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We study the parabolic Anderson problem, that is, the heat equation
∂tu = �u+ ξu on (0,∞)×Z

d with independent identically distributed ran-
dom potential {ξ(z) : z ∈ Z

d } and localized initial condition u(0, x) = 10(x).
Our interest is in the long-term behavior of the random total mass U(t) =∑

z u(t, z) of the unique nonnegative solution in the case that the distribution
of ξ(0) is heavy tailed. For this, we study two paradigm cases of distributions
with infinite moment generating functions: the case of polynomial or Pareto
tails, and the case of stretched exponential or Weibull tails. In both cases we
find asymptotic expansions for the logarithm of the total mass up to the first
random term, which we describe in terms of weak limit theorems. In the case
of polynomial tails, already the leading term in the expansion is random. For
stretched exponential tails, we observe random fluctuations in the almost sure
asymptotics of the second term of the expansion, but in the weak sense the
fourth term is the first random term of the expansion. The main tool in our
proofs is extreme value theory.

1. Introduction.

1.1. Motivation and background. We consider the heat equation with random
potential on the integer lattice Z

d and study the unique nonnegative solution to the
Cauchy problem with localized initial data:

∂tu(t, z) = �du(t, z)+ ξ(z)u(t, z), (t, z) ∈ (0,∞)× Z
d,

(1.1)
u(0, z) = 10(z), z ∈ Z

d,
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where �d denotes the discrete Laplacian,

(�df )(z) = ∑
y∼z

[f (y)− f (z)], z ∈ Z
d, f : Zd → R,

and the potential {ξ(z) : z ∈ Z
d} is a collection of independent, identically distrib-

uted random variables. The parabolic problem (1.1) is called the parabolic Ander-
son model. It serves as a natural model for random mass transport in a random
medium; see, for example, [4] for physical motivation of this problem, [2, 7] for
some interesting recent work, and [6] for a recent survey of the field.

A lot of the mathematical interest in the parabolic Anderson model is due to the
fact that it is the prime example of a model exhibiting intermittency. This means
that, for large times t , the overwhelming contribution to the total mass

U(t) := ∑
z∈Zd

u(t, z)

of the solution is concentrated on a subset of Z
d consisting of a small number of

islands located very far from each other. This behavior becomes manifest in the
large-time asymptotic behavior of U(t) and of its moments. For example, it has
been proposed in the physics literature [13] (see also [6]) to define the model as
intermittent if, in our notation, for p < q ,

lim
t↑∞

(E[U(t)p])1/p

(E[U(t)q])1/q
= 0.

The large-time asymptotic behavior of U(t) has been studied in some detail for
potentials with finite exponential moments, that is, if E[exp{hξ(0)}] < ∞, for all
h > 0. Important examples include [1, 3] for the case of bounded potentials, [8,
9] focusing on the vicinity of double-exponential distributions, and [10], which
attempts a classification of the potentials according to the long-term behavior of
U(t). Most of the existing results approach the problem via the asymptotics of
the moments of U(t) and almost sure results are derived using Borel–Cantelli type
arguments.

If the potential fails to have finite exponential moments, then the random vari-
able U(t) fails to have any moments, and new methods have to be found to study
its almost sure behavior. It is believed that for such potentials the bulk of the mass
U(t) is concentrated in a small number of “extreme” points of the potential. This
suggests an approach using extreme value theory. It is this approach to the long-
term behavior of the parabolic Anderson model that we follow in this paper.

In all cases of potentials with finite exponential moments, it turns out that the
two leading terms in the asymptotic expansion of logU(t) are deterministic, an
effect which we did not expect to hold for potentials with heavier tails. Our investi-
gation is motivated by this conjecture, and therefore, we are particularly interested
in finding the first (nondegenerate) random term in the asymptotic expansion of
logU(t). For this purpose, we consider two classes of heavy-tailed potentials:
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• Potentials with stretched exponential tail, or Weibull potentials. The distribution
function of ξ(0) is given as F(x) = 1−e−xγ

for some positive γ < 1. This class
represents potentials with an intermediately heavy tail.

• Potentials with polynomial tail, or Pareto potentials. The distribution function
of ξ(0) is given as F(x) = 1 − x−α , for some α > d . This class represents the
most heavy-tailed potentials.

Note that the condition γ < 1 is necessary to make the potentials heavy-tailed,
and recall from [8] that the condition α > d is necessary (and sufficient) for the
existence of a unique solution of the parabolic Anderson problem.

A fairly complex picture emerges from the main results of this paper, which are
formulated precisely in Section 1.2 below:

• In the case of potentials with polynomial tails, already the leading order term is
nondegenerate random, and we determine its asymptotic distribution, if nor-
malised by tα/(α−d)(log t)−d/(α−d), which is of extremal Fréchet type with
shape parameter α − d .

• In the case of stretched exponential tails, the first term in the expansion, which
is of order t (log t)1/γ , is deterministic. For the second term, which is of order
t (log t)1/γ−1 log log t , the almost sure limsup and liminf differ by a constant
factor, and the weak limit agrees with the latter. The third term in the weak ex-
pansion is still deterministic of order t (log t)1/γ−1 log log log t . Only the fourth
term in the weak expansion, which is of order t (log t)1/γ−1, is nondegenerate
and properly renormalized converges to a Gumbel distribution.

These results are in line with the underlying belief that for heavy-tailed poten-
tials the bulk of the mass U(t) is concentrated in a small number of “extreme”
points of the potential. However, this is not proved here. Attacking this problem
requires a wider range of methods and is the subject of ongoing research.

1.2. Main results of the paper. We now give precise statements of our results.
As we consider two classes of potentials and study two types of convergence for
each class, we formulate four theorems. Recall that U(t) is the total mass of the
solution of (1.1) and abbreviate

Lt := 1

t
logU(t).

Throughout this paper we denote by F(x) = P(ξ(0) ≤ x) the distribution function
of ξ(0) and define

Mr := max|z|≤r
ξ(z),

where | · | is the 1-norm on Z
d .

The first two theorems are devoted to potentials with polynomial tails.
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THEOREM 1.1 (Almost sure asymptotics for Pareto potentials). Suppose that
the distribution of ξ(0) has a polynomial tail, that is, F(x) = 1 − x−α , x ≥ 1, for
some α > d . Then, almost surely,

lim sup
t→∞

logLt − d/(α − d) log t

log log t
=− d − 1

α − d
for d > 1,

lim sup
t→∞

logLt − d/(α − d) log t

log log log t
= 1

α − d
for d = 1

and

lim inf
t→∞

logLt − d/(α − d) log t

log log t
=− d

α − d
for d ≥ 1.

Looking at convergence in law, denoted by ⇒, we find that the liminf above
becomes a limit

logLt − d/(α − d) log t

log log t
⇒ − d

α − d
as t ↑∞.

This follows from a much more precise result, which identifies the order of mag-
nitude of Lt itself and the limit distribution of the rescaled random variable Lt .

THEOREM 1.2 (Weak asymptotics for Pareto potentials). Suppose that the dis-
tribution of ξ(0) has a polynomial tail, that is, F(x) = 1 − x−α , x ≥ 1, for some
α > d . Then, as t ↑∞,

Lt

(
t

log t

)−d/(α−d)

⇒ Y where P(Y ≤ y) = exp{−θyd−α}

and

θ := (α − d)d2dB(α − d, d)

dd(d − 1)! ,

where B denotes the beta function.

REMARK 1. Recall from classical extreme value theory (see, e.g., [5], Ta-
ble 3.4.2) that the maximum of td independent Pareto distributed random variables
with shape parameter α − d has qualitatively the same weak asymptotic behavior
as our logarithmic total mass Lt . An interpretation of this fact is that in the par-
abolic Anderson model with polynomial potential, the random fluctuations of the
potential dominate over the smoothing effect of the Laplacian.

The results for potentials with polynomial tails prepare the ground for the dis-
cussion of the considerably more demanding case of potentials with stretched ex-
ponential tails. The next two theorems are the main results of this paper.
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THEOREM 1.3 (Almost sure asymptotics for Weibull potentials). Suppose
that ξ(0) has distribution function F(x) = 1 − e−xγ

, x ≥ 0, for some positive
γ < 1. Then, almost surely,

lim sup
t→∞

Lt − (d log t)1/γ

(d log t)1/γ−1 log log t
= d(1/γ 2 − 1/γ ) + 1/γ,

lim inf
t→∞

Lt − (d log t)1/γ

(d log t)1/γ−1 log log t
= d(1/γ 2 − 1/γ ).

The difference between liminf and limsup in Theorem 1.3 is due to fluctua-
tions from the liminf-behavior which occur at very rare times. Indeed, we have, as
t ↑∞,

Lt − (d log t)1/γ

(d log t)1/γ−1 log log t
⇒ d(1/γ 2 − 1/γ ).

This is a consequence of the next theorem, which also extends the expansion in the
weak sense up to the first (nondegenerate) random term.

THEOREM 1.4 (Weak asymptotics for Weibull potentials). Suppose that ξ(0)

has distribution function F(x) = 1 − e−xγ
, x ≥ 0, for some positive γ < 1. Then,(

Lt − (d log t)1/γ − d(1/γ 2 − 1/γ )(d log t)1/γ−1 log log t

+ (d/γ )(d log t)1/γ−1 log log log t
)
((d log t)1/γ−1)−1

⇒ Y,

where Y has a Gumbel distribution

P(Y ≤ y) = exp{−θe−γy}
with θ := 2ddd(1/γ−1).

