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RATES OF CONVERGENCE OF SOME MULTIVARIATE
MARKOV CHAINS WITH POLYNOMIAL EIGENFUNCTIONS

BY KSHITIJ KHARE AND HUA ZHOU
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We provide a sharp nonasymptotic analysis of the rates of convergence
for some standard multivariate Markov chains using spectral techniques. All
chains under consideration have multivariate orthogonal polynomial as eigen-
functions. Our examples include the Moran model in population genetics and
its variants in community ecology, the Dirichlet-multinomial Gibbs sampler,
a class of generalized Bernoulli–Laplace processes, a generalized Ehrenfest
urn model and the multivariate normal autoregressive process.

1. Introduction. The theory of Markov chains is one of the most useful tools
of applied probability and has numerous applications. Markov chains are used for
modeling physical processes and evolution of a population in population genetics
and community ecology. Another important use is simulating from an intractable
probability distribution. It is a well-known fact that under mild conditions dis-
cussed in [2], a Markov chain converges to its stationary distribution. In the appli-
cations mentioned above, often it is useful to know exactly how many steps it takes
for a Markov chain to be reasonably close to its stationary distribution. Answering
this question as accurately as possible is what finding “rates of convergence” of
Markov chains is about.

In the current paper, we provide a sharp nonasymptotic analysis of rates of con-
vergence to stationarity for a variety of multivariate Markov chains. This helps de-
termine exactly what number of steps is necessary and sufficient for convergence.
These Markov chains appear as standard models in population genetics, ecology,
statistics and image processing.

Here is an example of our results. In community ecology, scientists study di-
versity and species abundances in ecological communities. The Unified Neutral
Theory of Biodiversity and Biogeography (UNTB) is an important theory pro-
posed by ecologist Stephen Hubbell in his monograph [27]. There are two levels
in Hubbell’s theory, a metacommunity and a local community.

The metacommunity has constant population size NM and evolves as follows.
At each step, a randomly chosen individual is replaced by a new one. With proba-
bility s (speciation), the new individual is a new species that never occurs before.
With probability 1 − s (no speciation), the new individual is a copy of one (ran-
domly chosen) of the remaining NM −1 individuals. After a sufficiently long time,
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the metacommunity reaches equilibrium which is the celebrated Ewen’s sampling
distribution. This process can be considered as a variant of the so-called infinite-
allele Moran model in population genetics [18]. In population genetics, the repro-
ducing individual could be the same as the dying one.

The local community has constant population size N , which is much smaller
than NM in scale. The evolution of the local community is similar to the meta-
community except it has migration instead of speciation. Specifically, at each step,
one individual is randomly chosen to die. With probability m (migration), the new
individual is an immigrant randomly chosen from the metacommunity. With prob-
ability 1 − m (no migration), the new individual will be a copy of one (randomly
chosen) of the remaining N − 1 individuals in the local community. Again this
process is a variant of the so-called multi-allele Moran model in population genet-
ics [18]. The metacommunity evolves at a much larger time scale and is assumed
to be fixed during the evolution of the local community.

Since the publication of [27], UNTB received both acclaims and criticisms. For
example, in [38], ecologist McGill tests some classical datasets against the equilib-
rium species abundance of the local community predicted by the UNTB. McGill
raised the “time to equilibrium” issue which is of both practical and scientific in-
terests. In order to generate the equilibrium distribution of the local community, he
actually simulates the evolution process of the local community on computer. As
he claims ([38], page 882):

No indication of what fixed number of time steps is appropriate has been published. My
own experiments show that it can be large. . .

Also scientifically it is desirable to know how soon a local community reaches
equilibrium. One hundred years? One thousand years?

A simulation of the local community process is performed on computer. Sup-
pose that the metacommunity has d = 5 species with uniform species frequencies
p = (0.2,0.2,0.2,0.2,0.2). The local community has population size N = 20 and
the migration probability is m = 0.05. Assume that initially all 20 individuals in
the local community are of the same species. Five thousand independent replicas
of the local community process are simulated for 1000 steps. For any (random)
count vector X = (X1, . . . ,Xd) of the local community, where Xi is the count
of individuals of species i, we can define a Watterson type statistics (population
homogeneity) as

W(X) =
d∑

i=1

X2
i

N2 .

The empirical distributions of the Watterson statistics are plotted along time in Fig-
ure 1. By visual inspection, we suspect that the distribution of Watterson statistics
is close to its stationary distribution after a few hundred steps. A commonly used
measure for distance to stationarity for Markov chains is the chi-square distance.
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FIG. 1. Empirical distributions of the Watterson statistics over time from 5000 simulations of the
local community process. The parameters are N = 20, d = 5,m = 0.05 and pi = 1/5. Starting state
is Nei .

Consider a Markov chain with state space X, transition density K(·, ·) and sta-
tionary density m with respect to a σ -finite measure μ. The chi-square distance to
stationarity after � steps, starting at state x, is defined as

χ2
x (�) =

∫
X

[K�(x, x′) − m(x′)]2

m(x′)
μ(dx′).

Proposition 4.10 provides rigorous quantitative answers to the question of how
long it takes the local community process to be close to its stationary distri-
bution. Let χ2

Nei
(l) be the chi-square distance between the distribution of the

d-dimensional vector of local community species abundances after � steps and the
stationary distribution, assuming initially all individuals are of species i. Proposi-
tion 4.10 tells us that 595 steps are necessary and sufficient for convergence. This
means that, for l ≤ 595 steps, χ2

Nei
(l) is high and, for l ≥ 595+190c (c is any pos-

itive constant) steps, χ2
Nei

(l) ≤ e−c. For example, by l = 595 + 190 × log 100 ≈
1470 steps, the chi-square distance χ2

Nei
(l) ≤ 0.01. If this is a tree population with

mortality rate 1% per year, 595 and 1470 steps translate into 2975 and 7350 years,
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FIG. 2. Chi-square distance of the local community process over time. The parameters are N = 20,
d = 5, m = 0.05 and pi = 1/5. Starting state is Nei .

respectively. For people who prefer total variation distance, it should be kept in
mind that the chi-square distance always produces an upper bound for the total
variation distance (see Section 2.1). Figure 2 shows how the (exact) chi-square
distance for the d-dimensional Markov chain is decreasing over time.

The calculations work because the Markov chain corresponding to the local
community process admits a system of multivariate orthogonal polynomials as
eigenfunctions. Then a summation formula due to Griffiths (reviewed in Sec-
tion 2.2.2) pertinent to this system of orthogonal polynomials allows us to do
explicit calculations for the chi-square distance.

We provide similar results for all other examples considered in this paper. For
every Markov chain, we find positive constants D and R, which depend on vari-
ous parameters of the Markov chain, such that after D − cR steps the chi-square
distance is larger than an explicit constant multiple of ec, and after D + cR steps
the chi-square distance to stationarity is less than an explicit constant multiple of
e−c or similar simple functions. In this sense, we say that D steps are necessary
and sufficient for convergence in chi-square distance.

The paper is organized as follows. Section 2 provides the required background
on the rates of convergence for Markov chains and some multivariate orthogo-
nal polynomials. Section 3 gives simple criteria to verify that a reversible Markov
kernel has orthogonal polynomials as eigenfunctions. Section 4 contains a wide
spectrum of applications. In every example we analyze the rates of convergence
of the Markov chain starting at a natural initial state. The frameworks in Sec-
tions 4.1 and 4.2 allow treatment of seemingly different Markov chains in a unified
way. Specific examples, for example, the multivariate Moran model, the Dirichlet-
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multinomial Gibbs sampler and Bernoulli–Laplace processes extend previous re-
sults [6, 11, 15, 16] for the univariate case. Section 4.3 contains analysis of a class
of Ehrenfest urn models which generalize [35]. In Section 4.4, we analyze the mul-
tivariate normal autoregressive process which arises in the multigrid Monte Carlo
method [22] and general overrelaxation MCMC algorithms [3, 4, 40].

We realize that the Markov chains being actually used at the forefront of today’s
research are quite complicated and it is still a serious research effort to provide use-
ful analysis for the rates of convergence of such Markov chains. Still, our examples
are standard and easy to understand models and it is nice to have a sharp analysis
of the rates of convergence of these chains.

2. Background.

2.1. Convergence rates of Markov chains. Let (X,F ) be a measurable space
equipped with a σ -finite measure μ. Suppose we are given a Markov chain on
state space X described by its transition density K(x, x′) with respect to μ(dx′).
Suppose further that the chain has stationary measure m(dx) = m(x)μ(dx). Let
Kl(x, ·) denote the density of the chain started at state x after l steps. The chi-
square distance between Kl(x, ·) and the stationary measure m is defined by

χ2
x (l) =

∫
X

[Kl(x, x′) − m(x′)]2

m(x′)
μ(dx′).

Intuitively the chi-square distance penalizes more the discrepancies at points which
have smaller probability mass (density) at stationarity. The commonly used total
variation distance is defined by

‖Kl
x − m‖TV = 1

2

∫
X

|Kl(x, x′) − m(x′)|μ(dx′).

While total variation distance is always bounded in interval [0,1], the chi-square
distance assumes values in [0,∞]. By Cauchy–Schwarz inequality, the chi-square
distance gives an upper bound for the total variation distance

4‖Kl
x − m‖2

TV ≤ χ2
x (l).

Let l2(m) := {f :X → R :
∫
X f 2(x)m(x)μ(dx) < ∞} denote the Hilbert space

equipped with inner product

〈f,g〉l2(m) = Em[f (X)g(X)] =
∫
X

f (x)g(x)m(x)μ(dx).

The Markov chain K operates on l2(m) by

Kf (x) =
∫
X

K(x,y)f (y)μ(dy).
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K is called reversible when m(x)K(x, x′) = m(x′)K(x′, x) for all x, x′ ∈ X, or
equivalently, when the operator K is self-adjoint:

〈Kf,g〉l2(m) = 〈f,Kg〉l2(m).

Suppose that l2(m) admits an orthonormal basis of eigenfunctions {φn}n≥0 with
φ0 ≡ 1 such that

Kφn(x) = βnφn(x), n ≥ 0,

where the eigenvalues {βn}n≥0 satisfy β0 = 1, |βn| ≤ 1, and
∑∞

n=1 β2
n < ∞. Then,

K is a Hilbert–Schmidt operator and

Kl(x, x′) =
∞∑

n=0

βl
nφn(x)φn(x

′)m(x′) [convergence in l2(m × m)].

