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Abstract. Mixtures are convex combinations of laws. Despite this simple definition, a mixture can be far more subtle than its

mixed components. For instance, mixing Gaussian laws may produce a potential with multiple deep wells. We study in the present

work fine properties of mixtures with respect to concentration of measure and Sobolev type functional inequalities. We provide

sharp Laplace bounds for Lipschitz functions in the case of generic mixtures, involving a transportation cost diameter of the mixed

family. Additionally, our analysis of Sobolev type inequalities for two-component mixtures reveals natural relations with some

kind of band isoperimetry and support constrained interpolation via mass transportation. We show that the Poincaré constant of

a two-component mixture may remain bounded as the mixture proportion goes to 0 or 1 while the logarithmic Sobolev constant

may surprisingly blow up. This counter-intuitive result is not reducible to support disconnections, and appears as a reminiscence

of the variance-entropy comparison on the two-point space. As far as mixtures are concerned, the logarithmic Sobolev inequality

is less stable than the Poincaré inequality and the sub-Gaussian concentration for Lipschitz functions. We illustrate our results on

a gallery of concrete two-component mixtures. This work leads to many open questions.

Résumé. Les mélanges dont il est question ici sont des combinaisons convexes de lois de probabilité. Malgré cette défnition

simple, un mélange peut étre beaucoup plus subtil que ses composants. Un mélange de lois gaussiennes par exemple peut donner

lieu à des potentiels à profonds puits multiples. Dans ce travail, nous étudions les propriétés fines des mélanges vis à vis de la

concentration de la mesure et des inégalités de type Sobolev. Nous proposons des bornes sur la transformée de Laplace faisant

intervenir le diamètre de la famille mélangée pour une distance de transport. Notre analyse des inégalités de type Sobolev pour

les mélanges à deux composants révèle des relations naturelles avec une forme d’isopérimétrie pour les bandes, ainsi qu’avec le

transport optimal sous contrainte de support. Nous établissons que la constante de Poincaré peut rester bornée lorsque la proportion

du mélange tend vers 0 tandis que la constante de Sobolev logarithmique peut exploser. Ce phénomène contre intuitif n’est pas

réductible à un problème de support et peut être vu comme une trace de la comparaison variance-entropie sur l’espace à deux

points. Pour les mélanges, la propriété de concentration de la mesure sous-gaussienne et l’inégalité de Poincaré sont plus stables

que l’inégalité de Sobolev logarithmique. Nous illustrons nos résultats avec une collection d’exemples à deux composants concrets.

Ce travail conduit à plusieurs questions ouvertes.

MSC: 60E15; 49Q20; 46E35; 62E99

Keywords: Transportation cost distances; Mallows or Wasserstein distance; Mixtures of distributions; Finite Gaussian mixtures; Concentration of
measure; Gaussian bounds; Tails probabilities; Deviation inequalities; Functional inequalities; Poincaré inequalities; Gross logarithmic Sobolev
inequalities; Band isoperimetry; Transportation of measure; Mass transportation

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/08-AIHP309
mailto:chafai@math.univ-toulouse.fr
mailto:florent.malrieu@univ-rennes1.fr


On fine properties of mixtures 73

1. Introduction

Mixtures of distributions are ubiquitous in stochastic analysis, modelling, simulation, and statistics, see, for instance,
the monographs [16,18,39,40,50]. Recall that a mixture of distributions is nothing else but a convex combination of
these distributions. For instance, if μ0 and μ1 are two laws on the same space, and if p ∈ [0,1] and q = 1 − p, then
the law pμ1 + qμ0 is a “two-component mixture.” More generally, a finite mixture takes the form p1μ1 + · · ·+ pnμn

where μ1, . . . ,μn are probability measures on a common measurable space and p1δ1 + · · · + pnδn is a finite discrete
probability measure. A widely used example is given by finite mixtures of Gaussians for which μi = N (mi, σ

2
i ) for

every 1 ≤ i ≤ n. In that case, for certain choices of m1, . . . ,mn and σ1, . . . , σn, the mixture

p1 N
(
m1, σ

2
1

) + · · · + pnN
(
mn,σ

2
n

)
is multi-modal and its log-density is a multiple wells potential. For instance, each component μi may correspond typ-
ically in statistics to a sub-population, in information theory to a channel, and in statistical physics to an equilibrium.
Another very natural example is given by the invariant measures of finite Markov chains, which are mixtures of the
invariant measures uniquely associated to each recurrent class of the chain. A more subtle example is the local field
of the Sherrington–Kirkpatrick model of spin glasses which gives rise to a mixture of two univariate Gaussians with
equal variances, see, for instance, [13].

At this point, it is enlightening to introduce a more abstract point of view. Let ν be a probability measure on some
measurable space Θ and (μθ )θ∈Θ be a collection of probability measures on some common fixed measurable space X ,
such that the map θ �→ Eμθ f is measurable for any fixed bounded continuous f : X → R. The mixture M(ν,μθ∈Θ)

is the law on X defined for any bounded measurable f : X → R by

EM(ν,μθ∈Θ)f =
∫

Θ

∫
X

f (x)dμθ(x)dν(θ) = Eν(θ �→ Eμθ f ).

Here ν is the mixing law whereas (μθ )θ∈Θ are the mixed laws or the mixture components or even the mixed family.
With these new notations, and for the finite mixture example mentioned earlier we have Θ = {1, . . . , n} and ν =
p1δ1 + · · · + pnδn and

M
(
ν, (μθ )θ∈Θ

) = M
(
p1δ1 + · · · + pnδn, {μ1, . . . ,μn}

) = p1μ1 + · · · + pnμn.

The mixture M(ν,μθ∈Θ) can be seen as a sort of general convex combination in the convex set of probability mea-
sures on X . It appears for a certain class of ν as a particular Choquet’s integral, see [43] and [17]. On the other
hand, the case where the mixture components are product measures is also related to exchangeability and De Finetti’s
theorem, see, for instance, [7]. In terms of random variables, if (X,Y ) is a couple of random variables then the law
L(X) of X is a mixture of the family of conditional laws L(X|Y = y) with the mixing law L(Y ). By this way, mixing
appears as the dual of the so-called disintegration of measure. Here and in the whole sequel, the term “mixing” refers
to the mixture of distributions as defined above and has a priori nothing to do with weak dependence.

Our first aim is to investigate the fine behavior of concentration of measure for mixtures, for instance, for a two-
component mixture pμ1 +qμ0 as min(p, q) goes to 0. It is well known that Poincaré and (Gross) logarithmic Sobolev
functional inequalities are powerful tools in order to obtain concentration of measure. Also, our second aim is to in-
vestigate the fine behavior of these functional inequalities for mixtures, and in particular for two-component mixtures.
Our work reveals striking unexpected phenomena. In particular, our results suggest that the logarithmic Sobolev in-
equality, which implies sub-Gaussian concentration, is very sensitive to mixing, in contrast with the sub-Gaussian
concentration itself which is far more stable. As in [20] and [3], our work is connected to the more general problem
of the behavior of optimal constants for sequences of probability measures.

Let us start with the notion of concentration of measure for Lipschitz functions. We denote by ‖ · ‖2 the Euclidean
norm of R

d . A function f : Rd → R is Lipschitz when

‖f ‖Lip = sup
x �=y

|f (x) − f (y)|
‖x − y‖2

< ∞.
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Let μ be a law on R
d such that Eμ|f | < ∞ for every Lipschitz function f . This holds true for instance when μ

has a finite first moment. We always make implicitly this assumption in the sequel. We define now the log-Laplace
transform αμ : R → [0,∞] of μ by

αμ(λ) = log sup
‖f ‖Lip≤1

Eμ

(
eλ(f −Eμf )

)
. (1)

The Cramér–Chernov–Chebyshev inequality gives, for every r > 0,

βμ(r) = sup
‖f ‖Lip≤1

μ
(|f − Eμf | ≥ r

) ≤ 2 exp
(
− sup

λ>0

(
rλ − αμ(λ)

))
(2)

and the supremum in the right-hand side is a Fenchel–Legendre transform of αμ. Note that βμ is a uniform upper
bound on the tails probabilities of Lipschitz images of μ. We are interested in the control of βμ via αμ in the case
where μ = M(ν, (μθ )θ∈Θ), in terms of the mixing law ν and of the log-Laplace bounds (αμθ )θ∈Θ for the mixed
family.

We say that μ satisfies a sub-Gaussian concentration of measure for Lipschitz functions when there exists a con-
stant C ∈ (0,∞) such that for every real number λ,

αμ(λ) ≤ 1

4
Cλ2. (3)

The log-Laplace–Lipschitz quadratic bound (3) implies via (2) that for every r > 0,

βμ(r) ≤ 2 exp

(
− r2

C

)
. (4)

Actually, it was shown (see [15] and [9]) that up to constants, (3) and (4) are equivalent, and are also equivalent to the
existence of a constant ς ∈ (0,∞) and x0 ∈ R

d such that∫
Rd

eς |x−x0|2 μ(dx) < ∞. (5)

Linear or quadratic upper bounds for αμ may be deduced from functional inequalities such as Poincaré and (Gross)
logarithmic Sobolev inequalities [23,24]. We say that μ satisfies a Poincaré inequality of constant C ∈ (0,∞) when
for every smooth h : Rd → R,

Varμ(h) ≤ C E
(|∇h|2), (6)

where Varμ(h) = Eμ(h2) − (Eμh)2 is the variance of h for μ. The smallest possible constant C is called the opti-
mal Poincaré constant of μ and is denoted CPI(μ) with the convention inf∅ = ∞. Similarly, μ satisfies a (Gross)
logarithmic Sobolev inequality of constant C ∈ (0,∞) when

Entμ
(
h2) ≤ C E

(|∇h|2) (7)

for every smooth function f : Rd → R, where Entμ(h2) = Eμ(h2 logh2) − Eμ(h2) log Eμ(h2) is the entropy or free
energy of h2 for μ, with the convention 0 log(0) = 0. As for the Poincaré inequality, the smallest possible C is the
optimal logarithmic Sobolev constant of μ and is denoted CGI(μ) with inf ∅ = ∞. Standard linearization arguments
give that

ρ(Kμ) ≤ CPI(μ) ≤ 1

2
CGI(μ), (8)

where ρ(Kμ) stands for the spectral radius of the covariance matrix Kμ of μ defined by (Kμ)i,j = Eμ(xixj ) −
Eμ(xi)Eμ(xj ) where xi and xj are the coordinate functions. More precisely, the first inequality in (8) follows from (6)
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by taking h = 〈·, u〉 where u runs over the unit sphere while the second inequality in (8) follows by considering the
directional derivative of both sides of (7) at the constant function 1.