REMARK 2. The almost sure results of Theorem 1.3 also hold in the case of
(standard) exponentially distributed potentials, that is, when γ = 1. Extending the
methods of this paper, Lacoin [11] has shown that in this case

lim inf
t→∞

Lt − d log t

log log log t
=−(d + 1) almost surely

and

Lt − d log t + d log log log t ⇒ Y,

where Y has a Gumbel distribution P(Y ≤ y) = exp{−2de−y+2d}.
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1.3. Outline of the proofs. Let (Xs : s ∈ [0,∞)) be the continuous-time simple
random walk on Z

d with generator �d. By Pz and Ez, we denote the probability
measure and the expectation with respect to the walk starting at z ∈ Z

d . By the
Feynman–Kac formula (see, e.g., [8], Theorem 2.1), the unique solution of (1.1)
can be expressed as

u(t, z) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1z(Xt )

]
,

and the total mass of the solution is hence given by

U(t) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}]
.(1.2)

In this representation, the main contribution to U(t) comes from trajectories of
the random walk which, on the one hand, spend a lot of time at sites where the
value of the potential is large but, on the other hand, are not too unlikely under the
measure P0. In particular, the contributing trajectories will not visit sites situated
too far from the origin. We introduce two variational problems depending on the
potential ξ :

N(t) := max
r>0

[
Mr − r

t
log

r

2det

]
and N(t) := max

r>0

[
Mr − r

t
logMr

]
,(1.3)

which reflect the interaction of these two factors. Indeed, up to an additive error
which goes to zero, N(t) − 2d is an upper and N(t) − 2d a lower bound for Lt .
For most of our applications these bounds are sufficiently close to each other. Our
proofs are based on first making these approximations precise, and then investigat-
ing the asymptotics of the random variational problems by means of extreme value
theory.

To see the relation between U(t) and the approximating functions in more de-
tail, note that the probability that a continuous-time random walk visits a point
z ∈ Z

d with |z| = r 
√
t is roughly

P(Xt = z) � e−2dt (2dt)r

r! ≈ exp
{
−r log

r

2det
− 2dt

}
.

If |Xs | ≤ r for all s ∈ [0, t], then
∫ t

0 ξ(Xs) ds ≤ Mrt . This gives the upper bound

Lt = 1

t
logU(t) � max

r>0

[
Mr − r

t
log

r

2det

]
− 2d = N(t) − 2d.

For a lower bound, we fix a site z ∈ Z
d and ρ ∈ (0,1), and consider only trajecto-

ries which remain constant equal to z during the entire time interval t (ρ,1]. The
probability of this strategy is

P(Xs = z ∀s ∈ [ρt, t]) �
(

1

2d

)|z|
e−2dρt (2dρt)|z|

|z|! e−2d(1−ρ)t

≈ exp
{
−|z| log

|z|
eρt

− 2dt

}
,
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while the contribution of these trajectories to the exponent is
∫ t

0 ξ(Xs) ds ≥ t (1 −
ρ)ξ(z). Optimizing over z ∈ Z

d and ρ ∈ (0,1), we arrive at a lower bound of the
form

Lt = 1

t
logU(t) � max

z∈Zd
max

0<ρ<1

[
(1 − ρ)ξ(z)− |z|

t
log

|z|
eρt

]
− 2d.

Interchanging the maxima over ρ and z, and maximizing over ρ ∈ (0,1), gives

max
z∈Zd

max
0<ρ<1

[
(1 − ρ)ξ(z)− |z|

t
log

|z|
eρt

]
= max|z|<tξ(z)

[
ξ(z) − |z|

t
log ξ(z)

]
≈ N(t),

where the condition |z| < tξ(z) arises from ρ < 1 and can be dropped when t is
sufficiently large.

Supposing for the moment that these approximations are sufficiently accurate,
we can use extreme value theory to derive asymptotics for N(t) and N(t) which
then extend to Lt . While the almost sure results follow directly from results on
the almost sure behavior of maxima of i.i.d. random variables, the key to the weak
limit statements is to write N(t) and N(t) as a functional of the point process∑

z∈Zd

ε(z/At ,(ξ(z)−Bt )/Ct )

for suitable scaling functions At , Bt , Ct and show convergence of the point
processes along with the functionals. The nature of our functionals will require
a somewhat nonstandard set-up, but the core of the arguments in this part of the
proof is using familiar techniques of extreme value theory.

The feasibility of this strategy of proof depends on the quality of the approx-
imation of Lt by N(t) − 2d , respectively, N(t) − 2d . In the case of potentials
with polynomial tails, the arguments sketched above show that Lt/N(t) → 1 al-
most surely, which suffices to infer both weak and almost sure limits of Lt from
those of N(t). These arguments are technically less demanding, which allows us
to exhibit the strategy of proof very clearly, while in the harder case of potentials
with stretched exponential tails technical difficulties may obscure the view to the
underlying basic ideas. In the latter case the bounds N(t) and N(t) have the same
almost sure behavior up to the second term, but their weak behavior when scaled as
in Theorem 1.4 differs in that the limiting laws are Gumbel with different location
parameter. A considerably refined calculation allows us to show that in probabil-
ity Lt can be approximated by N(t) up to an additive error of order smaller than
(log t)1/γ−1, and hence, the weak limit theorem for Lt coincides with that of N(t).
This is the most delicate part of the proof, where we rely on a thorough study of
the behavior of the potential along random walk paths.

The paper is organized as follows. In Section 2 we prove preliminary results,
which will be relevant for both classes of potentials. We start Section 2.1 with
Lemma 2.1, where we show that N(t) and N(t) are well defined and can be ex-
pressed directly in terms of the potential ξ . In Lemmas 2.2 and 2.3 we compute
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upper and lower bounds for Lt in a form which will be simplified to N(t) and N(t)

in the course of the proofs. In Section 2.2 we prepare the discussion of the ex-
treme value behavior of the bounds with two general lemmas dealing with point
processes derived from i.i.d. random variables.

Section 3 is devoted to potentials with polynomial tails. In Section 3.1 we ana-
lyze the bounds computed in Section 2.1 and the asymptotic behavior of the opti-
mal value r in the definition of N(t) in (1.3). We infer from this that Lt/N(t) → 1
(see Proposition 3.2) and therefore already the first term of the asymptotic expan-
sion of Lt is nondeterministic. Since Mr is the main ingredient in the definition
of N(t), we need to find sharp bounds for Mr , which we do in Section 3.2 using
extreme value theory. In Section 3.3 we find the weak asymptotics for N(t), and
hence of Lt , using the point processes technique developed in Section 2.7. This
proves Theorem 1.2. Finally, in Section 3.4, we use the bounds for Mr and the
weak convergence of N(t) to find the almost sure asymptotics of N(t), and hence
of Lt , which is stated in Theorem 1.1.

In Section 4 we discuss stretched exponential potentials. This is considerably
harder than the polynomial case, and we have to refine the approximation of Lt

in several steps. In Section 4.1 we find almost sure bounds for Mr with a high
degree of precision, using extreme value theory. Then we show in Proposition 4.2
that N(t) − 2d and N(t) − 2d are indeed upper and lower bounds for Lt up to
an additive error converging to zero. In Section 4.2 we find weak asymptotics for
N(t) and N(t), which turn out to be different in the fourth term and are therefore
insufficient to give the weak asymptotic for Lt . In Section 4.3 we therefore show
that (Lt − N(t))/(log t)1/γ−1 ⇒ 0. This approximation, formulated as Proposi-
tion 4.6, implies that the weak asymptotics of N(t) apply in the same form to Lt ,
and this completes the proof of Theorem 1.4. Finally, in Section 4.4, we study
the almost sure behavior of N(t) and of N(t), using our knowledge of the be-
havior of the maximum Mr . It turns out that N(t) and N(t) are so close to each
other that we can get the almost sure upper and lower asymptotics for Lt as stated
in Theorem 1.3, additionally using our knowledge of the weak asymptotics from
Theorem 1.4.

2. Notation and preliminary results. Denote by F̄ (x) := 1 − F(x) the tail
of the potential and by Jt the number of jumps of the random walk (Xt : t ≥ 0)

before time t . Denote by κd(r)rd the number of points in the d-dimensional ball
of radius r in Z

d with respect to the 1-norm and κd := limr→∞ κd(r). One can
easily check that κd = 2d/d!, but we only need to know that it is nonzero (which
follows from the equivalence of all norms on Euclidean space).

Throughout the paper, we use the notation o(·) and O(·) for deterministic func-
tions of one variable (which we specify if there is a risk of confusion). If those
functions are allowed to depend on the potential ξ or another variable, then we
indicate this by the lower index, writing, for example, oξ and Oξ . We say that
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a family of events (Et : t ≥ 0) holds

eventually for all t ⇔ there exists T > 0 such that Et holds for all t > T ;

infinitely often ⇔ there exists a sequence tn ↑∞ such that Et

holds for all t = tn.

2.1. Bounds for Lt and their properties. The random functions N(t) and N(t)

have been defined in terms of the maximum Mr . The next lemma provides ex-
pressions directly in terms of the potential ξ . This, as well as the bounds for Lt ,
which we compute later on, is proved under a mild condition on the growth of
the maximum Mr of the potential ξ , as r goes to infinity. Later we shall see that
this condition is satisfied both for the stretched exponential potentials and for the
potentials with polynomial tails.

LEMMA 2.1 [N(t) and N(t) in terms of ξ ]. Let η ∈ (0,1). Assume that the
distribution of ξ(0) is unbounded from above and that, almost surely, Mr ≤ rη

eventually for all r . Then, almost surely:

(a) the maxima N(t) and N(t) in (1.3) are well defined and the maximizing
radii r(t) and r(t) satisfy r(t) →∞ and r(t) →∞ as t →∞;

(b) if r(t) > 2dt , then N(t) = maxz∈Zd [ξ(z) − |z|
t

log |z|
2det

];
(c) N(t) = maxz∈Zd [ξ(z)− |z|

t
log+ ξ(z)] eventually for all t , where log+(x) :=

log(x ∨ 1).

