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Abstract. In a convolution model, we observe random variables whose distribution is the convolution of some unknown density
f and some known noise density g. We assume that g is polynomially smooth. We provide goodness-of-fit testing procedures for
the test H0: f = f0, where the alternative H1 is expressed with respect to L2-norm (i.e. has the form ψ−2

n ‖f − f0‖2
2 ≥ C). Our

procedure is adaptive with respect to the unknown smoothness parameter τ of f . Different testing rates (ψn) are obtained according
to whether f0 is polynomially or exponentially smooth. A price for adaptation is noted and for computing this, we provide a non-
uniform Berry–Esseen type theorem for degenerate U -statistics. In the case of polynomially smooth f0, we prove that the price for
adaptation is optimal. We emphasise the fact that the alternative may contain functions smoother than the null density to be tested,
which is new in the context of goodness-of-fit tests.

Résumé. Dans un modèle de convolution, les observations sont des variables aléatoires réelles dont la distribution est la convoluée
entre une densité inconnue f et une densité de bruit g supposée entièrement connue. Nous supposons que g est de régularité
polynomiale. Nous proposons un test d’adéquation de l’hypothèse H0 : f = f0 lorsque l’alternative H1 est exprimée à partir de
la norme L2 (i.e. de la forme ψ−2

n ‖f − f0‖2
2 ≥ C). Cette procédure est adaptative par rapport au paramètre inconnu τ qui décrit

la régularité de f . Nous obtenons différentes vitesses de test (ψn) en fonction du type de régularité de f0 (polynomiale ou bien
exponentielle). L’adaptativité induit une perte sur la vitesse de test, perte qui est calculée grâce à un théorème de type Berry–Esseen
non-uniforme pour des U -statistiques dégénérées. Dans le cas d’une régularité polynomiale pour f0, nous prouvons que cette perte
est optimale. Soulignons que l’alternative peut éventuellement inclure des densités qui sont plus régulières que la densité à tester
sous l’hypothèse nulle, ce qui est un point de vue nouveau pour les tests d’adaptation.
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1. Introduction

Convolution model

Consider the convolution model where the observed sample {Yj }1≤j≤n comes from the independent sum of indepen-
dent and identically distributed (i.i.d.) random variables Xj and i.i.d. noise variables εj . Variables Xj have unknown
density f and Fourier transform Φ (where Φ(u) = ∫

exp(ixu)f (x)dx) and the noise variables εj have known den-
sity g and Fourier transform Φg

Yj = Xj + εj , 1 ≤ j ≤ n. (1)
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The density of the observations is denoted by p and its Fourier transform Φp . Note that we have p = f ∗ g, where ∗
denotes the convolution product and Φp = Φ · Φg .

The underlying unknown density f is always supposed to belong to L1 ∩L2. We shall consider probability density
functions belonging to the class

F (α, r,β,L) =
{
f : R → R+,

∫
f = 1,

1

2π

∫ ∣∣Φ(u)
∣∣2|u|2β exp

(
2α|u|r)du ≤ L

}
, (2)

for L a positive constant, α > 0, 0 ≤ r ≤ 2, β ≥ 0 and either r > 0 or r = 0 and then β > 0. Note that the case r = 0
corresponds to Sobolev densities whereas r > 0 corresponds to infinitely differentiable (or supersmooth) densities.

We consider noise distributions whose Fourier transform does not vanish on R: Φg(u) �= 0, ∀u ∈ R. Typically, in
nonparametric estimation in convolution models the distinction of two different behaviours for the noise distribution
occurs: for some constant cg > 0, polynomially smooth noise∣∣Φg(u)

∣∣∼ cg|u|−σ , |u| → ∞, σ > 1; (3)

exponentially smooth noise |Φg(u)| ∼ cg exp(−γ |u|s), |u| → ∞, γ, s > 0.
The exponentially smooth noise case is studied in a separate article and in a more general semiparametric frame-

work [3].
There is a huge literature on convolution models published during the past two decades and focusing mainly

on estimation problems. Our purpose here is to provide goodness-of-fit testing procedures on f , for the test of the
hypothesis H0: f = f0, with alternatives expressed with respect to L2-norm, and being adaptive with respect to the
unknown smoothness parameter of f .

Nonparametric goodness-of-fit testing has been studied extensively in the context of direct observations (namely
a sample distributed from the density f to be tested), but also for regression or in the Gaussian white noise model.
We refer to [11] for an overview on the subject. Analytic densities (namely densities in F (α, r,β,L) with r = 1 and
β = 0) first appeared in [13] who gives goodness-of-fit testing procedures with respect to pointwise and L∞-risks
in the Gaussian white noise model. Procedures with respect to L2-risk are given in [11] for Sobolev and analytic
densities in the same model.

However, in the case of direct observations, there are few adaptive procedures. The pioneering work of [14] intro-
duced adaptive testing procedures over scales of Besov classes and with respect to L2-risk. Let us also mention [4] and
[5] for adaptive goodness-of-fit tests with a composite null hypothesis. Up to our knowledge, adaptive procedures do
not exist in the case of indirect observations. The convolution model provides an interesting setup where observations
may come from a signal observed through some noise.

There are two natural but very different approaches for the goodness-of-fit testing problem in the noisy setup. One
can think of testing either the resulting density p or the initial density f . As density g is known, the null hypothesis H0
may be expressed equivalently in the form f = f0 or p = p0. Moreover, testing p would result in better rates of testing
than those obtained for f (as the convoluted density p is smoother than f ). However, the alternative hypotheses in
those two setups are not in a one-to-one correspondence. Here, we would like to emphasise that we only consider the
latter problem of goodness-of-fit testing on f . Indeed, we think it more appropriate to express the alternatives by using
the L2-distance between f and the null density f0, which is always larger than the L2-distance between p and p0.
Moreover, there are cases where aspects of the underlying density f (apart from its smoothness) may be relevant to the
statistician, like its modality, symmetry, monotonicity on some interval and these features may be strongly perturbed
after convolution with some noise.

These two different points of view arise from a more general issue: how is the direct observations case related to
the noisy one? As we want to focus on alternatives of the form ψ−2

n ‖f − f0‖2
2 ≥ C (rather than ψ−2

n ‖p − p0‖2
2 ≥ C ),

results from the direct observations case cannot be used directly in our setting. Moreover, adaptivity of our procedure
relies on the construction of a grid over the set of densities f . Then, using the corresponding grid on the set of
densities p would not necessarily lead to an adaptive procedure.

However, one can compare the rates obtained in the two settings. Indeed, one can note that the rate we obtain
for polynomially smooth densities in the alternative, namely (n/

√
log logn)−2β/(4β+4σ+1), corresponds to the rate

obtained by [14] in the Gaussian white noise setting, namely (n/
√

log log(n))−2β/(4β+1). Moreover, the rate we get for
supersmooth densities in the alternative, namely n−1/2(logn)(4σ+1)/(4r)(log log logn)1/4, shows an extra log log logn
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factor with respect to the non-adaptive result in [11], in the particular case of supersmooth densities with r = 1,
namely n−1/2(logn)1/4. Thus, we conjecture that the loss for adaptation on the direct observations case should be
at most (log log logn)1/4. We deduce these rates when f0 is smoother than the functions belonging to the alternative
hypothesis, which is the usual setup for goodness-of-fit testing. Moreover, we also derive rates of testing when f0 is
less smooth than the functions belonging to the alternative hypothesis, which is a new setup. In the latter case, we
observe that the testing rate is the minimax testing rate associated to the smoothness of f0.

Nonparametric goodness-of-fit tests in convolution models were studied in [2] and in [9]. The approach used in
[2] is based on a minimax point of view combined with estimation of the quadratic functional

∫
f 2. Assuming the

smoothness parameter of f to be known, the authors of [9] define a version of the Bickel–Rosenblatt test statistic and
study its asymptotic distribution under the null hypothesis and under fixed and local alternatives, while [2] provides
a different goodness-of-fit testing procedure attaining the minimax rate of testing in each of the three following se-
tups: Sobolev densities and polynomial noise, supersmooth densities and polynomial noise and Sobolev densities and
exponential noise. The case of supersmooth densities and exponential noise is also studied but the optimality of the
procedure is not established in the case r > s.