A basic example is given by Gaussian laws for which equalities are achieved in (8). A wide class of laws satisfy
Poincaré and logarithmic Sobolev inequalities. Beyond Gaussian laws, a criterion due to Bakry and Émery [1,2] (see
also [12,42,46] and [10,11]) states that if μ has Lebesque density e−V on R

d such that x �→ V (x) − 1
2κ

|x|2 is convex
for some fixed real κ > 0 then CPI(μ) ≤ κ and CGI(μ) ≤ 2κ with equality in both cases when μ is Gaussian. This log-
concave criterion appears as a comparison with Gaussians. Note that in general, CGI(μ) < ∞ implies CPI(μ) < ∞
but the converse is false. For instance, the law with density proportional to exp(−|x|a) on R satisfies a Poincaré
inequality iff a ≥ 1 and a logarithmic Sobolev inequality iff a ≥ 2, see, for example, [1], Chapter 6. Note also that
if μ has disconnected support, then necessarily CPI(μ) = CGI(μ) = ∞. To see it, consider a non-constant h which
is constant on each connected component of the support of μ. This is for instance the case for the two-component
mixture μ = pμ1 + qμ0 = M(pδ1 + qδ0, {μ0,μ1}) with p ∈ (0,1) and q = 1 − p where μ0 and μ1 have disjoint
supports.

The logarithmic Sobolev inequality (7) implies a sub-Gaussian concentration of measure for Lipschitz images
of μ. Namely, using (7) with h = exp( 1

2λf ) for a real number λ and a smooth Lipschitz function f : Rd → R gives
via Rademacher’s theorem and a standard argument attributed to Herbst [34], Chapter 5, that for any reals λ and r > 0

αμ(λ) ≤ 1

4
CGI(μ)λ2 and βμ(r) ≤ 2 exp

(
− r2

CGI(μ)

)
. (9)

The same method yields from (6) a sub-exponential upper bound for βμ of the form c1 exp(−c2r) for some constants
c1, c2 > 0, see, for instance, [22] and [33], Section 2.5.

Both Poincaré and logarithmic Sobolev inequalities are invariant by the action of the translation group and the
orthogonal group. More generally, let us denote by f · μ the image measure of μ by the map f . Both (6) and (7) are
stable by Lipschitz maps in the sense that CPI(f · μ) ≤ ‖f ‖2

LipCPI (μ) and CGI(f · μ) ≤ ‖f ‖2
LipCGI(μ). On the real

line, CPI and CGI can be controlled via “simple” variational bounds such as (18). Both (6) and (7) are also stable by
bounded perturbations on the log-density of μ, see [25,27] and [3] for further details. In view of sub-exponential or
sub-Gaussian concentration bounds, the main advantage of (6) and (7) over a direct approach based on αμ or βμ lies
in the stability by tensor products of (6) and (7), see, for example, [1], Chapters 1 and 3, [9] and [21].

The case of mixtures

The integral criterion (5) shows that if the components of a mixture uniformly satisfy a sub-Gaussian concentration
of measure for Lipschitz functions, and if the mixing law has compact support, then the mixture also satisfies a sub-
Gaussian concentration of measure for Lipschitz functions. Such bounds appear, for instance, in [6]. However, this
observation does not give any fine quantitative estimate on the dependency over the weights for a finite mixture.
Regarding Poincaré and logarithmic Sobolev inequalities, it is clear that a finite mixture of Gaussians will satisfy such
inequalities since its log-density is a bounded perturbation of a uniformly concave function. Here again, this does not
give any fine control on the constants.

An upper bound for the Poincaré constant of univariate finite Gaussian mixture was provided by Johnson [29],
Theorem 1.1 and Section 2. Unfortunately, this upper bound blows up when the minimum weight of the mixing law
goes to 0. A more general upper bound for finite mixtures of overlapping densities was obtained by Madras and
Randall [35], Theorem 1.2 and Section 5. Here again, the bound blows up when the minimum weight of the mixing
law goes to 0. Some aspects of Poisson mixtures are considered by Kontoyannis and Madiman [30,31] in connection
with compound Poisson processes and discrete modified logarithmic Sobolev inequalities.

Outline of the article

Recall that the aim of the present work is to study the fine properties of mixture of law with respect to concentration
of measure and Sobolev type functional inequalities. The analysis of various elementary examples shows actually that
such a general objective is very ambitious. Also, we decided to focus in the present work on more tractable situations.
Section 2 provides Laplace bounds for Lipschitz functions in the case of generic mixtures. These upper bounds on αμ
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(and thus βμ) for a mixture μ involve the W1-diameter (see Section 2 for a precise definition) of the mixed family.
Section 3 is devoted to upper bounds on αμ for two-component mixtures μ = μp = pμ1 + qμ0. Our result is mainly
based on a Laplace–Lipschitz counterpart of the optimal logarithmic Sobolev inequality for asymmetric Bernoulli
measures. In particular, we show that if μ0 and μ1 satisfy a sub-Gaussian concentration for Lipschitz functions, then it
is also the case for the mixture μp , with a quite satisfactory and intuitive behavior as min(p, q) goes to 0. In Section 4,
we study Poincaré and logarithmic Sobolev inequalities for two-component mixtures. A decomposition of variance
and entropy allows us to reduce the problem to the Poincaré and logarithmic Sobolev inequalities for each component,
to discrete inequalities for the Bernoulli mixing law pδ1 + qδ0, and to the control of a mean-difference term. This
last term can be controlled in turn by using some support-constrained transportation, leading to very interesting open
questions in dimension >1. The Poincaré constant of the two-component mixture can remain bounded as min(p, q)

goes to 0, while the logarithmic Sobolev constant may surprisingly blow up at speed − log(min(p, q)). This counter-
intuitive result shows that as far as the mixture of laws is concerned, the logarithmic Sobolev inequality does not
behave like the sub-Gaussian concentration for Lipschitz functions. We also illustrate our results on a gallery of
concrete two-component mixtures. In particular, we show that the blow up of the logarithmic Sobolev constant as
min(p, q) goes to 0 is not necessarily related to support problems.

Open problems

The study of Poincaré and logarithmic Sobolev inequalities for multivariate or non-finite mixtures is an interesting
open problem, for which we give some clues at the end of Section 4 in terms of support-constrained transportation
interpolation. There is maybe a link with the decomposition approach used in [28] for Markov chains. One can also
explore the tensor products of mixtures, which are again mixtures. Another interesting problem is the development of
a direct approach for transportation cost and measure-capacities inequalities (see [5]) for mixtures, even in the finite
univariate case.

2. General Laplace bounds for Lipschitz functions

Intuitively, the concentration of measure of a finite mixture may be controlled by the worst concentration of the
components and some sort of diameter of the mixed family. We shall confirm, extend, and illustrate this intuition for a
not necessarily finite mixture. The notion of diameter that we shall use is related to coupling and transportation cost.
Recall that for every k ≥ 1, the Wasserstein (or transportation cost) distance of order k between two laws μ1 and μ2
on R

d is defined by (see [51,52] and [44,47])

Wk(μ1,μ2) = inf
π

(∫
Rd×Rd

|x − y|k dπ(x, y)

)k−1

, (10)

where π runs over the set of laws on R
d × R

d with marginals μ1 and μ2. The Wk-convergence is equivalent to the
weak convergence together with the convergence of moments up to order k. In dimension d = 1, we have, by denoting
F1 and F2 the cumulative distribution functions of μ1 and μ2, with generalized inverses F−1

1 and F−1
2 , for every

k ≥ 1,

Wk(μ1,μ2)
k =

∫ 1

0

∣∣F−1
1 (x) − F−1

2 (x)
∣∣k dx and W1(μ1,μ2) =

∫
R

∣∣F1(x) − F2(x)
∣∣dx, (11)

where the last expression of W1 follows from the Kantorovich–Rubinstein dual formulation

W1(μ1,μ2) = sup
‖f ‖Lip≤1

(∫
Rd

f dμ1 −
∫

Rd

f dμ2

)
. (12)

Note that if μ1 does not give mass to points then μ2 = (F−1
2 ◦ F1) · μ1. The transportation cost distances lead to the

so-called transportation cost inequalities, popularized by Marton [36,37], Talagrand [49], and Bobkov and Götze [8].
See, for instance, the books [34,51,52] for a review. The link with concentration of measure was recently deeply
explored by Gozlan, see [21]. We will not use this interesting line of research in the present paper.
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Theorem 2.1 (General Laplace–Lipschitz bound via diameter). Let μ = M(ν, (μθ )θ∈Θ) be a general mixture. If
this mixture satisfies the uniform bounds

α = sup
θ∈Θ

αθ < ∞ and W = sup
θ,θ ′∈Θ

W1(μθ ,μθ ′) < ∞

then for every λ > 0 we have

αμ(λ) ≤ α(λ) + 1

8
min

(
8Wλ,W

2
λ2).

