instead list some examples: molecular biochemistry [Kou,
Xie and Liu (2005)]; wildlife ecology [Newman and Lindley (2006)]; cell biol-
ogy [lonides et al. (2004)]; economics [Ferndndez-Villaverde and Rubio-Ramirez
(2005)]; signal processing [Arulampalam et al. (2002)]; data assimilation for nu-
merical models [Houtekamer and Mitchell (2001)]. The study of infectious dis-
ease, however, has a long history of motivating new modeling and data analysis
methodology [Kermack and McKendrick (1927), Bartlett (1960), Anderson and
May (1991), Finkenstddt and Grenfell (2000), Ionides, Breté and King (2006),
King et al. (2008b)]. The freedom to carry out formal statistical analysis based
on mechanistically motivated, nonlinear, nonstationary, continuous time stochas-
tic models is a new development which promises to be a useful tool for a variety
of applications.

2. Compartment models with stochastic rates. Many mechanistic models
can be viewed in terms of flows between compartments [Jacquez (1996), Matis
and Kiffe (2000)]. Here, we introduce a class of implicitly specified stochastic
compartment models; widespread biological applications of these models will be
discussed in Section 4, with broader relevance and further generalizations dis-
cussed in Section 5. The reader may choose initially to pass superficially through
the technical details of this section. We present a general model framework which
is, at once, an example of an implicitly specified mechanistic model, a necessary
prelude to our following data analyses, and a novel class of Markov processes
requiring some formal mathematical treatment.

A general compartment model is a vector-valued process X (¢) = (X1(¢), ...,
X.(t)) denoting the (integer or real-valued) counts in each of ¢ compartments.
The basic characteristic of a compartment model is that X (#) can be written in
terms of the flows N;;(¢) from i to j, via a “conservation of mass” identity:

(D Xi(1)=X;0)+ Y _ Nji(t) = Y Nij(@0).
J#i J#i
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Each flow N;; is associated with a rate function w;; = w;;(t, X (¢)). There are
many ways to develop concrete interpretations of such a compartment model. For
the remainder of this section, we take X;(¢) to be nonnegative integer-valued, so
X (t) models a population divided into ¢ disjoint categories and p;; is the rate at
which each individual in compartment i moves to j. In this context, it is natural to
require that {N;;(¢), 1 <i <c¢,1 < j <c}is a collection of nondecreasing integer-
valued stochastic processes satisfying the constraint X;(¢) > 0 for all i and ¢. The
conservation equation (1) makes the compartment model closed in the sense that
individuals cannot enter or leave the population. However, processes such as im-
migration, birth or death can be modeled via the introduction of additional source
and sink compartments.

We wish to introduce white noise to model stochastic variation in the rates (dis-
cussion of this decision is postponed to Sections 4 and 5). We refer to white noise
as the derivative of an integrated noise process with stationary independent incre-
ments [Karlin and Taylor (1981)]. The integral of a white noise process over an
interval is thus well defined, even when the sample paths of the integrated noise
process are not formally differentiable. Specifically, we introduce a collection of
integrated noise processes {I';;(r), 1 <i <c¢, 1 < j < c} with the properties:

(P1) Independent increments: The collection of increments {I';; (2) — I';; (#1), 1 <
i <c,1=<j<c}ispresumed to be independent of {I';;(t4) —I';;(#3), 1 <i <
c,1<j<cl}forallt <t <t3 <ty.

(P2) Stationary increments: The collection of increments {I';;(#2) — I';; (1), 1 <
i <c,1 < j <c}has ajoint distribution depending only on #, — #;.

(P3) Nonnegative increments: I';;(#2) — I';;(¢1) > 0 for 1, > 1.

We have not assumed that different integrated noise processes I';; and I'y; are
independent; their increments could be correlated, or even equal. These integrated
noise processes define a collection of noise processes given by &;; (1) = %F,- i (1).
Since I';; (1) is increasing, &;; (¢) is nonnegative and (;;;;(¢) can be interpreted as
a rate with multiplicative white noise. In this context, it is natural to assume the
following:

(P4) Unbiased multiplicative noise: E[I';; ()] =t.
At times, we may further assume one or more of the following properties:

(P5) Partially independent noises: For each i, {I';;(¢)} is independent of {I';x(¢)}
for all j #k.

(P6) Independent noises: {I';;(¢)} is independent of {I'y;(¢)} for all pairs (i, j) #
(k,1).

(P7) Gamma noises: Marginally I';;(r + &) — I';;(r) ~ Gamma(S/al%-, al%-), the

gamma distribution whose shape parameter is §/ al%- and scale parameter is
o2,
mal variance parameter [Karlin and Taylor (1981)].

with corresponding mean § and variance 805-. We call 05. an infinitesi-
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1. Divide the interval [0, T'] into N intervals of width § =T /N
2. Set initial value X (0)
3.FORn=0to N — 1
4. Generate noise increments {AT';; =T';;(né +8) — I';; (nd)}
5. Generate process increments
(AN;1,..., AN;i—1, ANjit1, ANjc, R;)
~ Multinomial(X; (né), pi1, ..., Pi.i—1,
Pii+1s -+ Pics 1 = Xk Pik)
where p;; = p;j({nij(nd, X (nd))}, {Al';;}) is given in (3)
7. END FOR

FI1G. 1. Euler scheme for a numerical solution of the Markov chain specified by (2). In steps 5 and 6,
R; counts the individuals who remain in compartment i during the current Euler increment.

The choice of gamma noise in (P7) gives a convenient concrete example. A wide
range of Lévy processes [Sato (1999)] could be alternatively employed.

We proceed to construct a compartment model as a continuous time Markov
chain via the limit of coupled discrete-time multinomial processes with random
rates. Similar Euler multinomial schemes (without noise in the rate function) are
a standard numerical approach for studying population dynamics [Cai and Xu
(2007)]. The representation of our model given in (2) is implicit since numeri-
cal solution is available to arbitrary precision via evaluating the coupled multino-
mial processes in a discrete time-step Euler scheme (described in Figure 1). Let
AN;j = N;j(t +8) — N;;(t) and AT';; =T7;;(t +8) — I';; (). We suppose that

P[AN;j=njj,forall 1 <i<c,1<j=<c,i#j|X({#)=(x1,...,x)]

c x; " nij
@ - E|:l:1_[1{(ntl 1Nt "‘nicri) (1 B Zpik) Hpij }:|

ki j#i
+0(9),
where r; = X; — >4 ik, (”1'7'!'”(‘) is a multinomial coefficient and

pij = pij({ij (€, x)}, {AT;;(0)})

= (1 _eXP{_ZMz’kAFik})MijAFij/Z,U«ikAFik»
I I

with p;; = w;;j(t, x). Theorem A.1, which is stated in Appendix A and proved in
a supplement to this article [Bretd et al. (2009)], shows that (2) defines a con-
tinuous time Markov chain when the conditions (P1)—(P5) hold. A finite-state
continuous time Markov chain is specified by its infinitesimal transition proba-
bilities [Brémaud (1999)], which are in turn specified by (2). Theorem A.2, also

3)
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stated in Appendix A and proved in the supplement [Breté et al. (2009)], deter-
mines the infinitesimal transition probabilities resulting from (2) supposing the
conditions (P1)—(P7). When the infinitesimal transition probabilities can be calcu-
lated exactly, exact simulation methods are available [Gillespie (1977)]. In prac-
tice, numerical schemes based on Euler approximations may be preferable—FEuler
schemes for Markov chain compartment models have been proposed based on
Poisson [Gillespie (2001)], binomial [Tian and Burrage (2004)] and multinomial
[Cai and Xu (2007)] approximations. Our choice of a model for which convenient
numerical solutions are available (e.g., via the procedure in Figure 1) comes at
the expense of difficulty in computing analytic properties of the implicitly-defined
continuous-time process. However, since the properties of the model will be inves-
tigated by simulation, via a plug-and-play methodology, the analytic properties of
the continuous-time process are of relatively little interest.