Our goal here is to provide adaptive versions of these last procedures with respect to the parameter τ = (α, r,β).
As we restrict our attention to testing problems where alternatives are expressed with respect to L2-norm (namely,
the alternative has the form H1: ψ−2

n ‖f − f0‖2
2 ≥ C ), the problem is strongly related to asymptotically minimax

estimation of
∫

f 2 and
∫
(f − f0)

2. Our test statistic is based on a collection of kernel estimators of
∫
(f − f0)

2 for
convolution models, with a given set of regularity parameters τ . Then, adaptation to a scale of classes is obtained by
rejecting the null hypothesis whenever at least one of the tests in the collection does, see for example [5].

Notation, definitions, assumptions

In the sequel, ‖·‖2 denotes the L2-norm, M̄ is the complex conjugate of M and 〈M,N〉 = ∫
M(x)N̄(x)dx is the scalar

product of complex-valued functions in L2(R). Moreover, probability and expectation with respect to the distribution
of Y1, . . . , Yn induced by the unknown density f will be denoted by Pf and Ef .

We denote more generally by τ = (α, r,β) the smoothness parameter of the unknown density f and by F (τ,L)

the corresponding class. As the density f is unknown, the a priori knowledge of its smoothness parameter τ could
appear unrealistic. Thus, we assume that τ belongs to a closed subset T , included in (0,+∞) × (0,2] × (0,+∞).
For a given density f0 in the class F (τ0), we want to test the hypothesis

H0: f = f0

from observations Y1, . . . , Yn given by (1). We extend the results of [2] by giving the family of sequences Ψn =
{ψn,τ }τ∈T which separates (with respect to L2-norm) the null hypothesis from a larger alternative

H1(C,Ψn): f ∈
⋃
τ∈T

{
f ∈ F (τ,L) and ψ−2

n,τ‖f − f0‖2
2 ≥ C

}
.

We recall that the usual procedure is to construct, for any 0 < ε < 1, a test statistic Δ

n (an arbitrary function, with

values in {0,1}, which is measurable with respect to Y1, . . . , Yn and such that we accept H0 if Δ

n = 0 and reject it

otherwise). We prove then that there exists some C 0 > 0 such that

lim sup
n→∞

{
P0
[
Δ


n = 1
]+ sup

f ∈H1(C,Ψn)

Pf

[
Δ


n = 0
]}≤ ε, (4)

holds for all C > C 0. This part is called the upper bound of the testing rate. Then, we prove the minimax optimality of
this procedure, i.e. the lower bound

lim inf
n→∞ inf

Δn

{
P0[Δn = 1] + sup

f ∈H1(C,Ψn)

Pf [Δn = 0]
}

≥ ε, (5)

for some C0 > 0 and for all 0 < C < C0, where the infimum is taken over all test statistics Δn.
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Let us first remark that as we use noisy observations (and unlike what happens with direct observations), this test
cannot be reduced to testing uniformity of the distribution density of the observed sample (i.e. f0 = 1 with support on
the finite interval [0;1]). As a consequence, additional assumptions used in [2] on the tail behaviour of f0 (ensuring
it does not vanish arbitrarily fast) are needed to obtain the optimality result of the testing procedure in the case of
Sobolev density (r = 0) observed with polynomial noise ((T) and (P)). We recall these assumptions here for reader’s
convenience.

Assumption (T). ∃c0 > 0, ∀x ∈ R, f0(x) ≥ c0(1 + |x|2)−1.

Moreover, we also need to control the derivatives of known Fourier transform Φg when establishing optimality
results.

Assumption (P) (Polynomial noise). If the noise satisfies (3), then assume that Φg is three times continuously dif-
ferentiable and there exist A1,A2 such that

∣∣(Φg
)′
(u)
∣∣≤ A1

|u|σ+1
and

∣∣(Φg
)′′

(u)
∣∣≤ A2

|u|σ+2
, |u| → ∞.

Remark 1. We can generalise Assumption (T) and assume the existence of some p ≥ 1 such that f0(x) is bounded
from below by c0(1 + |x|p)−2 for large enough x. In such a case, we obtain the same results if the Fourier transform
Φg of the noise density is assumed to be p times continuously differentiable, with derivatives up to order p satisfying
the same kind of bounds as in Assumption (P).

Let us give some comments on the proofs. In the case of Sobolev null density f0, the fact that our testing procedure
attains the minimax rate of testing (upper bound of the testing rate (4)), relies on a very sharp control on the approxima-
tion of the distribution of some U -statistic by the Gaussian distribution. Indeed, in our context, the classical approach
using a central limit theorem is not sufficient, nor are the classical exponential inequalities on U -statistics (see for
instance [6] or [10]). Thus, we had to establish a new Berry–Esseen inequality for degenerate U -statistics of order 2.
We took into account the fact that in our case, as in most statistical problems, the function defining the U -statistic is
depending on the number n of observations. This approach appeared to be powerful and is very promising to tackle
other similar problems.

Concerning the minimax optimality of our procedure (lower bound of the testing rate (5), established for Sobolev
null densities f0), we used an approach proposed by [5] but had to combine it with the use of some specific kernel,
previously introduced in [2].

Roadmap

In Section 2, we provide a goodness-of-fit testing procedure for the test H0: f = f0, in two different cases: the density
f0 to be tested is either ordinary smooth (r0 = 0) or supersmooth (r0 > 0). The procedures are adaptive with respect to
the smoothness parameter (α, r,β) of f . The auxiliary result on a Berry–Esseen inequality for degenerate U -statistics
of order 2 is described in Section 3. In some cases, a loss for adaptation is noted with respect to known testing rates
for fixed known parameters. When the loss is of order log logn to some power, we prove that this price is unavoidable.
Proofs are postponed to Section 4.

2. Test procedures and main results

The unknown density f belongs to the class F (α, r,β,L). We are interested in adaptive, with respect to the parameter
τ = (α, r,β), goodness-of-fit testing procedures. We assume that this unknown parameter belongs to the following set

T = {
τ = (α, r,β); τ ∈ [α;+∞) × [r; r̄] × [β; β̄]},

where α > 0, 0 ≤ r ≤ r̄ ≤ 2, 0 ≤ β ≤ β̄ and either r > 0 and α ∈ [α, ᾱ] or both r = r̄ = 0 and β > 0.
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Let us introduce some notation. We consider a preliminary kernel J , with Fourier transform ΦJ , defined by

∀x ∈ R, J (x) = sin(x)

πx
, ∀u ∈ R, ΦJ (u) = 1|u|≤1,

where 1A is the indicator function of the set A. For any bandwidth h = hn → 0 as n tends to infinity, we define the
rescaled kernel Jh by

∀x ∈ R, Jh(x) = h−1J

(
x

h

)
and ∀u ∈ R, ΦJh(u) = ΦJ (hu) = 1|u|≤1/h.

Now, the deconvolution kernel Kh with bandwidth h is defined via its Fourier transform ΦKh as

ΦKh(u) = (
Φg(u)

)−1
ΦJ (uh) = (

Φg(u)
)−1

ΦJh(u), ∀u ∈ R. (6)

Next, the quadratic functional
∫
(f − f0)

2 is estimated by the statistic Tn,h:

Tn,h = 2

n(n − 1)

∑∑
1≤k<j≤n

〈
Kh(· − Yk) − f0,Kh(· − Yj ) − f0

〉
. (7)

Note that Tn,h may take negative values, but its expected value is positive.
In order to construct a testing procedure which is adaptive with respect to the parameter τ we introduce a sequence

of finite regular grids over the set T of unknown parameters: TN = {τi;1 ≤ i ≤ N}. For each grid point τi we choose
a testing threshold t2

n,i and a bandwidth hi
n giving a test statistic Tn,hi

n
.

The test rejects the null hypothesis as soon as at least one of the single tests based on the parameter τi is rejected.

Δ

n =

{
1 if sup1≤i≤N |Tn,hi

n
|t−2

n,i > C
,
0 otherwise,

(8)

for some constant C
 > 0 and finite sequences of bandwidths {hi
n}1≤i≤N and thresholds {t2

n,i}1≤i≤N .
We note that our asymptotic results work for large enough constant C
. In practice we may choose it by Monte

Carlo simulation under the null hypothesis, for known f0, such that we control the first-type error of the test and bound
it from above, e.g. by ε/2.