Also,

χ2
x (l) =

∞∑
n=1

β2l
n φ2

n(x).(2.1)

The central identity in our analysis throughout the paper is (2.1). The challenge is
to work with the eigenvalues {βn}n≥0 and eigenfunctions {φn}n≥0 and manipulate
the right-hand side in (2.1) to obtain sharp rates of convergence.

2.2. Multivariate orthogonal polynomials. Before introducing multivariate
orthogonal polynomials we first set up the definitions of some standard multi-
variate distributions. To ease the notational burden, we will use boldface letters to
indicate vectors. For a vector x = (x1, . . . , xd) ∈ R

d ,

|x| =
d∑

i=1

xi, |xi | =
i∑

j=1

xj , |xi | =
d∑

j=i

xj .

The multinomial coefficient is denoted by( |x|
x

)
= |x|!

x1! · · ·xd ! .

Increasing and decreasing factorials are denoted by

a(k) = a(a + 1) · · · (a + k − 1), a[k] = a(a − 1) · · · (a − k + 1).

a(0) = a[0] = 1 by convention. For vectors x = (x1, . . . , xd) and n = (n1, . . . , nd),

xn =
d∏

i=1

x
ni

i , x(n) =
d∏

i=1

(xi)(ni), x[n] =
d∏

i=1

(xi)[ni ].
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Three spaces that play important roles later are listed below:

�d = {p = (p1, . . . , pd) ∈ [0,1]d : |p| = 1},
Xd

N = {x = (x1, . . . , xd) ∈ N
d
0 : |x| = N},

Xd
N,� = {x = (x1, . . . , xd) ∈ N

d
0 : |x| = N,0 ≤ xi ≤ li}.

Dirichlet distribution with parameters α = (α1, . . . , αd), αi > 0, has support �d

and density

D(p|α) = 	(|α|)
	(α1) · · ·	(αd)

d∏
i=1

p
αi−1
i , p ∈ �d.(2.2)

In Bayesian statistics, Dirichlet distribution is the conjugate prior for the multino-
mial distribution.

Multinomial distribution, with parameters N > 0 and p ∈ �d , has support Xd
N

and probability mass function

M(x|N,p) =
(

N

x

) d∏
i=1

p
xi

i , x ∈ Xd
N .(2.3)

Dirichlet-multinomial distribution, with parameters N > 0 and α = (α1, . . . ,

αd), αi > 0, is the Dirichlet D(p|α) mixture of multinomial M(·|N,p) and has
probability mass function

DM(x|N,α) =
(

N

x

) ∏d
i=1(αi)(xi )

|α|(N)

=
∏d

i=1
(xi+αi−1

xi

)
(N+|α|−1

N

) , x ∈ Xd
N .(2.4)

The same distribution is called multivariate negative hypergeometric distribution
in [32], page 179. When α = (1, . . . ,1), it is the well-known Bose–Einstein distri-
bution. Note as α/|α| → p = (p1, . . . , pd) ∈ �d , DM(x|N,α) → M(x|N,p).

Let � = (l1, . . . , ld) be a vector of positive integers and 0 < N < |�|. Replac-
ing αi by −li for 1 ≤ i ≤ d in (2.4), we obtain the hypergeometric distribution
with parameter N and �:

H(x|N,�) =
(

N

x

) ∏d
i=1(li)[xi ]
|�|[N]

=
∏d

i=1
( li
xi

)
(|�|
N

) , x ∈ Xd
N,�.(2.5)

Classically the hypergeometric distribution occurs from sampling N balls without
replacement from a pool of |�| balls with composition �.

Multinomial, Dirichlet-multinomial and hypergeometric distributions have al-
ternative interpretations in a unified framework called the Pólya (or Pólya–
Eggenberger) urn scheme. Chapter 40 of [32] is dedicated to the properties and
history of the Pólya urn model. An urn initially contains l1 balls of color 1, l2
balls of color 2, . . . , ld balls of color d . In a typical Pólya urn scheme, a ball is ran-
domly drawn. The color of the ball is noted and the ball is returned to the urn along
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with c additional balls of the same color. This experiment is repeated N times and
the distribution of the composition of the observed N balls is called a Pólya–
Eggenberger distribution. When c = 0, this becomes sampling with replacement
and the distribution is multinomial with parameters N and p = �/|�|. When c > 0,
the distribution is Dirichlet-multinomial with parameters N and α = �/c. When
c = −1, this becomes sampling without replacement and the distribution is hyper-
geometric with parameters N and �. In recent literature, Pólya type processes allow
much more general replacement schemes. In Section 4.1, the Moran model in pop-
ulation genetics, its variants in community ecology, and the Dirichlet-multinomial
Gibbs sampler are put in a unified framework called the sequential Pólya urn mod-
els.

The multivariate normal distribution is used when we study the multivariate
normal autoregressive process in Section 4.4. The density of a multivariate nor-
mal distribution with mean vector μ ∈ R

d and covariance matrix 
 at a column
vector x is given by

N (x|μ,
) = 1√
(2π)d |
|

e−(x−μ)T 
−1(x−μ)/2, x ∈ R
d .

Next we review the relevant developments of multivariate orthogonal polyno-
mials for these classical multivariate distributions. These polynomials occur as the
eigenfunctions for the Markov chains analyzed in this paper.

2.2.1. Review of some explicit multivariate orthogonal polynomials. Iliev and
Xu [28] explicitly construct systems of orthogonal polynomials on various multi-
variate discrete weight functions which correspond to classical multivariate prob-
ability distributions. Most pertinent to us are the multivariate Hahn polynomials.
We present their construction below. The parameters in [28] are shifted by one
from ours.

Multivariate Hahn polynomials. For any (n1, . . . , nd) ∈ Xd
N , we let n =

(n1, . . . , nd−1) be the index vector and define multivariate polynomials on Xd
N

by

Qn(x;N,α)

= (−1)|n|

(N)[|n|]

d−1∏
j=1

(−N + |xj−1| + |nj+1|)(nj )

(2.6)
× Qnj

(xj ;N − |xj−1| − |nj+1|,
αj , |αj+1| + 2|nj+1|),



CONVERGENCE RATES OF MARKOV CHAINS 745

where

Qn(x;N,α,β) = 3F2

(−n,n + α + β − 1,−x

α,−N

∣∣∣∣ 1
)

=
n∑

j=0

(−n)(j)(n + α + β − 1)(j)(−x)(j)

(α)(j)(−N)(j)j !
is the classical univariate Hahn polynomial. The univariate Hahn polynomials sat-
isfy the orthogonality relation

EDM(·|N,α,β)[Qn(X;N,α,β)Qm(X;N,α,β)]
(2.7)

= (N + α + β)(n)(β)(n)(N
n

)
(2n + α + β − 1)(α + β)(n−1)(α)(n)

δmn.

A survey of the univariate Hahn polynomials is in [29], Section 6.2. The following
proposition is essentially Theorem 5.4 in [28].

PROPOSITION 2.1. The system (2.6) satisfies the orthogonality relation

EDM(·|N,α)[Qn(X;N,α)Qn′(X;N,α)]
= ∑

x∈Xd
N

Qn(x;N,α)Qn′(x;N,α)DM(x|N,α)(2.8)

= d2
nδn,n′,

where

d2
n = (|α| + N)(|n|)

(N)[|n|]|α|(2|n|)
(2.9)

×
d−1∏
j=1

(|αj | + |nj | + |nj+1| − 1)(nj )(|αj+1| + 2|nj+1|)(nj )nj !
(αj )(nj )

.

In probabilistic language, the construction of (2.6) uses the stick-breaking prop-
erty of the Dirichlet-multinomial distribution. Essentially the same result was im-
plied in an earlier work by Karlin and McGregor [36].

REMARK 2.2. Here are a few properties of the orthogonal system (2.6):

1. Qn is a polynomial in x1, . . . , xd−1 of degree |n|.
2. Qn(Ned;N,α) = 1.
3. When d = 2, we recover the univariate Hahn polynomials.
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The orthogonality relation (2.8) does not depend on the positivity of αi,1 ≤ i ≤
d . Therefore switching parameter range gives the orthogonal polynomials on the
multivariate hypergeometric distribution. Note that the sample space (and thus the
index set) is Xd

N,�, a subset of Xd
N .

PROPOSITION 2.3. The system (2.6), with αi = −li ,1 ≤ i ≤ d , is orthogonal
with respect to the hypergeometric distribution H(·|N,�) (2.5).

Multivariate Krawtchouk polynomials. Recall the well-known limiting rela-
tion

Qn

(
x;N,pt, (1 − p)t

) =
n∑

j=0

(−n)(j)(n + t − 1)(j)(−x)j

(pt)(j)(−N)(j)j !

→
n∑

j=0

(−n)(j)(−x)(j)

(−N)(j)j !pj

= 2F1

(−n,−x

−N

∣∣∣∣ 1

p

)
= Kn(x;N,p)

as t → ∞, where Kn’s are the univariate Krawtchouk polynomials orthogonal
for the binomial distribution with parameters N and p. Properties of the univari-
ate Krawtchouk polynomials are documented in [29], page 183. Taking limits
α/|α| → p = (p1, . . . , pd) ∈ �d in the orthogonality relation of the multivari-
ate Hahn polynomials (2.8), we obtain the orthogonal polynomials (multivariate
Krawtchouk) for the multinomial distribution M(·|N,p).

PROPOSITION 2.4. The system

Kn(x;N,p) = (−1)|n|

(N)[|n|]

d−1∏
j=1

(−N + |xj−1| + |nj+1|)(nj )

(2.10)

× Knj

(
xj ;N − |xj−1| − |nj+1|, pj

|pj |
)

satisfies the orthogonality relation

EM(·|N,p)[Kn(X;N,p)Kn′(X;N,p)]
= ∑

x∈Xd
N

Kn(x;N,p)Kn′(x;N,p)M(x|N,p)

= d2
nδn,n′,

where

d2
n = 1

(N)[|n|]

d−1∏
j=1

(|pj |)nj (|pj+1|)nj nj !
p

nj

j

.(2.11)
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The systems of orthogonal polynomials for a fixed multinomial distribution are
not unique. A more general construction of the multivariate Krawtchouk polyno-
mials was given by Griffiths [23] and recently surveyed in [43]. The system defined
by (2.10) is a special case in this general framework.