Proof of Theorem 2.1. The key point is that if ‖f ‖Lip ≤ 1 then for every λ > 0,

Eμ(eλf )

eλEμf
= e−λEμf

∫
Θ

Eμθ

(
eλf

)
ν(dθ) ≤

∫
Θ

eαθ (λ)+λ(Eμθ
f −Eμf )ν(dθ). (13)

As a consequence, we get

αμ(λ) ≤ α(λ) + sup
‖f ‖Lip≤1

log
∫

Θ

eλ(Eμθ
f −Eμf )ν(dθ). (14)

Thanks to the relation (12), we obtain

Eμθ f − Eμf =
∫

Θ

(Eμθ f − Eμθ ′ f )ν
(
dθ ′)

≤
∫

Θ

W1(μθ ,μθ ′)ν
(
dθ ′) ≤ W.

This shows that the second term in the right-hand side of (14) is bounded by Wλ. Alternatively, one can use the
Hoeffding bound [26] which says that if X is a centered bounded random variable with oscillation c = supX − infX
then

E
(
eλX

) ≤ eλ2c2/8.

The desired bound in terms of W
2
λ2 follows by taking X = EμY

f − Eμf where Y ∼ ν and noticing that c ≤
supθ,θ ′ (Eμθ f − Eμθ ′ f ) = W . �

Example 2.2 (Finite mixtures). For a finite mixture μ = p1μ1 + · · · + pnμn = M(ν, (μi)1≤i≤n) where ν =
p1δ1 + · · · + pnδn, the mixing measure ν is supported by a finite set. In that case, Theorem 2.1 gives an immedi-
ate Laplace bound, involving the worst bound for the mixture components (μi)1≤i≤n (this cannot be improved in
general). However, in Section 3, we provide sharper bounds by improving the dependency over ν in the case where
n = 2.

Example 2.3 (Bounded mixtures of multivariate Gaussians). Here μθ = N (m(θ),Γ (θ)) where m :Θ → R
d and

Γ : Rd → S +
d are two measurable bounded functions and S +

d is the cone of symmetric non-negative (d × d)-matrices.
Note that Γ (θ) is allowed to be singular, that is, not of full rank. The spectrum of Γ (θ) is real and non-negative. If
λ1(θ) ≥ · · · ≥ λd(θ) are the eigenvalues of Γ (θ), we define ρ = supθ∈Θ λ1(θ) = supθ∈Θ ‖Γ (θ)‖2→2. Now fix some
mixing law ν on Θ and consider the mixture μ = M(ν, (μθ )θ∈Θ). Then for every λ > 0,

αμ(λ) ≤ ρ

2
λ2 + 1

8
min

(
8Wλ,W

2
λ2).

One can deduce an upper bound for W from the following lemma.
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Lemma 2.4 (W1-distance of two multivariate Gaussian laws). Let μ0 = N (m(0),Γ (0)) and μ1 = N (m(1),Γ (1))

be two Gaussian laws on R
d . For θ ∈ {0,1}, we denote by

λ1(θ) ≥ · · · ≥ λd(θ)

the ordered spectrum of Γ (θ) and by (vi(θ))1≤i≤d an associated orthonormal basis of eigenvectors. Assume, without
loss of generality, that vi(0) · vi(1) ≥ 0 for every 1 ≤ i ≤ d where “·” stands for the Euclidean scalar product of R

d .
Then W1(μ0,μ1) is bounded above by

∣∣m(1) − m(0)
∣∣ +

√√√√ d∑
i=1

{(√
λi(1) − √

λi(0)
)2 + 2

√
λi(1)λi(0)

(
1 − vi(1) · vi(0)

)}
.

The reader may find in [48], Theorem 3.2, a formula in the same spirit for W2(μ0,μ1).

Proof of Lemma 2.4. The triangle inequality for the W1 distance gives

W1(μ0,μ1) ≤ W1
(
μ0, N

(
m(1),Γ (0)

)) + W1
(

N
(
m(1),Γ (0)

)
,μ1

)
≤ ∣∣m(1) − m(0)

∣∣ + W1
(

N
(
0,Γ (0)

)
, N

(
0,Γ (1)

))
.

Now, if (Yi)1≤i≤d are i.i.d. real random variables of law N (0,1) then the law of

Xθ =
d∑

i=1

Yi

√
λi(θ)vi(θ)

is N (0,Γ (θ)) for θ ∈ {0,1}. Moreover, from (10) and Jensen’s inequality, we get

W1
(

N
(
0,Γ (0)

)
, N

(
0,Γ (1)

))2 ≤ (
E|X1 − X0|

)2 ≤ E
(|X1 − X0|2

)
.

At this step, we note that

|X1 − X0|2 =
d∑

i=1

Y 2
i

∣∣√λi(1)vi(1) − √
λi(0)vi(0)

∣∣2

+ 2
∑
i<j

YiYj

(√
λi(1)vi(1) − √

λi(0)vi(0)
) · (√λi(1)vi(1) − √

λi(0)vi(0)
)
.

Since (Yi) are i.i.d. N (0,1) and (vi(θ))1≤i≤d is orthonormal for θ ∈ {0,1}, one has

E
(|X1 − X0|2

) =
d∑

i=1

∣∣√λi(1)vi(1) − √
λi(0)vi(0)

∣∣2

=
d∑

i=1

{(√
λi(1) − √

λi(0)
)2 + 2

√
λi(1)λi(0)

(
1 − vi(1) · vi(0)

)}
. �

Of course the assumptions of Theorem 2.1 may be relaxed. Instead of trying to deal with generic abstract results,
let us provide some highlighting examples.

Example 2.5 (Gaussian mixture of translated Gaussians). Here Θ = R and μθ = N (θ, σ 2) for some fixed σ > 0,
and the mixing law is also Gaussian ν = N (0, τ 2) for some fixed τ > 0. In this case, α(λ) = 1

2σ 2λ2 but W is infinite
since

W1(μθ ,μθ ′) = ∣∣θ − θ ′∣∣.
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In particular, Theorem 2.1 is useless. Nevertheless, the function

θ �→ g(θ) = Eμθ f − Eμf

is Lipschitz since∣∣g(θ) − g
(
θ ′)∣∣ ≤ E

(∣∣f (X + θ) − f
(
X + θ ′)∣∣) ≤ ∣∣θ − θ ′∣∣,

where X ∼ N (0,1). As a consequence, we get

sup
‖f ‖Lip≤1

log
∫

Θ

eλ(Eμθ
f −Eμf )ν(dθ) ≤ τ 2λ2

2

and for any λ > 0

αμ(λ) ≤ σ 2 + τ 2

2
λ2.

The same argument may be used more generally for “position” mixtures. For instance, if η is some fixed probability
measure on R

d and μθ = η ∗ δθ for θ ∈ R
d then ∀λ > 0,

αμ(λ) ≤ αη(λ) + αμ(λ).

In this particular case, μ = ν ∗ η and the bound above follows also by tensorization!

Example 2.6 (Mixture of scaled Gaussians: from exponential to Gaussian tails). Here we take Θ = [0,∞) and
μθ = N (0, θ2) with a mixing measure ν of density

θ �→ γ

Γ (γ −1)
exp

(−θγ
)
1[0,∞)(θ),

where γ ≥ 2 is some fixed real number. Note that ν has a non-compact support and that μ does not satisfy the integral
criterion (5). This means that μ cannot have sub-Gaussian tails. Note also that both α(λ) and W are infinite since

αθ (λ) = θ2λ2

2
and W1(μθ ,μθ ′) =

√
2

π

∣∣θ − θ ′∣∣,
where we used (11) for W1. Starting from (13), one has by the Cauchy–Schwarz inequality(

Eμ(eλf )

eλEμf

)2

≤
∫

Θ

eθ2λ2
ν(dθ)

∫
Θ

e2λ(Eμθ
f −Eμf )ν(dθ). (15)

Note that ν satisfies condition (5) and αν(λ) ≤ Cλ2 for some real constant C > 0. Here and in the sequel, the constant
C may vary from line to line and may be chosen independent of γ . On the other hand, the centered function g(θ) =
Eμθ f − Eμf is 1-Lipschitz since∣∣g(θ) − g

(
θ ′)∣∣ = ∣∣Ef (θX) − Ef

(
θ ′X

)∣∣ ≤ ∣∣θ − θ ′∣∣E(|X|),
where X ∼ N (0,1). Also, for the second term in the right-hand side of (15) we have∫

Θ

e2λ(Eμθ
f −Eμf )ν(dθ) ≤ eαν(2λ) ≤ e4Cλ2

.

If γ = 2 then αμ(λ) ≤ 2Cλ2 − 1
4 log(1 − λ2) ≤ 2C − 1

4 log(1 − λ) if λ < 1, which gives, after some computations, the
deviation bound, for some other constants C′ > 0 and C′′ > 0,

μ(F − Eμf ≥ r) ≤ C′e−C′′r .
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Assume in contrast that γ > 2. Since θ2λ2 ≤ γ −1θγ +C0λ
2γ /(γ−2) for some constant C0 > 0 which may depend on γ

but not on λ and θ , we get, for some constants C1 > 0 and C2 > 0,∫ ∞

0
exp

(
θ2λ2)ν(dθ) ≤ C1 exp

(
C2λ

2γ /(γ−2)
)
.

This gives αμ(λ) ≤ C3λ
2γ /(γ−2) + C4 for some constants C3 > 0 and C4 > 0, which yields a deviation bound of the

form (for some constants C5 > 0 and C6 > 0)

μ(f − Eμf ≥ r) ≤ C5 exp
(−C6r

2−4/(γ+2)
)
.