PROOF. (a) The maxima in N(t) and N(t) are attained because Mr is a right
continuous step function which grows slower than r

t
log r

2det
and r

t
logMr as r →

∞, for each fixed t . Moreover, as the potential distribution is unbounded from
above, we have Mr → ∞ as r → ∞. Since r

t
log r

2det
→ 0 and r

t
logMr → 0 as

t →∞ for any fixed r , we obtain N(t) →∞ and N(t) →∞. On the other hand,
for any R > 0 and t large enough, we have

max
r≤R

[
Mr − r

t
log

r

2det

]
≤ MR + R

t

∣∣∣∣log
R

2det

∣∣∣∣ t→∞−→ MR < ∞

and

max
r≤R

[
Mr − r

t
logMr

]
≤ MR + R

t
| logMR| t→∞−→ MR < ∞,

which implies that r(t) > R and r(t) > R eventually.
(b) Observe that at r = 2dt the function r �→ r

t
log r

2det
takes its minimum,

and that it is decreasing on (0,2dt) and increasing on (2dt,∞). Denote by zt a
point such that Mr(t) = ξ(zt ) and |zt | ≤ r(t). If |zt | ≤ 2dt , then Mr(t) = ξ(zt ) =
M|zt | ≤ M2dt and, hence, by monotonicity of Mr , we have M2dt = Mr(t). Since,
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by monotonicity, the value of r
t

log r
2det

at r = r(t)> 2dt is strictly greater than its
value −2d at r = 2dt , we obtain

Mr(t) − r(t)

t
log

r(t)

2det
< M2dt + 2d,

which is a contradiction to r(t) maximizing N(t) in (1.3). Hence, 2dt < |zt | ≤
r(t). Since Mr(t) = ξ(zt ), we obtain, again using monotonicity, that

Mr(t) − r(t)

t
log

r(t)

2det
≤ ξ(zt ) − |zt |

t
log

|zt |
2det

.

This proves the upper bound for N(t). The lower bound is obvious.
(c) Denote by zt a point such that ξ(zt ) = Mr(t) and |zt | ≤ r(t). Since r(t) →

∞, we obtain Mr(t) = ξ(zt ) > 1 eventually. Then, for large t ,

ξ(zt )− |zt |
t

log+ ξ(zt ) ≥ ξ(zt ) − r(t)

t
log+ ξ(zt ) = Mr(t) − r(t)

t
logMr(t),

which proves the upper bound for N(t).
To prove the lower bound, note that since Mr > 1 eventually and r

t
logMr → 0

as t → ∞ for any fixed r , we obtain N(t) > 1 eventually. Let us assume t to be
large enough so that this is satisfied. Now denote by zt a point where the maximum
of the expression on the right-hand side is taken. If ξ(zt ) ≤ 1, then

N(t) > 1 ≥ ξ(zt ) = ξ(zt )− |zt |
t

log+ ξ(zt ),

which proves the statement. If ξ(zt ) > 1, then assume first that ξ(zt ) ≤ |zt |/t . Then

ξ(zt )− |zt |
t

log+ ξ(zt ) ≤ ξ(zt )− ξ(zt ) log ξ(zt ) ≤ 1 < N(t),

as x �→ x − x logx is maximal at x = 1. Finally, if ξ(zt ) > |zt |/t and ξ(zt ) > 1,
we obtain

N(t) ≥ M|zt | −
|zt |
t

logM|zt | ≥ ξ(zt ) − |zt |
t

log ξ(zt ),

as x �→ x − a logx is increasing on [a,∞), for any a > 0 and, in particular, for
a = |zt |/t . �

In the next two lemmas we find almost sure upper and lower bounds for Lt ,
which hold eventually for all t .

LEMMA 2.2 (Upper bound for Lt ). Let η ∈ (0,1). Assume that almost surely
Mr ≤ rη eventually for all r . Then, almost surely, eventually for all t

Lt ≤ max
r>0

[
Mr − r

t
log

r

2det

]
− 2d + o(1)= N(t) − 2d + o(1).
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PROOF. Let r0 be such that Mr ≤ rη for all r > r0. Let us fix some θ > 1
and β = (1 − η)−1(1 + ε), ε > 0. Sorting the trajectories of the random walk X

according to the number of jumps made before time t and taking into account the
facts that ξ(Xs) ≤ MJt , for all s ≤ t , and that Jt has a Poisson distribution with
parameter 2dt , we obtain

E0

[
exp

{∫ t

0
ξ(Xs) ds

}]
=

∞∑
n=0

E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1{Jt=n}

]
(2.1)

≤
∞∑

n=0

etMn−2dt (2dt)n

n! .

We now give an upper bound for the tail of the series on the right. Using Stirling’s
formula,

n! = √
2πn

(
n

e

)n

eδ(n), with lim
n↑∞ δ(n) = 0(2.2)

and the assumption Mr ≤ rη, we obtain, for all n > max{r0, t
β}, that

tMn − 2dt + n log(2dt) − log(n!)
≤ tnη − n log

n

2det
− δ(n)

≤ tnη

(
1 − n1−η

t
log

n

2det
− δ(n)

tnη

)

≤ tnη

(
1 − tε log

tβ−1

2de
− δ(n)

tnη

)
≤−θ logn,

eventually for all t . If t is large enough, then tβ > r0 and the last estimate holds
for all n > tβ . Splitting the sum on the right of (2.1) at n = �tβ� and noting that∑

n>�tβ� n−θ = o(1), we obtain

U(t) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}]
≤ (tβ + 1) max

0≤n≤tβ

[
etMn−2dt (2dt)n

n!
]
+ o(1)

and hence,

Lt ≤ max
0≤n≤tβ

[
Mn − n

t
log

n

2det
− 1

t
log

√
2πn − δ(n)

t

]
− 2d + o(1)

= max
1≤n≤tβ

[
Mn − n

t
log

n

2det

]
− 2d + o(1)

≤ max
r>0

[
Mr − r

t
log

r

2det

]
− 2d + o(1),

which completes the proof of the lemma. �
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LEMMA 2.3 (Lower bound for Lt ). Let η ∈ (0,1). Assume that almost surely
ξ(0) ≥ 0 and Mr ≤ rη eventually for all r . Then, almost surely, eventually for all t

Lt ≥ max
0<ρ<1

max|z|≥1

[
(1 − ρ)ξ(z)− |z|

t
log

|z|
eρt

]
− 2d + o(1).(2.3)

PROOF. Let r0 be such that Mr ≤ rη for all r > r0. Let ρ ∈ (0,1) and z ∈ Z
d .

Denote by

A
z,ρ
t := {Jρt = |z|,Xs = z ∀s ∈ [ρt, t]}

the event that the random walk X reaches the point z before time ρt , making
the minimal possible number of jumps, and stays at z for the rest of the time.
Denote by Pλ(·) the Poisson distribution with parameter λ. Considering a smaller
event where X reaches z taking some fixed route, we obtain a lower bound on the
probability

P0(A
z,ρ
t ) ≥ P2dρt (|z|)P2d(1−ρ)t (0)

(2d)|z|
= e−2dt (2dρt)|z|

(2d)|z||z|! = e−2dt (ρt)|z|

|z|!
= exp

{
−|z| log

|z|
eρt

− 2dt − log
√

2π |z| − δ(|z|)
}
,

where δ(|z|) is taken from Stirling’s formula (2.2). As ξ(z) ≥ 0 almost surely for
all z, we obtain by the Feynman–Kac formula (1.2), for all ρ and z,

U(t) = E0

[
exp

{∫ t

0
ξ(Xs) ds

}]
≥ et(1−ρ)ξ(z)

P0(A
z,ρ
t )

≥ exp
{
t (1 − ρ)ξ(z) − |z| log

|z|
eρt

− 2dt − log
√

2π |z| − δ(|z|)
}
.

Since δ is bounded and log
√

2π |z| ≤ o(t) for |z| ≤ tβ for any fixed positive β , this
implies

Lt ≥ max
0<ρ<1

max
1≤|z|≤tβ

[
(1 − ρ)ξ(z)− |z|

t
log

|z|
eρt

]
− 2d + o(1).(2.4)

Let β = (1−η)−1(1+ε), ε > 0. As Mr ≤ rη for all r > r0, for all |z| > max{r0, t
β}

we have

max
|z|>max{r0,t

β }

[
(1 − ρ)ξ(z) − |z|

t
log

|z|
eρt

]

≤ max
|z|>max{r0,t

β }

[
(1 − ρ)M|z| − |z|

t
log

|z|
eρt

]

≤ max
|z|>max{r0,t

β }

[
(1 − ρ)|z|η − |z|

t
log

|z|
eρt

]
(2.5)
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= max
|z|>max{r0,t

β }

[
|z|η

(
1 − ρ − |z|1−η

t
log

|z|
eρt

)]

≤ max
|z|>max{r0,t

β }

[
|z|η

(
1 − ρ − tε log

tβ−1

eρ

)]
< 0,

eventually for all t . Recall that Lt ≥ 0 and take t large enough so that tβ > r0.
Then (2.5) implies that the maximum in (2.4) can be taken over all z instead of
|z| ≤ tβ , which implies the statement of the lemma. �

2.2. Point processes and their transformations. We employ a point process
approach to extreme value theory, using wherever possible the terminology and
framework of [12]. In this section we recall the basic setup from [12], Chapter 3,
and add two slightly nonstandard lemmas, that will provide the technique for the
proof of our weak convergence results, Theorems 1.2 and 1.4.

We begin with some measure-theoretic notation: A Borel measure on a locally
compact space E with countable basis is called Radon if it is locally finite, that is,
all compact sets have finite measure. A Radon measure μ is called a point measure
if there exists a finite or countably infinite collection of points x1, x2, . . . ∈ E such
that μ = ∑

i εxi
, where εx denotes the Dirac measure at x.