Multivariate Jacobi polynomials. Next we record the multivariate orthogo-
nal polynomials for the Dirichlet distribution. Recall that, for the univariate Hahn
polynomials,

Qn(x;N,α,β) = 3F2

(−n,n + α + β − 1,−x

α,−N

∣∣∣∣ 1
)

=
n∑

j=0

(−n)(j)(n + α + β − 1)(j)(−x)(j)

(α)(j)(−N)(j)j !

→
n∑

j=0

(−n)(j)(n + α + β − 1)(j)

(α)(j)

zj

j !

= 2F1

(−n,n + α + β − 1
α

∣∣∣∣ z

)
= Jn(z;α,β)

as x/N → z. {Jn}0≤n<∞ are the shifted Jacobi polynomials which are orthogo-
nal for the beta distribution with parameters α and β . Taking limits x/N → z =
(z1, . . . , zd) ∈ �d in the multivariate Hahn polynomials (2.6), we obtain a system
of multivariate polynomials on �d :

Jn(z;α) =
d−1∏
j=1

|zj |nj Jnj

(
zj

|zj | ;αj , |αj+1| + 2|nj+1|
)
,(2.12)

z ∈ �d, n ∈ N
d−1
0 .

PROPOSITION 2.5. The system (2.12) satisfies the orthogonality relation

ED(·|α)[Jn(Z;α)Jn′(Z;α)]
=

∫
�d

Jn(z;α)Jn′(z;α)D(z|α) dz

= d2
nδn,n′,

where

d2
n = 1

|α|(2|n|)
(2.13)

×
d−1∏
j=1

(|αj | + |nj | + |nj+1| − 1)(nj )(|αj+1| + 2|nj+1|)(nj )nj !
(αj )(nj )

.

A stick-breaking construction of (2.12) was known earlier (see, e.g., [17, 37]).
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Hermite polynomials. We require univariate Hermite polynomials to carry out
the analysis of the multivariate normal autoregressive process. The eigenfunctions
of this process (after appropriate variable transformations) turn out to be products
of appropriate univariate Hermite polynomials. The univariate Hermite polynomi-
als are defined by

Hn(x) = n!
[n/2]∑
k=0

(−1)k(2x)n−2k

k!(n − 2k)! , n ≥ 0.(2.14)

They satisfy the orthogonality relation

1√
π

∫ ∞
−∞

Hm(y)Hn(y)e−y2
dy = 2nn!δmn.

An important multilinear generating function formula ([29], Example 4.7.3), gives
∞∑

n=0

H 2
n (x)

2nn! tn = 1√
1 − t2

e2x2t/(1+t).(2.15)

2.2.2. Griffiths’ construction of kernel polynomials. In the applications in
Section 4, we need to manipulate certain sums of products of the relevant multi-
variate orthogonal polynomials. For a fixed multivariate distribution m, the kernel
polynomials are defined as

hn(x,y) = ∑
|n|=n

Q0
n(x)Q0

n(y)

for any complete system of orthonormal polynomials {Q0
n} in l2(m). The kernel

polynomials are invariant under the choice of orthogonal polynomial system. For-
tunately, these sums can be carried out in closed form for the systems of poly-
nomials that we consider. In this section, we review the work by Griffiths, who
explicitly constructed the kernel polynomials for the Dirichlet-multinomial [25],
Dirichlet [24, 25] and the multinomial [26] distributions.

PROPOSITION 2.6. For x,y ∈ Xd
N and 0 ≤ n ≤ N , the kernel polynomials for

the Dirichlet-multinomial distribution DM(·|N,α) (2.4) are

hn(x,y) = (|α| + 2n − 1)
(|α| + N)(n)

N[n]
(2.16)

×
n∑

m=0

(−1)n−m (|α| + m)(n−1)

m!(n − m)! ξm(x,y),

where

ξm(x,y) = ∑
|�|=m

(
m

�

) |α|(m)∏d
1 αi(li )

∏d
1(αi + xi)(li )(αi + yi)(li )

(|α| + N)(m)(|α| + N)(m)

.(2.17)



CONVERGENCE RATES OF MARKOV CHAINS 749

For example, the first two kernel polynomials are

h0(x,y) ≡ 1;

h1(x,y) = (|α| + 1)(|α| + N)

N

( |α|
(|α| + N)2

d∑
i=1

(αi + xi)(αi + yi)

αi

− 1

)
.

When calculating convergence rates of Markov chain starting from state Nei , we
need to evaluate the quantity

hn(Nei ,Nei) = N[n]
(N + |α|)(n)

(|α| + 2n − 1)(|α|)(n−1)(|α| − αi)(n)

n!(αi)(n)
(2.18)

=
(

N

n

)
(|α| + 2n − 1)(|α|)(n−1)(|α| − αi)(n)

(|α| + N)(n)(αi)(n)

.

The first equality follows from (2.9), (2.13) and (2.21) below.
Replacing αi by −li , 1 ≤ i ≤ d , in (2.16) and (2.17), we obtain the kernel poly-

nomials for the hypergeometric distribution H(·|N,�) (2.5). For example, when
li ≥ N and x = y = Nei ,

hn(Nei ,Nei) =
(

N

n

)
(|�| − 2n + 1)|�|[n−1](|�| − li)[n]

(|�| − N)[n](li)[n]
.

Writing xi = Nwi , yi = Nzi and taking limit N → ∞ in (2.17), we recover the
kernel polynomials for the Dirichlet distribution.

PROPOSITION 2.7. For w, z ∈ �d and 0 ≤ n < ∞, the kernel polynomials for
the Dirichlet distribution D(·|α) (2.2) are

hn(w, z) = (|α| + 2n − 1)

n∑
m=0

(−1)n−m (|α| + m)(n−1)

m!(n − m)! ξm(w, z),(2.19)

where

ξm(w, z) = ∑
|�|=m

(
m

�

) |α|(m)∏d
i=1 αi(li )

d∏
i=1

(wizi)
li .(2.20)

The kernel polynomials for the Dirichlet distribution were derived in [24] where
the transition density of the multi-allele Wright–Fisher diffusion process was ex-
panded in terms of (2.19). When w = z = ei ,

hn(ei , ei) = (|α| + 2n − 1)

n!
n∑

m=0

(−1)n−m

(
n

m

) |α|(m+n−1)

(αi)(m)

= (|α| + 2n − 1)

n!
|α|(n)

|α| + n − 1
(−1)n

n∑
m=0

(−n)(m)(|α| + n − 1)(m)

(αi)(m)m!(2.21)

= (|α| + 2n − 1)(|α|)(n−1)(|α| − αi)(n)

n!(αi)(n)

,



750 K. KHARE AND H. ZHOU

where the last equality uses the Chu–Vandermonde summation formula.
The kernel polynomials for the multinomial distribution were given in the work

by Griffiths [26].

PROPOSITION 2.8. For x,y ∈ Xd
N and 0 ≤ n ≤ N , the kernel polynomials for

the multinomial distribution M(·|N,p) (2.3) are

hn(x,y) =
n∑

m=0

(
N

m

)(
N − m

n − m

)
(−1)n−mξm,(2.22)

where

ξm = ∑
|�|=m

(
m

�

) ∏d
i=1(xi)[li ](yi)[li ]p

−li
i

N[m]N[m]
.

When x = y = Nei ,

hn(Nei ,Nei ) =
(

N

n

)(
1 − pi

pi

)n

.(2.23)

3. Markov chains with orthogonal polynomial eigenfunctions. There is a
large class of Markov chains with polynomial eigenfunctions, for example, birth–
death processes [41], Cannings exchangeable model [5] in population genetics,
certain two-component Gibbs samplers [11] and of course all Markov chains con-
sidered in this paper. When the Markov kernel is reversible, often the orthogonal
polynomials for the stationary distribution come up as eigenfunctions. We present
simple tools for identifying cases when orthogonal polynomials are the eigenfunc-
tions of a reversible Markov kernel, first in the univariate case and then the multi-
variate case.

LEMMA 3.1. Suppose π is a univariate distribution and l2(π) admits an or-
thogonal basis of polynomials {qn(x)}0≤n<c where c = # supp(π), that is, qn(x) is
a polynomial in x of exact degree n and

〈qn, qm〉l2(π) = Eπ [qn(X)qm(X)] = d2
nδnm.

If K is a Markov kernel reversible on π and

EK(x,·)[Xn] = βnx
n + terms in x of degree < n, 0 ≤ n < c,(3.1)

then:

1. K has eigenvalue βn with eigenfunction qn, that is, Kqn = βnqn for 0 ≤ n < c.
2. The chi-square distance between Kl(x, ·) and π is

χ2
x (l) = ∑

n≥1

β2l
n q2

n(x)d−2
n .
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PROOF. q0 is a constant function and trivially Kq0 = q0 with eigenvalue
β0 = 1. By hypothesis (3.1), Kqn = βnqn + ∑

m<n amqm. But the coefficients
am = 〈Kqn, qm〉l2(π) = 〈qn,Kqm〉l2(π) = 0 since Kqm is a polynomial of degree m

and can be expanded in terms of the basis polynomials of degree ≤ m < n which
are all orthogonal to qn. Therefore Kqn = βnqn. The expression for the chi-square
distance follows from (2.1). �

Under mild assumptions, this result can be generalized into a multivariate case.
We recall that the notation |n| denotes the sum of coordinates of a vector n.

LEMMA 3.2. Suppose π is a multivariate distribution and l2(π) admits an
orthogonal basis of multivariate polynomials {qn(x)} where qn is a polynomial of
exact degree |n| and

〈qn, qm〉l2(π) = Eπ [qn(X)qm(X)] = d2
nδnm.

If K is a Markov kernel reversible with respect to π and

EK(x,·)[Xn] = β|n|xn + terms in x of degree < |n|,(3.2)

then:

1. K has eigenvalue βn with corresponding eigenbasis {qn}|n|=n.
2. The chi-square distance between Kl(x, ·) and π is

χ2
x (l) = ∑

n≥1

β2l
n hn(x,x),

where

hn(x,y) := ∑
|n|=n

qn(x)qn(y)d−2
n

is the kernel polynomial of degree n for π .