Note that ν goes to the uniform law on [0,1] as γ → ∞ and the Gaussian tail reappears.

3. Concentration bounds for two-component mixtures

In this section, we investigate the special case where the mixing measure ν is the Bernoulli measure B(p) = pδ1 +qδ0
where q = 1 − p. We are interested in the study of the sharp dependence of the concentration bounds on p, especially
when p is close to 0 or 1.

Theorem 3.1 (Two-component mixture). Let μ0 and μ1 be two probability measures on X and μ = pμ1 + qμ0
with p ∈ [0,1] and q = 1 − p. Define xp = max(p, q)/(2cp) where

cp = q − p

4(log(q) − log(p))

with the continuity conventions c1/2 = 1/8 and c0 = c1 = 0. Then for any λ > 0,

αμ(λ) ≤ max(αμ0 , αμ1)(λ) +
{

cpλ2W1(μ0,μ1)
2 if λW1(μ0,μ1) ≤ xp,

max(p, q)
(
λW1(μ0,μ1) − 1

2xp

)
otherwise.

Note that if min(p, q) → 0, then cp ∼ −(4 log(p))−1 → 0 and xp → ∞, and we thus recover an upper bound
of the form αμ ≤ max(αμ1 , αμ2) as min(p, q) → 0, which is satisfactory. The two different upper bounds given by
Theorem 3.1 provide two different upper bounds for the concentration of measure of the mixture μ, illustrated by the
following corollary (the proof of the corollary is immediate and is left to the reader).

Corollary 3.2 (Two-component mixtures with sub-Gaussian tails). Let μ0 and μ1 be two probability measures
on X and μ = pμ1 + qμ0 for some p ∈ [0,1] with q = 1 − p. If there exists a real constant C > 0 such that for any
λ > 0

max(αμ0, αμ1)(λ) ≤ 1

2
Cλ2

then for every r ≥ 0, with W = W1(μ0,μ1),

βμ(r) ≤ 2

⎧⎨⎩ exp
(− r2

2C+4cpW
2

)
if r ≤ max(p, q)

(
C

2cpW
+ W

)
,

exp
(− 1

2C

(
r − max(p, q)W

)2 − max(p,q)2

4cp

)
otherwise.

Proof of Theorem 3.1. We have μ = qμ0 + pμ1 = M(ν, {μ0,μ1}) where ν := qδ0 + pδ1. For this finite mixture,
we get, as in the general case, for any f ∈ Lip(X ,R) and λ > 0,

log

(
Eμ(eλf )

eλEμf

)
≤ max(αμ0 , αμ1)(λ) + log

(
Eν(eλg)

eλEνg

)
,
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where g(i) := Eμi
f . At this step, we use the particular nature of ν, which gives

Eν(eλg)

eλEνg
= coshp

(
λ
(
g(1) − g(0)

))
,

where coshp(x) := peqx + qe−px . Since g(1) − g(0) = Eμ1f − Eμ0f , we get by (12)

−W1(μ0,μ1) ≤ g(1) − g(0) ≤ W1(μ0,μ1).

Since coshp(−x) = coshq(x) for any x ∈ R, we get for any λ > 0,

sup
‖f ‖Lip≤1

(
Eν(eλg)

eλEνg

)
= max(coshp, coshq)

(
λW1(μ0,μ1)

)
.

Putting all together, we obtain, for any λ > 0,

αμ(λ) ≤ max(αμ0, αμ1)(λ) + log max(coshp, coshq)
(
λW1(μ0,μ1)

)
.

Since (coshq − coshp)′(x) = 2pq(cosh(px) − cosh(qx)), one has, for every x ≥ 0,

max(coshp, coshq)(x) = coshmin(p,q)(x).

Let us assume that p ≤ q . Lemma 3.3 ensures that, for every x ≥ 0,

log max(coshp, coshq)(x) = log coshp(x) ≤ cpx2.

On the other hand,

log coshp(x) = qx + log
(
p + qe−x

) ≤ qx.

Now, for x = xp , the slope of x �→ cpx2 is equal to q and the tangent is y = q(x − xp/2). On the other hand, the
convexity of x �→ log coshp(x) yields log coshp(x) ≤ q(x − xp) for x ≥ xp (drawing a picture may help the reader).
The desired conclusion follows immediately. �

The proof of Theorem 3.1 relies on Lemma 3.3 below, which provides a Gaussian bound for the Laplace transform
of a Lipschitz function with respect to a Bernoulli law. This lemma is an optimal version of the Hoeffding bound [26]
in the case of a Bernoulli law.

Lemma 3.3 (Two-point lemma). For any 0 ≤ p ≤ 1/2, we have

sup
x>0

x−2 log
(
peqx + qe−px

) = cp = q − p

4(log(q) − log(p))
(16)

with the natural conventions c0 = 0 and c1/2 = 1/8 as in Theorem 3.1. Moreover, the supremum in x is achieved for
x = 2(log(q) − log(p)).

The constant cp is also equal, as it will appear in the proof, to supλ>0 αB(p)(λ)/λ2. The classical Hoeffding bound
for this supremum is c1/2 = 1/8 which is the maximum of cp over p. Additionally, the quantity 1/(4cp) is the optimal
constant of the logarithmic Sobolev inequality for the asymmetric Bernoulli measure qδ0 + pδ1 (see Lemma 4.1).

Proof of Lemma 3.3. Let us define x̂p = log(q/p) and β(x) = x−2ψ(x) where

ψ(x) = log
(
peqx + qe−px

)
.
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The function ψ is “strongly convex” at the origin (ψ(0) = ψ ′(0) = 0 and ψ ′′(0) = pq and ψ ′′′(0) > 0) and linear at
infinity (ψ ′(∞) = q). Therefore, the supremum of β is achieved for some x > 0. The derivative of β has the sign of
γ (x) := xψ ′(x) − 2ψ(x). Furthermore,

γ ′(x) = xψ ′′(x) − ψ ′(x) and γ ′′(x) = xψ ′′′(x).

As a consequence, γ ′′ has the sign of ψ ′′′ which is positive on (0, x̂p) and negative on (̂xp,+∞). Since γ ′(0) = 0
and γ ′ achieves its maximum for x = x̂p and γ ′ goes to −q at infinity and there exists an unique yp > 0 (in fact
yp > x̂p) such that γ ′(yp) = 0. As a conclusion, since γ (0) = 0 and γ is increasing on (0, yp) and γ (x) goes to −∞
as x goes to infinity, γ (x) is equal to zero exactly two times: for x = 0 and x = zp > yp > x̂p . In fact, zp is equal to
2x̂p . Indeed, we have

ψ ′(x) = pq
eqx − e−px

peqx + qe−px
.

Now, we compute

ψ ′(2x̂p) = pq
(q/p)2q − (p/q)2p

p(q/p)2q + q(p/q)2p
= · · · = q2 − p2 = q − p

and

2ψ(2x̂p) = 2 log
(
p(q/p)2q + q(p/q)2p

)
= 2 log

(
(q + p)(q/p)q−p

)
= 2x̂pψ ′(2x̂p).

Thus, 2x̂p is the unique positive solution of 2ψ(x) = xψ ′(x). As a conclusion, we get cp = ψ(2x̂p)/(4x̂2
p), which

gives the desired formula after some algebra. �

Remark 3.4 (Advantage of direct Laplace bounds). Consider a mixture μ = pμ1 + qμ0 of two Gaussian laws μ0
and μ1 on R with same variance σ 2 and different means. Corollary 3.2 ensures that for every r ≥ 0,

βμ(r) ≤ 2 exp

(
− r2

2σ 2 + 4cpW1(μ0,μ1)2

)
.

This bound remains relevant as σ → 0 since we recover the bound for the Bernoulli mixing law ν = pδ1 + qδ0. On
the other hand, any concentration bound deduced from a logarithmic Sobolev inequality would blow up as σ goes to
zero, as we shall see in Section 4.

Remark 3.5 (Inhomogeneous tails). It is satisfactory to recover, when p goes to 0 (resp. 1), the concentration bound
of μ0 (resp. μ1) and not only the maximum of the bounds of the two components. It is possible to exhibit two regimes,
corresponding to small and big values of λ. Assume that μi = N (0, θ2

i ) for i ∈ {0,1} with θ1 > θ0 > 0. Theorem 2.1
gives

αμ(λ) ≤ θ2
1 λ2

2
+ (θ1 − θ0)λ.

On the other hand, one has

log
Eμ(eλf )

eEμ(λf )
≤

∫
αμθ (λ)ν(dθ) + log

∫
eHλ(θ)+λg(θ)ν(dθ),

where

Hλ(θ) = αμθ (λ) −
∫

αμθ ′ (λ)ν
(
dθ ′) and g(θ) = Eμθ f − Eμf.
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Then, Lemma 3.3 ensures that for every ε > 0,

log
∫

eHλ(θ)+λg(θ)ν(dθ) ≤ cp

(
Hλ(1) + λg(1) − Hλ(0) − λg(0)

)2

≤ cp

(
1

ε

∣∣Hλ(1) − Hλ(0)
∣∣2 + ε

∣∣λg(1) − λg(0)
∣∣2

)
.

Choosing ε = λ leads to

log
∫

eHλ(θ)+λg(θ)ν(dθ) ≤ cp

(
(θ2

1 − θ2
0 )2

4
+ (θ1 − θ0)

2
)

λ3.

As a conclusion αμ can be controlled in (at least) these two ways:

αμ(λ) ≤
⎧⎨⎩

θ2
1 λ2

2 + (θ1 − θ0)λ,

pθ2
1 +qθ2

0 λ2

2 + cp

( (θ2
1 −θ2

0 )2

4 + (θ1 − θ0)
2
)
λ3.