Typically, the structure of the grid accounts for two different phenomena. A first part of the points is dedicated to
the adaptation with respect to β in case r̄ = r = 0, whereas the rest of the points are used to adapt the procedure with
respect to r , in case r > 0 (whatever the value of β).

In the two next theorems, the parameter σ is fixed and defined in (3). We note that the testing procedures and the
associated convergence rates are different according to whether the tested density f0 (which is known) is polynomially
or exponentially smooth. Therefore, we separate the two different cases where f0 belongs to a Sobolev class (r0 = 0,
α0 ≥ α and we assume β0 = β̄) and where f0 is a supersmooth function (α0 ∈ [α, ᾱ], r0 > 0 and β0 ∈ [β, β̄] and then
we focus on r0 = r̄ and α0 = ᾱ). Note that in the first case, the alternative contains functions f which are smoother
(r > 0) than the null hypothesis f0. To our knowledge, this kind of result is new in goodness-of-fit testing.

When f0 belongs to Sobolev class F (α0,0, β̄,L), the grid is defined as follows. Let N and choose TN = {τi;1 ≤
i ≤ N + 1} such that

⎧⎨
⎩

∀1 ≤ i ≤ N, τi = (0;0;βi) and β1 = β < β2 < · · · < βN = β̄,

∀1 ≤ i ≤ N − 1, βi+1 − βi = (β̄ − β)/(N − 1)

and τN+1 = (α; r̄;0).

In this case, the first N points are dedicated to the adaptation with respect to β when r̄ = r = 0, whereas the last point
τN+1 is used to adapt the procedure with respect to r (whatever the value of β).
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Theorem 1. Assume f0 ∈ F (α0,0, β̄,L). The test statistic Δ

n given by (8) with parameters

N = �logn�, ∀1 ≤ i ≤ N :

⎧⎨
⎩

hi
n = (

n√
log logn

)−2/(4βi+4σ+1)
,

t2
n,i = (

n√
log logn

)−4βi/(4βi+4σ+1)
,

hN+1
n = n−2/(4β̄+4σ+1), t2

n,N+1 = n−4β̄/(4β̄+4σ+1),

and any large enough positive constant C
, satisfies (4) for any ε ∈ (0,1), with testing rate Ψn = {ψn,τ }τ∈T given by

ψn,τ =
(

n√
log logn

)−2β/(4β+4σ+1)

1r=0 + n−2β̄/(4β̄+4σ+1)1r>0, ∀τ = (α, r,β) ∈ T .

Moreover, if f0 ∈ F (α0,0, β̄, cL) for some 0 < c < 1 and if Assumptions (T) and (P) hold, then this testing rate is
adaptive minimax over the family of classes {F (τ,L), τ ∈ [α,∞) × {0} × [β, β̄]} (i.e. (5) holds).

We note that our testing procedure attains the polynomial rate n−2β̄/(4β̄+4σ+1) over the union of all classes con-
taining functions smoother than f0. Up to our knowledge, this phenomenon has never been identified in the literature.
Note moreover that this rate is known to be a minimax testing rate over the class F (0,0, β̄,L) by results in [2]. There-
fore we prove that the loss of some power of log logn with respect to the minimax rate is unavoidable. A loss appears
when the alternative contains classes of functions less smooth than f0.

The proof that our adaptive procedure attains the above rate relies on the Berry–Esseen inequality presented in
Section 3.

When f0 belongs to class F (ᾱ, r̄, β0,L) of infinitely differentiable functions, the grid is defined as follows. Let
N1, N2 and choose TN = {τi;1 ≤ i ≤ N = N1 + N2} such that⎧⎪⎪⎨

⎪⎪⎩
∀1 ≤ i ≤ N1, τi = (0;0;βi) and β1 = β < β2 < · · · < βN1 = β̄,

∀1 ≤ i ≤ N1 − 1, βi+1 − βi = (β̄ − β)/(N1 − 1)

and ∀1 ≤ i ≤ N2, τN1+i = (ᾱ; ri;β0) and r1 = r < r2 < · · · < rN2 = r̄ ,

∀1 ≤ i ≤ N2 − 1, ri+1 − ri = (r̄ − r)/(N2 − 1).

In this case, the first N1 points are used for adaptation with respect to β in case r̄ = r = 0, whereas the last N2 points
are used to adapt the procedure with respect to r (whatever the value of β).

Theorem 2. Assume f0 ∈ F (ᾱ, r̄, β0,L) for some β0 ∈ [β, β̄]. The test statistic Δ

n given by (8) with C
 large enough

and

N1 = �logn�, ∀1 ≤ i ≤ N1:

⎧⎨
⎩

hi
n = (

n√
log logn

)−2/(4βi+4σ+1)
,

t2
n,i = (

n√
log logn

)−4βi/(4βi+4σ+1)
,

N2 = ⌈
log logn/(r̄ − r)

⌉
, ∀1 ≤ i ≤ N2:

{
h

N1+i
n = ( logn

2c

)−1/ri , c < α exp
(− 1

r

)
,

t2
n,N1+i = (logn)(4σ+1)/(2ri )

n

√
log log logn,

satisfies (4), with testing rate Ψn = {ψn,τ }τ∈T given by

ψn,τ =
(

n√
log logn

)−2β/(4β+4σ+1)

1r=0 + (logn)(4σ+1)/(4r)

√
n

(log log logn)1/41r∈[r,r̄].

We note that if Assumptions (T) and (P) hold for f0 in F (ᾱ, r̄, β0,L), the same optimality proof as in Theorem 1
gives us that the loss of the log logn to some power factor is optimal over alternatives in

⋃
α∈[α,ᾱ],β∈[β,β̄] F (α,0, β,L).

A loss of a (log log logn)1/4 factor appears over alternatives of supersmooth densities (less smooth than f0) with
respect to the minimax rate in [2]. We do not prove that this loss is optimal.



358 C. Butucea, C. Matias and C. Pouet

3. Auxiliary result: Berry–Esseen inequality for degenerate U -statistics of order 2

This section is dedicated to the statement of a non-uniform Berry–Esseen type theorem for degenerate U -statistics.
It draws its inspiration from [7] which provides a central limit theorem for degenerate U -statistics. Given a sample
Y1, . . . , Yn of i.i.d. random variables, we shall consider U -statistics of the form

Un =
∑∑
1≤i<j≤n

H(Yi, Yj ),

where H is a symmetric function. We recall that degenerate U -statistic means

E
{
H(Y1, Y2)|Y1

}= 0, almost surely.

Thus, the statistic Un is centered.
Limit theorems for degenerate U -statistics when H is fixed (independent of the sample size n) are well known and

can be found in any monograph on the subject (see for instance [12]). In that case, the limit distribution is a linear
combination of independent and centered χ2(1) (chi-square with one degree of freedom) distributions. However, as
noticed in [7], a normal distribution may result in some cases where H depends on n. In such a context, [7] provides
a central limit theorem. But this result is not enough for our purpose (namely, optimality in Theorem 1). Indeed, we
need to control the convergence to zero of the difference between the cumulative distribution function (cdf) of our
U -statistic, and the cdf of the Gaussian distribution. Such a result may be derived using classical martingale methods.

In the rest of this section, n is fixed. Denote by Fi the σ -field generated by the random variables {Y1, . . . , Yi}.
Define

v2
n = E

(
U2

n

)
, Zi = 1

vn

i−1∑
j=1

H(Yi, Yj ), 2 ≤ i ≤ n,

and note that as the U -statistic is degenerate, we have E(Zi |Y1, . . . , Yi−1) = 0. Thus,

Sk =
k∑

i=2

Zi, 2 ≤ k ≤ n,

is a centered martingale (with respect to the filtration {Fk}k≥2) and Sn = v−1
n Un. We use a non-uniform Berry–Esseen

type theorem for martingales provided by [8], Theorem 3.9. Denote by φ the cdf of the standard normal distribution
and introduce the conditional variance of the increments Zj ’s,

V 2
n =

n∑
i=2

E
(
Z2

i |Fi−1
)= 1

v2
n

n∑
i=2

E

{(
i−1∑
j=1

H(Yi, Yj )

)2∣∣∣Fi−1

}
.

Theorem 3. Fix 0 < δ ≤ 1 and define

Ln =
n∑

i=2

E|Zi |2+2δ + E
∣∣V 2

n − 1
∣∣1+δ

.