For the gamma noise in (P7), the special case where o;; = 0 is taken to corre-
spond to &;;(t) = 1. 1f 0;; = 0 for all i and j, then (2) becomes the Poisson system
widely used to model demographic stochasticity in population models [Brémaud
(1999), Bartlett (1960)]. We therefore call a process defined by (2) a Poisson sys-
tem with stochastic rates. Constructions similar to Theorem A.1 are standard for
Poisson systems [Brémaud (1999)], but here care is required to deal with the novel
inclusion of white noise in the rate process. Our formulation for adding noise to
Poisson systems can be seen as a generalization of subordinated Lévy processes
[Sato (1999)], though we are not aware of previous work on the more general
Markov processes constructed here. It is only the recent development of plug-and-
play inference methodology that has led to the need for flexible Markov chain
models with random rates.

2.1. Comments on the role of numerical solutions based on discretizations.
In this section we have proposed employing a discrete-time approximation to a
continuous-time stochastic process. Numerical solutions based on discretizations
of space and time are ubiquitous in the applied mathematical sciences and en-
gineering. A standard technique is to investigate whether further reduction in the
size of the discretization substantially affects the conclusions of the analysis. When
sufficiently fine discretization is not computationally feasible, the numerical solu-
tions may still have some value. Climate modeling and numerical weather predic-
tion are examples of this: such systems have important dynamic behavior at scales
finer than any feasible discretization, but numerical models nevertheless have a
scientific role to play [Solomon et al. (2007)].

When numerical modeling is used as a scientific tool, conclusions about the lim-
iting continuous time model will be claimed based on properties of the model that
are determined by simulation of realizations from the discretized model. Such con-
clusions depend on the assumption that properties of the numerical solution which
are stable as the numerical approximation timestep, 8, approaches 0 should indeed
be properties of the limiting continuous time process. This need not always be true,
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which is one reason why analytic properties, such as Theorems A.1 and A.2, are
valuable.

From another point of view, an argument for being content with a numerical
approximation to (2) for sufficiently small § is that there may be no scientific rea-
son to prefer a true continuous time model over a fine discretization. For example,
when modeling year-to-year population dynamics, continuous time models of ad-
equate simplicity for data analysis typically will not include diurnal effects. Thus,
there is no particular reason to think the continuous time model more credible than
a discrete time model with a step of one day. One can think of a set of equations
defining a continuous time process, combined with a specified discretization, as
a way of writing down a discrete time model, rather than treating the continuous
time model as a gold standard against which all discretizations must be judged.

3. Plug-and-play inference methodology. We suppose now that the dynam-
ical system depends on some unknown parameter vector 6 € R% so that u; =
wij(t, x,0) and o;; = 0y;(t, x, 0). Inference on 6 is to be made based on obser-
vations y;.xy = (y1,..., ynN) made at times t;.y = (f1,...,tn), wWith y, € Ry,
Conditionally on X (#1), ..., X(¢y), we suppose that the observations are drawn
independently from a density g(y,|X (¢,), #). Likelihood-based inference can be
carried out for the framework of Section 2 using the iterated filtering methodology
proposed by Ionides, Bret6 and King (2006), implemented as described in Fig-
ure 2. Iterated filtering is a technique to maximize the likelihood for a partially
observed Markov model, permitting calculation of maximum likelihood point es-
timates, confidence intervals (via profile likelihood, bootstrap or Fisher informa-
tion) and likelihood ratio hypothesis tests. Iterated filtering has been developed
in response to challenges arising in ecological and epidemiological data analysis
[lonides, Bret6 and King (2006, 2008), King et al. (2008b)], and appears here for
the first time in the statistical literature. We refer to Ionides, Bret6 and King (2006)
for the mathematical results concerning the iterated filtering algorithm in Figure 2.
We proceed to review the methodology and its heuristic motivation, to discuss
implementation issues, and to place iterated filtering in the context of alternative
statistical methodologies.

For nonlinear non-Gaussian partially observed Markov models, the likelihood
function can typically be evaluated only inexactly and at considerable compu-
tational expense. The iterated filtering procedure takes advantage of the par-
tially observed Markov structure to enable computationally efficient maximization.
A useful property of partially observed Markov models is that, if the parameter
6 is replaced by a random walk 6.y, with E[6g] =6 and E[6,|6,,—1] = 0,— for
n > 1, the calculation of én = E[0,|y1.n] and V,, = Var(6, | y1:n—1) 1s a well-studied
and computationally convenient filtering problem [Kitagawa (1998), Liu and West
(2001)]. Additional stochasticity of this kind is introduced in steps 4 and 12 of
Figure 2. This leads to time-varying parameter estimates, so 6; (t,) in Figure 2 is
an estimate of 6; depending primarily on the data at and shortly before time #,.
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MODEL INPUT: f()’ g(|)9 Y1,.--, YN>» 10, ...,IN

ALGORITHMIC PARAMETERS: integers J, L, M;
scalars 0 <a < 1, b > 0; vectors X;l), ZIOR
positive definite symmetric matrices X;, Xg.

1. FORm=1to M
2. X, j) ~NIXY", a5, j=1,...,J

3. Xr(o,j)=Xi(t0, )
4. 0(ty, j) ~ N[O bam~154]
5. O(ty) =6
6. FORn=1toN
7. XP(tn9j):f(XF(tnflvj)?tﬂflvtnve(tl’lflvj)? W)
8. wn, j) =gl Xptn, j)stn, 0(tn—1, J))
9. draw ki, ..., k; such that
Prob(k; =i) =w(n,i)/ Y ,wn, )
10. XF(tn, j) = Xp(ta, kj)
1. Xi(tn, j) = X1(tn—1, kj)
12. O(tn, j) ~ N[O (tuz1, kj), a"(ty — ti—1) Zo]
13. Set 6; (t,) to be the sample mean of {0; (t,—1,k;), j=1,...,J}
14. Set V;(t,) to be the sample variance of {0; (t,,, j), j=1,...,J}

15.  END FOR

16. 0" =0/ + V(1) TN, Vi (6 0 (1) — 0 (ta-1))

17.  Set Xgmﬂ) to be the sample mean of {X;(¢tz, j),j=1,...,J}
18. END FOR

RETURN

maximum likelihood estimate for parameters, 6 =pM+D
maximum likelihood estimate for initial values, X (tg) =X ;MH)
maximized conditional log likelihood estimates, Z,,(é) = log(zj wn, j)/J)

maximized log likelihood estimate, £(6) =", £,,(6)

FI1G. 2. Implementation of likelihood maximization by iterated filtering. N[, X] corresponds to a
normal random variable with mean vector i and covariance matrix ¥; X (ty) takes values in R
yn takes values in Rd-"; 0 takes values in R% and has components {0;,i =1,..., dp}; f() is the
transition rule described in (4); g(-|-) is the measurement density for the observations yi:y .