A sequence (μn) of Radon measures converges vaguely to a Radon measure μ

if
∫

f dμn → ∫
f dμ for any continuous function f :E → [0,∞) with compact

support. We denote by Mp(E) the set of point measures on E endowed with the
topology of vague convergence. A point process is a random element of Mp(E).
For any Radon measure μ there exists a (unique) point process N called the Pois-
son process with intensity measure μ characterized by the following two proper-
ties:

• for any Borel set A ⊂ E, the random variable N(A) is Poisson distributed with
parameter μ(A),

• for any pairwise disjoint Borel sets A1, . . . ,An, the random variables N(A1),

. . . ,N(An) are independent.

We now suppose that, for any r > 0, the random variables {Xr,z, z ∈ Z
d} are

independent identically distributed with values in a state space G (again, locally
compact with countable basis), and we denote the corresponding probability and
expectation by P and E, respectively. We suppose further that μ is a Radon measure
on G such that

rdP(Xr,0 ∈ ·) v→ μ,(2.6)

where
v→ denotes vague convergence. Then we define, for any r > 0, a point

process ζr on R
d × G by

ζr =
∑
z∈Zd

ε(z/r,Xr,z).(2.7)
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Let ζ be a Poisson process on R
d × G with intensity measure Lebd ⊗ μ, where

Lebd denotes the Lebesgue measure on R
d . A trivial generalization of the proof

of [12], Proposition 3.21 (with N replaced by Z
d , [0,∞) by R

d , Leb1 by Lebd and
r ∈ N by r > 0) implies that ζr converges in law to ζ .

Observe that this implies that
∫

f dζr converges in law to
∫

f dζ whenever
f : Rd × G → [0,∞) is continuous with compact support. Unfortunately, this is
not strong enough for our applications, as we need to consider a class of func-
tions with noncompact support in R

d × G. To overcome this problem within this
framework we look at a compactification of the state space.

We let Ṙ
d be the one-point compactification of R

d and work on the space
Ṙ

d × G. On this space, Lebd ⊗ μ is no longer a Radon measure and ζr is no
longer a point process, as there are compact sets of infinite measure. However, it
turns out that we can define subspaces H ⊂ Ṙ

d ×G, for which the convergence re-
sult remains true, while the class of compactly supported integrands is sufficiently
rich for our applications.

LEMMA 2.4 (Point processes and i.i.d. sequences). Let H ⊂ Ṙ
d × G be a

locally compact Borel set such that:

(i) Lebd ⊗ μ|H is a Radon measure on H ,
(ii) each ζr |H is a point process in H ,

(iii) the projection of each compact set in H to the second coordinate is com-
pact in G,

(iv) λr(dx, dy) := ∑
z∈Zd εzr−1(dx)P(Xr,0 ∈ dy)|H v→ Lebd(dx) ⊗μ(dy)|H .

Then ζr |H converges in law to the Poisson process with intensity measure
Lebd ⊗ μ|H .

PROOF. This follows as in the proof of [12], Proposition 3.21, by looking at
the Laplace functionals for nonnegative test functions f with compact support
in H instead of R

d ×G, using our assumption (iv) in [12], (3.20), and (iii) in [12],
(3.21), to obtain the result. �

In our applications we deal with families of transformations of point processes.
The next lemma describes the convergence of point processes under families of
transformations. Recall that, thanks to our compactification, compact sets may well
contain points with infinite components.

LEMMA 2.5 (Transformed point processes). Let H ⊂ Ṙ
d ×G, H ′ ⊂ Ṙ

d+1 be
locally compact Borel sets and η a Radon measure on H . Let �t , for t > 0, be
a family of point processes in H converging in law to a Poisson process � on H

with intensity measure η. Finally, let T and Tt , for t > 0, be measurable mappings
from H to H ′ satisfying the following conditions:
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(i) T is continuous;
(ii) for each compact K ′ ⊂ H ′, there is a compact K ⊂ H containing T −1(K ′)

and all T −1
t (K ′);

(iii) there exist compact sets Kn ⊂ H such that η(Kn) → 0, and Tt → T uni-
formly on each Kc

n.

Then �t ◦ T −1
t are point processes in H ′ converging in law to the Poisson process

� ◦ T −1 with intensity measure η ◦ T −1.

PROOF. It follows from (ii) that the preimages of compact sets in H ′ under T

and all Tt are relatively compact in H , which implies that �t ◦ T −1
t are point

processes and η ◦ T −1 is a Radon measure. By [12], Proposition 3.7, � ◦ T −1

is a Poisson process in H ′ with intensity measure η ◦ T −1 and so it suffices to
prove that �t ◦ T −1

t → � ◦ T −1 in law, which is equivalent to showing that the
corresponding Laplace functionals

�
�t◦T −1

t
(g) := E exp

{
−

∫
g ◦ Tt d�t

}

converge to ��◦T −1(g) for all continuous g :H ′ → [0,∞) with compact support.
Note that

|�
�t◦T −1

t
(g) −��◦T −1(g)|

(2.8)
≤ |�

�t◦T −1
t

(g) − ��t◦T −1(g)| + |��t◦T −1(g) − ��◦T −1(g)|.
Since T satisfies (i) and (ii), it induces a continuous mapping m �→ m ◦ T −1

between the spaces of point measures Mp(H) and Mp(H ′) (see [12], Proposi-
tion 3.18, where the condition T −1(K ′) being compact for any compact K ′ can be
weakened to relative compactness). Now the weak convergence �t → � implies
the weak convergence �t ◦ T −1 → � ◦ T −1, which is equivalent to the conver-
gence of the Laplace functionals, and so the second term on the right-hand side
of (2.8) converges to zero.

Let us prove that the first term also does. According to (ii), denote by K ⊂ H

a compact set containing T −1(suppg) and all T −1
t (suppg). Further, denote

At(a,n) = {�t(Kn ∩ K) = 0,�t(K
c
n ∩ K) ≤ a}. For any fixed ε > 0, one can

fix n and a large enough so that

P(At (a, n)) ≥ P
(
�t(Kn) = 0,�t(K) ≤ a

)
t→∞−→ P

(
�(Kn) = 0,�(K) ≤ a

)
> 1 − ε,

since η(Kn) → 0. This implies P(At (a, n)) > 1 − ε, eventually for all t . Further,
since Tt → T uniformly on Kc

n and g is compactly supported and so uniformly
continuous, we have

sup
x∈Kc

n

|(g ◦ Tt )(x) − (g ◦ T )(x)| ≤ ε/a,
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eventually for all t . Hence, we obtain, also using that g ≥ 0,

|�
�t◦T −1

t
(g) − ��t◦T −1(g)|

= |��t (g ◦ Tt )− ��t (g ◦ T )|
≤ 2P(At (a, n)c)+ E

[∣∣e− ∫
H (g◦Tt ) d�t − e−

∫
H (g◦T )d�t

∣∣1At (a,n)

]
≤ 2ε + E

[(
e

∫
H |(g◦T )−(g◦Tt )|d�t − 1

)
e−

∫
H (g◦T )d�t 1At (a,n)

]
≤ 2ε + (eε − 1) < 4ε,

eventually for all t , if ε is small enough. �

3. Potentials with polynomial tails. In this section we consider Pareto po-
tentials, that is, we assume that the distribution function F of ξ(0) is given by
F(x) = 1 − x−α for x ≥ 1, for some α > d . In Section 3.1 we show that the upper
and lower bounds on Lt , which we found in Section 2, are equivalent, so that it
suffices to consider the behavior of one of the bounds. Since both bounds are given
in terms of the maxima Mr , we compute some bounds on Mr in Section 3.2. Then
we study the almost sure behavior of the upper bound, N(t), in Section 3.4, and
its weak asymptotics in Section 3.3.

3.1. Asymptotic equivalence of Lt and N(t). We first investigate the growth
of any radius r(t) maximizing the variational problem N(t) in (1.3).

LEMMA 3.1 [Rough asymptotics of r(t) and Mr(t)]. Almost surely, as
t →∞:

(a) r(t) = tα/(α−d)+oξ (1),
(b) Mr(t) = ( r(t)

t
)1+oξ (1).

PROOF. By [8], Lemma 4.2 (with no assumption on the distribution), we have
that almost surely

− log[1 − F(Mr)] = d[log r](1 + oξ (1)
)

as r →∞,

which implies Mr = rd/α+oξ (1). Let r(t) be a maximizer of

�t(r) := Mr − r

t
log

r

2det
.

To prove the lower bound on r(t) by contradiction, we assume that r(t) <

t(1−ε)α/(α−d), for fixed ε > 0 and some arbitrarily large t . Consider r̄(t) :=
t (1−ε̄)α/(α−d), for some ε̄ < ε ∧ (d/α). Using r

t
log r

2det
≥ −2d , r(t) → ∞ and

the asymptotics of Mr for r →∞,

�t(r̄(t)) −�t(r(t)) ≥ r̄(t)d/α−δ − r(t)d/α+δ − r̄(t)

t
log

r̄(t)

2det
+ r(t)

t
log

r(t)

2det

≥ t (1−ε̄)α/(α−d)(d/α−δ) − t (1−ε)α/(α−d)(d/α+δ)

+ t (1−ε̄)α/(α−d)−1 log
[
t (1−ε̄)α/(α−d)−1(2de)−1] − 2d > 0,
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for sufficiently large t , if we choose δ in such a way that the first term dominates.
Hence, under our assumption r(t) is not maximizing, which is a contradiction.