There exists a positive constant C (depending only on δ) such that for any 0 < ε < 1/2 and any real x

∣∣∣∣P(Un ≤ x) − φ

(
x

vn

)∣∣∣∣≤ 16ε1/2 exp

(
− x2

4v2
n

)
+ C

ε1+δ
Ln.
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4. Proofs

We use C to denote an absolute constant, the values of which may change along the lines.

Proof of Theorem 1 (Upper bound). Let us give the sketch of proof concerning the upper-bound of the test. The
statistic Tn,hi will be abbreviated by Tn,i . We first need to control the first-type error of the test.

P0
(
Δ


n = 1
) = P0

(∃i ∈ {1, . . . ,N + 1} such that |Tn,i | > C
t2
n,i

)

≤
N+1∑
i=1

P0
(∣∣Tn,i − E0(Tn,i)

∣∣> C
t2
n,i − E0(Tn,i)

)
.

The proof relies on the two following lemmas.

Lemma 1. For any large enough C
 > 0, we have

N∑
i=1

P0
(∣∣Tn,i − E0(Tn,i)

∣∣> C
t2
n,i − E0(Tn,i)

)= o(1).

Lemma 2. For large enough C
, there is some ε ∈ (0,1), such that

P0
(∣∣Tn,N+1 − E0(Tn,N+1)

∣∣> C
t2
n,N+1 − E0(Tn,N+1)

)≤ ε.

Lemma 1 relies on the Berry–Esseen type theorem (Theorem 3) presented in Section 3. Its proof is postponed to
the end of the present section as the proof of Lemma 2.

Thus, the first type error term is as small as we need, as soon as we choose a large enough constant C
 > 0 in (8).
We now focus on the second-type error of the test. We write

sup
τ∈T

sup
f ∈F (τ,L)

Pf

(
Δ


n = 0
) ≤ 1r>0 sup

r∈[r;r̄],α≥α,β∈[β,β̄]
sup

f ∈F (τ,L)

‖f −f0‖2
2≥Cψ2

n,τ

Pf

(|Tn,N+1| ≤ C
t2
n,N+1

)

+ 1r=r̄=0 sup
α≥α,β∈[β;β̄]

sup
f ∈F (α,0,β,L)

‖f −f0‖2
2≥Cψ2

n,(α,0,β)

Pf

(∀1 ≤ i ≤ N, |Tn,i | ≤ C
t2
n,i

)
.

Note that when the function f in the alternative is supersmooth (r > 0), we only need the last test (with index N + 1),
whereas when it is ordinary smooth (r = r̄ = 0), we use the family of tests with indexes i ≤ N . In this second case,
we use in fact only the test based on parameter βf defined as the smallest point on the grid larger than β (see the proof
of Lemma 4).

Lemma 3. Fix r > 0, for any α ≥ α, r ∈ [r; r̄], β ∈ [β; β̄]. For any ε ∈ (0;1), there exists some large enough C 0 such

that for any C > C 0 and any f ∈ F (α, r,β,L) such that ‖f − f0‖2
2 ≥ Cψn,(α,r,β), we have

Pf

(|Tn,N+1| ≤ C
t2
n,N+1

)≤ ε.

Lemma 4. We have

sup
α≥α

sup
β∈[β;β̄]

sup
f ∈F (α,0,β,L)

‖f −f0‖2
2≥Cψ2

n,(α,0,β)

Pf

(∀1 ≤ i ≤ N, |Tn,i | ≤ C
t2
n,i

)= o(1).
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The proofs of Lemma 3 and Lemma 4 are postponed to the end of the present section. Thus, the second type error
of the test converges to zero. This ends the proof of (4). �

Proof of Theorem 1 (Lower bound). As we already noted after the theorem statement, our test procedure attains the
minimax rate associated to the class F (α0,0, β̄,L) where f0 belongs, whenever the alternative f belongs to classes
of functions smoother than f0. Therefore, the lower bound we need to prove concerns the optimality of the loss of
order (log logn)1/2 due to alternatives less smooth than f0.

More precisely, we prove (5), where the alternative H1(C,Ψn) is now restricted to
⋃

β∈[β,β̄]{f ∈ F (0,0, β,L) and
ψ−2

n,β‖f − f0‖2
2 ≥ C} and ψn,β denotes the rate ψn,τ when τ = (0,0, β,L).

The general approach for proving such a lower bound (5) is to exhibit a finite number of regularities {βk}1≤k≤K

and corresponding probability distributions {πk}1≤k≤K on the alternatives H1(C,ψn,βk
) (more exactly, on parametric

subsets of these alternatives) such that the distance between the distributions induced by f0 (the density being tested)
and the mean distribution of the alternatives is small.

We use a finite grid B̄ = {β1 < β2 < · · · < βK } ⊂ [β, β̄] such that

∀β ∈ [β, β̄], ∃k: |βk − β| ≤ 1

logn
.

To each point β in this grid, we associate a bandwidth

hβ = (nρn)
−2/(4β+4σ+1), ρn = (log logn)−1/2 and Mβ = h−1

β .

We use the same deconvolution kernel as in [2], constructed as follows. Let G be defined as in Lemma 2 in [2]. The
function G is an infinitely differentiable function, compactly supported on [−1,0] and such that

∫
G = 0. Then, the

deconvolution kernel Hβ is defined via its Fourier transform ΦHβ by

ΦHβ (u) = ΦG(hβu)
(
Φg(u)

)−1
.

Note that the factor ρn in the bandwidth’s expression corresponds to the loss for adaptation.
We also consider for each β , a probability distribution πβ (also denoted πk when β = βk) defined on {−1,+1}Mβ

which is in fact the product of Rademacher distributions on {−1,+1} and a parametric subset of H1(C,ψn,β) contain-
ing the following functions

fθ,β(x) = f0(x) +
Mβ∑
j=1

θjh
β+σ+1
β Hβ(x − xj,β),

{
θj i.i.d. with P(θj = ±1) = 1/2,

xj,β = jhβ ∈ [0,1].

Convolution of these functions with g induces another parametric set of functions

pθ,β(y) = p0(y) +
Mβ∑
j=1

θjh
β+σ+1
β Gβ(y − xj,β),

where Gβ(y) = h−1
β G(y/hβ) = Hβ ∗ g(y).

As established in [2] (Lemmas 2 and 4), for any β , any θ ∈ {−1,+1}Mβ and small enough hβ (i.e. large enough n)
the function fθ,β is a probability density and belongs to the Sobolev class F (0,0, β,L) and pθ,β is also a probability
density. Moreover we have

1

K

∑
β∈B̄

πβ

(‖fθ,β − f0‖2
2 ≥ Cψ2

n,β

) −→
n→+∞ 1,

which means that for each β , the random parametric family {fθ,β}θ belongs almost surely (with respect to the mea-
sure πβ ) to the alternative set H1(C,ψn,β). The subset of functions which are not in the alternative H1(C,Ψn) is
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asymptotically negligible. We then have,

γn � inf
Δn

{
P0(Δn = 1) + sup

f ∈H1(C,Ψn)

Pf (Δn = 0)
}

≥ inf
Δn

{
P0(Δn = 1) + 1

K

K∑
k=1

sup
f ∈H1(C,ψn,βk

)

Pf (Δn = 0)

}

≥ inf
Δn

{
P0(Δn = 1) + 1

K

K∑
k=1

(∫
θ

Pfθ,βk
(Δn = 0)πk(dθ) − πk

(‖fθ,βk
− f0‖2

2 < Cψ2
n,βk

))}

≥ inf
Δn

{
P0(Δn = 1) + 1

K

K∑
k=1

(∫
θ

Pfθ,βk
(Δn = 0)πk(dθ)

)}
+ o(1).

Let us denote by

π = 1

K

K∑
k=1

πk and Pπ = 1

K

K∑
k=1

Pk = 1

K

K∑
k=1

∫
θ

Pfθ,βk
πk(dθ).

Those notations lead to

γn ≥ inf
Δn

{
P0(Δn = 1) + Pπ (Δn = 0)

}

≥ inf
Δn

{
1 −

∫
Δn=0

dP0 +
∫

Δn=0
dPπ

}
≥ 1 − sup

A

∫
A

(dP0 − dPπ )

≥ 1 − 1

2
‖Pπ − P0‖1, (9)

where we used Scheffé’s lemma.
The finite grid B̄ is split into subsets B̄ =⋃

l B̄l with B̄l ∩ B̄k = ∅ when l �= k and such that

∀l, ∀β1 �= β2 ∈ B̄l ,
c log logn

logn
≤ |β1 − β2|.