The updating rule in step 16, giving an appropriate way to combine these tempo-
rally local estimates, is the main innovative component of the procedure. Ionides,
Bret6 and King (2006) showed that this algorithm converges to the maximum of
the likelihood function, under sufficient regularity conditions to justify a Taylor
series expansion argument. Only the mean and variance of the stochasticity added
in steps 4 and 12 play a role in the limit as n increases. The specific choice of the
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normal distribution for steps 4 and 12 of Figure 2 is therefore unimportant, but
does require that the parameter space is unbounded. This is achieved by repara-
meterizing where necessary; we use a log transform for positive parameters and a
logit transform for parameters lying in the interval [0, 1].

Steps 2, 11 and 17 of Figure 2 concern the initial values of the state variables.
For stationary processes, one can think of these as unobserved random variables
drawn from the stationary distribution. However, for nonstationary processes (such
as those considered in Sections 4.1 and 4.2, and any process modeled conditional
on measured covariates) these initial values are treated as unknown parameters.
These parameters require special attention, despite not usually being quantities of
primary scientific interest, since the information about them is concentrated at the
beginning of the time series, whereas the computational benefit of iterated filtering
arises from combining information accrued through time. Steps 2, 11 and 17 im-
plement a fixed lag smoother [Anderson and Moore (1979)] to iteratively update
the initial value estimates. The value of the fixed lag (denoted by L in Figure 2)
should be chosen so that there is negligible additional information about the initial
values after time #7,. Choosing L too large results in slower convergence, choosing
L too small results in bias.

Iterated filtering, characterized by the updating rule in step 16 of Figure 2, can
be implemented via any filtering method. The procedure in Figure 2 employs a
basic sequential Monte Carlo filter which we found to be adequate for the exam-
ples in Section 4 and also for previous data analyses [lonides, Breté and King
(2006), King et al. (2008b)]. Many extensions and generalizations of sequential
Monte Carlo have been proposed [Arulampalam et al. (2002), Doucet, de Freitas
and Gordon (2001), Del Moral, Doucet and Jasra (2006)] and could be employed in
an iterated filtering algorithm. If the filtering technique is plug-and-play, then like-
lihood maximization by iterated filtering also has this property. Basic sequential
Monte Carlo filtering techniques do have the plug-and-play property, since only
simulations from the transition density of the dynamical system are required and
not evaluation of the density itself. Although sequential Monte Carlo algorithms
are usually written in terms of transition densities [Arulampalam et al. (2002),
Doucet, de Freitas and Gordon (2001)], we emphasize the plug-and-play property
of the procedure in Figure 2 by specifying a Markov process at a sequence of times
to <t < --- <ty via arecursive transition rule,

(4) X(tl’l):f(X(tl’l—l)7tn—1=tn797 W)

Here, it is understood that W is some random variable which is drawn indepen-
dently each time f(-) is evaluated. In the context of the plug-and-play philosophy,
f(-) is the algorithm to generate a simulated sample path of X () at the discrete
times t1, ..., ty given an initial value X (#g).

To check whether global maximization has been achieved, one can and should
consider various different starting values [i.e., 0W and X 51) in Figure 2]. Attain-
ment of a local maximum can be checked by investigation of the likelihood surface
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local to an estimate 6. Such an investigation can also give rise to standard errors,
and we describe here how this was carried out for the results in Table 2. We write
£(0) for the log likelihood function, and we call a graph of €@ + 28;) against
é[ + z a sliced likelihood plot; here, §; is a vector of zeros with a one in the ith
position, and € has components {01, ..., 04, }. If 0 is located at a local maximum of
each sliced likelihood, then 6 is a local maximum of £(6), supposing £(6) is con-
tinuously differentiable. We check this by evaluating 00 +z; ;j6;) for a collection

{zij} defining a neighborhood of 6. The likelihood is evaluated with Monte Carlo
error, as described in Figure 2, with X7 =0, ¥y = 0 and M = 1. Therefore, it
is necessary to make a smooth approximation to the sliced likelihood [Ionides
(2005)] based on the available evaluations. The size of the neighborhood (speci-
fied by {z;;}) and the size of the Monte Carlo sample (specified by J in Figure 2)
should be large enough that the local maximum for each slice is clearly identified.
Computing sliced likelihoods requires moderate computational effort, linear in the
dimension of 6. As a by-product of the sliced likelihood computation, one has ac-
cess to the conditional log likelihood values, defined in Figure 2 and written here
as £yij =4y (é + zij6i). Regressing £,;; on z;; for each fixed i and n gives rise to
estimates £,,; for the partial derivatives of the conditional log likelihoods. Standard
errors of parameters are found from the estimated observed Fisher information ma-
trix [Barndorff-Nielsen and Cox (1994)], with entries given by Lk =, éniénk.
We prefer profile likelihood calculations, such as Figure 7, to derive confidence in-
tervals for quantities of particular interest. However, standard errors derived from
estimating the observed Fisher information involve substantially less computation.

Parameter estimation for partially observed nonlinear Markov processes has
long been a challenging problem, and it is premature to expect a fully automated
statistical procedure. The implementation of iterated filtering in Figure 2 employs
algorithmic parameters which require some trial and error to select. However, once
the likelihood has been demonstrated to be successfully maximized, the algorith-
mic parameters play no role in the scientific interpretation of the results.

Other plug-and-play inference methodologies applicable to the models of Sec-
tion 2 have been developed. Nonlinear forecasting [Kendall et al. (1999)] has nei-
ther the statistical efficiency of a likelihood-based method nor the computational
efficiency of a filtering-based method. The Bayesian sequential Monte Carlo ap-
proximation of Liu and West (2001) combines likelihood-based inference with a
filtering algorithm, but is not supported by theoretical guarantees comparable to
those presented by Ionides, Bret6 and King (2006) for iterated filtering. A recently
developed plug-and-play approach to approximate Bayesian inference [Sisson, Fan
and Tanaka (2007)] has been applied to partially observed Markov processes [Toni
et al. (2008)]. Other recent developments in Bayesian methodology for partially
observed Markov processes include Newman et al. (2008), Cauchemez and Fer-
guson (2008), Cauchemez et al. (2008), Beskos et al. (2006), Polson, Stroud and
Muller (2008), Boys, Wilkinson and Kirkwood (2008). This research has been
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motivated by the inapplicability of general Bayesian software, such as Win-
BUGS [Lunn et al. (2000)], for many practical inference situations [Newman et al.
(2008)].

A numerical implementation of iterated filtering is available via the software
package pomp [King, Ionides and Breté (2008a)] which operates in the free, open-
source, R computing environment [R Development Core Team (2006)]. This pack-
age contains a tutorial vignette as well as further examples of mechanistic time se-
ries models. The data analyses of Section 4 were carried out using pomp, in which
the algorithms in Figures 1 and 2 are implemented via the functions reuler-
multinom and mi £ respectively.