To obtain the upper bound on r(t), we assume that r(t) > t(1+ε)α/(α−d) for
large t and again derive a contradiction. Take 0 < δ < (ε(α − d))/(α(1 + ε)). By
the asymptotics of Mr and the fact that r �→ (r1−d/α−δ/t) log r

2det
is decreasing

in r for r ≥ t (1+ε)α/(α−d), we obtain

�t(r(t)) ≤ r(t)d/α+δ − r(t)

t
log

r(t)

2det
= r(t)d/α+δ

(
1 − r(t)1−d/α−δ

t
log

r(t)

2det

)

< r(t)d/α+δ(1 − tε−δα/(α−d)(1+ε) log
[
tε−δα/(α−d)(1+ε)(2de)−1])

< 0,

for sufficiently large t as the power of t is positive by the choice of δ. Hence, r(t)

cannot maximize N(t), so that we again obtain a contradiction, thus proving (a).
To prove the asymptotics for Mr(t), recall from the beginning of the proof that

Mr = rd/α+oξ (1). Using also (a), we get, as t →∞,

Mr(t) = M
t
α/(α−d)+oξ (1) = td/(α−d)+oξ (1) =

(
r(t)

t

)1+oξ (1)

,

which completes the proof. �

PROPOSITION 3.2 [Almost sure equivalence of Lt and N(t)]. Almost surely,

Lt = (
1 + oξ (1)

)
N(t).

PROOF. By Lemma 3.1 and recalling that d < α, we see that the conditions
in Lemmas 2.2 and 2.3 are fulfilled. The former lemma gives the upper bound
Lt ≤ N(t) + O(1) eventually for all t . The lower bound can be obtained from the
latter lemma in the following way.

By definition of r(t), we have Mr(t) − r(t)
t

log r(t)
2det

> 0, and hence, the second
term grows no faster than (but possibly at the same rate as) the first term, that is,

0 ≤ lim sup
t→∞

1

Mr(t)

r(t)

t
log

r(t)

2det
≤ 1.(3.1)

Let εt = oξ (1) be such that log εt = oξ (log r(t)
t

), for example, εt = (log t)−1, and
define

ρt = εt

Mr(t)

r(t)

t
log

r(t)

2det
,

which goes to zero according to (3.1). Now, by Lemma 2.3, we obtain

Lt ≥ (1 − ρt )ξ(zt ) − |zt |
t

log
|zt |
eρt t

+ O(1)

= Mr(t) − r(t)

t
log

r(t)

2det
− ρtMr(t) + r(t)

t
log

eρt

2d
+O(1).
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Since ρt = oξ (1), the third term is dominated by the first two terms. Also, the
fourth one is dominated by the first two terms, since, by Lemma 3.1(b), we have

log
eρt

2d
= log εt + (

1 + oξ (1)
)

log
r(t)

t
− logMr(t) = oξ (1) log

r(t)

t
,

since log εt = oξ (log r(t)
t

). Hence, we obtain

Lt ≥
[
Mr(t) − r(t)

t
log

r(t)

2det

](
1 + oξ (1)

) = N(t)
(
1 + oξ (1)

)
eventually, which completes the proof. �

3.2. Bounds on the maximum Mr . Since Lt is controlled by N(t), which is
defined in terms of the maxima Mr , we need quite sharp almost sure upper and
lower bounds for Mr . These are derived in this section using a standard technique
for independent identically distributed sequences.

Let (Xi : i ∈ N) under P be a family of independent identically distributed ran-
dom variables with distribution function F(x) = 1 − x−α , x ≥ 1. Define the max-
imum process (X̄n :n ∈ N) by X̄n = maxi≤n Xi . For any ρ ∈ R and c > 0, let

uρ(n) = n1/α(logn)1/α(log logn)1/α(log log logn)1/α+ρ,

vc(n) = cn1/α(log logn)−1/α.

The next lemma gives bounds for the maximum process in terms of the sequences
(uρ(n)) and (vc(n)) with suitable parameters ρ and c.

LEMMA 3.3 (Extreme value theory for Pareto variables). Almost surely, as
n →∞:

(i) X̄n ≤ uρ(n) eventually, if ρ > 0;
(ii) X̄n ≥ uρ(n) infinitely often, if ρ ≤ 0;

(iii) X̄n ≥ vc(n) eventually, if c < 1;
(iv) X̄n ≤ vc(n) infinitely often, if c ≥ 1.

PROOF. By [5], Theorem 3.5.1, we have the following criterion for the se-
quence uρ(n) to be an eventual upper bound for X̄n:

P
(
X̄n ≤ uρ(n) ev.

) = 1 ⇐⇒
∞∑

n=1

P
(
X1 > uρ(n)

)
< ∞,

P
(
X̄n ≥ uρ(n) i.o.

) = 1 ⇐⇒
∞∑

n=1

P
(
X1 > uρ(n)

) =∞,

where, for a sequence of events (En :n ≥ 0), we abbreviate {En ev.} for the event
that the events of the sequence occur eventually for all n, and {En i.o.} if they
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occur infinitely often. Compute

∞∑
n=1

P
(
X1 > uρ(n)

) = ∞∑
n=1

uρ(n)−α =
∞∑

n=1

1

n(logn)(log logn)(log log logn)1+αρ
.

If ρ > 0, then the series converges and, hence, P(X̄n ≤ uρ(n) ev.) = 1. For ρ ≤ 0,
the series diverges and so P(X̄n ≥ uρ(n) i.o.) = 1.

To prove the last two bounds, recall that F̄ = 1 − F denotes the tail of the
distribution and note that F̄ (vc(n)) → 0 as vc(n) →∞, and

F̄ (vc(n)) = vc(n)−α = c−αn−1 log logn.

This implies nF̄ (vc(n)) = c−α log logn → ∞, and hence, we can apply the cri-
terion [5], Theorem 3.5.2, for the sequence vc(n) to be an eventual lower bound,
which says that

P
(
X̄n ≤ vc(n) i.o.

) = 1 ⇐⇒
∞∑

n=1

F̄ (vc(n)) exp{−nF̄ (vc(n))} =∞,

P
(
X̄n ≥ vc(n) ev.

) = 1 ⇐⇒
∞∑

n=1

F̄ (vc(n)) exp{−nF̄ (vc(n))} < ∞.

We find that
∞∑

n=1

F̄ (vc(n)) exp{−nF̄ (vc(n))} = c−α
∞∑

n=1

log logn

n exp{c−α log logn}

= c−α
∞∑

n=1

log logn

n(logn)c
−α .

This series is finite if and only if c−α > 1, which is the case if c < 1. Then P(X̄n ≥
vc(n) ev.) = 1. If c ≥ 1, on the other hand, then c−α ≤ 1 and the series diverges,
which gives P(X̄n ≤ vc(n) i.o.) = 1. �

We would like to use Lemma 3.3 to estimate Mr = max|z|≤r ξ(z), which re-
quires looking at a certain subsequence of the maximum process. We can do this
easily for the eventual estimates, but some more work is needed to show that events
occurring infinitely often will occur infinitely often along the subsequence.

LEMMA 3.4 (Extreme values along sparse subsequences). Let (nk) be an in-
creasing sequence of natural numbers such that, for some η ∈ (0,1), nk+1 − nk <

n
η
k for all k large enough. Then almost surely, as k →∞:

(i) X̄nk
≥ uρ(nk) infinitely often if ρ < 0;

(ii) X̄nk
≤ vc(nk) infinitely often if c > 1.
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PROOF. Take ρ′ ∈ (ρ,0). By the second statement of Lemma 3.3, we have

uρ(n+ nη) = uρ(n)
(
1 + o(1)

) ≤ uρ′(n) ≤ X̄n,

where the first inequality holds eventually, and the second one infinitely often.
Hence, there exists an arbitrarily large n such that X̄n ≥ uρ(n + nη). Choose k in
such a way that nk−1 < n ≤ nk . If n, respectively, k, is large enough, then nk −n <

nk − nk−1 < n
η
k−1 < nη. By monotonicity, we obtain X̄nk

≥ X̄n ≥ uρ(n + nη) ≥
uρ(nk), which proves (i). The argument for (ii) is analogous. �

Now we are able to prove the estimates for Mr .

LEMMA 3.5 (Bounds on Mr ). Let δ > 0. There are c1, c2 > 0 such that, al-
most surely, as r →∞, the following estimates hold:

Mr ≤ rd/α(log r)1/α(log log r)1/α(log log log r)1/α+δ eventually for all r,

Mr ≥ rd/α(log r)1/α(log log r)1/α(log log log r)1/α−δ for infinitely many r,

Mr ≥ c1r
d/α(log log r)−1/α eventually for all r,

Mr ≤ c2r
d/α(log log r)−1/α for infinitely many r.

PROOF. The eventual inequalities follow directly from Lemma 3.3. Indeed, let
ρ ∈ (0, δ). As the ball of radius r contains κd(r)rd points, we obtain

Mr ≤ uρ(κd(r)rd) ≤ rd/α(log r)1/α(log log r)1/α(log log log r)1/α+δ,

eventually for all r . Similarly, taking c < 1, we obtain, for a suitable constant
c1 > 0,

Mr ≥ vc(κd(r)rd)≥ c1r
d/α(log log r)−1/α eventually for all r .

To prove the second and the fourth inequality, we need to check that the sub-
sequence nr = κd(r)rd satisfies the condition in Lemma 3.4. Indeed, for η ∈
(d−1

d
,1), we have

lim
r→∞

nr+1 − nr

n
η
r

= lim
r→∞

κd(r + 1)(r + 1)d − κd(r)rd

κd(r)ηrdη
= κ

1−η
d lim

r→∞ rd−1−dη = 0.

Taking ρ ∈ (−δ,0), we obtain, by Lemma 3.4, for infinitely many r

Mr ≥ uρ(κd(r)rd) ≥ rd/α(log r)1/α(log log r)1/α(log log log r)1/α−δ,

as the first inequality holds infinitely often and the last one eventually. Further,
taking c ≥ 1 and a suitable constant c2, we get for the fourth estimate

Mr ≤ vc(κd(r)rd) ≤ c2r
d/α(log log r)−1/α for infinitely many r ,

as the first inequality holds infinitely often and the last one eventually. �
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3.3. Weak convergence of N(t). We now study the weak asymptotics for N(t),
which by Proposition 3.2 agrees with those of Lt . Our main tool is the point
processes technique and we use the preliminary lemmas proved in Section 2.2.
Denote

at :=
(

t

log t

)d/(α−d)

and rt :=
(

t

log t

)α/(α−d)

,(3.2)

which turn out to be the right scaling for N(t) and for the radius r(t), where the
maximum N(t) is attained. Let G := (0,∞],

Xr,z := ξ(z)

rd/α
and μ(dy) := α dy

yα+1 ,

which is a Radon measure on G. For x > 0, we have

rdP (Xr,0 ≥ x) = rdP
(
ξ(0) ≥ xrd/α) = x−α = μ([x,∞])(3.3)

and so condition (2.6) is satisfied. Define ζr by (2.7), let q := d/(α−d) and define
a locally compact Borel set

H := {(x, y) ∈ Ṙ
d × G :y ≥ q|x|/2} ∪ {(∞,∞)}.