The number of subsets B̄l is denoted by K1 = O(log logn) and the cardinality |B̄l | of each subset B̄l is of the order
O(logn/ log logn), uniformly with respect to l.

The lower bound (5) is then obtained from (9) in the following way

γn ≥ 1 − 1

2K1

K1∑
l=1

∥∥∥∥∥ 1

|B̄l |
∑
β∈B̄l

Pβ − P0

∥∥∥∥∥
1

,

where Pβ = ∫
θ
Pfθ,β πβ(dθ) .

Here we do not want to apply the triangular inequality to the whole set of indexes B̄. Indeed, this would lead to
a lower bound equal to 0. Yet, if we do not apply some sort of triangular inequality, we cannot deal with the sum
because of too much dependency. This is why we introduced the subsets B̄l with the property that two points in the
same subset B̄l are far enough away from each other. This technique was already used in [5] for the discrete regression
model.

Let us denote by �β the likelihood ratio

�β = dPβ

dP0
=
∫

dPfθ,β

dP0
πβ(dθ).
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We thus have

γn ≥ 1 − 1

2K1

K1∑
l=1

∫ (
1

|B̄l |
∑
β∈B̄l

�β − 1

)
dP0 = 1 − 1

2K1

K1∑
l=1

∥∥∥∥∥ 1

|B̄l |
∑
β∈B̄l

�β − 1

∥∥∥∥∥
L1(P0)

.

Now we use the usual inequality between L1 and L2-distances to get that

γn ≥ 1 − 1

2K1

K1∑
l=1

∥∥∥∥∥ 1

|B̄l |
∑
β∈B̄l

�β − 1

∥∥∥∥∥
L2(P0)

= 1 − 1

2K1

K1∑
l=1

{
E0

(
1

|B̄l |
∑
β∈B̄l

�β − 1

)2}1/2

.

Let us focus on the expected value appearing in the lower bound. We have

E0

(
1

|B̄l |
∑
β∈B̄l

�β − 1

)2

= 1

|B̄l |2
∑
β∈B̄l

Qβ + 1

|B̄l |2
∑

β,ν∈B̄l

β �=ν

Qβ,ν,

where there are two quantities to evaluate

Qβ = E0
(
(�β − 1)2) and Qβ,ν = E0(�β�ν − 1).

The first term Qβ is treated as in [2]. It corresponds to the computation of a χ2-distance between the two models
induced by Pβ and P0 (see term Δ2 in [2]). Indeed we have

Qβ ≤ CMβn2h
4β+4σ+2
β ≤ C

1

ρ2
n

.

This upper bound goes to infinity very slowly. The number of β’s in each B̄l compensates this behaviour

1

|B̄l |2
∑
β∈B̄l

Qβ ≤ 1

|B̄l |ρ2
n

= O

(
(log logn)2

logn

)
= o(1).

The second term is a new one (with respect to non-adaptive case). As G is compactly supported and the points β and
ν are far away from each other, we can prove that this term is asymptotically negligible. Recall the expression of the
likelihood ratio for a fixed β

�β =
∫

dPfθ,β

dP0
πβ(dθ) =

∫ n∏
r=1

(
1 +

Mβ∑
j=1

θj,βh
β+σ+1
β

Gβ(Yr − xj,β)

p0(Yr)

)
πβ(dθ).

Thus,

�β�ν =
∫

dPfθ,β

dP0
πβ(dθ)

∫
dPfθ,ν

dP0
πν(dθ)

=
∫ n∏

r=1

(
1 +

Mβ∑
j=1

θj,βh
β+σ+1
β

Gβ(Yr − xj,β)

p0(Yr)

)(
1 +

Mν∑
i=1

θi,νh
ν+σ+1
ν

Gν(Yr − xi,ν)

p0(Yr)

)
πβ(dθ·,β)πν(dθ·,ν).

The random variables Yr are i.i.d. and E0(
Gβ(Yr−xj,β )

p0(Yr )
) = 0. Thus we have

E0(�β�ν) =
∫ [

1 +
Mβ∑
j=1

Mν∑
i=1,i⊂j

θj,βθi,νh
β+σ+1
β hν+σ+1

ν E0

(
Gβ(Y1 − xj,β)Gν(Y1 − xi,ν)

p2
0(Y1)

)]n

× πβ(dθ·,β)πν(dθ·,ν),
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where the second sum concerns only some indexes i, denoted by i ⊂ j . This notation stands for the set of indexes
i such that [(i − 1)hβ; ihβ ] ∩ [(j − 1)hν; jhν] �= ∅. From now on, we fix β > ν. Denote by G′ (resp. p′

0) the first
derivative of G (resp. p0). (The density p0 is continuously differentiable as it is the convolution product f0 ∗ g, where
the noise density g is at least continuously differentiable.)

Lemma 5. For any β > ν and any (i, j) ∈ {1, . . . ,Mν} × {1, . . . ,Mβ}, we have

E0

(
Gβ(Y1 − xj,β)Gν(Y1 − xi,ν)

p2
0(Y1)

)
= hν

h2
β

Ri,j ,

where Rij satisfies

|Ri,j | ≤
(

inf[0,1]p0

)−1‖G‖∞
∥∥G′∥∥∞

(
1 + o(1)

)
and o(1) is uniform with respect to (i, j).

The proof of this lemma is omitted. Applying Lemma 5, we get

Qβ,ν + 1 =
∫ [

1 +
Mβ∑
j=1

Mν∑
i=1,i⊂j

θj,βθi,νh
β+σ+1
β hν+σ+1

ν

hν

(hβ)2
Ri,j

]n

πβ(dθ·,β)πν(dθ·,ν).

Lemma 6. Let U be a real valued random variable such that ∀k ∈ N,E(U2k+1) = 0. We have, for any integer
n ≥ 1,

E(1 + U)n ≤ 1 +
�n/2�∑
k=1

n2k

(2k)!E
(
U2k

)
,

where �x� is the largest integer which is smaller than x.

The proof of Lemma 6 is obvious and therefore omitted. Apply Lemma 6 to get the inequality

Qβ,ν ≤
�n/2�∑
k=1

n2k

(2k)!
(
h

β+σ−1
β hν+σ+2

ν

)2k
Eπ

(Mβ∑
j=1

Mν∑
i=1,i⊂j

θj,βθi,νRi,j

)2k

.

But the θ ’s are i.i.d. Rademacher variables and the Ri,j ’s are deterministic, thus

Eπ

(Mβ∑
j=1

Mν∑
i=1,i⊂j

θj,βθi,νRi,j

)2k

=
∑

1≤j1,...,jk≤Mβ

∑
1≤i1,...,ik≤Mν

∀l,il⊂jl

(
k∏

l=1

R2
il ,jl

)
.

Using the bound on the Ri,j given by Lemma 5,

Eπ

(Mβ∑
j=1

Mν∑
i=1,i⊂j

θj,βθi,νRi,j

)2k

≤
((

inf[0,1]p0

)−1‖G‖∞
∥∥G′∥∥∞

(
1 + o(1)

))2k

hk
ν.

Indeed, each index jl may take at most Mβ = h−1
β different values but the constraint il ⊂ jl implies that each index il



364 C. Butucea, C. Matias and C. Pouet

is limited to at most hβ/hν different values. Thus we get

Qβ,ν ≤ C

�n/2�∑
k=1

n2k

(2k)!
(

Ch
β+σ+1
β hν+σ+1

ν

hν

h2
β

)2k

h−k
ν

≤ C

�n/2�∑
k=1

(
n2h

2β+2σ+1/2
β h2ν+2σ+1/2

ν

h
5/2
ν

h
5/2
β

)k

≤ C

�n/2�∑
k=1

(
h

5/2
ν

ρ2
nh

5/2
β

)k

≤ C
1

ρ2
n

h
5/2
ν

h
5/2
β

.