4. Time series analysis for biological systems. Mathematical models for the
temporal dynamics of biological populations have long played a role in under-
standing fluctuations in population abundance and interactions between species
[Bjornstad and Grenfell (2001), May (2004)]. When using models to examine the
strength of evidence concerning rival hypotheses about a system, a model is typi-
cally required to capture not just the qualitative features of the dynamics but also
to explain quantitatively all the available observations on the system. A critical
aspect of capturing the statistical behavior of data is an adequate representation
of stochastic variation, which is a ubiquitous component of biological systems.
Stochasticity can also play an important role in the qualitative dynamic behavior
of biological systems [Coulson, Rohani and Pascual (2004), Alonso, McKane and
Pascual (2007)]. Unpredictable event times of births, deaths and interactions be-
tween individuals result in random variability known as demographic stochasticity
(from a microbiological perspective, the individuals in question might be cells or
large organic molecules). The environmental conditions in which the system op-
erates will fluctuate considerably in all but the best experimentally controlled sit-
uations, resulting in environmental stochasticity. The framework of Section 2 pro-
vides a general way to build the phenomenon of environmental stochasticity into
continuous-time population models, via the inclusion of variability in the rates
at which population processes occur. To our knowledge, this is the first general
framework for continuous time, discrete population dynamics which allows for
both demographic stochasticity [infinitesimal variance equal to the infinitesimal
mean; see Karlin and Taylor (1981) and Appendix B] and environmental stochas-
ticity [infinitesimal variance greater than the infinitesimal mean; see supporting
online material Breté et al. (2009)].

From the point of view of statistical analysis, environmental stochasticity plays
a comparable role for dynamic population models to the role played by over-
dispersion in generalized linear models. Models which do not permit consider-
ation of environmental stochasticity lead to strong assumptions about the levels
of stochasticity in the system. This relationship is discussed further in Section 5.
For generalized linear models, over-dispersion is commonplace, and failure to
account properly for it can give rise to misleading conclusions [McCullagh and
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Nelder (1989)]. Phrased another way, including sufficient stochasticity in a model
to match the unpredictability of the data is essential if the model is to be used for
forecasting, or predicting a quantitative range of likely effects of an intervention,
or estimating unobserved components of the system.

We present two examples. First, Section 4.1 demonstrates the role of environ-
mental stochasticity in measles transmission dynamics, an extensively studied and
relatively simple biological system. Second, Section 4.2 analyzes data on compet-
ing strains of cholera to demonstrate the modeling framework of Section 2 and the
inference methodology of Section 3 on a more complex system.

4.1. Environmental stochasticity in measles epidemics. The challenges of
moving from mathematical models, which provide some insight into the system
dynamics, to statistical models, which both capture the mechanistic basis of the
system and statistically describe the data, are well documented by a sequence
of work on the dynamics of measles epidemics [Bartlett (1960), Anderson and
May (1991), Finkenstadt and Grenfell (2000), Bjornstad, Finkenstadt and Gren-
fell (2002), Morton and Finkenstadt (2005), Cauchemez and Ferguson (2008)].
Measles is no longer a major developed world health issue but still causes substan-
tial morbidity and mortality, particularly in sub-Saharan Africa [Grais et al. (2006),
Conlan and Grenfell (2007)]. The availability of excellent data before the intro-
duction of widespread vaccination has made measles a model epidemic system.
Recent attempts to analyze population-level time series data on measles epidemics
via mechanistic dynamic models have, through statistical expediency, been com-
pelled to use a discrete-time dynamic model using timesteps synchronous with
the reporting intervals [Finkenstddt and Grenfell (2000), Bjornstad, Finkenstadt
and Grenfell (2002), Morton and Finkenstadt (2005)]. Such discrete time models
risk incorporating undesired artifacts [Glass, Xia and Grenfell (2003)]. The first
likelihood-based analysis via continuous time mechanistic models, incorporating
only demographic stochasticity, was published while this paper was under review
[Cauchemez and Ferguson (2008)]. From another perspective, the properties of
stochastic dynamic epidemic models have been studied extensively in the context
of continuous time models with only demographic stochasticity [Bauch and Earn
(2003), Dushoff et al. (2004), Wearing, Rohani and Keeling (2005)]. We go beyond
previous approaches, by demonstrating the possibility of carrying out modeling
and data analysis via continuous time mechanistic models with both demographic
and environmental stochasticity. For comparison with the work of Cauchemez and
Ferguson (2008), we analyze measles epidemics occurring in London, England
during the pre-vaccination era. The data, reported cases from 1948 to 1964, are
shown in Figure 3.

Measles has a relatively simple natural history, being a highly infectious dis-
ease with lifelong immunity following infection. As such, it was historically a
childhood disease, with transmission occurring primarily in school environments.
A basic model for measles has children becoming susceptible to infection upon
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FI1G. 3. Biweekly recorded measles cases (solid line) and birth rate (dotted line, estimated by
smooth interpolation of annual birth statistics) for London, England.

reaching school age [here taken to be T = 4 year, following Cauchemez and Fer-
guson (2008)]. This susceptible group is described by a compartment S contain-
ing, at time ¢, a number of individuals S(#). Upon exposure to infection, a tran-
sition occurs to compartment E in which individuals are infected but not yet
infectious. The disease then progresses to an infectious state /. Individuals are
finally removed to a state R, due to bed-rest and subsequent recovery. This se-
quence of compartments is displayed graphically in Figure 4. We proceed to rep-
resent this system as a Markov chain with stochastic rates, via the notation of Sec-
tion 2, with X (¢) = (S(¢), E(t), I(t), R(t), B(t), D(t)). Compartments B and D
are introduced for demographic considerations: births are represented by transi-
tions from B to §, with an appropriate delay 7, and deaths by transitions into D.

The seasonality of the transmissibility has been found to be well described by
whether or not children are in school [Fine and Clarkson (1982), Bauch and Earn
(2003)]. Thus, we define a transmissibility function 8(¢) by

Br: (1) =7-99, 116-199, 252-299, 308-355,
BL :d(t) =356-6, 100-115, 200-251, 300-307,

where d(¢) is the integer-valued day (1-365) corresponding to the real-valued
time ¢ measured in years. This functional form allows reduced transmission dur-

tse(t)ése(t) HET HIR

FI1G. 4. Flow diagram for measles. Each individual host falls in one compartment: S, susceptible;
E, exposed and infected but not yet infectious; 1, infectious; R, removed and subsequently recovered
and immune. Births enter S after a delay v, and all individuals have a mortality rate m.
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ing the Christmas vacation (days 356-365 and 1-6), Easter vacation (100-115),
Summer vacation (200-251) and Autumn half-term (300-307). The rate of new
infections is given the form

(6) pse =BOLL (1) +o]*/P(1).

Here, w describes infection from measles cases outside the population under study;
o describes inhomogeneous mixing [Finkenstddt and Grenfell (2000)]; P(¢) is
the total population size, which is treated as a known covariate via interpolation
from census data. Environmental stochasticity on transmission is included via a
gamma noise process £sg (¢) with infinitesimal variance parameter orS2 > transmis-
sion is presumed to be the most variable process in the system, and other tran-
sitions are taken to be noise-free. The two other disease parameters, pg; and
IR, are treated as unknown constants. We suppose a constant mortality rate,
Usp = MEp = ip = rp = m, and here we fix m = 1/50 year_l. The recruit-
ment of school-age children is specified by the process Nps(t) = | fot b(s—1)ds],
where b(t) is the birth rate, presented in Figure 3, and |x| is the integer part
of x. We note that the construction above does not perfectly match the constraint
S@)+ E(@)+1(t)+ R(t) = P(t). For a childhood disease, such as measles, a good
estimate of the birth rate is important, whereas the system is insensitive to the exact
size of the adult population.