The second one provides sharp bounds for λ ≤ f (1/cp) whereas the first one is useful for λ ≥ f (1/cp) (where f is
an increasing function which is computable).

4. Gross–Poincaré inequalities for two-component mixtures

It is known that functional inequalities such as Poincaré and (Gross) logarithmic Sobolev inequalities provide, via
Laplace exponential bounds, dimension free concentration bounds, see, for instance, [34]. It is quite natural to ask for
such functional inequalities for mixtures. Before attacking the problem, some facts have to be emphasized.

As already mentioned in the introduction, a law μ with disconnected support cannot satisfy a Poincaré or a log-
arithmic Sobolev inequality. In particular, a mixture of laws with disjoint supports cannot satisfy such functional
inequalities. This observation suggests that in order to obtain a functional inequality for a mixture, one has probably
to control the considered functional inequality for each component of the mixture and to ensure that the support of
the mixture is connected. It is important to realize that such a connectivity problem is due to the peculiarities of the
functional inequalities, but does not pose a real problem for the concentration of measure properties, as suggested by
Theorem 3.1 and Remark 3.4, for instance. In the sequel, we will focus on the case of two-component mixtures, and
try to get sharp bounds on the Poincaré and logarithmic Sobolev constants. The two-component case is fundamental.
The extension of the results to more general finite mixtures is possible by following roughly the same scheme, see
Remark 4.2 below.

For the logarithmic Sobolev inequality of two-component mixtures, we will make use of the following optimal
two-point lemma, obtained years ago independently by Diaconis and Saloff-Coste and Higushi and Yoshida. An
elementary proof due to Bobkov is given by Saloff-Coste in his Saint-Flour Lecture Notes [45].

Lemma 4.1 (Optimal logarithmic Sobolev inequality for Bernoulli measures). For every p ∈ (0,1) and every
f : {0,1} → R, and with the convention (log(q) − log(p))/(q − p) = 2 if p = q = 1/2, we have

Entpδ1+qδ0

(
f 2) ≤ log(q) − log(p)

q − p
pq

(
f (0) − f (1)

)2
.

Moreover, the function of p in front of the right-hand side cannot be improved.

Note that the constant in front of the right-hand side of the inequality provided by Lemma 4.1 is nothing else
but pq/(4cp) where cp is as in Theorem 3.1 and Lemma 3.3. At this stage, it is important to understand the deep
difference between the Poincaré and the logarithmic Sobolev inequalities at the level of the two-point space. On the
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two-point space, the Poincaré inequality turns out to be a simple equality, and Lemma 4.1 is in fact an entropy-variance
comparison. Namely, for every p ∈ (0,1) and f : {0,1} → R,

Entpδ1+qδ0

(
f 2) ≤ log(q) − log(p)

q − p
Varpδ1+qδ0(f ).

This inequality is optimal and (log(q) − log(p))/(q − p) tends to +∞ as min(p, q) goes to 0. Also, for strongly
asymmetric Bernoulli measures, the entropy of the square can take extremely big values for a fixed prescribed vari-
ance. This elementary phenomenon helps to better understand the surprising difference in the behavior of the Poincaré
and logarithmic Sobolev constants of certain two-component mixtures exhibited in the sequel. Moreover, this obser-
vation suggests that we use asymmetric test functions inspired from the two-point space in order to show that the
logarithmic Sobolev constant may blow up when the mixing law is strongly asymmetric. We shall adopt however
another (quantitative) route.

4.1. Decomposition of the variance and entropy of the mixture

Let μ0 and μ1 be two laws on R
d , p ∈ [0,1], q = 1 − p, ν = pδ1 + qδ0, and μp = pμ1 + qμ0. Then, one can

decompose and bound the variance of f : Rd → R with respect to μp as

Varμp(f ) = Eν

(
θ �→ Varμθ (f )

) + Varν(θ �→ Eμθ f )

= Eν

(
θ �→ Varμθ (f )

) + pq(Eμ0f − Eμ1f )2

≤ max
(
CPI(μ0),CPI(μ1)

)
Eμ

(|∇f |2) + pq(Eμ0f − Eμ1f )2.

For the entropy, let us write

Entμp

(
f 2) = Eν

(
θ �→ Entμθ

(
f 2)) + Entν

(
θ �→ Eμθ

(
f 2)).

Applying Lemma 4.1 to the function θ �→
√

Eμθ (f
2), one gets

Entν
(
θ �→ Eμθ

(
f 2)) ≤ pq(logq − logp)

q − p

(√
Eμ0

(
f 2

) −
√

Eμ1

(
f 2

))2
.

Since Eμ0(f )Eμ1(f ) ≤
√

Eμ0(f
2)Eμ1(f

2), we have

(√
Eμ0

(
f 2

) −
√

Eμ1

(
f 2

))2 = Eμ0

(
f 2) + Eμ1

(
f 2) − 2

√
Eμ0

(
f 2

)
Eμ1

(
f 2

)
≤ Varμ0(f ) + Varμ1(f ) + (Eμ0f − Eμ1f )2.

(Note that the right-hand side is not equal to zero if μ0 = μ1.) Using the Poincaré inequalities for μ0 and μ1 provides
the following control of the entropy:

Entμp(f 2) ≤ max
(
CGI(μ0),CGI(μ1)

)
Eμ

(|∇f |2)
+ pq(logq − logp)

q − p
(Eμ0f − Eμ1f )2

+ max
(
CPI(μ0),CPI(μ1)

) logq − logp

q − p
Eμp

(|∇f |2).
(The worst term is the last one since it always explodes as min(p, q) goes to zero.) We thus see that in both cases
(Poincaré and logarithmic Sobolev inequalities), the problem can be reduced to the control of the mean-difference
term (Eμ0f − Eμ1f )2 in terms of Eμ(|∇f |2) for every smooth function f . Note that this task is impossible if μ0 and
μ1 have disjoint supports.
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Remark 4.2 (Finite mixtures). Let (μi)1≤i≤n be a family of probability measures on R
d . Consider the finite mixture

μ = M(ν, (μi)1≤i≤n) with mixing measure ν = p1δ1 + · · · + pnδn. The decomposition of variance is a general fact
valid in particular for μ, and writes

Varμ(f ) = Eν

(
θ �→ Varμθ (f )

) + Varν(θ �→ Eμθ f ).

Here again, the first term in the right-hand side may be controlled with the Poincaré inequality for each of the compo-
nents (μi)1≤i≤n. For the second term of the right-hand side, it remains to notice that for every g :Θ = {1, . . . , n} → R,

Varν(g) = 1

2

∑
i,j

pipj

(
g(i) − g(j)

)2 =
∑
i<j

pipj

(
g(i) − g(j)

)2

which gives for g = Eμθ (f ) the identity

Varν(Eμθ f ) =
∑
i<j

pipj (Eμi
f − Eμj

f )2.

As for the two-component case, this further reduces the Poincaré inequality for μ to the control of the mean-differences
(Eμi

f − Eμj
f )2 in terms of Eμ(|∇f |2). An analogous approach for the entropy and the logarithmic Sobolev inequal-

ity can be obtained by using [14], Theorem A1 p. 49, for instance.

4.2. Control of the mean-difference in dimension one

The following lemma provides the control of the mean-difference term (Eμ0f − Eμ1f )2 in the case where μ0 and μ1

are probability measures on R (i.e., d = 1).

Lemma 4.3 (Control of the mean-difference term in dimension one). Let μ0 and μ1 be two probability distrib-
utions on R absolutely continuous with respect to the Lebesgue measure. Let us denote by F0 (respectively F1) the
cumulative distribution function and f0 (respectively f1) the probability density function of μ0 (respectively μ1). If
co(S) denotes the convex envelope of the set S = supp(μ0)∪ supp(μ1), then, for any p ∈ (0,1), with μp = pμ1 +qμ0

and q = 1 − p, we have

(Eμ0f − Eμ1f )2 ≤ I (p)Eμp

(
f ′2), where I (p) =

∫
co(S)

(F1(x) − F0(x))2

pf1(x) + qf0(x)
dx,

and the constant I (p) cannot be improved. Moreover, the function p �→ I (p) is convex, and

1

2 max(p, q)
I

(
1

2

)
≤ I (p) ≤ 1

2 min(p, q)
I

(
1

2

)
. (17)

Furthermore, if S is not connected then I is constant and equal to ∞, while the convexity of I ensures that
supp∈(0,1) I (p) = max(I (0+), I (1−)) where

I
(
0+) = lim

p→0+ I (p) and I
(
1−) = lim

p→1− I (p),

and I (p) < ∞ for every p in (0,1) if and only if max(I (0+), I (1−)) < ∞.

Proof. For any smooth and compactly supported function f , an integration by parts gives for every θ ∈ {0,1},

Eμθ f =
∫

R

f (x)fθ (x)dx = −
∫

R

f ′(x)Fθ (x)dx.
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Since F1 − F0 = 0 outside co(S) we have

Eμ0f − Eμ1f =
∫

co(S)

(
F1(x) − F0(x)

)
f ′(x)dx.

It remains to use the Cauchy–Schwarz inequality, which gives

(Eμ0f − Eμ1f )2 =
(∫

co(S)

F0(x) − F1(x)√
pf1(x) + qf0(x)

f ′(x)
√

pf1(x) + qf0(x)dx

)2

≤ I (p)

∫
co(S)

f ′(x)2(pf1(x) + qf0(x)
)

dx = I (p)Eμp

(
f ′2).