PROOF. q0 is a constant function and trivially Kq0 = q0 with eigenvalue
β0 = 1. By hypothesis (3.2), Kqn = β|n|qn + ∑

|m|<|n| amqm. But the coefficients
am = 〈Kqn, qm〉l2(π) = 〈qn,Kqm〉l2(π) = 0 since Kqm is a polynomial of de-
gree |m| and can be expanded in terms of the basis polynomials of degree ≤ |m| <
|n|, which are all orthogonal to qn. Therefore Kqn = β|n|qn. The expression for
the chi-square distance follows from (2.1). �

REMARK 3.3. When checking conditions (3.1) or (3.2), often it is eas-
ier to calculate the factorial moments. Because of the simple relation x[n] =∑n

k=0 s(n, k)xk , where s(n, k) are the Stirling numbers of the first kind and es-
pecially s(n,n) = 1, the condition (3.2) is equivalent to

EK(x,·)
[
X[n]

] = β|n|x[n] + terms in x of degree < |n|.
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The key condition (3.2) seems restrictive but holds for surprisingly many multi-
variate Markov chains which possess certain intrinsic symmetry. Most examples in
this paper satisfy (3.2). See [43] for a class of multinomial chains with orthogonal
polynomial eigenfunctions but which in general do not satisfy (3.2).

The trick of preserving polynomials has a long history in population genetics
(see, for example, [5, 19]). But most models in population genetics, for exam-
ple, Wright–Fisher model, are irreversible and thus orthogonal polynomials do not
come up. An exception is the Moran process which we study and generalize in
Section 4.1.

4. Applications.

4.1. Sequential Pólya urn models. In this section, we study a class of multi-
variate Markov chains which can be described in terms of the classical Pólya urns.
They are all reversible with respect to the Dirichlet-multinomial distribution and
have the multivariate Hahn polynomials as eigenfunctions. Interestingly, the clas-
sical multi-allele Moran process in population genetics, local community process
in community ecology, and the Dirichlet-multinomial Gibbs sampler in statistics
can be treated as special cases in this unified framework. The urn description also
provides a convenient way for simulation of the processes on a computer.

We first define the Pólya type urns. A newly constituted urn contains one ball of
color i and weight αi for 1 ≤ i ≤ d , that is, total of d balls with total weight |α|.
A Pólya type draw is defined as a random draw according to weights and the ball
is returned to the urn along with one additional ball of the same color and of unit
weight. Initially a batch of N balls of composition (X01, . . . ,X0d), that is, X0i

balls of color i and each of unit weight, are added into a newly constituted urn.
We define three classes of Pólya urn models. In the following, s is a fixed integer
between 0 and N .

DEFINITION 4.1. Pólya level models: One step of the Markov chain includes
three mini-steps. First randomly mark s balls among the N balls (excluding the d

original balls) to be removed. Before removal, do s Pólya type draws (including
the d original balls). Then the s marked balls are removed. Apparently the number
of balls in the urn is kept constant after each step and the d original balls are always
in the urn. Let Xt = (Xt1, . . . ,Xtd) be the composition of N balls (excluding the d

original balls) after t steps. {Xt }t≥0 forms a multivariate Markov chain on Xd
N ,

which we call a Pólya level model.

DEFINITION 4.2. Pólya down-up models: one-step of the Markov chain in-
cludes two mini-steps. First randomly choose s balls among the N balls (excluding
the d original balls) and remove them. Then do s Pólya type draws (including the d

original balls). The number of balls in the urn is kept constant and the d original
balls are always in the urn. Let Xt = (Xt1, . . . ,Xtd) be the composition of N balls
(excluding the d original balls) after t steps. {Xt }t≥0 forms a multivariate Markov
chain on Xd

N , which we call a Pólya down-up model.
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DEFINITION 4.3. Pólya up-down models: one-step of the Markov chain in-
cludes two mini-steps. First do s Pólya type draws (including the d original balls).
Then randomly choose s balls among the N + s balls (excluding the d original
balls) and remove them. The number of balls in the urn is kept constant and the d

original balls are always in the urn. Let Xt = (Xt1, . . . ,Xtd) be the composition
of N balls (excluding the d original balls) after t steps. {Xt }t≥0 forms a multivari-
ate Markov chain on Xd

N , which we call a Pólya up-down model.

All three classes of the sequential Pólya models have the same stationary distri-
bution. The detailed balance is checked in a straightforward way.

LEMMA 4.4. All three classes of Pólya urn models are reversible with re-
spect to the Dirichlet-multinomial distribution DM(·|N,α) (2.4), where α =
(α1, . . . , αd).

Using the trick of preserving polynomials (Lemma 3.2), it is easy to check that
all three classes of Pólya urn models take the multivariate Hahn polynomials (2.6)
as eigenfunctions. Recall that |α| = ∑d

i=1 αi .

THEOREM 4.5. 1. The Pólya level model has eigenvalue

βn =
n∑

k=0

(
n

k

)
(N − s)[k]s[n−k]

N[k](N + |α|)(n−k)

(4.1)

=
n∑

k=0

(
n

k

)
(N − s)[n−k]s[k]

N[n−k](N + |α|)(k)

, 0 ≤ n ≤ N,

with multiplicity
(d+n−2

n

)
and corresponding eigenbasis {Qn}|n|=n, where Qn

are the multivariate Hahn polynomials (2.6).
2. The Pólya down-up model has eigenvalue

βn = (N − s)[n](N + |α|)(n)

N[n](N − s + |α|)(n)

, 0 ≤ n ≤ N,

with multiplicity
(d+n−2

n

)
and corresponding eigenbasis {Qn}|n|=n, where Qn

are the multivariate Hahn polynomials (2.6).
3. The Pólya up-down model has eigenvalue

βn = N[n](N + s + |α|)(n)

(N + s)[n](N + |α|)(n)

, 0 ≤ n ≤ N,

with multiplicity
(d+n−2

n

)
and corresponding eigenbasis {Qn}|n|=n, where Qn

are the multivariate Hahn polynomials (2.6).
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4. For all three classes of Pólya models, the chi-square distance between Kl(x, ·)
and the stationary distribution is

χ2
x (l) =

N∑
n=1

β2l
n hn(x,x),(4.2)

where βn are the eigenvalues for the corresponding process and hn are the
kernel polynomials (2.16) for the Dirichlet-multinomial distribution.

PROOF. For sake of space, we only provide the proof for the Pólya level mod-
els. Proofs for the other models are similar. For the Pólya level model with para-
meter s, it is observed that, given Xt = x, Xt+1 = x−Y+Z, where Y is multivari-
ate hypergeometric H(·|s,x), Z is Dirichlet-multinomial DM(·|s,α + x), and Y
is independent of Z. Joint factorial moments of multivariate hypergeometric and
Dirichlet-multinomial distributions are well known. With x = (x1, . . . , xd−1) and
n = (n1, . . . , nd−1),

EK(x,·)X[n]
= E(x − Y + Z)[n]

= ∑
0≤k≤n

d−1∏
j=1

(
nj

kj

)
E(x − Y)[n−k]EZ[k]

= ∑
0≤k≤n

d−1∏
j=1

(
nj

kj

)
(N − s)[|n|−|k|]

N[|n|−|k|]
x[n−k] · s[|k|]

(N + |α|)(|k|)
(x + α)(k)

=
[ |n|∑

k=0

( |n|
k

)
(N − s)[|n|−k]s[k]

N[|n|−k](N + |α|)(k)

]
x[n] + terms in x of degree < |n|.

Then the claims follow from Lemma 3.2. �

REMARK 4.6. For all three classes of Pólya urn models, the eigenvalues de-
pend on the parameter α = (α1, . . . , αd) only through its sum |α|. Formulas for the
eigenfunctions require complete knowledge of α.

Complete spectral information allows for sharp results in convergence rate in
chi-square distance. In case s = 1, an argument similar to that in [21] can also
be used to obtain convergence rate in separation distance using only eigenvalues
(see [44]). But in the current paper we confine ourselves to the convergence rate in
chi-square distance. The following three examples are special cases of the sequen-
tial Pólya urn models.
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4.1.1. Convergence rate of the Moran process in population genetics. In brief,
the classical Moran process in population genetics models the evolution of a pop-
ulation of constant size by random replacement followed by mutation. Suppose
there are d species in a population of size N . At each step, one individual is cho-
sen uniformly to die and independently another is chosen uniformly to reproduce.
They may be the same individual. If the latter is of species i, the offspring has prob-
ability mij , 1 ≤ j ≤ d, to mutate to type j . Let Xt = (Xt1, . . . ,Xtd) be the vector
of counts of species 1, . . . , d at time t . {Xt }t≥0 forms a Markov chain on Xd

N .
The size of the state space is |Xd

N | = (N+d−1
N

)
. Let x ∈ Xd

N ; one-step transition
probabilities are

K(x,x + ei − ej ) = xj

N

(
d∑

k=1

xk

N
mki

)
, 1 ≤ i �= j ≤ d;

K(x,x) = 1 − ∑
i �=j

K(x,x + ei − ej );(4.3)

K(x,y) = 0, otherwise.

This model (d = 2) is due to Moran [39]. Background and references can be found
in the text by Ewens [18]. In many applications, the matrix M = {mij } of mutation
probabilities takes a special form

M = (1 − m)I + m

⎛
⎝p1 · · · pd

· · ·
p1 · · · pd

⎞
⎠ ,(4.4)

where 0 < m < 1 and (p1, . . . , pd) is a probability vector. In words, the offspring
has probability m to mutate. If mutation happens, the offspring will change to
species i with probability pi . Note when m = 1, the mutation matrix M has iden-
tical rows and the process degenerates into a multivariate Ehrenfest chain model,
which is a special case in Section 4.3. Karlin and McGregor [36] gave the Karlin–
McGregor spectral representation of the transition density for the continuous-time
multivariate Moran model. Their version of multivariate Hahn polynomials are
defined iteratively and essentially the same as (2.6).