As β > ν both belong to some set B̄l , we have β − ν ≥ c(log logn)/(logn) and according to the choice of the
bandwidths,

h
5/2
ν

h
5/2
β

= (nρn)
−20(β−ν)/((4β+4σ+1)(4ν+4σ+1))

≤ exp

{
− 20c log logn

(4β̄ + 4σ + 1)2

(
1 + o(1)

)}≤ (logn)−w,

where the constant w (depending on the constant c used in the construction of the sets B̄l) can be tailored to our need.
Therefore

1

|B̄l |2
∑

β,ν∈|B̄l |
β �=ν

Qβ,ν ≤ C

ρ2
n(logn)w

which goes to 0 as n goes to +∞. We finally obtain the upper bound

E0

((
1

|B̄l |
∑

β∈|B̄l |
�β − 1

)2)
≤ O

(
1

|B̄l |ρ2
n

)
+ O

(
1

ρ2
n(logn)w

)
= o(1),

which leads to

γn ≥ 1 − 1

2

1

K1

K1∑
l=1

{
O

(
1

|B̄l |ρ2
n

)
+ O

(
1

ρ2
n(logn)c

)}1/2

= 1 + o(1).
�

Proof of Theorem 2. Assume now that f0 ∈ F (ᾱ, r̄, β0,L), for some β0 ∈ [β, β̄]. The proof follows the same lines
as the proof of Theorem 1.

For the first-type error we write

P0
(
Δ∗

n = 1
) =

N1∑
i=1

P0
(∣∣Tn,i − E0(Tn,i)

∣∣> C
t2
n,i − E0(Tn,i)

)

+
N2∑

i−N1=1

P0
(∣∣Tn,i − E0(Tn,i)

∣∣> C
t2
n,i − E0(Tn,i)

)
.

For the first N1 terms we apply Lemma 1 with E0(Tn,i) = o(1)L(hi)
2β0 exp(−2ᾱ/hr̄

i ) which is smaller than t2
n,i for

all i = 1, . . . ,N1 and the same result follows. For the last N2 terms we also use the Berry–Esseen inequality as in the
proof of Lemma 1 for

x = C
t2
n,i − E0(Tn,i) ≥ C
t2

n,i

(
1 − o(1)

)



Adaptive goodness-of-fit testing from indirect observations 365

as E0(Tn,i) = o(1)h
2β0
i exp(−2ᾱ/hr̄

i ) = o(1/n). We get x/vn = O(1)(log log logn)1/2

N2∑
i−N1=1

P0
(∣∣Tn,i − E0(Tn,i)

∣∣> C
t2
n,i − E0(Tn,i)

)

≤ N2
vn

C
t2
n,i

exp

(
− (C
)2t4

n,i

4v2
n

)
≤ C1

(log log logn)−1/2

(log logn)b−1
= o(1),

for some b > 1 for C
 large enough. Indeed, all other calculations are similar as they are related mostly to the distrib-
ution of the noise which did not change.

As for the second-type error,

sup
τ∈T

sup
f ∈F (τ,L)

Pf

(
Δ


n = 0
)

≤ 1r=r̄=0 sup
α≥α,β∈[β;β̄]

sup
f ∈F (α,0,β,L)

‖f −f0‖2
2≥Cψ2

n,(α,0,β)

Pf

(∀1 ≤ i ≤ N1, |Tn,i | ≤ C
t2
n,i

)

+ 1r>0 sup
r∈[r;r̄],α∈[α,ᾱ],β∈[β,β̄]

sup
f ∈F (τ,L)

‖f −f0‖2
2≥Cψ2

n,τ

Pf

(∀N1 + 1 ≤ i ≤ N1 + N2, |Tn,i | ≤ C
t2
n,i

)
.

For the first term in the previous sum we actually apply precisely Lemma 4. For the second term we mimic the proof
of Lemma 4 and choose some f in F (α, r,β,L) such that ‖f − f0‖2

2 ≥ Cψ2
n,r , where we denote ψn,r = ψn,τ 1r>0.

We define rf as the smallest point on the grid {r1, . . . , rN2} such that r ≤ rf . We denote by hf , t2
n,f and Tn,f the

bandwidth, the threshold and the test statistic associated to parameters ᾱ and rf (they do not depend on β). Then

Pf

(∀N1 + 1 ≤ i ≤ N1 + N2, |Tn,i | ≤ C
t2
n,i

)
≤ Pf

(∣∣Tn,f − Ef (Tn,f )
∣∣≥ ‖f − f0‖2

2 − C
t2
n,f − Bf (Tn,f )

)
, (10)

where, as in Theorem 1∣∣Bf (Tn,f )
∣∣ = ∣∣‖Jh ∗ f − f ‖2

2 + 2〈f − Jh ∗ f,f0〉
∣∣

≤
(

Lh
2β
f exp

(
−2α

hr
f

)
+ 2Lh

β+β0
f exp

(
− α

hr
f

− ᾱ

hr̄
f

))(
1 + o(1)

)

≤ L
(
h

2β
f + h

β+β0
f

)
exp

(
−2α

hr
f

)(
1 + o(1)

)

≤ L
(
h

β+β∧β0
f

)
exp

(
−2α

hr
f

)(
1 + o(1)

)
.

Using Markov’s inequality, we get the following upper bound for (10)

Varf (Tn,f )

(‖f − f0‖2
2 − C
t2

n,f − Bf (Tn,f ))2
. (11)

The variance is bounded from above by

Ef

(
Tn,f − Ef (Tn,f )

)2 ≤ C

n2h4σ+1
f

+ 4Ω2
g(f − f0)

n
, (12)
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and similarly to [2] we show that Ω2
g(f − f0) ≤ ‖f − f0‖2

2(log‖f − f0‖−2
2 )2σ/r . We have

t2
n,f ψ−2

n,r = (logn)(4σ+1)(1/rf −1/r)/2 ≤ 1,

and thus ‖f − f0‖2
2 − C
t2

n,f ≥ (C − C
)ψ2
n,r . Moreover,

Bf (Tn,f )ψ−2
n,r ≤ C(log log logn)−1/2(logn)−(β+β∧β0)/rf −(4σ+1)/(2r) exp

{
−2α

(
logn

2c

)r/rf

+ logn

}
.

The construction of the grid ensures that −1/(log logn) ≤ r − rf ≤ 0 and thus

exp

{
−2α

(
logn

2c

)r/rf

+ logn

}
= exp

{
− logn

c

[
α exp

(
r − rf

rf
log logn

(
1 + o(1)

))− c

]}

≤ exp

{
− logn

c

[
α exp

(−1

r

(
1 + o(1)

))− c

]}
= O(1),

as we chose the constant c < α exp(−1/r). Finally, we have Bf (Tn,f )ψ−2
n,r = o(1). Let us come back to (11). We

distinguish two cases whether the first or the second term in (12) is dominant. If the first term in the variance dominates,
we have the following bound for (11)

n−2h
−(4σ+1)
f

(C − C
)2ψ4
n,τ

≤ C

log log logn
→ 0.

On the other hand, if the second term in (12) is the larger one, the bound (11) writes

n−1‖f − f0‖2
2(log‖f − f0‖−2

2 )2σ/r

‖f − f0‖4
2(1 − C
/C + o(1))2

≤ Cn−1ψ−2
n,r (logψ−2

n,r )
2σ/r

= C(logn)−1/(2r)(log log logn)−1/2 = o(1).

This finishes the proof. �

Proof of Theorem 3. This proof follows the lines of Theorem 3.9 in [8]. Combining the Skorokhod representation
theorem and Lemma 3.3 in [8], there exists a nonnegative random variable Tn such that for any 0 < ε < 1/2 and any
real x,

∣∣P(Un ≤ x) − φ(x)
∣∣ = ∣∣∣∣P(Sn ≤ v−1

n x
)− φ

(
x

vn

)∣∣∣∣≤ 16ε1/2 exp

{
− x2

4v2
n

}
+ P

(|Tn − 1| > ε
)
.