The equality case of the Cauchy–Schwarz inequality provides the optimality of I (p). The bound (17) follows from
2 min(p, q)(f0 + f1)/2 ≤ pf1 + qf0 ≤ 2 max(p, q)(f0 + f1)/2. The other claims of the lemma are immediate. �

4.3. Control of the Poincaré and logarithmic Sobolev constants

By combining the decomposition of the variance and of the entropy given at the beginning of the current section with
Lemmas 4.1 and 4.3, we obtain the following theorem.

Theorem 4.4 (Poincaré and logarithmic Sobolev inequalities for two-component mixtures). Let μ0 and μ1 be
two probability distributions on R absolutely continuous with respect to the Lebesgue measure, and consider the
two-component mixture μp = pμ1 + qμ0 with 0 ≤ p ≤ 1 and q = 1 − p. If I (p) is as in Lemma 4.3 then for every
p ∈ (0,1),

CPI(μp) ≤ max
(
CPI(μ0),CPI(μ1)

) + pqI (p)

and

CGI(μp) ≤ max
(
CGI(μ0),CGI(μ1)

) + logq − logp

q − p

(
pqI (p) + max

(
CPI(μ0),CPI(μ1)

))
.

In particular, since supp∈(0,1) I (p) = max(I (0+), I (1−)) where I (0+) and I (1−) are as in Lemma 4.3, we get the
following uniform bounds:

sup
p∈(0,1)

CPI(μp) ≤ max
(
CPI(μ0),CPI(μ1)

) + 1

4
max

(
I
(
0+)

, I
(
1−))

.

Moreover, if I (0+) < ∞ (respectively if I (1−) < ∞) then

lim sup
p→0+ respectively 1−

CPI(μp) ≤ max
(
CPI(μ0),CPI(μ1)

)
.

The upper bounds given by Theorem 4.4 must be understood in [0,∞] since the right-hand side can be infinite
(in such a case the bound is of course useless). Additionally, by Lemma 4.3, the function p �→ I (p) is convex, and
it is possible that I (1/2) < ∞ while max(I (0+), I (1−)) = ∞. The following corollary provides a uniform bound
on the Poincaré constant of a two-component mixture in terms of I (1/2) without using max(I (0+), I (1−)). This
corollary has no immediate logarithmic Sobolev counterpart, as explained in the remark below following the proof of
the corollary.

Corollary 4.5 (Uniform Poincaré inequality for two-component mixtures). Let μ0 and μ1 be two probability
distributions on R absolutely continuous with respect to the Lebesgue measure and consider the mixture μp = pμ1 +
qμ0 for every p ∈ [0,1]. We have then

max
p∈[0,1]

CPI(μp) ≤ max
(
CPI(μ0),CPI(μ1)

) + 1

2
I

(
1

2

)
,
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where I (1/2) is as in Lemma 4.3.

Proof. We observe that thanks to (17), one has

pqI (p) = max(p, q)min(p, q)I (p) ≤ 1

2
I

(
1

2

)
and Theorem 4.4 provides the desired result. �

Remark 4.6 (Blow-up of the logarithmic Sobolev constant). With the notations of Corollary 4.5, we have, by using
the same argument, that for every p ∈ (0,1),

CGI(μp) ≤ max
(
CGI(μ0),CGI(μ1)

) + 1

2

log(q) − log(p)

q − p

(
I

(
1

2

)
+ max

(
CPI(μ0),CPI(μ1)

))
.

Since (log(q) − log(p))/(q − p) goes to +∞ at speed − log(min(p, q)) as min(p, q) goes to 0, we cannot derive a
uniform logarithmic Sobolev inequality for two-component mixtures under the sole assumption that I (1/2) < ∞. Sur-
prisingly, we shall see in the sequel that this behavior is sharp and cannot be improved in general for two-component
mixtures.

4.4. The fundamental example of two Gaussians with identical variance

It was already observed by Johnson in [29], Theorem 1.1, p. 536, that for the finite univariate Gaussian mixture
μ = p1 N (m1, τ

2) + · · · + pnN (mn, τ
2), we have

CPI(μ) ≤ τ

(
1 + σ 2

τ min1≤i≤n pi

exp

(
σ 2

τ min1≤i≤n pi

))
,

where σ 2 = (p1m
2
1 +· · ·+pnm

2
n)− (p1m1 +· · ·+pnmn)

2 is the variance of p1δm1 +· · ·+pnδmn . This upper bound
on the Poincaré constant blows up as min1≤i≤n pi goes to 0. Madras and Randall have also obtained [35], Theorem 1.2
and Section 5, upper bounds for the Poincaré constant of non-Gaussian finite mixtures under an overlapping condition
on the supports of the components. As for the result of Johnson mentioned earlier, their upper bound blows up when
the minimum weight of the mixing law min1≤i≤n pi goes to 0. In the sequel, we show that the Poincaré constant can
remain actually bounded as min1≤i≤n pi goes to 0. To fix ideas, we will consider the special case of a two-component
mixture of two Gaussian distributions N (−a,1) and N (+a,1). As usual, we denote by Φ (respectively ϕ) the cumu-
lative distribution function (respectively probability density function) of the standard Gaussian measure N (0,1).

Corollary 4.7 (Mixture of two Gaussians with identical variance). For any a > 0 and 0 < p < 1, let μ0 =
N (−a,1) and μ1 = N (+a,1), and define the two-component mixture μp = pμ1 + qμ0. Then

CPI(μp) ≤ 1 + pq4a2
(

Φ(2a)e4a2 + 2a√
2π

e2a2 + 1

2

)
.

Additionally, a sharper upper bound for p = 1/2 is given by

CPI(μ1/2) ≤ 1 + a
2Φ(a) − 1

2ϕ(a)
.

Note that as a function of p, the obtained upper bounds on the constants are continuous on the whole interval [0,1].
The bound (8) expressed in the univariate situation implies that CPI is always greater than or equal to the variance of
the probability measure. Here, the variance of μp is equal to 1+4apq . Then the upper bound on the Poincaré constant
given above is sharp for any p ∈ (0,1) as a goes to 0.
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Proof of Corollary 4.7. Lemma 4.3 ensures that p �→ I (p) is a convex function: let us have a look at I (0+) and
I (1−) which are here equal by symmetry. Since

Φ(x + a) − Φ(x − a) =
∫ +a

−a

ϕ(x + u)du ≤ 2a

{
ϕ(x + a) if x < −a,

ϕ(0) if −a ≤ x ≤ a,

ϕ(x − a) if a < x,

one has

I
(
1−) =

∫
R

(Φ(x + a) − Φ(x − a))2

ϕ(x − a)
dx

≤ 4a2
(∫ −a

−∞
ϕ(x + a)2

ϕ(x − a)
dx + ϕ(0)2

∫ +a

−a

1

ϕ(x − a)
dx +

∫ +∞

+a

ϕ(x − a)dx

)

≤ 4a2
(

e4a2
∫ −a

−∞
e−(x+3a)2/2 1√

2π
dx + 1√

2π

∫ 2a

0
ex2/2 dx +

∫ +∞

0
ϕ(x)dx

)
≤ 4a2

(
Φ(2a)e4a2 + 2a√

2π
e2a2 + 1

2

)
.

Then, the first statement follows from Theorem 4.4. For the second one, by Lemma 4.8 given at the end of the section,
we have

I

(
1

2

)
= 2

∫
R

Φ(x + a) − Φ(x − a)

ϕ(x + a) + ϕ(x − a)

(
Φ(x + a) − Φ(x − a)

)
dx

≤ 2τa

∫
R

(
Φ(x + a) − Φ(x − a)

)
dx

= 4aτa.

This gives as expected I (1/2) ≤ 2a(2Φ(a) − 1)/ϕ(a). �

The following lemma shows that I (1/2) is related to some kind of “band isoperimetry.” Note that Lemma 4.3
provides a more general approach beyond the Gaussian case.

Lemma 4.8 (Band bound). For any x ∈ R and any a > 0,

Φ(x + a) − Φ(x − a)

ϕ(x + a) + ϕ(x − a)
≤ Φ(+a) − Φ(−a)

ϕ(+a) + ϕ(−a)
= τa.

Moreover, this constant cannot be improved. As an example, one has τ1 ≈ 1.410686134.

Proof. Assume that a = 1. Let τ > 0 and define for any x ∈ R

α(x) = Φ(x + 1) − Φ(x − 1) − τ
(
ϕ(x + 1) + ϕ(x − 1)

)
.

One has α′(x) = 0 iff τ(1 + x + (x − 1)e2x) = e2x − 1. Thus, either x = 0, or

τ−1 = β(x) = −1 + x coth(x).

The function β is even, convex, and achieves its global minimum 0 at x = 0. Therefore, the equation α′(x) = 0 has
three solutions {−xτ ,0,+xτ }, where xτ > 0 satisfies τβ(xτ ) = 1. Since limx→±∞ α(x) = 0, one has α ≤ 0 on R if
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and only if α(0) ≤ 0 and α′′(0) ≤ 0. The condition α(0) ≤ 0 is fulfilled as soon as

τ ≥ Φ(+1) − Φ(−1)

ϕ(+1) + ϕ(−1)
,

whereas the condition α′′(0) ≥ 0 holds for any τ . The case where a �= 1 is similar. �

Remark 4.9 (Relation with isoperimetry). If Ax = [x − a, x + a] then ∂Ax = {x − a, x + a}. If γ = N (0,1) then
γ (Ax) = Φ(x + a) − Φ(x − a) while γs(∂Ax) = ϕ(x + a) + ϕ(x − a) where γs is the surface measure associated
to γ , see [32]. Lemma 4.8 expresses that for any A ∈ Ca = {Ax;x ∈ R}, we have γ (A) ≤ τaγs(∂A) and equality is
achieved for A = A0. Recall that the Gaussian isoperimetric inequality states that (ϕ ◦Φ−1)(γ (A)) ≤ γs(∂A) for any
regular A ⊂ R with equality when A is a half line, see [32] and references therein.