A natural question is how long it takes such a population to be totally mixed. In
the univariate (d = 2) and continuous-time setting, Donnelly and Rodrigues [16]
obtain an upper bound of order (N logN)/m (m = m12 + m21 in the above nota-
tion) in the separation and total variation distances, when the process starts from
X0 = 0. As shown below, for the chi-square distance, order N/m (constant be-
ing explicit) steps are necessary and sufficient. Convergence rate in the separation
distance for the multivariate case is also available [44] but not presented here.

Under the reparametrization αi = Nmpi

1−m
, 1 ≤ i ≤ d , it is easy to check that the

Moran process defined by (4.3) and (4.4) is exactly the same as the Pólya level
model with s = 1. This gives an intuitive explanation why the Moran process has
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Dirichlet-multinomial distribution as its stationary distribution. We remark that all
the sequential Pólya urn models admit an interpretation as a population genetics
model. For example, a Pólya level model with parameter s means that for a popu-
lation of size N , at each step, s individuals are sequentially selected to reproduce
and then mutate, then s individuals are randomly chosen from the old population
(size N ) to die. The original Moran model can be thought of as a multivariate
birth–death type process. This generalization allows for more dynamic change of
the population at each generation.

The next proposition gives the convergence rate of the Moran process when
initially all individuals are of the same species.

PROPOSITION 4.7. Let K denote the Moran process specified by (4.3)
and (4.4). Then K is reversible with respect to the Dirichlet-multinomial distri-
bution DM(·|N,α) (2.4), where αi = Nmpi

1−m
> 0, 1 ≤ i ≤ d , and:

1. K has eigenvalue

βn = 1 − n(|α| + n − 1)

N(N + |α|) , 0 ≤ n ≤ N,

with multiplicity
(d+n−2

n

)
and corresponding eigenbasis {Qn}|n|=n, where Qn

are the multivariate Hahn polynomials (2.6). Particularly,

β0 = 1 with multiplicity 1,

β1 = 1 − |α|
N(N + |α|) with multiplicity d − 1.

2. Suppose that initially all individuals are of species i. Then, for any c > 0,

χ2
Nei

(l) ≤ e−c

for l ≥ log[3(2 ∨ |α|)N/(N + |α|)((|α| − αi)/αi ∨ 1)] + c

−2 log(1 − |α|/(N(N + |α|))) ,

χ2
Nei

(l) ≥ 1

6
ec

for l ≤ log[3(2 ∨ |α|)N(|α| − αi)/((N + |α|)αi)] − c

−2 log(1 − |α|/(N(N + |α|))) .

PROOF. The first assertion is a direct corollary to Theorem 4.5 by setting s = 1
in (4.1). For the second assertion, by (4.2) and (2.18),

χ2
Nei

(l) =
N∑

n=1

(
1 − n(|α| + n − 1)

N(N + |α|)
)2l

× N[n]
(N + |α|)(n)

(|α| + 2n − 1)(|α|)(n−1)(|α| − αi)(n)

n!(αi)(n)

.
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The ratio of the (n + 1)th summand to the nth is(
1 − |α| + 2n

N(N + |α|) − n(|α| + n − 1)

)2l

× N − n

N + |α| + n

|α| + 2n + 1

|α| + 2n − 1

|α| + n − 1

n + 1

|α| − αi + n

αi + n

≤ (β1)
2l N

N + |α|3
(

1 ∨ |α|
2

)( |α| − αi

αi

∨ 1
)
.

With l ≥ log[3(2∨|α|)N/(N+|α|)((|α|−αi)/αi∨1)]+c
−2 logβ1

, this ratio is bounded by e−c/2 ≤
1/2 and hence

χ2
Nei

(l) ≤ N(|α| + 1)(|α| − αi)

(N + |α|)αi

β2l
1

( ∞∑
n=0

1

2n

)

≤ 2(|α| + 1)

3(2 ∨ |α|) e−c ≤ e−c.

With l ≤ log[3(2∨|α|)(|α|−αi)/αiN/(N+|α|)]−c
−2 logβ1

χ2
Nei

(l) ≥ N(|α| + 1)(|α| − αi)

(N + |α|)αi

β2l
1 ≥ |α| + 1

3(2 ∨ |α|)e
c ≥ 1

6
ec. �

REMARK 4.8. In the biological case, N is large and Nm is of constant or-
der. For example, consider the case m = 1

N+1 and p1 = · · · = pd = 1
d

, or equiva-

lently, α1 = · · · = αd = 1
d

. When initially all individuals are of same type and N

is large, log 6(d−1)N/(N+1)
−2 log(1−1/(N(N+1)))

≈ log 6(d−1)
2 N(N + 1) steps are necessary and suf-

ficient to drive the chi-square distance low. Figure 3 shows the decrease of the
chi-square distance for the Moran process with N = 20, d = 5, αi = 0.2. In this
case, log 6(d−1)

2 N(N + 1) ≈ 668.

REMARK 4.9. Consider the case α1 = · · · = αd = 1. The stationary distribu-
tion is uniform on Xd

N . When N is large, log 3d(d−1)N/(N+d)
−2 log(1−d/(N(N+d)))

≈ log 3d(d−1)
2d

N(N +
d) steps are necessary and sufficient to drive the chi-square distance low. Figure 4
shows the decrease of the chi-square distance for the Moran process with N = 20,
d = 5, αi = 1. In this case, log 3d(d−1)

2d
N(N + d) ≈ 205.

4.1.2. Convergence rate of the local community process by Hubbell. A de-
scription of the local community process by Hubbell is given in the Introduction.
We observe that the process is almost the same as the Moran process except that the
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FIG. 3. Chi-square distance of the Moran model with N = 20, d = 5, αi = 1/5, starting from Nei .

reproducing individual cannot be the same as the dying one. One-step transition
probabilities are

K(x,x + ei − ej ) = xj

N

(∑
k �=j xkmki + (xj − 1)mji

N − 1

)
,

(4.5) 1 ≤ i �= j ≤ d;

FIG. 4. Chi-square distance of the Moran model with N = 20, d = 5, αi = 1, starting from Nei .



CONVERGENCE RATES OF MARKOV CHAINS 759

K(x,x) = 1 − ∑
i �=j

K(x,x + ei − ej );

K(x,y) = 0 otherwise,

with the matrix of mutation probabilities same as (4.4). This is essentially the
process prescribed in Hubbell’s book [27], page 86, and simulated by McGill [38].
Again under parametrization αi = (N−1)mpi

1−m
, we find that the local community

process by Hubbell is the same as the Pólya down-up model with s = 1. The fol-
lowing proposition is similar to Proposition 4.7 and the proof is omitted.

PROPOSITION 4.10. Let K denote the local community process by Hubbell
specified by (4.5) and (4.4). Then K is reversible with respect to the Dirichlet-
multinomial distribution DM(·|N,α) (2.4), where αi = (N−1)mpi

1−m
> 0, 1 ≤ i ≤ d ,

and:

1. K has eigenvalue

βn = (N − n)(N + |α| + n − 1)

N(N + |α| − 1)

= 1 − n(n + |α| − 1)

N(N + |α| − 1)
, 0 ≤ n ≤ N,

with multiplicity
(d+n−2

n

)
and corresponding eigenbasis {Qn}|n|=n, where Qn

are the multivariate Hahn polynomials (2.6). Particularly,

β0 = 1 with multiplicity 1,

β1 = (N − 1)(N + |α|)
N(N + |α| − 1)

= 1 − |α|
N(N + |α| − 1)

with multiplicity d − 1.

2. Suppose that initially all individuals are of species i. Then for any c > 0,

χ2
Nei

(l) ≤ e−c for l ≥ log[3(2 ∨ |α|)N/(N + |α|)((|α| − αi)/αi ∨ 1)] + c

−2 log(1 − |α|/(N(N + |α| − 1)))
,

χ2
Nei

(l) ≥ 1

6
ec for l ≤ log[3(2 ∨ |α|)N(|α| − αi)/((N + |α|)αi)] − c

−2 log(1 − |α|/(N(N + |α| − 1)))
.

REMARK 4.11. In the ecological case, N is large and Nm is of constant order.
For example, consider the case m = 1

N
and p1 = · · · = pd = 1

d
, or equivalently,

α1 = · · · = αd = 1
d

. When initially all individuals are of the same species and N

is large, log((6(d−1)N)/(N+1))

−2 log(1−1/N2)
≈ log 6(d−1)

2 N2 steps are necessary and sufficient to
drive the chi-square distance low.

We have seen a small simulation example in the Introduction. Let us look at
another concrete example in [38] where the computation time of the simulation
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is prohibitive. To sample the stationary distribution of the local community of
size N = 20,000 and migration probability m = 0.1 (corresponding to the famous
Barro Colorado Island dataset in ecology), McGill first simulates a metacommu-
nity with population size NM and speciation probability s. Given a fixed metacom-
munity configuration, Proposition 4.10 tells us how many steps need to be run for
the local community to reach equilibrium. For example, for a metacommunity con-
figuration with d = 300 equally abundant species, 1.44 million steps are necessary
and sufficient for the local community to reach equilibrium. This coincides with
McGill’s empirical findings ([38], Figure 1). If we assume that the tree mortality
rate is 1% per year, then this translates into 7200 years for the Barro Colorado
Island to reach equilibrium.

4.1.3. Convergence rate of the Dirichlet-multinomial Gibbs sampler. This is
the multivariate generalization of the canonical beta-binomial Gibbs sampler. The
remarkable paper [11] gives explicit diagonalization and sharp convergence rates
of Gibbs samplers for six exponential families. One of their motivating examples is
how fast the classical beta-binomial Gibbs sampler converges ([11], Proposition 1).
We give analogous results for the Dirichlet-multinomial Gibbs sampler here.

Consider the two-component Gibbs sampler with Dirichlet prior π(p) ∼ D(·|α)

and multinomial likelihood f (x|p) ∼ M(·|N,p). The posterior distribution is
again Dirichlet, that is, π(p|x) ∼ D(·|x + α). The Gibbs sampler iterates the fol-
lowing two steps:

• From x, draw p from D(·|x + α);
• From p, draw y from M(·|N,p).

The marginal x-chain of the Dirichlet-multinomial Gibbs sampler forms
a Markov chain with state space Xd

N and transition probabilities

K(x,y) =
∫
�d

M(y|N,p)D(p|x + α)dp
(4.6)

=
(

N

y

) ∏d
i=1(xi + αi)(yi)

(N + |α|)(N)

, x,y ∈ Xd
N .