Moreover, for any δ > 0,

P
(|Tn − 1| > ε

)≤ 4ε−1−δ
E
[∣∣Tn − V 2

n

∣∣1+δ + ∣∣V 2
n − 1

∣∣1+δ]
,

where Tn − V 2
n is a sum of Martingale differences. In the same way as in [8], we obtain (as δ ≤ 1)

P
(|Tn − 1| > ε

)≤ Cε−1−δ

[
n∑

i=1

E|Zi |2+2δ + E
∣∣V 2

n − 1
∣∣1+δ

]
,

which concludes the proof. �

We now present the proofs of the lemmas.
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Proof of Lemma 1. Let us set ρn = (log logn)−1/2 and fix 1 ≤ i ≤ N . We use the obvious notation p0 = f0 ∗ g. As
we have

E0(Tn,i) = ‖Khi ∗ p0 − f0‖2
2 = ‖Jhi ∗ f0 − f0‖2

2

and

〈
Kh(· − Y1) − Jh ∗ f0, Jh ∗ f0 − f0

〉= 0

we easily get

Tn,i − E0(Tn,i) = 2

n(n − 1)

∑∑
1≤k<j≤n

〈
Khi (· − Yk) − Jhi ∗ f0,Khi (· − Yj ) − Jhi ∗ f0

〉
.

Let us set

H(Yj ,Yk) = 2
{
n(n − 1)

}−1〈
Khi (· − Yk) − Jhi ∗ f0,Khi (· − Yj ) − Jhi ∗ f0

〉
and note that H is a symmetric function with E0{H(Y1, Y2)} = 0 and E0{H(Y1, Y2)|Y1} = 0. As a consequence,
Tn,i − E0(Tn,i) is a degenerate U -statistic. Using Theorem 3 (and the notation of Section 3) to control its cdf, we get
that for any 0 < δ ≤ 1, for any 0 < ε < 1/2 and any x∣∣∣∣P0

(
Tn,i − E0(Tn,i) > x

)−
(

1 − φ

(
x

vn

))∣∣∣∣
≤ 16ε1/2 exp

(
− x2

4v2
n

)
+ C

ε1+δ

{
n∑

i=2

E0|Zi |2+2δ + E0
∣∣V 2

n − 1
∣∣1+δ

}
,

where v2
n = Var0(Tn,i) and

Zi = 1

vn

i−1∑
j=1

H(Yi, Yj ) and V 2
n =

n∑
i=2

E0
(
Z2

i |Fi−1
)

as in Section 3. Choose δ = 1 and consider ε as a constant (optimisation in ε is not necessary in our context), thus

∣∣∣∣P0
(
Tn,i − E0(Tn,i) > x

)−
(

1 − φ

(
x

vn

))∣∣∣∣≤ C exp

(
− x2

4v2
n

)
+ C

{
n∑

i=2

E0|Zi |4 + E0
∣∣V 2

n − 1
∣∣2}. (13)

We want to apply this inequality at the point x = C
t2
n,i − E0(Tn,i). First, note that

E0(Tn,i) = ‖Jhi ∗ f0 − f0‖2
2 = 1

2π

∫
|u|>1/(hi )

∣∣Φ0(u)
∣∣2 du ≤ L

(
hi
)2β̄ ≤ Lt2

n,i ,

leading to

x ≥ (
C
 − L

)
t2
n,i = (

C
 − L
)
(nρn)

−4βi/(4βi+4σ+1)

and we choose C
 > L. Now, the variance term v2
n satisfies (see [2])

v2
n = E0

(
Tn,i − E0(Tn,i)

)2 = C

n2(hi)4σ+1

(
1 + o(1)

)
.
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Using the choice of the bandwidth hi , we obtain a bound of the first term in (13)

C exp

(
− x2

4v2
n

)
≤ C exp

(
− (C
)2

C′ ρ−2
n

)
= C(logn)−b,

where b = (C
)2/(C′) can be chosen as large as we need. Let us deal with the other terms appearing in (13). For large
enough n,

∣∣〈Khi (· − Yk) − Jhi ∗ f0,Khi (· − Yj ) − Jhi ∗ f0
〉∣∣≤ 2

π

∫
|u|≤1/hi

∣∣Φg(u)
∣∣−2 du ≤ C

(hi)2σ+1

and thus, for any p ≥ 2,

E0
{∣∣H(Y1, Y2)

∣∣2p}≤ Cn−4p
(
hi
)−2p(2σ+1)

.

This leads to

n∑
i=2

E0|Zi |4 ≤ 1

v4
n

n∑
i=2

(
i−1∑
j=1

E0
(
H(Yi, Yj )

4)+ 3
∑∑

1≤j �=k≤i−1

E0
(
H(Yi, Yj )

2H(Yi, Yk)
2))

≤ 1

v4
n

n∑
i=2

(
(i − 1)E0

(
H(Y1, Y2)

4)+ 3(i − 1)(i − 2)E0
(
H(Y1, Y2)

2H(Y1, Y3)
2))

≤ O(1)

v4
n

n2
E0
(
H(Y1, Y2)

4)+ O(1)

v4
n

n3
E0
(
H(Y1, Y2)

2H(Y1, Y3)
2)

≤ O(1)
n3

n8(hi)4(2σ+1)
n4(hi

)2(4σ+1) = O(1)

n(hi)2
.

Moreover, following the lines of the proof of Theorem 1 in [7] we get

E0
∣∣V 2

n − 1
∣∣2 ≤ 1

v4
n

(
E0
(
G2(Y1, Y2)

)+ 1

n
E0
(
H 4(Y1, Y2)

))
,

where G(x,y) = E0(H(Y1, x)H(Y1, y)). In [1] this last term was bounded from above for this model by Chi so

E0
∣∣V 2

n − 1
∣∣2 ≤ Chi.

Returning to (13) we finally get for x = C
t2
n,i − E0(Tn,i),∣∣∣∣P0

(
Tn,i − E0(Tn,i) > x

)−
{

1 − φ

(
x

vn

)}∣∣∣∣≤ C
(
(logn)−b + hi

)≤ C(logn)−b.

Finally we obtain, for b large when C
 is large

N∑
i=1

P0
(∣∣Tn,i − E0(Tn,i)

∣∣> C
t2
n,i − E0(Tn,i)

)

≤ N

(
1 − φ

(
x

vn

)
+ C(logn)−b

)
≤ CN

(
vnx

−1 exp

(
− x2

2v2
n

)
+ (logn)−b

)

≤ CNρn(logn)−b ≤ C
(log logn)−1/2

lognb−1
. �
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Proof of Lemma 2. Using a Markov inequality and the usual controls on bias and variance, we get

P0
(∣∣Tn,N+1 − E0(Tn,N+1)

∣∣> C
t2
n,N+1 − E0(Tn,N+1)

)≤ Cn−2(hN+1)−(4σ+1)

(C
t2
n,N+1 − C(hN+1)2β̄ )2

which is O((C
 − C)−1) and by choosing C
 large enough, this term is smaller than some ε > 0. �

Proof of Lemma 3. Let us write

Pf

(|Tn,N+1| ≤ C
t2
n,N+1

)≤ Pf

(|Tn,N+1 − Ef Tn,N+1| ≥ ‖f − f0‖2
2 − C
t2

n,N+1 − Bf (Tn,N+1)
)
,

where∣∣Bf (Tn,N+1)
∣∣ = ∣∣Ef (Tn,N+1) − ‖f − f0‖2

2

∣∣
≤
∫

|u|≥1/hN+1

∣∣Φ(u)
∣∣2 du + 2

(∫
|u|≥1/hN+1

∣∣Φ(u)
∣∣2 du

∫
|u|≥1/hN+1

∣∣Φ0(u)
∣∣2 du

)1/2

≤
(

L
(
hN+1)2β exp

{
− 2α

(hN+1)r

}
+ 2L

(
hN+1)β+β̄ exp

{
− α

(hN+1)r

})

≤ 2L
(
hN+1)β+β̄ exp

{
− α

(hN+1)r

}(
1 + o(1)

)
.

In the same way as in the proof of Lemma 4, we have

Ef

(
Tn,N+1 − Ef (Tn,N+1)

)2 ≤ C

n2(hN+1)4σ+1
+ 4Ω2

g(f − f0)

n
1β≥σ = w2

n,f ,

and Ωg(f − f0) is a constant depending on f and g (but not n) and satisfying |Ω2
g(f − f0)| ≤ C‖f − f0‖2−2σ/β̄

2 .
The rest of the proof follows the same lines as Lemma 4. Indeed, Markov’s inequality leads the following bound on
the second-type error term

w2
n,f

(‖f − f0‖2
2 − C
t2

n,N+1 − 2L(hN+1)2β exp{−α/(hN+1)r }(1 + o(1)))2

≤ max

(
Cn−2(hN+1)−4σ−1

(C 0 − C
)2ψ4
n,r

; C

n‖f − f0‖2+2σ/β̄

2 (C 0 − C
)2

)
.