Denote by Bε := {(x, y) ∈ R
d × G : |x| < ε, |y| < qε/2} a collection of neighbor-

hoods of zero and by Kn := {(x, y) ∈ H : |x| ≥ n} a collection of compact sets
in H .

LEMMA 3.6 (Convergence of the point processes). ζr |H ⇒ ζ |H , where ζ |H
denotes a Poisson process on H with intensity measure η := Lebd ⊗μ|H .

PROOF. It suffices to show that the conditions (i)–(iv) of Lemma 2.4 are sat-
isfied.

(i) To show that η is a Radon measure on H , it suffices to see that it is finite
on the complements of Bε . This follows as, using α > d ,

η(H \ Bε) =
∫

Rd
dx

∫ ∞
q(ε∨|x|)/2

α dy

yα+1 = (2/q)α
∫

Rd

dx

(ε ∨ |x|)α < ∞.

(ii) To prove that ζr |H is a point process in H , it suffices to show that ζr(H) <

∞ almost surely. This follows from the fact that, by Lemma 3.5, almost surely
ξ(z) ≤ M|z| < |z|d/α+δ and, hence, ξ(z)r−d/α < q|z|/(2r) for all |z| large enough,
so that (|z|/r,Xr,z) ∈ H for only finitely many z.

(iii) Obviously, the projection of a compact set in H to the first coordinate is
compact in G.

(iv) The convergence λr
v→ η with respect to continuous test functions f : Rd ×

G → [0,∞) with compact support in R
d × G follows from (3.3). To prove the
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vague convergence on H , it suffices to show additionally that for each ε > 0 there
is n such that λr(Kn) < ε eventually for all r . We have

λr(Kn) =
∑

|z|≥nr

P

(
Xr,0 ≥ q

|z|
2r

)

=
(

2

q

)α ∑
|z|≥nr

∣∣∣∣zr
∣∣∣∣
−α

r−d r→∞−→
(

2

q

)α ∫
{|x|≥n}

|x|−α dx.

As α > d , the integral converges and the right-hand side is smaller than < ε if n is
large. �

Recall from (3.2) that at = (rt )
d/α . Let

�t(z) := ξ(z) − |z|
t

log
|z|

2det

and define the corresponding point process by

�t :=
∑

{z∈Zd : �t (z)>0}
ε(z/rt ,�t (z)/at ).

LEMMA 3.7 (Convergence of the transformed point processes). For each t ,
�t is a point process on

Ĥ := Ṙ
d+1 \ ((

R
d × (−∞,0)

) ∪ {(0,0)}).
As t →∞, �t converges in law to a Poisson process � on Ĥ with intensity mea-
sure

ν(dx, dy) = dx ⊗ α

(y + q|x|)α+1 1{y>0} dy.

PROOF. Observe that
�t(z)

at

= ξ(z)

at

− |z|
tat

log
|z|

2det
= ξ(z)

at

− (
q + o(1)

)∣∣∣∣ z

rt

∣∣∣∣ − |z/rt | log |z/rt |
log t

and hence,

�t = (ζrt |H ◦ T −1
t )|

Ĥ
eventually for all t ,

for a transformation Tt :H → H ′ := Ṙ
d+1 \ {0} given by

Tt : (x, y) �→
{ (

x, y − q|x| − δ(t, x)
)
, if x �=∞ and y �=∞,

∞, otherwise,

where δ(t, x) → 0 as t →∞ uniformly on all Kc
n. Finally, we define T :H → H ′

by T (x, y) = (x, y − q|x|) if x �= ∞ and y �= ∞ and T (x, y) = ∞ otherwise. It
now suffices to show that

ζrt |H ◦ T −1
t �⇒ ζ |H ◦ T −1,
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as the Poisson process on the right has the required intensity by a straightforward
change of coordinates. This convergence holds by Lemmas 3.6 and 2.5, provided
the conditions (i)–(iii) of the latter are satisfied, which we now check:

(i) T is obviously continuous.
(ii) For each compact set K ′ ⊂ H ′, there is an open neighborhood V ′ of zero

such that K ′ ⊂ H ′ \ V ′. Since Tt → T uniformly in Kc
n and since T (Kn) ∩ V ′ =

Tt(Kn) = ∅ for large n, there exists an open neighborhood V ⊂ H of zero such
that T (V ) ⊂ V ′ and Tt(V ) ⊂ V ′ for all t . Hence, for K := H \ V , we obtain
T −1(K ′) ⊂ T −1(H ′ \ V ′) ⊂ K and, similarly, T −1

t (K ′) ⊂ K for all t .
(iii) Recall that δ(x, t) → 0 uniformly on Kc

n and that η(Kn) → 0, as η is finite
away from zero. �

The following proposition, together with Proposition 3.2, completes the proof
of Theorem 1.2.

PROPOSITION 3.8 [Weak asymptotics for N(t)]. With at as in (3.2) and θ as
in Theorem 1.2,

N(t)

at

⇒ Y where P(Y ≤ y) = exp{−θyd−α}.

PROOF. For y > 0, compute

ν
(
R

d × [y,∞)
) = ∫

Rd

∫ ∞
y

ν(dx, dz) =
∫

Rd

dx

(y + q|x|)α .

Using the substitution u1 = x1 +· · ·+xd and ui = xi for i ≥ 2, and then y+qu1 =
y/v, we get

∫
Rd

dx

(y + q|x|)α = 2d
∫ ∞

0

ud−1
1

(y + qu1)α

∫
u2+···+ud≤u1

ui≥0

du2 · · · dun du1

= 2d

(d − 1)!
∫ ∞

0

ud−1
1 du1

(y + qu1)α

= 2dyd−α

qd(d − 1)!
∫ 1

0
vα−d−1(1 − v)d−1 dv

= 2dB(α − d, d)

yα−dqd(d − 1)! = θyd−α.

Since ν is the intensity measure of the Poisson process �, we obtain

P
(
�

(
R

d × [y,∞)
) = 0

) = exp{−θyd−α}.
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We eventually have r(t) > 2dt by Lemma 3.1, and hence, by Lemma 2.1(b) that
N(t) = maxz �t (z) eventually. Using relative compactness of R

d × [y,∞) in Ĥ ,
we obtain, by Lemma 3.7, that

P

(
N(t)

at

≤ y

)
= P

(
�t

(
R

d × [y,∞)
) = 0

) → P
(
�

(
R

d × [y,∞)
) = 0

)
= exp{−θyd−α},

which completes the proof. �

3.4. Almost sure behavior of N(t). In this section we complete the proof of
Theorem 1.1. Taking into account Proposition 3.2, it suffices to prove the following
proposition.

PROPOSITION 3.9 [Almost sure bounds on logN(t)].

lim sup
t→∞

logN(t) − d/(α − d) log t

log log t
=− d − 1

α − d
for d > 1,

lim sup
t→∞

logN(t) − d/(α − d) log t

log log log t
= 1

α − d
for d = 1

and

lim inf
t→∞

logN(t) − d/(α − d) log t

log log t
=− d

α − d
for d ≥ 1.

PROOF. To study the lim sup behavior, we apply, for t large enough, the first
estimate of Lemma 3.5 to get, for every δ > 0,

N(t) ≤ max
r>0

[
rd/α(log r)1/α(log log r)1/α(log log log r)1/α+δ

(3.4)

− r

t
log

r

2det

]
.

Further, we obtain, for every δ > 0,

N(t) ≥ max
r>0

[
rd/α(log r)1/α(log log r)1/α(log log log r)1/α−δ

(3.5)

− r

t
log

r

2det

]
,

if the maximum on the right-hand side is attained at a point r̂t satisfying the second
inequality from Lemma 3.5. This holds for infinitely many t as r̂t → ∞ continu-
ously in t . It therefore remains to prove that the logarithms of the right-hand sides
of (3.4) and (3.5) have the required asymptotics.
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We deal with both cases simultaneously. For a fixed η, denote

ft (r) = rd/α(log r)1/α(log log r)1/α(log log r)1/α+η − r

t
log

r

2det
(3.6)

and denote by r̂t a maximizer of ft . The condition d < α implies that r̂t →∞ so
that we have

0 = f ′
t (r̂t ) = (d/α)r̂

d/α−1
t (log r̂t )

1/α(log log r̂t )
1/α(log log log r̂t )

1/α+η(
1 + o(1)

)
− 1

t
log

r̂t

2dt
,

which, in turn, implies that

(d/α)r̂
d/α
t (log r̂t )

1/α(log log r̂t )
1/α(log log log r̂t )

1/α+η(
1 + o(1)

)
(3.7)

= r̂t

t
log

r̂t

2dt
.

Hence, r̂t /t →∞ and taking the logarithm, we obtain log(r̂t /t) = (d/α)[log r̂t ]×
(1 + o(1)). Substituting this into (3.7) and taking the logarithm, we obtain

log t + α−1 log log r̂t + α−1[log log log r̂t ](1 + o(1)
)

= (1 − d/α) log r̂t + log log r̂t .

Simplifying, we get

log t = (1 − d/α) log r̂t + (1 − 1/α) log log r̂t
(3.8)

− α−1[log log log r̂t ](1 + o(1)
)
.