All transitions not mentioned above are taken to have a rate of zero. To com-
plete the model specification, a measurement model is required. Biweekly ag-
gregated measles cases are denoted by C, = Nyg(t,) — Nygr(t,—1) with ¢, be-
ing the time, in years, of the nth observation. Reporting rates p, are taken to be
independent Gamma(l/¢, p¢) random variables. Conditional on p,, the obser-
vations are modeled as independent Poisson counts, Y, |0, C, ~ Poisson(p,Cj,).
Thus, Y, given C, has a negative binomial distribution with E[Y,|C,] = pC, and
Var(Y,|C,) = pCp + ¢p*C 3 Note that the measurement model counts transitions
into R, since individuals are removed from the infective pool (treated with bed-
rest) once diagnosed. The measurement model allows for the possibility of both
demographic stochasticity (i.e., Poisson variability) and environmental stochastic-
ity (i.e., gamma variability on the rates).

A likelihood ratio test concludes that, in the context of this model, environmen-
tal stochasticity is clearly required to explain the data: the log likelihood for the full
model was found to be —2504.9, compared to —2662.0 for the restricted model
with ogz =0 (p < 107°, chi-square test; results based on a time-step of § = 1 day
in the Euler scheme of Figure 1 and a Monte Carlo sample size of J = 20000
when carrying out the iterated filtering algorithm in Figure 2). Future model-based
scientific investigations of disease dynamics should consider environmental sto-
chasticity when basing scientific conclusions on the results of formal statistical
tests.

Environmental stochasticity, like over-dispersion in generalized linear models,
is more readily detected than scientifically explained. Teasing apart the extent
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to which environmental stochasticity is describing model mis-specification rather
than random phenomena in the system is beyond the scope of the present paper.
The inference framework developed here will facilitate both asking and answering
such questions. However, this distinction is not relevant to the central statistical
question of whether a particular class of scientifically motivated models requires
environmental stochasticity (in the broadest sense of a source of variability above
and beyond demographic stochasticity) to explain the data. Models of biological
systems are necessarily simplifications of complex processes [May (2004)], and as
such, it is a legitimate role for environmental stochasticity to represent and quan-
tify the contributions of unknown and/or unmodeled processes to the system under
investigation.

The environmental stochasticity identified here has consequences for the qual-
itative understanding of measles epidemics. Bauch and Earn (2003) have pointed
out that demographic stochasticity is not sufficient to explain the deviations which
historically occurred from periodic epidemics (at one, two or three year cycles,
depending on the population size and the birth-rate). Simulations from the fitted
model with environmental stochasticity are able to reproduce such irregularities
(results not shown), giving a simple explanation of this phenomenon. This does
not rule out the possibility that some other explanation, such as explicitly intro-
ducing a new covariate into the model, could give an even better explanation.

In agreement with Cauchemez and Ferguson (2008), we have found that some
combinations of parameters in our model are only weakly identifiable (i.e., they
are formally identifiable, but have broad confidence intervals). Although this does
not invalidate the above likelihood ratio test, it does cause difficulties interpreting
parameter estimates. In the face of this problem, Cauchemez and Ferguson (2008)
made additional modeling assumptions to improve identifiability of unknown pa-
rameters. Here, our goal is to demonstrate our modeling and inference framework,
rather than to present a comprehensive investigation of measles dynamics.

The analysis of Cauchemez and Ferguson (2008), together with other contribu-
tions by the same authors [Cauchemez et al. (2008, 2006)], represents the state of
the art for Markov chain Monte Carlo analysis of population dynamics. Whereas
Cauchemez and Ferguson (2008) required model-specific approximations and an-
alytic calculations to carry out likelihood-based inference via their Markov chain
Monte Carlo approach, our analysis is a routine application of the general frame-
work in Sections 2 and 3. Our methodology also goes beyond that of Cauchemez
and Ferguson (2008) by allowing the consideration of environmental stochasticity,
and the inclusion of the disease latent period (represented by the compartment E)
which has been found relevant to the disease dynamics [Finkenstddt and Gren-
fell (2000), Bjornstad, Finkenstadt and Grenfell (2002), Morton and Finkenstadt
(2005)]. Furthermore, our approach generalizes readily to more complex biologi-
cal systems, as demonstrated by the following example.



334 C. BRETO, D. HE, E. L. IONIDES AND A. A. KING

4.2. A mechanistic model for competing strains of cholera. All infectious
pathogens have a variety of strains, and a good understanding of the strain struc-
ture can be key to understanding the epidemiology of the disease, understanding
evolution of resistance to medication, and developing effective vaccines and vac-
cination strategies [Grenfell et al. (2004)]. Previous analyses relating mathemat-
ical consequences of strain structure to disease data include studies of malaria
[Gupta et al. (1994)], dengue [Ferguson, Anderson and Gupta (1999)], influenza
[Ferguson, Galvani and Bush (2003), Koelle et al. (2006a)] and cholera [Koelle,
Pascual and Yunus (2006b)]. For measles, the strain structure is considered to have
negligible importance for the transmission dynamics [Conlan and Grenfell (2007)],
another reason why measles epidemics form a relatively simple biological system.
In this section, we demonstrate that our mechanistic modeling framework per-
mits likelihood based inference for mechanistically motivated stochastic models
of strain-structured disease systems, and that the results can lead to fresh scientific
insights.

There are many possible immunological consequences of the presence of multi-
ple strains, but it is often the case that exposure of a host to one strain of a pathogen
results in some degree of protection (immunity) from re-infection by that strain
and, frequently, somewhat weaker protection (cross-immunity) from infection by
other strains. Immunologically distinct strains are called serotypes. In the case
of cholera, there are currently two common serotypes, Inaba and Ogawa. Koelle,
Pascual and Yunus (2006b), following the multistrain modeling approach of Kamo
and Sasaki (2002), constructed a mechanistic, deterministic model of cholera trans-
mission and immunity to investigate the pattern of changes in serotype dominance
observed in cholera case report data collected in an intensive surveillance program
conducted by the International Center for Diarrheal Disease Research, Bangladesh.
They argued on the basis of a comparison of the data with features of typical tra-
jectories of the dynamical model. Specifically, Koelle, Pascual and Yunus (2006b)
found that the model would exhibit behavior which approximately matched the pe-
riod of cycles in strain dominance only when the cross-immunity was high, that is,
when the probability of cross-protection was approximately 0.95. In addition, they
found that their model’s behavior depended very sensitively on the cross-immunity
parameter. Here we employ formal likelihood-based inference on the same data to
assess the strength of the evidence in favor of these conclusions.