4.5. Gallery of examples of one-dimensional two-component mixtures

Recall that if μ is a probability measure on R with density f > 0 and median m then

max(b−, b+) ≤ CGI(μ) ≤ 16 max(b−, b+), (18)

where

b+ = sup
x>m

μ
([x,+∞)

)
log

(
1 + 1

2μ([x,+∞))

)∫ x

m

1

f (y)
dy

and

b− = sup
x<m

μ
(
(−∞, x]) log

(
1 + 1

2μ((−∞, x])
)∫ m

x

1

f (y)
dy.

These bounds appear in [5], Remark 7, p. 9, as a refinement of a famous criterion by Bobkov and Götze based on
previous works of Hardy and Muckenhoupt, see also [41]. More generally, the notion of measure capacities constitutes
a powerful tool for the control of CPI and CGI, see [38] and [4,5]. In the present article, we only use a weak version of
such criteria, stated in the following lemma, and which can be found, for instance, in [1], Chapter 6, p. 107. We will
typically use it in order to show that CGI(p1μ + qμ0) blows up as p goes to 0 or 1 for certain choices of μ0 and μ1.

Lemma 4.10 (Crude lower bound). Let μ be some distribution on R with density f > 0 then for every median m of
μ and every x ≤ m, by denoting Ψ (u) = −u log(u),

150CGI(μ) ≥ Ψ
(
μ(−∞, x])∫ m

x

1

f (y)
dy.

In this whole section, μ0 and μ1 are absolutely continuous probability measures on R with cumulative distribution
functions F0 and F1 and probability density functions f0 and f1. For every 0 ≤ p ≤ 1, we consider the two-component
mixture μp = pμ1 + qμ0. The sharp analysis of the logarithmic Sobolev constant for finite mixtures is a difficult
problem. Also, we decided to focus on some enlightening examples, by providing a gallery of special cases of μ0 and
μ1 for which we are able to control the dependence over p of the Poincaré and logarithmic Sobolev constant of μp .
Some of them are quite surprising and reveal hidden subtleties of the logarithmic Sobolev inequality as min(p, q)

goes to 0 . . . . The key tools used here are Theorem 4.4 and Lemma 4.10.

4.5.1. One Gaussian and a sub-Gaussian
Setting. Here μ1 = N (0,1) while μ0 is such that f0 ≤ κf1 for some finite constant κ ≥ 1.

Claim. For every 0 < p < 1 we have CPI(μp) ≤ max(1,CPI(μ0)) + Dq . This upper bound goes to max(1,CPI(μ0))

as p → 1 and is additionally uniformly bounded when p runs over (0,1). Similarly, CGI(μp) ≤ α − β log(p) for
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some constants α,β > 0 which do not depend on p. This upper bound blows up at speed − log(p) as p → 0. This is
actually the real behavior of CGI(μp) in some situations as shown in Section 4.5.4!

Proof. Since μ1 = N (0,1), we have CPI(μ1) = 1 and CGI(μ1) = 2. By hypothesis, we have F0 ≤ κF1 and 1 − F0 ≤
κ(1 − F1). Thus, for some D > 0 and every 0 < p < 1,

I (p) ≤ 2(1 + κ2)

p

(∫ 0

−∞
F 2

1 (x)

f1(x)
dx +

∫ +∞

0

(1 − F1(x))2

f1(x)
dx

)
= D

p
< ∞.

Now Theorem 4.4 shows that CPI(μp) ≤ max(1,CPI(μ0)) + Dq . The desired upper bound for CGI(μp) follows by
the same way and we leave the details to the reader. �

4.5.2. Two Gaussians with identical mean
We have already considered the mixture of two Gaussians with identical variances and different means in Section 4.4.
Here we consider a mixture of two Gaussians with identical means and different variances. It turns out that this
Gaussian mixture is a simple Gaussian sub-case of Section 4.5.1, for which we are able to provide a more precise
bound for CGI.

Setting. μ1 = N (0, σ 2) with σ > 1 and μ0 = N (0,1).

Claim. There exists C > 0 such that, for any p < 1/2,

I (p) ≤ C

(
1

p

)(σ 2−2)/(σ 2−1)

and CPI(μp) ≤ σ 2 + Cp1/(σ 2−1).

Moreover we have supp∈(0,1) CPI(μp) < ∞.

Proof. We have f0 ≤ κf1 for some κ > 1, and we recover the setting of Section 4.5.1. Let us provide now an upper
bound for I (p) when p is close to 0. We have pf1(x) ≥ qf0(x) if and only if |x| ≥ xp where

xp =
√

2σ 2

σ 2 − 1
log

(
qσ

p

)
.

We have, for some constant C > 0,

I (p) ≤ 2
∫ −1

−∞
F1(x)2

pf1(x) + qf0(x)
dx + 2

∫ 0

−1

F1(x)2

f0(x)
dx

≤ 2
∫ −1

−∞
1

x2

f1(x)2

pf1(x) + qf0(x)
dx + C,

since 2q ≥ 1 and F1(x) ≤ f1(x)/|x|. If p is sufficiently small then xp > 1 and

∫ −1

−∞
1

x2

f1(x)2

pf1(x) + qf0(x)
dx ≤ 2

∫ −1

−xp

1

x2

f1(x)2

f0(x)
dx + 1

p
F1(−xp).

By the definition of xp , for some C > 0,

1

p
F1(−xp) ≤ C

p
e−x2

p/(2σ 2) ≤ C

(
1

p

)(σ 2−2)/(σ 2−1)

.
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If σ 2 ≤ 2, then this function of p is bounded. On the other hand, for some C > 0,∫ −1

−xp

1

x2

f1(x)2

f0(x)
dx ≤ C

∫ −1

−xp

1

x2
e(σ 2−2)x2/(2σ 2) dx.

If σ 2 ≤ 2, then this function of p is bounded. If σ 2 > 2, then, for some C > 0,∫ −1

−xp

e(σ 2−2)x2/(2σ 2) dx ≤ Ce(σ 2−2)x2
p/(2σ 2) ≤ C

(
1

p

)(σ 2−2)/(σ 2−1)

.

As a conclusion, if σ 2 ≤ 2, then supp∈(0,1) I (p) < ∞, whereas if σ 2 > 2, then for some constant C > 0 and any
p < 1/2,

I (p) ≤ C

(
1

p

)(σ 2−2)/(σ 2−1)

.

The bound of CPI follows from Theorem 4.4. For the logarithmic Sobolev inequality, one may use the Bobkov-Götze
criterion. �

4.5.3. Two uniforms with overlapping supports
Setting. Here μ0 = U ([0,1]) and μ1 = U ([a, a + 1]) for some a ∈ [0,1].

Claim. For every p ∈ (0,1), we have

CPI(μp) ≤ π−2 + a2

3

(
3pq(1 − a) + a

)
and for p ≤ 1/2,

CGI(μp) ≥ a2

600
log(1/p).

Proof. It is known (see [19]) that CPI(U ([0,1]) = π−2 while CGI(U ([0,1]) = 2π−2. By translation invariance, we
also have CPI(U ([1,1+a]) = π−2 and CGI(U ([1,1+a]) = 2π−2. The desired result follows from Theorem 4.4 since
for p ∈ (0,1),

I (p) =
∫ a

0

x2

q
dx +

∫ 1

a

a2

p + q
dx +

∫ a+1

1

(1 + a − x)2

p
dx = a2

3pq

(
3pq(1 − a) + a

)
. �

The minoration of CGI(μp) follows from Lemma 4.10:

150CGI(μp) ≥ Ψ
(
μp(0, a/2])∫ a

a/2

1

fp(y)
dy = Ψ

(
pa

2

)
a

2p
.

4.5.4. One Gaussian and a uniform
Setting. Here μ1 = N (0,1) and μ0 = U ([−1,+1]).

Claim. There exists a real constant C > 0 such that CGI(μp) ≥ −C log(p) for every p ∈ (0,1). Also, CGI(μp) blows
up at speed − log(p) as p → 0+. Moreover, μp satisfies a sub-Gaussian concentration of measure for Lipschitz
functions, uniformly in p ∈ (0,1). This similarity with the Bernoulli law B(p) suggests that the blow up phenomenon
of CGI(μp) is due to the asymptotic support reduction from R to [−1,+1] when p goes to 0+. Actually, Section 4.5.5
shows that this intuition is false.



92 D. Chafaï and F. Malrieu

Proof. We have f0 ≤ κf1 for some constant κ ≥ 1. Also, for every p ∈ (0,1), the result of Section 4.5.1 gives that
CGI(μp) ≤ α − β log(p) for some constants α > 0 and β > 0 independent of p. Now, by Lemma 4.10,

150CGI(p) ≥ Ψ
(
pF1(−2) + qF0(−2)

) ∫ 0

−2

1

pf1(u) + qf0(u)
du

= Ψ
(
pF1(−2)

)∫ 0

−2

1

pf1(u) + qf0(u)
du

≥ −
(

F1(−2)

∫ −1

−2

1

f1(u)
du

)
log(p). �

4.5.5. Surprising blow up
Setting. Here f1(x) = Z−1

1 e−x2
and f0(x) = Z−1

0 e−|x|a for some fixed real number a > 2, with Z1 = π−1/2 and
Z0 = 2Γ (a−1)a−1. Note that μ0 has lighter tails than μp with p > 0.

Claim. There exists a real constant C > 0 which may depend on a such that

CGI(μp) ≥ C
(− log(p)

)1−2a−1

for small enough p. In particular, CGI(μp) blows up as p → 0+.