We find that the marginal x-chain (4.6) is actually the Pólya level model with
s = N . Again the proof of the following proposition is analogous to Proposition 4.7
and is omitted.

PROPOSITION 4.12. Let K denote the marginal x-chain (4.6) of the Dirichlet-
multinomial Gibbs sampler. Then K is reversible with respect to the Dirichlet-
multinomial distribution DM(·|N,α) (2.4), and:

1. K has eigenvalue

βn = N[n]
(N + |α|)(n)

, 0 ≤ n ≤ N,
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with multiplicity
(d+n−2

n

)
and corresponding eigenbasis {Qn}|n|=n, where Qn

are the multivariate Hahn polynomials (2.6). Particularly,

β0 = 1 with multiplicity 1,

β1 = N

N + |α| with multiplicity d − 1.

2. Suppose that the starting state is Nei . Then for any c > 0,

χ2
Nei

(l) ≤ e−c for l ≥ −1

2

(
log[3(2 ∨ |α|)((|α| − αi)/αi ∨ 1)] + c

log(N/(N + |α|)) + 1
)
,

χ2
Nei

(l) ≥ 1

6
ec for l ≤ −1

2

(
log[3(2 ∨ |α|)(|α| − αi)/αi] − c

log(N/(N + |α|)) + 1
)
.

Note that the joint chain {(Xt ,Pt )}t≥0 is not reversible. Complete analysis of
the joint chain relies on a singular value decomposition presented in [11].

REMARK 4.13. Consider the case α1 = · · · = αd = 1
d

. When N is large,
log 6(d−1)

−2 log(N/(N+1))
≈ log 6(d−1)

2 (N + 1) steps are necessary and sufficient to drive the
chi-square distance low. Figure 5 shows the decrease of the chi-square distance
for the Dirichlet-multinomial Gibbs sampler with N = 20, d = 5, αi = 0.2. In this
case, log 6(d−1)

2 (N + 1) ≈ 33.

FIG. 5. Chi-square distance of the Dirichlet-multinomial Gibbs sampler with N = 20, d = 5,
αi = 1/5, starting from Nei .
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FIG. 6. Chi-square distance of the Dirichlet-multinomial Gibbs sampler with N = 20, d = 5,
αi = 1, starting from Nei .

REMARK 4.14. Consider the case α1 = · · · = αd = 1 (a uniform sampler
on Xd

N ). When N is large, log 3d(d−1)
−2 log(N/(N+d))

≈ log 3d(d−1)
2d

(N +d) steps are necessary
and sufficient to drive the chi-square distance low. Figure 6 shows the decrease of
the chi-square distance for the Dirichlet-multinomial Gibbs sampler with N = 20,
d = 5, αi = 1. In this case, log 3d(d−1)

2d
(N + d) ≈ 10.

4.2. Generalized Bernoulli–Laplace models. In the classical Bernoulli–La-
place urn model (see, e.g., [31], Section 4.8.1), there are two urns containing 2N

balls. Initially the left urn contains N red balls; the right urn contains N black
balls. At each step, we first randomly choose one ball from the left urn and put it
into the right urn. Then we randomly choose one ball from the right urn (it contains
N + 1 balls now) and put it into the left urn. If we track the number of red balls in
the left urn, it forms a Markov chain with (univariate) hypergeometric distribution
as stationary distribution. In this section, we study generalizations of this model
in two directions. First, we allow balls to have more than two colors. Second, we
allow more dynamic changes at each step. In analogy to the Pólya urn models, we
define three classes of Bernoulli–Laplace models.

There is a batch of balls with composition � = (l1, . . . , ld), that is, li balls of
color i for 1 ≤ i ≤ d , distributed in two urns. The left urn contains N < |�| balls;
the right urn contains |�| − N balls. Recall that |�| = ∑d

i=1 �i is the total number
of balls.

DEFINITION 4.15. Bernoulli–Laplace level model: s is a parameter satisfying
0 ≤ s ≤ min{N, |�| − N}. At each step, we randomly choose s balls from each urn
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and then switch them. Let Xt = (Xt1, . . . ,Xtd) be the composition of the balls in
the left urn after t steps. The process {Xt }t≥0 forms a multivariate Markov chain on
Xd

N,� and is called a Bernoulli–Laplace level model with parameters �, N and s.

DEFINITION 4.16. Bernoulli–Laplace down-up model: s is a parameter sat-
isfying 0 ≤ s ≤ N . At each step, first we randomly choose s balls from the left
urn and put them into the right urn. Then we randomly choose s balls from
the right urn (it contains |�| − N + s balls now) and put them into the left urn.
Let Xt = (Xt1, . . . ,Xtd) be the composition of balls in the left urn after t steps.
The process {Xt }t≥0 forms a multivariate Markov chain on Xd

N,� and is called a
Bernoulli–Laplace down-up model with parameters �, N and s.

DEFINITION 4.17. Bernoulli–Laplace up-down model: s is a parameter satis-
fying 0 ≤ s ≤ N . At each step, first we randomly choose s balls from the right urn
and put them into the left urn. Then we randomly choose s balls from the left urn (it
contains N + s balls now) and put them into the right urn. Let Xt = (Xt1, . . . ,Xtd)

be the composition of balls in the left urn after t steps. The process {Xt }t≥0 forms
a multivariate Markov chain on Xd

N,� and is called a Bernoulli–Laplace up-down
model with parameters �, N and s.

The special case d = 2, s = 1 of the down-up model dates back to Bernoulli
and Laplace who introduced this model to study diffusion of particles between
two containers. More details and historical background can be found in [20, 31].
Both [6] and [15] study convergence rates of the Bernoulli–Laplace level model
with d = 2, s = 1 and contain interesting connections to real world problems.

This process can be lifted to a random walk on the space of all N -subsets of |�|
objects. For example, in the s = 1 case of the level model, at each step, ran-
domly pick one element from the current set, one from the complement set and
switch them. This is a nearest-neighbor random walk under the metric d(x, y) =
N − |x ∩ y|. The stationary distribution is uniform over all N -subsets. Therefore
the Bernoulli–Laplace process has hypergeometric distribution as stationary dis-
tribution. See [6] for detailed analysis of the lifted chain. This point of view gives
the following result.

LEMMA 4.18. All three classes of Bernoulli–Laplace models are reversible
with respect to the multivariate hypergeometric distribution H(·|N,�) (2.5).

The Bernoulli–Laplace up-down and down-up models have alternative interpre-
tations as the marginal chains of a multivariate hypergeometric walk. The univari-
ate hypergeometric walk was originally studied in [14]. Consider the following
Gibbs sampler. Let � = (l1, . . . , ld) be a vector of counts and 0 < N ≤ N + s ≤ |�|.
The prior distribution is hypergeometric:

π(θ) ∼ H(·|N + s,�),
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that is, θ = (θ1, . . . , θd) is the composition of a random sample of size N + s from
a pool of |�| balls with composition �. The likelihood given parameter θ is

f (x|θ) ∼ H(·|N, θ),

that is, X = (X1, . . . ,Xd) is the composition of a random sample of size N from a
pool of |θ | = N + s balls with composition θ . π(θ) is the conjugate prior for the
hypergeometric distribution and the posterior distribution is still hypergeometric:

π(θ |x) ∼ x + H(·|s,� − x),

that is, take a random sample of size s from a pool of |�| − N balls with compo-
sition � − x and set θi to be the count of balls of color i plus xi . The marginal
x-chain has transition kernel

K(x,y) = ∑
θ

π(θ |x)f (y|θ)

and is the same as a Bernoulli–Laplace up-down model with parameters �,N, s.
The marginal θ -chain has transition kernel

K(θ , θ ′) = ∑
x∈Xd

N,θ

f (x|θ)π(θ ′|x)

and is the same as a Bernoulli–Laplace down-up model with parameters �,N +
s,N .

In analogy to the Pólya urn models, these models share the same polynomial
eigenfunctions which are the multivariate Hahn polynomials for the hypergeomet-
ric distribution. The following theorem is analogous to Theorem 4.5 and the proof
is omitted.

THEOREM 4.19. 1. The Bernoulli–Laplace level model has eigenvalue

βn =
n∑

k=0

(
n

k

)
(N − s)[k]s[n−k]

N[k](|�| − N)[n−k]

=
n∑

k=0

(
n

k

)
(N − s)[n−k]s[k]

N[n−k](|�| − N)[k]
, 0 ≤ n ≤ N,

with multiplicity |Xd
n,�| and corresponding eigenbasis {Qn(x;N,−�)}|n|=n,

where Qn are the multivariate Hahn polynomials for the hypergeometric dis-
tribution as defined in Proposition 2.3.

2. The Bernoulli–Laplace down-up model has eigenvalue

βn = (N − s)[n](|�| − N)[n]
N[n](|�| − N + s)[n]

, 0 ≤ n ≤ N,

with multiplicity |Xd
n,�| and corresponding eigenbasis {Qn(x;N,−�)}|n|=n,

where Qn are the multivariate Hahn polynomials for the hypergeometric dis-
tribution as defined in Proposition 2.3.
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3. The Bernoulli–Laplace up-down model has eigenvalue

βn = N[n](|�| − N − s)[n]
(N + s)[n](|�| − N)[n]

, 0 ≤ n ≤ N,

with multiplicity |Xd
n,�| and corresponding eigenbasis {Qn(x;N,−�)}|n|=n,

where Qn are the multivariate Hahn polynomials for the hypergeometric dis-
tribution as defined in Proposition 2.3.

4. For all three classes of Bernoulli–Laplace models, the chi-square distance be-
tween Kl(x, ·) and stationary distribution is

χ2
x (l) =

N∑
n=1

β2l
n hn(x,x),

where βn are the eigenvalues for the corresponding process and hn are the
kernel polynomials for the hypergeometric distribution, that is, (2.16) with αi

replaced by −li .

REMARK 4.20. For all three classes of the Bernoulli–Laplace urn models, the
eigenvalues depend on parameters � = (l1, . . . , ld) only through |�|. Formulas for
the eigenfunctions require complete knowledge of �.

4.2.1. Convergence rate of the Bernoulli–Laplace down-up models. We spe-
cialize to the case in which at beginning the left urn contains balls of the same
color.