Obviously, we can look for an asymptotic for log r̂t in the form

log r̂t = a1 log t + a2 log log t + a3[log log log t](1 + o(1)
)
.

Substituting this into (3.8), we get

a1(1 − d/α) = 1, a2(1 − d/α) + 1 − 1/α = 0, a3(1 − d/α)− 1/α = 0,

which implies

log r̂t = α

α − d
log t − α − 1

α − d
log log t + 1

α − d
[log log log t](1 + o(1)

)
.(3.9)

Substituting (3.7) into (3.6) and using (3.9), we obtain

logft (r̂t ) = log
(
(1 − d/α)r̂

d/α
t (log r̂t )

1/α(log log r̂t )
1/α

× (log log log r̂t )
1/α+η(

1 + o(1)
))
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= d

α − d
log t +

[
1

α
− d(α − 1)

α(α − d)

]
log log t

+
[

1

α
+ d

α(α − d)

]
[log log log t](1 + o(1)

)

= d

α − d
log t − d − 1

α − d
log log t + 1

α − d
[log log log t](1 + o(1)

)
.

Note that the right-hand side does not depend on η. Therefore, the almost sure
upper and lower bounds in (3.4) and (3.5) have identical asymptotics. The second
term vanishes for d = 1, which explains the difference between the asymptotics
for the one-dimensional and multi-dimensional cases.

To study the lim inf behavior, we apply the third estimate of Lemma 3.5 and
obtain, for t large enough,

N(t) ≥ max
r>0

[
c1r

d/α(log log r)−1/α − r

t
log

r

2det

]
.

Denote

ft (r) = c1r
d/α(log log r)−1/α − r

t
log

r

2det
(3.10)

and denote by r̂t a point where the maximum of r �→ ft (r) is achieved. The con-
dition that d < α implies that r̂t /t →∞ and we have

0 = f ′
t (r̂t ) = c1(d/α)r̂

d/α−1
t (log log r̂t )

−1/α(
1 + o(1)

) − 1

t
log

r̂t

2dt
,

which implies that

c1(d/α)r̂
d/α
t (log log r̂t )

−1/α(
1 + o(1)

) = r̂t

t
log

r̂t

2dt
.(3.11)

Hence, r̂t /t → ∞, and taking the logarithm, we obtain log(r̂t /t) = (d/α) ×
[log r̂t ](1 + o(1)). Substituting this into (3.11) and taking the logarithm, we ob-
tain

log t = (1 − d/α) log r̂t + [log log r̂t ](1 + o(1)
)
.(3.12)

Obviously, we can look for an asymptotic for log r̂t in the form

log r̂t = a1 log t + a2[log log t](1 + o(1)
)
.

Substituting this into (3.12), we get a1(1 − d/α) = 1, a2(1 − d/α)+ 1 = 0, which
implies

log r̂t = α

α − d
log t − α

α − d
[log log t](1 + o(1)

)
.(3.13)
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Substituting (3.11) into (3.10) and using (3.13), we obtain

logft (r̂t ) = log
(
c1

(
1 − d

α

)
r̂
d/α
t (log log r̂t )

−1/α(
1 + o(1)

))

= d

α − d
log t − d

α − d
[log log t](1 + o(1)

)
,

which proves that −d/(α − d) is a lower bound for the lim inf. Note that we can-
not prove the equality using just estimates for Mr , but it follows from the weak
convergence proved in Proposition 3.8 as it implies

logN(t) − d/(α − d) log t

log log t
⇒ − d

α − d

and so there is a sequence tn → ∞ along which the convergence holds in the
almost sure sense. �

4. Potentials with stretched exponential tails. We now focus on potentials
with distribution function F(x) = 1 − e−xγ

, x ≥ 0, for some positive γ < 1, and
include the case γ = 1 of exponential potentials if this is possible at no additional
cost. In Section 4.1 we describe the behavior of the maximum Mr and show that
N(t) and N(t) are bounds for Lt up to the order O(1). In Section 4.2 we obtain
the weak limits theorems for N(t) and N(t). In Section 4.3 we show that the
approximation of Lt by N(t) holds up to order o((log t)1/γ−1). Therefore, the
weak limit theorem for N(t), which we obtained in Section 4.2, directly implies
the weak limit theorem for Lt , which completes the proof of Theorem 1.4. Finally,
in Section 4.4 we find almost sure estimates for N(t) and N(t) using the bounds
for Mr and then find the almost sure asymptotics for Lt stated in Theorem 1.3.

4.1. Approximation of Lt up to constant order. In this section we first derive
bounds for Mr (Lemma 4.1) using the analogous results obtained in the case of
Pareto potentials. Then, in Lemma 4.2, we improve the upper and lower bound
for Lt obtained in Section 2.1 and show that Lt is squeezed between N(t) − 2d

and N(t)− 2d up to an additive error which converges to zero.

LEMMA 4.1 (Bounds on Mr ). Assume 0 < γ ≤ 1 and let δ ∈ (0,1) and c > 0.
Then almost surely, as r →∞, the following estimates hold:

Mr ≤ (d log r)1/γ + γ−1(d log r)1/γ−1 log log r

+ (log r)1/γ−1(log log r)δ eventually for all r,

Mr ≥ (d log r)1/γ + γ−1(d log r)1/γ−1 log log r for infinitely many r,

Mr ≥ (d log r)1/γ − (γ−1 + c)(d log r)1/γ−1 log log log r eventually for all r,

Mr ≤ (d log r)1/γ

− (γ−1 − c)(d log r)1/γ−1 log log log r for infinitely many r.
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In particular, for ĉ > γ−1 logd , we have logMr ≤ γ−1 log log r + ĉ eventually for
all r .

PROOF. This lemma is analogous to Lemma 3.5 for the polynomial potentials,
and the proof can be derived from there. Namely, let us pick some α > d and note
that ξ̂ (z) = exp{ξ(z)γ /α} is a collection of independent Pareto distributed random
variables. Denote M̂r = max|z|≤r ξ̂ (z). Then

Mr = (α log M̂r)
1/γ ,

where the asymptotics for M̂r are given by Lemma 3.5. We obtain, with
0 < δ′ < 1/α,

Mr ≤ [α log(rd/α(log r)1/α(log log r)1/α(log log log r)1/α+δ′)]1/γ

≤ (d log r)1/γ + γ−1(d log r)1/γ−1 log log r

+ γ−1(1 + αδ′)(d log r)1/γ−1 log log log r

eventually, which implies the first stated eventual inequality as log log log t =
o((log log t)δ).

Similarly, using the second inequality from Lemma 3.5, we obtain

Mr ≥ (d log r)1/γ + γ−1(d log r)1/γ−1 log log r

+ γ−1(1 − αδ′)(d log r)1/γ−1 log log log r

infinitely often, which implies the second stated inequality as 1 − αδ′ > 0. The
third and the fourth inequalities can be proved in the same way. The final statement
is an obvious consequence of the more precise first estimate. �

PROPOSITION 4.2 (Bounds on Lt ). Assume 0 < γ ≤ 1. Then, almost surely,

N(t) − 2d + o(1) ≤ Lt ≤ N(t) − 2d + o(1) eventually for all t .

PROOF. By Lemma 4.1, we have, for any η > 0, that Mr ≤ rη eventually and,
hence, the upper bound follows directly from Lemma 2.2. To obtain the lower
bound, recall Lemma 2.3 and note that the function f (ρ) = (1−ρ)ξ(z)− |z|

t
log |z|

eρt

is maximized at ρ0 = |z|
tξ(z)

and, hence, ρ = ρ0 gives the most powerful estimate
in (2.3), unless it drops out of the interval (0,1), whence it violates the condition
|z| < tξ(z). Computing f (ρ0) = ξ(z) − |z|

t
log ξ(z) gives

Lt ≥ max|z|<tξ(z)

[
ξ(z) − |z|

t
log ξ(z)

]
− 2d + o(1).

Observe that for |z| ≥ tξ(z) one has ξ(z)− |z|
t

log+ ξ(z) ≤ ξ(z)− ξ(z) log+ ξ(z) ≤
1 by properties of the function x �→ x−x log+ x. On the other hand, the maximum
taken over all z converges to infinity, as it is equal to N(t) by Lemma 2.1(c). Hence,

max|z|<tξ(z)

[
ξ(z) − |z|

t
log ξ(z)

]
≥ max

z∈Zd

[
ξ(z) − |z|

t
log+ ξ(z)

]
= N(t) + o(1). �
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4.2. Weak convergence of N(t) and N(t). In this section we study weak con-
vergence of N(t) and N(t) and show that they have the same asymptotics up to
the fourth term, which is the first random term in both cases. However, the limiting
distribution of the rescaled N(t) and N(t) turn out to be different. Our main tool
is again the point processes technique developed in Section 2.2. Denote

at := (d log t)1/γ ,

bt := d(1/γ 2 − 1/γ )(d log t)1/γ−1 log log t,

ct := −(d/γ )(d log t)1/γ−1 log log log t,

dt := (d log t)1/γ−1,

which will turn out to be the first four terms in the asymptotics and

rt := t (log t)1/γ−1(log log t)−1,

which will be the right scaling for the radii r(t) and r(t) which maximize N(t)

and N(t) (in their original definition). Let G := (−∞,∞] and define

Xr,z := ξ(z) − ar

dr

and μ(dy) := γ e−γy dy,

which is a Radon measure on (−∞,∞]. For x ∈ R, we have, as r →∞,

rdP (Xr,0 ≥ x) = rdP
(
ξ(0) ≥ ar + xdr

) = rd exp{−(ar + xdr)
γ }

= exp
{
d log r − d log r

(
1 + xd−1(log r)−1)γ } −→ e−γ x

= μ([x,∞]),
and so condition (2.6) is satisfied. Define ζr by (2.7), and, for each τ ∈ R and
q > 0, define

Hq
τ := {(x, y) ∈ Ṙ

d × G :y ≥ q|x|/2 + τ },
which will be our family of state spaces. Denote by K

q
τ,n := {(x, y) ∈ H

q
τ : |x| ≥ n}

a family of compact sets in H
q
τ .