Comments. As mentioned in the Introduction, we have max(CGI(μ0),CGI(μ1)) < ∞. We have seen in Section 4.5.2
that CGI(μp) does not blow up as p → 0+ if a = 2. Here a > 2, and μ0 has strictly lighter tails than μp for every
p ∈ (0,1), and moreover, this difference is at the level of the log-power of the tails, not only at the level of the constants
in front of the log-power. The potential (− log-density) of μp has multiple wells, see Fig. 1. This example shows also
that the blow up speed of CGI(μp) as p → 0+ cannot be improved by considering a mixture of fully supported laws.
Note that μ0 → U ([−1,+1]) as a → ∞, and the result is thus compatible with Section 4.5.4.

Proof of Claim. Since f0 ≤ κf1 for some constant κ ≥ 1, Section 4.5.1 gives CGI(μp) < ∞ for every p ∈ (0,1).
Moreover, p �→ CGI(μp) is uniformly bounded on (p0,1) for every p0 > 0. Let us study the behavior of this function

Fig. 1. Density and second derivative of − log-density of μp for Section 4.5.5 with p = 1/100 and a = 4. The second plot reveals a deep multiple
wells potential.
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as p → 0. In the sequel we assume that p < p0 where p0 satisfies p0Z0 = q0Z1. The immediate tails comparison gives
qf0(x) ≤ pf1(x) for large enough x. Let us find some explicit bound on x. The inequality qf0(x) ≤ pf1(x) writes
|x|a − x2 ≥ log(qZ1) − log(pZ0). Now, |x|a − x2 ≥ 1

2 |x|a for |x|a−2 ≥ 2. The non-negative solution of 1
2 |x|a =

log(qZ1) − log(pZ0) is

xp =
(

2 log

(
q

p

Z1

Z0

))1/a

.

If p is small enough, then |xp|a−2 ≥ 2 and therefore, qf0(x) ≤ pf1(x) for any |x| ≥ xp . Now, by Lemma 4.10, for
small enough p,

150CGI(μp) ≥ Ψ
(
pF1(−2xp) + qF0(−2xp)

) ∫ 0

−2xp

1

pf1(u) + qf0(u)
du.

For small enough p, we have max(F0,F1)(−2xp) < e−1 and thus, for some constant C > 0,

Ψ
(
pF1(−2xp) + qF0(−2xp)

) ≥ Ψ
(
pF1(−2xp)

) ≥ −pF1(−2xp) log(p) ≥ C
e−4x2

p

xp

Ψ (p).

On the other hand, since qf0(x) ≤ pf1(x) for |x| ≥ xp , we get for some constant C > 0,∫ 0

−2xp

1

pf1(u) + qf0(u)
du ≥

∫ −xp

−2xp

du

2pf1(u)
≥ Ce4x2

p

pxp

.

Consequently, for some real constant C > 0,

150CGI(μp) ≥ −C
log(p)

x2
p

.

Now, by using the explicit expression of xp , we finally obtain for some real constant C > 0,

CGI(μp) ≥ C
(− log(p)

)1−2a−1
. �

4.6. Multivariate mean-difference bound

It is quite natural to ask for a multidimensional counterpart of the mean-difference Lemma 4.3. Let us give some
informal ideas to attack this problem. Let μ0 and μ1 be two probability measures on R

d , and consider as usual the
mixture μp = pμ1 + qμ0 with p ∈ (0,1) and q = 1 − p. It is well known (see, for instance, [51]) that if μ0 and μ1
are regular enough, then there exists a map T : Rd → R

d such that the image measure T · μ0 of μ0 by T is μ1 and

W2(μ0,μ1)
2 =

∫
Rd

∣∣T (x) − x
∣∣2

μ0(dx).

If μ(s) denotes the image of μ0 by x �→ sT (x) + (1 − s)x for every 0 < s < 1, then

(Eμ1f − Eμ0f )2 =
(∫ 1

0

∫
Rd

(
T (x) − x

) · ∇f
(
sT (x) + (1 − s)x

)
dμ0(x)ds

)2

.

By the Cauchy–Schwarz inequality, we get

(Eμ1f − Eμ0f )2 ≤
(∫

Rd

∣∣T (x) − x
∣∣2 dμ0(x)

)(∫ 1

0

∫
Rd

∣∣∇f (x)
∣∣2 dμ(s)(x)ds

)
and therefore

(Eμ1f − Eμ0f )2 ≤ W2(μ1,μ0)
2
∫

Rd

∫ 1

0

∣∣∇f (x)
∣∣2 dμ(s)(x)ds.
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This shows that in order to control the mean-difference term (Eμ1f − Eμ0f )2 by Eμp(|∇f |2), it is enough to find a
real constant Cp > 0 such that μ ≤ Cpμp where

μ(A) =
∫ 1

0
μ(s)(A)ds.

Unfortunately, this is not feasible if for some s ∈ (0,1), the support of μ(s) is not included in the support of μp (union
of the supports of μ0 and μ1 if p ∈ (0,1)). This problem is due to the linear interpolation used to define μ(s) via T . The
linear interpolation will fail if the support of μp is a non-convex connected set. Let us adopt an alternative pathwise
interpolation scheme. For each x ∈ S0 = supp(μ0), let us pick a continuous and piecewise smooth interpolating path
γx : [0,1] → R

d such that γx(0) = x and γx(1) = T (x). Then for every smooth f : Rd → R,

f (x) − f
(
T (x)

) =
∫ 1

0
γ̇x(s)∇f

(
γx(s)

)
ds ≤

√∫ 1

0

∣∣γ̇x(s)
∣∣2 ds

√∫ 1

0
|∇f |2(γx(s)

)
ds.

As a consequence, we have

(Eμ0f − Eμ1f )2 ≤
(∫

S0

∫ 1

0

∣∣γ̇x(s)
∣∣2 dsμ0(dx)

)(∫
S0

∫ 1

0
|∇f |2(γx(s)

)
dsμ0(dx)

)
.

Now, let μ(s) be the image measure of μ0 by the map x �→ γx(s), where here again μ is the measure defined by

μ(A) = ∫ 1
0 μ(s)(A)ds. With this notation, we have

(Eμ0f − Eμ1f )2 ≤
(∫

S0

∫ 1

0

∣∣γ̇x(s)
∣∣2 dsμ0(dx)

)(∫
Rd

|∇f |2(x)μ(dx)

)
.

Note that(∫
S0

∫ 1

0

∣∣γ̇x(s)
∣∣2 dsμ0(dx)

)
≥ W2(μ0,μ1)

2

with equality when γx is the linear interpolation map between x and T (x) for every x ∈ S0. The mean-difference
control that we seek follows then immediately if there exists a real constant Cp > 0 such that μ ≤ Cpμp . The problem
is thus reduced to the choice of an interpolation scheme γ such that the support of μ is included in the support of μp

(which is the union of the supports of μ0 and μ1 as soon as 0 < p < 1). Let us give now two enlightening examples.

Example 4.11 (When the linear interpolation map is optimal). Consider the two-dimensional example where μ0 =
U ([0,2] × [0,2]) and μ1 = U ([1,3] × [0,2]). If γ is the natural linear interpolation map given by γx(s) = x + se1
then μ(s) = U ([s, s + 2] × [0,2]) is supported inside supp(μ0) ∪ supp(μ1). This is due to the convexity of this union.
Also, the linear interpolation map is here optimal. Moreover, elementary computations reveal that

Cp = 1

min(p, q)
and W2(μ0,μ1)

2 = 1.

Therefore, for every 0 < p < 1 and any smooth f : R2 → R,

(Eμ0f − Eμ1f )2 ≤ 1

min(p, q)
Eμp

(|∇f |2).
Example 4.12 (When the linear interpolation map fails). In contrast, for the example, where μ0 = U ([0,2]× [0,2])
and μ1 = U ([1,3] × [1,3]) and if γ is the natural linear interpolation map given by γx(s) = x + s(e1 + e2) then μ(s)

is not supported in supp(μ0)∪ supp(μ1) and this union is not convex. If A = [0,1]× [2,3] then μ(s)(A) > 0 for every
0 < s < 1 while μp(A) = 0 for every 0 < p < 1 and hence there is no finite constant Cp > 0 such that μ ≤ Cpμp .
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This shows that the linear interpolation map fails here. Let us give an alternative interpolation map which leads to the
desired result. We set for every x ∈ supp(μ0) and every 0 ≤ s ≤ 1, with 1 = (e1, e1),

γx(s) =
{

(1 − s)x + 2s1 if 0 ≤ s ≤ 1
2 ,

sx + 1 otherwise.

This corresponds to a two-steps linear interpolation between the squares [0,2]2 and [1,3]2 with intermediate square
[1,2]2. For every 0 ≤ s ≤ 1,

μ(s) =
{

U
([2s,2]2

)
if 0 ≤ s ≤ 1

2 ,
U

([1,1 + 2s]2
)

otherwise.

Note that we constructed γ in such a way that μ(s) is always supported in supp(μ0) ∪ supp(μ1). Elementary compu-
tations reveal that for every 0 < p < 1,∫

S0

∫ 1

0

∣∣γ̇x(s)
∣∣2 dsμ0(dx) = 8

3
and μ ≤ 4

min(p, q)
μp.

Finally, putting all together, we obtain for every 0 < p < 1 and smooth f : R2 → R,

(Eμ0f − Eμ1f )2 ≤ 32

3 min(p, q)
Eμp

(|∇f |2).
As a conclusion, one can retain that the natural interpolation problem associated to the control of the mean-difference
involves a kind of support-constrained interpolation for mass transportation.
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