We analyzed a time series consisting of 30 years of biweekly cholera incidence
records (Figure 5). For each cholera case, the serotype of the infecting strain—
Inaba or Ogawa—was determined. We formulated a stochastic version of the
model analyzed by Koelle, Pascual and Yunus (2006b). The model is shown di-
agrammatically in Figure 6, in which arrows represent possible transitions, each
labeled with the corresponding rate of flow. Table 1 specifies the model formally,
in the framework of Section 2, as a Markov chain with stochastic rates. The para-
meters in the model have standard epidemiological interpretations [Anderson and
May (1991), Finkenstddt and Grenfell (2000), Koelle and Pascual (2004)]: A{ is
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FIG. 5. Biweekly cholera cases obtained from hospital records of the International Center for
Diarrheal Disease Research, Bangladesh for the district of Matlab, Bangladesh, 55 km SE of Dhaka.
Cases are categorized into serotypes, Inaba (dashed) and Ogawa (solid gray). Each serotype may be
further classified into one of two biotypes, El Tor and Classical, which are combined here, following
Koelle et al. (2006b). The total population size of the district, in thousands, is shown as a dotted line.

the force of infection for the Inaba serotype, that is, the mean rate at which suscep-
tible individuals become infected; & is the stochastic noise on this rate; A, and &
are the corresponding force of infection and noise for the Ogawa serotype; B() is
the rate of transmission between individuals, parameterized with a linear trend
and a smooth seasonal component; w gives the rate of infection from an envi-
ronmental reservoir, independent of the current number of contagious individuals;
the exponent « allows for inhomogeneous mixing of the population; r is the re-
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FI1G. 6. Flow diagram for cholera, including interactions between the two major serotypes. Each
individual host falls in one compartment: S, susceptible to both Inaba and Ogawa serotypes; 11, in-
fected with Inaba; I, infected with Ogawa; Sy, susceptible to Inaba (but immune to Ogawa); S», sus-
ceptible to Ogawa (but immune to Inaba); 1 1* , infected with Inaba (but immune to Ogawa); I;‘ , in-
fected with Ogawa (but immune to Inaba); R, immune to both serotypes. Births enter S, and all
individuals have a mortality rate m.
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TABLE 1
Interpretation of Figure 6 via the multinomial process with random rates in (2), with X (t) = (S(t),
11 (1), [a(t), S1(2), S2(2), If‘(t), Iik(t), R(t), B(t), D(t)). Compartments B and D are introduced
for demographic considerations: births are formally treated as transitions from B to S and deaths
as transitions into D. All transitions not listed above have zero rate. & (t) and &1 (t) are
independent gamma noise processes, each with infinitesimal variance parameter o2. Transition
rates are noise-free unless specified otherwise. Seasonality is modeled via a periodic cubic B-spline
basis {s;(t),i =1, ..., 6}, where s;(t) attains its maximum at t = (i — 1)/6. The population size
P(t) is shown in Figure 5. The birth process is treated as a covariate, that is, the analysis is carried
out conditional on the process Npg(t) = | P(t) — P(0) + fé mP(s)ds], where | x| is the integer
part of x. There is a small stochastic discrepancy between
S@) + 11(®) + L(2) + S1(2) + S2(2) + I (2) + I5 () + R(z) and P(t). In principle, one could
condition on the demographic data by including a population measurement model—we saw no
compelling reason to add this extra complexity for the current purposes. Numerical solutions of
sample paths were calculated using the algorithm in Figure 1, with § =2/365

M= BOUO +I{0))/PO) +o
dr = B () + I3)*/P(t) +w
log (1) = bo(t —1990) + Y-8_, b;s; (1)
nsn = M
HSL, = A2
wsrp = 1 =y)r
Ksypp = (1=y)A2
KNS, = KIS =T
KR = KIFR=T
HX;p=m fOI‘Xj G{S,Il,lz,Sl,Sz,Iik,I;,R}
§sn, = 5,13 =62(1)
§sn = Es1x =61(1)

covery rate from infection; y measures the strength of cross-immunity between
serotypes. In this model, as in Koelle, Pascual and Yunus (2006b), infection with
a given serotype results in life-long immunity to reinfection by that serotype. The
argument for giving both strains common variability is that they are believed to be
biologically similar except in regard to immune response. The strains have inde-
pendent noise components because the noise represents chance events, such as a
contaminated feast or a single community water source which is transiently in a
favorable condition for contamination, and such events spread whichever strain is
in the required place at the required time.

To complete the model specification, we adopt an extension of the negative bi-
nomial measurement model used for measles in Section 4.1. Biweekly aggregated
cases for Inaba and Ogawa strains are denoted by C; ,, = Ny, (#;) — Nsyr, (th—1) +
Ng; 1+ (ty) — Ng, 1+ (t,—1) for i =1, 2 respectively and 1, = 1975 + n/24. Reporting
rates 01.n and ,olzyn are taken to be independent Gamma(l/¢, p¢) random vari-
ables. Conditional on p; , and p2 ,, the observations are modeled as independent
Poisson counts,

Yi,n|pi,n’ Ci,n ~ POiSSOH(,Ol',nCi’n), i=1,2.
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TABLE 2
Parameter estimates from both regimes. In both regimes, the mortality rate m is fixed at
1/38.8 yearsil. The units of r, by and w are yeari1 ; 0 has units yearl/z; and p, y, ¢, o and
by, ..., bg are dimensionless. £ is the average of two log-likelihood evaluations using a particle
filter with 120,000 particles. Optimization was carried out using the iterated filtering in Figure 2,
with M =30, a =0.95 and J = 15,000. Optimization parameters were selected via diagnostic
convergence plots [lonides, Breté and King (2006)]. Standard errors (SEs) were derived via a
Hessian approximation; this is relatively rapid to compute and gives a reasonable idea of the scale
of uncertainty, but profile likelihood based confidence intervals are more appropriate for
formal inference

A ~

04 SE, g SEg
r 38.42 - 36.91 3.88

P 0.067 - 0.653 0.069
y 0.400 0.087 1.00 0.41

o 0.1057 0.0076 0.0592 0.0075
¢ 0.014 0.30 0.0004 0.024
w x 103 0.099 0.022 0.0762 0.0072
a 0.860 0.015 0.864 0.017
bo —0.0275 0.0017 —0.0209 0.0015
by 4.608 0.098 3.507 0.083
by 5.342 0.074 3.733 0.091
bs 5723 0.075 4.448 0.055
by 5.022 0.076 3.534 0.065
bs 5.508 0.064 4.339 0.053
b 5.804 0.059 4274 0.039
¢ —3560.23 —3539.11

Thus, Y;, given C;, has a negative binomial distribution with E[Y; ,|C;,] =
pCin and Var(Y; ,|Cin) = pCin + ¢p*C},.

Some results from fitting the model in Figure 6 via the method in Figure 2 are
shown in Table 2. The two sets of parameter values 0 4 and éB in Table 2 are max-
imum likelihood estimates, with 64 having the additional constraints p = 0.067
and r = 38.4. These two constraints were imposed by Koelle, Pascual and Yunus
(2006b), based on previous literature. The fitted model with the additional con-
straints is qualitatively different from the unconstrained model, and we refer to the
neighborhoods of these two parameter sets as regimes A and B. Figure 7 shows a
profile likelihood for cross-immunity in regime A; this likelihood-based analysis
leads to substantially lower cross-immunity than the estimate of Koelle, Pascual
and Yunus (2006b). In regime B, the cross-immunity is estimated as being com-
plete (y = 1), however, the corresponding standard error is large: cross-immunity
is poorly identified in regime B since the much higher reporting rate (o = 0.65)
means that there are many fewer cases and so few individuals are ever exposed to
both serotypes.
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F1G. 7. Cross-immunity profile likelihood for regime A, yielding a 99% confidence interval for y
of (0.20, 0.61) based on a X2 approximation [e.g., Barndorff-Nielsen and Cox (1994)]. Each point
corresponds to an optimization carried out as described in the caption of Table 2. Local quadratic
regression implemented in R via loess with a span of 0.6 [R Development Core Team (2006)] was
used to estimate the profile likelihood, following Ionides (2005).