PROPOSITION 4.21. For N ≤ li and any c > 0, the chi-square distance be-
tween the Bernoulli–Laplace down-up model and the stationary distribution, start-
ing from Nei , satisfies

χ2
Nei

(l) ≤ 2e−c for l ≥ log[|�|N(|�| − li)/((|�| − N)li)] + c

−2 log[(N − s)(|�| − N)/(N(|�| − N + 1))] ,

χ2
Nei

(l) ≥ 1

2
ec for l ≤ log[|�|N(|�| − li)/((|�| − N)li)] − c

−2 log[(N − s)(|�| − N)/(N(|�| − N + 1))] .

The proof is similar to that for the sequential Pólya urn models and is omitted.
This result is useful when s � N . In the extreme case s = N , the chain achieves
stationarity after one-step.

REMARK 4.22. Consider the multivariate version of the classical Bernoulli–
Laplace model ([31], Section 4.8.1), where s = 1. Suppose the two urns have equal
sizes N = |�|/2 and initially the left urn contains N balls of the same color and the
right urn contains N balls of colors different from those in the left urn (X0 = Nei ,
li = N ). Then, for N large, log 2N

−2 log(1−2/(N+1))
≈ (N+1) log 2N

4 steps are necessary
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FIG. 7. Chi-square distance of the Bernoulli–Laplace process with N = 20, d = 5,
|�| = 2N, li = N , starting from Nei .

and sufficient to drive the chi-square distance low. Figure 7 shows the decrease
of the chi-square distance for the Bernoulli–Laplace process with N = 20, d = 5,
|�| = 2N , li = N . In this case, (N+1) log 2N

4 ≈ 19.

4.3. A generalized Ehrenfest urn model. In the classical Ehrenfest model (see,
e.g., [20, 34]), a certain number of balls are shuttled between two urns. At each step
one ball is randomly chosen and shifted to the other urn. The Ehrenfest chain tracks
the number of balls in one of the urns. Reference [35] contains a discussion of the
Ehrenfest urn model with d > 2 urns. The discrete-time analog of their continuous-
time Markov chain randomly chooses a single ball at each step and redistributes it
to the d urns according to a probability vector p = (p1, . . . , pd). The multivariate
Ehrenfest chain tracks the counts in each urn.

In this section, we generalize even further by selecting more balls at each
step. Specifically, there are N indistinguishable balls distributed in d urns. s ∈
{0,1, . . . ,N} is a parameter. At each step, we randomly choose s balls from the
total of N balls and redistribute each of them independently according to the same
probability vector p. Let Xti be the number of balls in the ith urn at time t . Then
{Xt = (Xt1, . . . ,Xtd)}t≥0 forms a multivariate Markov chain on Xd

N .
It is interesting to observe that this generalized Ehrenfest model has an alterna-

tive interpretation as the marginal chain of a Gibbs sampler. Consider a multino-
mial sampling model (sample size s) with a preexisting sample of size (N − s).
The likelihood of the data given parameter θ ∈ Xd

N−s is

f (x|θ) ∼ θ + M(·|s,p).
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If we specify the prior distribution for the parameter θ as

π(θ) ∼ M(·|N − s,p),

then by the Bayes formula, the posterior distribution of θ given the data has prob-
ability mass function

π(θ |x) =
(N−s

θ

)( s
x−θ

)
(N
θ

) .

Consider the Gibbs sampling procedure to sample from the joint distribution of
(X, θ). The Gibbs sampler iterates the following two steps:

• From x, draw θ from the posterior π(·|x).
• From θ , draw y from the likelihood function f (·|θ).

The marginal x-chain has transition probabilities

K(x,y) = ∑
θ∈Xd

N−s

π(θ |x)f (y|θ), x,y ∈ Xd
N,

and is the same as the generalized Ehrenfest urn model described previously.
Choosing θ from π(·|x) corresponds to choosing N − s balls which will not be
redistributed (and hence s balls which will be redistributed). Choosing y from
f (·|θ) corresponds to redistributing s balls independently according to the same
probability vector p.

It is well known that the marginal x-chain of a Gibbs sampling Markov chain
is reversible, with the marginal of the joint distribution of (X, θ) as its stationary
distribution.

LEMMA 4.23. The generalized Ehrenfest urn model is reversible with respect
to the multinomial distribution M(·|N,p).

The following result is again an application of Lemma 3.2.

THEOREM 4.24. 1. The generalized Ehrenfest urn model has eigenvalue

βn = (N − s)[n]
N[n]

, 0 ≤ n ≤ N,

with multiplicity
(d+n−2

n

)
and corresponding eigenbasis {Kn}|n|=n, where Kn

are the multivariate Krawtchouk polynomials (2.10) and |n| = ∑d
i=1 ni . In par-

ticular,

β0 = 1 with multiplicity 1,

β1 = 1 − s

N
with multiplicity d − 1.
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2. If the process starts from x, then the chi-square distance after l steps is

χ2
x (l) =

N∑
n=1

β2l
n hn(x,x),(4.7)

where hn are the kernel polynomials (2.22) for the multinomial distribution
M(·|N,p).

We observe that, in terms of convergence to stationarity, the worst-case initial
configuration is one of the d configurations where all the balls are in a single urn.

COROLLARY 4.25. Suppose that initially all balls are in the ith urn. Then,
for any c > 0, the chi-square distance of the generalized Ehrenfest chain satisfies

χ2
Nei

(l) ≤ ee−c − 1 for l ≥ log(N(1 − pi)/pi) + c

−2 log(1 − s/N)
,

χ2
Nei

(l) ≥ ec for l ≤ log(N(1 − pi)/pi) − c

−2 log(1 − s/N)
.

PROOF. Note βn = 0 for n > N − s. By (4.7) and (2.23),

χ2
Nei

(l) =
N−s∑
n=1

(
(N − s)[n]

N[n]

)2l (
N

n

)(
1 − pi

pi

)n

.

The inequality (N−s)[n]
N[n] ≤ (1 − s

N
)n implies that

N

(
1 − pi

pi

)(
1 − s

N

)2l

≤ χ2
Nei

(l) ≤
(

1 + 1 − pi

pi

(
1 − s

N

)2l)N

− 1.

Substituting l = log(N(1−pi)/pi)+c
−2 log(1−s/N)

, we get

e−c ≤ χ2
Nei

(l) ≤
(

1 + e−c

N

)N

− 1 ≤ ee−c − 1.

And substituting l = log(N(1−pi)/pi)−c
−2 log(1−s/N)

, we get

χ2
Nei

(l) ≥ ec. �

This analysis is particularly useful when s is small compared to N . In the ex-
treme case s = N , the chain achieves stationarity in just one-step.

REMARK 4.26. Consider the discrete-time version of the multivariate Ehren-
fest urn model in [35] where s = 1. For N large, log(N(1−pi)/pi)

−2 log(1−1/N)
≈ N log(N(1−pi)/pi)

2
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FIG. 8. Chi-square distance of the Ehrenfest urn model with N = 20, s = 1, d = 5, pi = 1/5,
starting from Nei .

steps are necessary and sufficient to drive the chi-square distance low. A prob-
abilistic analysis of this chain is given in [10]. Figure 8 shows the decrease of
the chi-square distance for the Ehrenfest urn model with N = 20, s = 1, d = 5,
pi = 1/5. In this case, N log(N(1−pi)/pi)

2 ≈ 44.

4.4. Multivariate normal autoregressive process. Consider a multivariate nor-
mal autoregressive process on R

d defined by

Xt = AXt−1 + ξ t , t ≥ 1,(4.8)

where {ξ t }t≥1 are independent and identically distributed N (0,V ). This process
arises in the multigrid Monte Carlo method by Goodman and Sokal [22] and gen-
eral overrelaxation MCMC algorithms [3, 4, 40]. First we check the stationary
distribution of the process and the reversibility criterion.

PROPOSITION 4.27. The Markov chain (4.8) has a unique stationary distrib-
ution N (0,
) if and only if V = 
 − A
AT . Moreover, when V = 
 − A
AT ,
the Markov chain is reversible if and only if A
 = 
AT .

PROOF. If Xt ∼ N (0,
), then Xt+1 = AXt + ξ t+1 ∼ N (0,V + A
AT ).
Therefore N (0,
) is a stationary distribution if and only if 
 = V + A
AT . For
the uniqueness, since V = 
 − A
AT is a positive definite matrix, the spectral
radius of A is strictly less than 1. By iterating, Xt |X0 = x ∼ N (Atx,

∑t−1
j=0 Aj ×
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V (AT )j ). But Atx → 0 and

t−1∑
j=0

AjV (AT )j =
t−1∑
j=0

[Aj
(AT )j − Aj+1
(AT )j+1]

= 
 − At
(AT )t

→ 


as t → ∞. Therefore N (0,
) is the unique stationary distribution.
To check the reversibility criterion, note the transition density and stationary

density are

K(x,y) = 1√
(2π)d |V |

e(y−Ax)T V −1(y−Ax)/2,

π(y) = 1√
(2π)d |
|

e−yT 
−1y/2, x,y ∈ R
d .

Hence, the Markov chain is reversible if and only if

π(x)K(x,y) = π(y)K(y,x) for all x,y

⇔ (y − Ax)T V −1(y − Ax) + xT 
−1x

= (x − Ay)T V −1(x − Ay) + yT 
−1y for all x,y

⇔ 
−1 + AT V −1A = V −1, AT V −1 = V −1A

⇔ 
−1 + V −1A2 = V −1, AT V −1 = V −1A

⇔ V + A2
 = 
, AT V −1 = V −1A

⇔ 
 − A
AT + A2
 = 
, V AT = AV

⇔ A
AT = A2
, 
AT − A
(AT )2 = A
 − A2
AT

⇔ A
AT = A2
, 
AT = A


⇔ A
 = 
AT . �

In the following, we assume that V = 
 − A
AT and A
 = 
AT . Hence, the
Markov chain (4.8) has a unique stationary distribution π ∼ N (0,
) and is re-
versible. Let λ1 be the largest eigenvalue of A. In [22], Goodman and Sokal iden-
tify λ1 as the rate of decay of the autocorrelation functions of Xt . In [4], Barone
and Frigessi identify λ1 as the rate of variational norm convergence. Roberts and
Sahu [40] show that for all f ∈ l2(π) and r > λ1,

lim
t→∞

Eπ [(f (Xt ) − ∫
f dπ)2]

rt
= 0.
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Our contribution is to use the eigenfunctions of this Markov chain to obtain an
exact expression for the chi-square distance from stationarity after � steps, for any
� ≥ 0 (Proposition 4.30). This leads to nonasymptotic bounds for convergence to
stationarity and strengthens earlier results.