The first term in the right-hand side is a constant which can be as small as we need, by choosing a large enough
constant C 0. The second term converges to zero. �

Proof of Lemma 4. When r̄ = r = 0, let us fix some constant C > C 0 (C 0 will be chosen later) and a density f

belonging to F (α,0, β,L) for some unknown α > α and β ∈ [β; β̄] which satisfies ‖f − f0‖2
2 ≥ Cψ2

n,(α,0,β) (choose
β as the largest one). In this proof, we abbreviate ψn,(α,0,β) to ψn,β since in this case, the rate only depends on β . We
define βf as the smallest point on the finite grid {β = β1 < β2 < · · · < βN = β̄} such that β ≤ βf

βf ∈ {β = β0 < β1 < · · · < βN = β̄}, f ∈ F (α,0, β,L),‖f − f0‖2
2 ≥ Cψ2

n,β,

β ≤ βf and ∀βi < βf , we have β > βi. (14)

We shall abbreviate to hf , t2
n,f and Tn,f the bandwidth, the threshold (both defined in Theorem 1) and the statistic (7)

corresponding to parameter βf . We write

Pf

(∀i ∈ {1, . . . ,N}, |Tn,i | ≤ C
t2
n,i

) ≤ Pf

(∣∣Tn,f − Ef (Tn,f )
∣∣≥ −C
t2

n,f + Ef (Tn,f )
)

≤ Pf

(∣∣Tn,f − Ef (Tn,f )
∣∣≥ ‖f − f0‖2

2 − C
t2
n,f + Bf (Tn,f )

)
, (15)



370 C. Butucea, C. Matias and C. Pouet

where

Bf (Tn,f ) = Ef (Tn,f ) − ‖f − f0‖2
2 = ‖Jh ∗ f ‖2

2 − ‖f ‖2
2 + 2〈f − Jh ∗ f,f0〉

is in fact a bias term. It satisfies

∣∣Bf (Tn,f )
∣∣ ≤ ∫

|u|≥1/hf

∣∣Φ(u)
∣∣2 du + 2

(∫
|u|≥1/hf

∣∣Φ(u)
∣∣2 du

∫
|u|≥1/hf

∣∣Φ0(u)
∣∣2 du

)1/2

≤ Le−2α
(
h

2β
f + 2h

β̄+β
f

)≤ 3e−2αLh
2β
f ,

as f belongs to F (α,0, β,L) ⊆ F (α,0, β,L).
Let us study the variance term Ef (Tn,f − Ef (Tn,f ))2. According to [2], this term is upper-bounded by w2

n,f given
by

Ef

(
Tn,f − Ef (Tn,f )

)2 ≤ C

n2h4σ+1
f

+ 4Ω2
g(f − f0)

n
1β≥σ = w2

n,f ,

and Ωg(f −f0) is a constant depending on f and g (but not n) and satisfying |Ω2
g(f −f0)| ≤ C‖f −f0‖2−2σ/β

2 (see
proof of Theorem 6 in [2]).

Using Markov’s inequality, this leads to the following upper bound of (15)

w2
n,f

(‖f − f0‖2
2 − C
t2

n,f − 3e−2αLh
2β
f )2

.

We will proceed differently when β < σ and when β ≥ σ . Let us first consider the term concerning β < σ . The
point is to use that f satisfies ‖f − f0‖2

2 ≥ Cψ2
n,β . Note that we have βf ≥ β , constants C > C
 and

ψ2
n,β t−2

n,f = (nρn)
4(βf −β)(4σ+1)/{(4βf +4σ+1)(4β+4σ+1)},

ensuring that the term Cψ2
n,β − C
t2

n,f is always positive. Moreover, as 0 ≥ β − βf ≥ −(β̄ − β)/ logn, we have

ψ2
n,βh

−2β
f = exp

{
16β(β − βf )

(4βf + 4σ + 1)(4β + 4σ + 1)
log(nρn)

}

≥ exp

{
− 16β̄(β̄ − β)

(4β + 4σ + 1)2

(
1 + o(1)

)}=: C1
(
1 + o(1)

)
.

Thus, we choose C 0 = C
 + 3e−2αL/C1 such that for any C > C 0, we have

‖f − f0‖2
2 − C
t2

n,f − 3e−2αLh
2β
f ≥

(
C − C∗ − 3e−2αL

C1

)
ψ2

n,β = aψ2
n,β,

with a > 0. Thus, we get

sup
α>α

sup
β∈[β;β̄]

sup
f ∈F (α,0,β,L)

‖f −f0‖2
2≥Cψ2

n,β

Pf

(∀i ∈ {1, . . . ,N}, |Tn,i | ≤ C
t2
n,i

)

≤ max

{
sup
β<σ

sup
f

C

n2h4σ+1
f ψ4

n,β

; sup
β≥σ

sup
f

C‖f − f0‖2−2σ/β

2

n(‖f − f0‖2
2 − C
t2

n,f − 3e−2αLh
2β
f )2

}
.
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Finally, this leads to the bound

max

{
sup
β<σ

sup
f

C

n2h4σ+1
f ψ4

n,β

; sup
β≥σ

C

n‖f − f0‖2+2σ/β

2 (a/C)2

}

≤ max

{
sup
β<σ

sup
f

C

n2h4σ+1
f ψ4

n,β

; sup
β≥σ

C

nψ
2+2σ/β
n,β

}
≤ ρn,

which converges to zero as n tends to infinity. �

Proof of Lemma 5. As β > ν, the bandwidths satisfy hνh
−1
β = o(1). Then, as G is compactly supported on [−1,0],

we have

E0

(
Gβ(Y1 − xj,β)Gν(Y1 − xi,ν)

p2
0(Y1)

)
=
∫

R

Gβ(y − xj,β)Gν(y − xi,ν)

p0(y)
dy

=
∫

[−1,0]
Gβ(hνu + xi,ν − xj,β)G(u)

p0(hνu + xi,ν)
du.

Apply the Taylor formula to get

Gβ(hνu + xi,ν − xj,β) = Gβ(xi,ν − xj,β) + hν

h2
β

uG′
(

hνũ1 + xi,ν − xj,β

hβ

)

and

1

p0(hνu + xi,ν)
= 1

p0(xi,ν)
− p′

0(hνũ2 + xi,ν)

p0(hνũ2 + xi,ν)2
hνu,

where 0 ≤ ũ1 ≤ u and 0 ≤ ũ2 ≤ u. As
∫

G = 0, we obtain∫
[−1,0]

Gβ(hνu + xi,ν − xj,β)G(u)

p0(hνu + xi,ν)
du

= 1

p0(xi,ν)

hν

h2
β

∫
[−1,0]

uG′
(

hνũ1 + xi,ν − xj,β

hβ

)
G(u)du

− hνGβ(xi,ν − xj,β)

∫
[−1,0]

p′
0(hνũ2 + xi,ν)

p0(hνũ2 + xi,ν)2
uG(u)du

− h2
ν

h2
β

∫
[−1,0]

p′
0(hνũ2 + xi,ν)

p0(hνũ2 + xi,ν)2
u2G′

(
hνũ1 + xi,ν − xj,β

hβ

)
G(u)du.

This leads to

E0

(
Gβ(Y1 − xj,β)Gν(Y1 − xi,ν)

p2
0(Y1)

)
= hν

h2
β

Ri,j ,

where

Ri,j = 1

p0(xi,ν)

∫
[−1,0]

uG′
(

hνũ1 + xi,ν − xj,β

hβ

)
G(u)du

− hβG

(
xi,ν − xj,β

hβ

)∫
[−1,0]

p′
0(hνũ2 + xi,ν)

p0(hνũ2 + xi,ν)2
uG(u)du

− hν

∫
[−1,0]

p′
0(hνũ2 + xi,ν)

p0(hνũ2 + xi,ν)2
u2G′

(
hνũ1 + xi,ν − xj,β

hβ

)
G(u)du
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satisfies

|Rij | ≤
(

inf[0,1]p0

)−1‖G‖∞
∥∥G′∥∥∞ + ‖G‖∞

∥∥p′
0

∥∥∞
(

inf[−1,1]p0

)−2(
hβ‖G‖∞ + hν

∥∥G′∥∥∞
)
,

which ends the proof of Lemma 5. �
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