These two regimes demonstrate two distinct uses of a statistical model—first,
to investigate the consequences of a set of assumptions and, second, to challenge
those assumptions. If we take for granted the published estimates of certain pa-
rameter values, the resulting parameter estimates 6, are broadly consistent with
previous models for cholera dynamics in terms of the fraction of the population
which has acquired immunity to cholera and the fraction of cases which are asymp-
tomatic (a term applied to the majority of unreported cases which are presumed to
have negligible symptoms but are nevertheless infectious). However, the likelihood
values in Table 2 call into question the assumptions behind regime A, since the data
are better explained by regime B (p < 1079, likelihood ratio test), for which the
epidemiologically relevant cases are only the severe cases that are likely to result
in hospitalization. Unlike in regime A, asymptomatic cholera cases play almost
no role in regime B, since the reporting rate is an order of magnitude higher. The
contrast between these regimes highlights a conceptual limitation of compartment
models: in point of fact, disease severity and level of infectiousness are continuous,
not discrete or binary as they must be in basic compartment models. For example,
differences in the level of morbidity required to be classified as “infected” result in
re-interpretation of the parameters of the model, with consequent changes to fun-
damental model characteristics such as the basic reproductive ratio of an infectious
disease [Anderson and May (1991)]. Despite this limitation, it remains the case
that compartment models are a fundamental platform for current understanding of
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disease dynamics and so identification and comparison of different interpretations
is an important exercise.

The existence of regime B shows that there is room for improvement in the
model by departing from the assumptions in regime A. Extending the model to in-
clude differing levels of severity might permit a combination of the data-matching
properties of B with the scientific interpretation of A. Other aspects of cholera epi-
demiology [Sack et al. (2004), Kaper, Morris and Levine (1995)], not included in
the models considered here, might affect the conclusions. For example, although
we have followed Koelle, Pascual and Yunus (2006b) by assuming lifelong immu-
nity following exposure to cholera, in reality this protection is believed to wane
over time [King et al. (2008b)]. It is plain, however, that any such model modifica-
tion can be subsumed in the modeling framework presented here and that effective
inference for such models is possible using the same techniques.

5. Discussion. This paper has focused on compartment models, a flexible
class of models which provides a broad perspective on the general topic of mech-
anistic models. The developments of this paper are also relevant to other systems.
For example, compartment models are closely related to chemodynamic models,
in which a Markov process is used to represent the quantities of several chemi-
cal species undergoing transformations by chemical reactions. The discrete nature
of molecular counts can play a role, particularly for large biological molecules
[Reinker, Altman and Timmer (2006), Boys, Wilkinson and Kirkwood (2008)].
Our approach to stochastic transition rates (Section 2) could readily be extended
to chemodynamic models, and would allow for the possibility of over-dispersion
in experimental systems.

Given rates (;;, one interpretation of a compartment model is to write the flows
as coupled ordinary differential equations (ODEs),

(N %Nij=,uijxi(l)-

Data analysis via ODE models has challenges in its own right [Ramsay et al.
(2007)]. One can include stochasticity in (7) by adding a slowly varying function
to the derivative [Swishchuk and Wu (2003)]. Alternatively, one can add Gaussian
white noise to give a set of coupled stochastic differential equations (SDEs) [e.g.,
Oksendal (1998)]. For example, if {W;;r ()} is a collection of independent stan-
dard Brownian motion processes, and o;;x = 0;jx(t, X (¢)), an SDE interpretation
of a compartment model is given by

dNijj = ;i X;(t)dt + Zaijdeijk.
k
SDEs have some favorable properties for mechanistic modeling, such as the ease
with which stochastic models can be written down and interpreted in terms of infin-
itesimal mean and variance [lonides et al. (2004), Ionides, Bret6 and King (2006)].
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However, there are several reasons to prefer integer-valued stochastic processes
over SDEs for modeling population processes. Populations consist of discrete in-
dividuals, and, when a population becomes small, that discreteness can become
important. For infectious diseases, there may be temporary extinctions, or “fade-
outs,” of the disease in a population or sub-population. Even if the SDE is an ac-
ceptable approximation to the disease dynamics, there are technical reasons to pre-
fer a discrete model. Standard methods allow exact simulation for continuous time
Markov chains [Brémaud (1999), Gillespie (1977)], whereas for a nonlinear SDE
this is at best difficult [Beskos et al. (2006)]. In addition, if an approximate Euler
solution for a compartment model is required, nonnegativity constraints can more
readily be accommodated for Markov chain models, particularly when the model
is specified by a limit of multinomial approximations, as in (2). The most basic
discrete population compartment model is the Poisson system [Brémaud (1999)],
defined here by

P[AN;; =n;ij| X () = (x1,...,Xc)]

= l_[ H(MijxiS)”"-f (1 — pijxi8) +o0(8).
i i

®)

The Poisson system is a Markov chain whose transitions consist of single individ-
uals moving between compartments, that is, the infinitesimal probability is negli-
gible of either simultaneous transitions between different pairs of compartments
or multiple transitions between a given pair of compartments. As a consequence
of this, the Poisson system is “equidispersed,” meaning that the infinitesimal mean
of the increments equals the infinitesimal variance (Appendix B). Overdispersion
is routinely observed in data [McCullagh and Nelder (1989)], and this leads us
to consider models such as (2) for which the infinitesimal variance can exceed
the infinitesimal mean. For infinitesimally over-dispersed systems, instantaneous
transitions of more than one individual are possible. This may be scientifically
plausible: a cholera-infected meal or water-jug may lead to several essentially si-
multaneous cases; many people could be simultaneously exposed to an influenza
patient on a crowded bus. Quite aside from this, if one wishes for whatever reason
to write down an over-dispersed Markov model, the inclusion of such possibilities
is unavoidable. Simultaneity in the limiting continuous time model can alterna-
tively be justified by arguing that the model only claims to capture macroscopic
behavior over sufficiently long time intervals.

Note that the multinomial distribution used in (2) could be replaced by alterna-
tives, such as Poisson or negative binomial. These alternatives are more natural for
unbounded processes, such as birth processes. For equidispersed processes, that is,
without adding white noise to the rates, the limit in (2) is the same if the multino-
mial is replaced by Poisson or negative binomial. For overdispersed processes,
these limits differ. In particular, the Poisson gamma and negative binomial gamma
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limits have unbounded jump distributions and so are less readily applicable to finite
populations.

The approach in (2) of adding white noise to the transition rates differs from
previous approaches of making the rates a slowly varying random function of time,
that is, adding low frequency “red noise” to the rates. There are several motivations
for introducing models based on white noise. Most simply, adding white noise can
lead to more parsimonious parameterization, since the intensity but not the spectral
shape of the noise needs to be considered. The Markov property of white noise
is inherited by the dynamical system, allowing the application of the extensive
theory of Markov chains. White noise can also be used as a building block for
constructing colored noise, for example, by employing an autoregressive model for
the parameters. At least for the specific examples of measles and cholera studied
in Section 4, high-frequency variability in the rate of infection helps to explain
the data (this was explicitly tested for measles; for our cholera models, Table 2
shows that the estimates of the environmental stochasticity parameter o are many
standard errors from zero). Although variability in rates will not always be best
modeled using white noise, there are many circumstances in which it is useful to
be able to do so.