The idea is that the original autoregressive process can be transformed into
another that can be easily analyzed. The condition A
 = 
AT implies that

−1/2A
1/2 is symmetric and thus orthogonally diagonalizable. Let 
−1/2A ×

1/2 = PDP T be its eigendecomposition, where P T P = I and D is the diag-
onal matrix containing the eigenvalues 1 > |λ1| ≥ · · · ≥ |λd | of A. We study the
transformed Markov chain {Zt }, where

Zt = P T 
−1/2Xt , t ≥ 0.

From (4.8),

Zt = (P T 
−1/2A
1/2P)Zt−1 + (P T 
−1/2)ξ t , t ≥ 0.

Note that

P T 
−1/2A
1/2P = D,

Var(P T 
−1/2ξn) = P T 
−1/2C
−1/2P

= P T 
−1/2(
 − A
AT )
−1/2P

= I − D2.

It follows that

Zt = DZt−1 + ξ ′
t , t ≥ 0,(4.9)

where ξ ′
t are independent and identically distributed N (0, I − D2). Since D is

a diagonal matrix with entries λ1, λ2, . . . , λd and components of ξ ′
t are indepen-

dent, all components of the Zt chain proceed as independent univariate normal
autoregressive processes, that is, for 1 ≤ i ≤ d ,

Zt,i = λiZt−1,i + ξ ′
t,i ,(4.10)

where ξ ′
t,i , t ≥ 1, are independent and identically distributed N (0,1 − λ2

i ).
Univariate normal autoregressive processes are well studied. The ith component

process (4.10) is reversible with respect to the standard normal distribution N (0,1)

and has eigenvalues λn
i , n ≥ 0, with the Hermit polynomials {Hn}n≥0 (2.14) as the

corresponding eigenfunctions. This spectral information is easily transferred to
that of the product chain due to independence.

LEMMA 4.28. Let (K ′, π ′) be the Markov operator and stationary distribu-
tion corresponding to the transformed Markov chain {Zt }t≥0 in (4.9). Then K ′ is
reversible with respect to π ′ ∼ N (0, I ). Moreover,
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1. K ′ has eigenvalues

βn =
d∏

i=1

λ
ni

i , n = (n1, . . . , nd) ∈ N
d
0 ,

with corresponding eigenfunctions Hn( z√
2
) = ∏d

i=1 Hni
( zi√

2
), which satisfy the

orthogonality relation∫
Rd

Hn

(
z√
2

)
Hm

(
z√
2

)
e−zT z/2

(
√

2π)d
dz = 2|n|

d∏
i=1

ni !δnm.

2. The chi-square distance of K ′, starting from state z ∈ R
d , after l steps is

χ2
z (l) = e

∑d
i=1 z2

i λ
2l
i /(1+λ2l

i )√∏d
i=1(1 − λ4l

i )
− 1.

PROOF. Let Ki denote the Markov operator of the ith component process. By
independence between the component processes

KHn

(
z√
2

)
= EK(z,·)

[
Hn

(
Z√

2

)]
=

d∏
i=1

EKi(zi ,·)
[
Hni

(
Zi√

2

)]

=
d∏

i=1

KiHni

(
zi√

2

)
=

(
d∏

i=1

γ
ni

i

)
Hn

(
z√
2

)
.

Then the first assertion follows. For calculation of the chi-square distance,

χ2
z (l) = ∑

n�=0

β2l
n H 2

n

(
z√
2

)
d−2

n = ∑
n∈N

d
0

d∏
i=1

λ
2ni l
i H 2

ni
(zi/

√
2)

2ni ni ! − 1

=
d∏

i=1

∞∑
ni=0

λ
2ni l
i H 2

ni
(zi/

√
2)

2ni ni ! − 1 = e
∑d

i=1 z2
i λ

2l
i /(1+λ2l

i )√∏d
i=1(1 − λ4l

i )
− 1.

The last equality follows from the multilinear generating function (2.15). �

It is trivial to check that the chi-square distance of the transformed chain is equal
to that of the original chain K . This implies the following result.

PROPOSITION 4.29. For the Markov chain (4.8) satisfying C = 
 − A
AT

and A
 = 
AT , the chi-square distance after l steps, starting from the state
x ∈ R

d , is

χ2
x (l) = e

∑d
i=1 z2

i λ
2l
i /(1+λ2l

i )√∏d
i=1(1 − λ4l

i )
− 1,
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where z = P T 
−1/2x.

Clearly, all the eigenvalues (λ1, . . . , λd) of A play a role in determining the
speed of convergence. However, if one is willing to compromise a little on sharp-
ness of the bounds, we can get a result only involving the largest eigenvalue λ1
of A.

PROPOSITION 4.30. For the Markov chain (4.8), when starting from the
state 0,

χ2
0 (l) ≤ 10e−c for l ≥ log 2 + c

−4 log |λ1| , c ≥ log
(

d

2

)
;

χ2
0 (l) ≥ 1

4
ec for l ≤ log 2 − c

−4 log |λ1| , c > 0.

PROOF. Note that χ2
0 (l) ≤ (1 − λ4l

1 )−d/2 − 1. If l ≥ log 2+c
−4 log |λ1| , then λ4l

1 ≤
e−c/2 ≤ 1/2. Hence,

χ2
0 (l) ≤ (1 − λ4l

1 )−d/2 − 1 ≤ (1 + e−c)d − 1

≤ ede−c

e−c ≤ 10e−c,

when c ≥ log(d/2). For the lower bound,

χ2
0 (l) ≥ (1 − λ4l

1 )−1/2 − 1 ≥ λ4l
1

2
.

Hence, if l ≤ log 2−c
−4 log |λ1| ,

χ2
0 (l) ≥ ec

4
. �

4.4.1. An example from image analysis. We now borrow an example from
Bayesian image analysis discussed in [40] and [3]. An image x is a vector of
size 256 corresponding to values on the 16 × 16 lattice of pixels. Roberts and
Sahu [40] model x using a Gaussian prior density g given by

g(x) ∝ e−δ
∑

i∼j (xi−xj )2
,

where δ is a constant and i ∼ j if xi and xj are neighbors. Suppose we observe a
corrupted image y instead of x. The value yi for each pixel i follows an indepen-
dent Gaussian density with mean xi and variance σ 2. Let ni denote the number
of neighbors of vertex i, 1 ≤ i ≤ 256. The posterior density of x is Gaussian with
inverse covariance matrix Q given by

Qij =
⎧⎪⎨
⎪⎩

2δni + 1

σ 2 , i = j ,

−2δ, i ∼ j ,
0, otherwise.
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FIG. 9. Chi-square distance of the multivariate normal Gibbs sampler with d = 256, δ = 100,
σ = 0.5, starting from 0.

Suppose we use the following reversible version of the Gibbs sampling
Markov chain to sample from the posterior N (0,Q−1) density. At every iter-
ation, sample X1 given the other coordinates, then sample X2 given the other
coordinates, . . . , then sample Xd given the other coordinates twice, then sample
Xd−1 given the other coordinates, . . . , and finally sample X1 given the other co-
ordinates. This version of the Gibbs sampler can be expressed in the form (4.8)
with

A = WLT ,

V = WDWT + (D + LT )−1D(D + L)−1,

where D and L are the diagonal and lower triangular parts of the matrix Q, re-
spectively, and W = (D + LT )−1L(D + L)−1. A satisfies the reversibility con-
dition AQ−1 = Q−1AT . For a concrete example, the largest eigenvalue of A

when δ = 100 and σ = 0.5 is 0.9795. Proposition 4.30 tells us that χ2
0 (�) ≤

10e−c for l = 8.3607 + 12.0620c (for any c ≥ 4.8520), and χ2
0 (�) ≥ ec/4 for

l = 8.3607 − 12.0620c (for any c ≥ 0). Figure 9 shows the decrease of the chi-
square distance for this chain starting at 0. Note that eight steps of the Gibbs sam-
pler correspond to 8 × 2 × 256 = 4096 mini sampling steps.

5. Discussion. So far, probabilists have come up with various techniques of
finding rates of convergence of Markov chains, which can be roughly grouped
under five headings:

(a) using the spectral decomposition of a Markov chain,



CONVERGENCE RATES OF MARKOV CHAINS 775

(b) using Harris recurrence techniques (see [33]),
(c) using probabilistic techniques such as coupling (see [42]), iterated random

functions (see [9]) and strong stationary times (see [1, 7]),
(d) using Nash inequalities (see [12]) or logarithmic Sobolev inequalities

(see [13]),
(e) using geometric techniques like Poincaré and Cheeger’s inequalities (see

[8, 30]).

We use technique (a), that is, using spectral decomposition of a Markov chain,
for analyzing all the examples in this paper. An advantage of this technique over
the others is that, when applicable, it gives sharp and accurate results. But we re-
quire knowledge of all the eigenvalues and eigenfunctions of the Markov chain to
apply this technique. In addition, the eigenfunctions have to be suitable for certain
algebraic manipulations. This narrows the scope of this technique compared to oth-
ers. In our examples, the eigenfunctions turn out to be polynomials. We deployed
some machinery from the rich field of orthogonal polynomials and were able to
compute exact rates of convergence for every Markov chain that we analyzed. But
still our success was restricted to classes of natural but special starting points for
every Markov chain. We could not appropriately manipulate the distance to sta-
tionarity of these Markov chains from a general starting point. Also, exact analysis
of the nonreversible case for the multivariate normal autoregressive process re-
mains open. This provides lots of future directions to go, but it is sobering to learn
that even in these examples where we know all the eigenvalues and eigenvectors,
it is hard, if not impossible, to have an exact analysis from a general starting point.
To conclude, the theory of rates of convergence of Markov chains has a long way
to go, but it is nice to see standard examples where exact analysis is available by
present techniques.
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