This article has taken a likelihood-based, non-Bayesian approach to statistical
inference. Many of the references cited follow the Bayesian paradigm. The exam-
ples of Section 4 and other recent work [Ionides, Breté and King (2006), King et
al. (2008b)] show that iterated filtering methods enable routine likelihood-based
inference in some situations that have been challenging for Bayesian methodol-
ogy. Bayesian and non-Bayesian analyses will continue to provide complementary
approaches to inference for time series analysis via mechanistic models, as in other
areas of statistics.

Time series analysis is, by tradition, data oriented, and so the quantity and qual-
ity of available data may limit the questions that the data can reasonably answer.
This forces a limit on the number of parameters that can be estimated for a model.
Thus, a time series model termed mechanistic might be a simplification of a more
complex model which more fully describes reductionist scientific understanding
of the dynamical system. As one example, one could certainly argue for including
age structure or other population inhomogeneities into Figure 6. Indeed, deter-
mining which additional model components lead to important improvement in the
statistical description of the observed process is a key data analysis issue.

APPENDIX A: THEOREMS CONCERNING COMPARTMENT MODELS
WITH STOCHASTIC RATES

THEOREM A.l. Assume (P1)-(P5) and suppose that w;i(t, x) is uniformly
continuous as a function of t. Suppose initial values X (0) = (X1(0), ..., X.(0))
are given and denote the total number of individuals in the population by S =
> i Xi(0). Label the individuals 1,...,S and the compartments 1,...,c. Let
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C(¢,0) be the compartment containing individual ¢ at time t = 0. Set 7, o =0,
and generate independent Exponential(1) random variables M. ; for each ¢
and j # C(¢,0). We will define t¢ p,j, Tc,m» C(&, m), and M ,,, j recursively for
m>1. Set

t
O ey =intt [ Heno. 6 XA Cmo1,16) > Meno |
T{,m—l

At time T;, = min; 7y j, set C(¢,m) = argmin; 1, », ; and for each j #
C(¢, m) generate an independent Exponential(1) random variable M , ;. Set

dNij() =) T{CE,m—1)=i,C(¢,m)=j, Te.m =1},

¢,m

where 1{-} is an indicator function, and set X;(t) = X;(0) + f(; > j#i(dNji —
dNjj). X (t) is a Markov chain whose infinitesimal transition probabilities sat-

isfy (2).

NOTE A.1. The random variables {M; ,, ;} in Theorem A.1 are termed transi-
tion clocks, with the intuition that X (¢) jumps when one (or more) of the integrated
transition rates in (9) exceeds the value of its clock. In a more basic construction of
a Markov chain, one re-starts the clocks for each individual whenever X (¢) makes
a transition. The memoryless property of the exponential distribution makes this
equivalent to the construction of Theorem A.1, where clocks are restarted only for
individuals who make a transition [Sellke (1983)]. Sellke’s construction is conve-
nient for the proof of Theorem A.1.

NOTE A.2. The trajectories of the individuals are coupled through the depen-
dence of u(t, X(¢)) on X (¢), and through the noise processes which are shared
for all individuals in a given compartment and may be dependent between com-
partments. Thus, to evaluate (9), it is necessary to keep track of all individuals
simultaneously. To check that the integral in (9) is well defined, we note that X (s)
depends only on {(t¢,n, C(¢,m)):Tem <5, =1,...,85,m=1,2,...}. X(s5) is
thus a function of events occurring by time s, so it is legitimate to use X (s) when
constructing events that occur at t > s.

THEOREM A.2. Supposing (P1)—(P7), the infinitesimal transition probabili-
ties given by (2) are
P[AN;j =njj,foralli # j| X(t) = (x1,...,xc)]

=[] ]7ij.xi. 1ij. 0ij) + 0(8).
i ji
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where

T(n,x,u,o)

= ljyeg) +6 (ﬁ) 3 (Z) (=" o2 In(1 + 6% u(x — k).

k=0

(10)

The full independence of {I';;} assumed in Theorem A.2 gives a form for the
limiting probabilities where multiple individuals can move simultaneously be-
tween some pair of compartments i and j, but no simultaneous transitions occur
between different compartments. In more generality, the limiting probabilities do
not have this simple structure. In the setup for Theorem A.1, where I';; is inde-
pendent of I';; for j # k, no simultaneous transitions occur out of some compart-
ment i into different compartments j # k, but simultaneous transitions from i to j
and from i’ to j’ cannot be ruled out for i # i’. The assumption in Theorem A.1
that I';; is independent of I';x for j # k is not necessary for the construction of
a process via (2), but simplifies the subsequent analysis. Without this assump-
tion, a construction similar to Theorem A.1 would have to specify a rule for what
happens when an individual who has two simultaneous event times, that is, when
min; T, j 1S not uniquely attained. Although independence assumptions are use-
ful for analytical results, a major purpose of the formulation in (2) is to allow the
practical use of models that surpass currently available mathematical analysis. In
particular, it may be natural for different transition processes to share the same
noise process, if they correspond to transitions between similar pairs of states.

APPENDIX B: EQUIDISPERSION OF POISSON SYSTEMS

For the Poisson system in (8),

(11D P[ANij:0|X(l‘)=x]=I—Mijxi5+0(5),
(12) P[AN;; = 1|X (1) = x] = pijxid + 0(3),
where x = (x1,...,xc) and w;; = u;;(t, x). Since the state space of X(z) is fi-

nite, it iS not a major restriction to suppose that there is some uniform bound
wij(t, x)x; < v, and that the terms o(8) in (11), (12) are uniform in x and ¢. Then,
P[AN;j > k|X(1)] < F(k,év), where F(k, 1) = ?o:k-i—l Ale™*/j1. Tt follows that

[e.e]
E[AN;;j|X(t) =x]= Z P[AN;j > k| X (t) = x] = pijxid + 0(8),
k=0
o0
ELANDHX (1) =x]= Y 2k + D)P[AN;; > kIX (1) = x] = pijxid + 0(3),

k=0

and so Var(AN;;|X (1) = x) = u;jx;8 + o(3). If the rate functions u;;(z, x) are

themselves stochastic, with X (¢) being a conditional Markov chain given {yu;;, 1 <
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i <c,1<j<c},asimilar calculation applies so long as a uniform bound v still
exists. In this case,

(13) E[AN1X (1) = x] = 8E[pi (1. x)xi] + 0(6),
(14) Var(AN;;|X (1) =x) =8 E[p;;(t, x)x;] + 0(5).

The necessity of the uniform bound v is demonstrated by the inconsistency be-
tween (13), (14) and the result in Theorem A.2 for the addition of white noise to
the rates.
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SUPPLEMENTARY MATERIAL

Theorems concerning compartment models with stochastic rates (DOI:
10.1214/08-A0OAS201SUPP; .pdf). We present proofs of Theorems A.1 and A.2,
which were stated in Appendix A.
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