LEMMA 4.3 (Convergence of the point processes). For each τ and q , we have
ζr |Hq

τ
⇒ ζ |Hq

τ
, where ζ |Hq

τ
denotes a Poisson process on H

q
τ with intensity mea-

sure η := Lebd ⊗μ|Hq
τ

.

PROOF. It suffices to show that the conditions (i)–(iv) of Lemma 2.4 are sat-
isfied:

(i) As

η(Hq
τ ) =

∫
Rd

dx

∫ ∞
q|x|/2+τ

γ e−γy dy = e−γ τ
∫

Rd
e−γ q|x|/2 dx < ∞,

the measure η is finite on H
q
τ and hence a Radon measure.
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(ii) To prove that ζr |Hq
τ

is a point process in H
q
τ , it suffices to show that, with

probability one ζr(H
q
τ ) < ∞. It follows from Lemma 4.1 that, for δ < 1, ξ(z) ≤

M|z| < |z|δ eventually for all z, which implies

Xr,z = ξ(z) − ar

dr

≤ |z|δ − ar

dr

<
q|z|
2r

+ τ

eventually for all z. Hence, (|z|/r,Xr,z) ∈ H
q
τ for just finitely many z.

(iii) Obviously the projection of each compact set in H
q
τ to the second compo-

nent is compact in G.
(iv) The convergence λr

v→ η with respect to continuous test functions f : Rd ×
G → [0,∞) with compact support in R

d × G follows from (2.6). To prove the
vague convergence on H

q
τ , we need to show that, additionally, for each ε > 0,

there is n such that λr(K
q
τ,n) < ε eventually for all r .

Let δ > 0. Denote fr = ε(log r) for some ε > 0. We have

λr(K
q
τ,n) =

∑
|z|≥nr

P

(
Xr,0 ≥ q

|z|
2r

+ τ

)
= ∑

|z|≥nr

P

(
ξ(0) ≥ ar + drq

|z|
2r

+ drτ

)

= ∑
|z|≥nr

exp
{
−d log r

(
1 + q|z|/(2r) + τ

d log r

)γ }
=: J1(n, r)+ J2(r),

where J1(n, r) and J2(r) correspond to the summations over nr ≤ |z| ≤ rfr , and
|z| ≥ rfr , respectively. Using a Taylor expansion, which is valid for ε > 0 suffi-
ciently small, we get

J1(n, r) = e−γ τ+o(ε)
∑

nr≤|z|≤rf (r)

r−d exp
{
−γ q

|z|
2r

}
(4.1)

r→∞−→ e−γ τ+o(ε)
∫
|x|≥n

e−γ q|x|/2 dx.

Further, for r large enough, we have |τ | ≤ qfr/4 and so q|z|/(2r)+ τ ≥ q|z|/(4r)

for all z such that |z| ≥ rfr . This, together with the monotonicity of x �→
exp{−d log r(1 + qx

4rd log r
)γ }, implies

J2(r) ≤
∑

|z|≥rfr

exp
{
−d log r

(
1 + q|z|

4rd log r

)γ }

≤
∫
|x|≥rfr−d

exp
{
−d log r

(
1 + q|x|

4rd log r

)γ }
dx

= 2
∫
y≥rfr−d

yd−1 exp
{
−d log r

(
1 + qy

4rd log r

)γ }
dy

≤ rd+o(1)
∫
z≥1+qε/(8d))(d log r)1/γ

zd−1 exp{−zγ }dz,
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where z := (d log r)1/γ (1 + qy/(4rd log r)), and we have used that

yd−1 ≤ zd−1{(d log r)1−1/γ 4r/q}d−1 = zd−1rd−1+o(1).

It is not hard to see that the final integral is of order rd(1+qε/(8d))+o(1), which
proves that J2(r) = o(1) and, hence, that J2(r) < ε/3 for r large enough. Since the
integral in (4.1) is finite, n can be chosen large enough so that also J1(n, r) < ε/3
eventually for all r . �

Denote

�t(z) := ξ(z) − |z|
t

log
|z|

2det
and �t(z) := ξ(z) − |z|

t
log+ ξ(z),(4.2)

recalling that log+(x) = log(x ∨ 1). Define random variables

Yt,z := �t(z) − art

drt

and Y t,z :=
�t(z) − art

drt

and point processes

�τ
t := ∑

{z∈Zd ,Yt,z≥τ }
ε
(zr−1

t ,Yt,z)
and �τ

t := ∑
{z∈Zd ,Y t,z≥τ }

ε
(zr−1

t ,Y t,z)
.

Finally, denote q := d1−1/γ (γ−1 − 1) and q := d1−1/γ γ−1.

LEMMA 4.4 (Convergence of the transformed point processes). For each t ,
�τ

t and �τ
t are point processes on Ĥτ := Ṙ

d+1 \ (Rd × (−∞, τ )). As t →∞, we
have the following:

(a) �τ
t ⇒ �τ , where �τ is a Poisson process on Ĥτ with intensity measure

ν|
Ĥτ

defined by

ν(dx, dy) = dx ⊗ γ e−γ (y+q|x|) dy.

(b) �τ
t ⇒ �τ , where �τ is a Poisson process on Ĥτ with intensity measure

ν|
Ĥτ

defined by

ν(dx, dy) = dx ⊗ γ e−γ (y+q|x|) dy.

PROOF. (a) Observe that

Yt,z = �t(z) − art

drt

= ξ(z) − art

drt

− |zr−1
t |

tdrt r
−1
t

log
|zr−1

t |
2detr−1

t

.

Since tr−1
t →∞ and rtd

−1
rt

t−1 log(rt t
−1) → q , we can write

�τ
t = (ζrt |Hq

τ
◦ T −1

t )|
Ĥτ

eventually for all t ,
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for a transformation Tt :Hq
τ → H ′ := Ṙ

d+1 given by

Tt : (x, y) �→
{ (

x, y − q|x| − δ(t, x)
)
, if x �=∞ and y �=∞,

∞, otherwise,

where δ(t, x) → 0 as t →∞ uniformly on all (K
q
τ,n)

c.
We define T :Hq

τ → H ′ by T (x, y) = (x, y − q|x|) if x �= ∞ and y �= ∞ and
T (x, y) =∞ otherwise. By Lemmas 4.3 and 2.5, ζrt |Hq

τ
◦T −1

t ⇒ ζ |Hq
τ
◦T −1. The

conditions of the latter are satisfied since (i) is obvious, (ii) is fulfilled as H
q
τ is

itself compact, and (iii) holds as δ(x, t) → 0 uniformly on (K
q
τ,n)

c and η(K
q
τ,n) →

0, recalling that η is finite on H
q
τ . Hence, �τ

t converges in law to the Poisson
process (ζ |Hq

τ
◦ T −1)|

Ĥτ
with intensity measure η ◦ T −1|

Ĥτ
= ν|

Ĥτ
.

(b) We observe that

Y t,z =
�t(z) − art

drt

= ξ(z) − art

drt

− |zr−1
t |

tdrt r
−1
t

log+
{
art

[
1 + ξ(z) − art

drt

drt

art

]}
.

Since drt /art → 0 and rtd
−1
rt

t−1 logart → q , we can again represent �τ
t as a trans-

formation of ζrt |Hq
τ

via a transformation Tt of the same form with q replaced by
q and δ(t, x) by a function δ(t, x, y), which converges uniformly to zero outside

the compact sets K
q
τ,n := H

q
τ \ (Rd × (0, n]). This allows analogous arguments as

in (a) to be used in the completion of the proof. �

PROPOSITION 4.5 [Weak asymptotics for N(t) and N(t)]. With θ defined in
Theorem 1.4,

(a) N(t)−at−bt−ct

dt
⇒ Y, where P(Y ≤ y) = exp{−(1 − γ )−dθe−γy},

(b) N(t)−at−bt−ct

dt
⇒ Y , where P(Y ≤ y) = exp{−θe−γy}.

PROOF. We start with the proof of (a). Given any y ∈ R, we compute

ν
(
R

d × [y,∞)
) = γ

∫
Rd

∫ ∞
y

e−γ (ŷ+q|x|) dx dŷ = e−γy
∫

Rd
e−γ q|x| dx

= e−γy(2/(γ q))d = (1 − γ )−dθe−γy.

Pick τ < y. Since ν|
Ĥτ

is the intensity measure of the Poisson process �τ , we
have

P
(
�τ (

R
d × [0,∞)

) = 0
) = exp{−θe−γy}.

By Lemma 2.1(b), we have N(t) = maxz �t (z), provided r(t) > 2dt . Let us show
that this is fulfilled with probability converging to one. If r(t) ≤ 2dt , then by
the monotonicity properties of Mr and r

t
log r

2det
one has r(t) = 2dt and N(t) =

M2dt + 2d . Now we use an eventual almost sure lower bound for N(t), and hence
for N(t), which will be proved in Lemma 4.10 using only Lemma 2.1 and the
bounds provided in Lemma 4.1. By Lemma 4.10, for 0 < c < (1/γ 2 − 1/γ )d1/γ
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and sufficiently large t ,

P
(
r(t) ≤ 2dt

) = P
(
M2dt + 2d ≥ N(t)

)
= P

(
M2dt ≥ (d log t)1/γ + c(log t)1/γ−1 log log t

)
(4.3)

= 1 − [
1 − P

(
ξ(0) ≥ (d log t)1/γ

+ c(log t)1/γ−1 log log t
)](2dt)d (1+o(1))κd .

Hence,

logP
(
r(t) > 2dt

) =−(2dt)d
(
1 + o(1)

)
κd

× exp{−[(d log t)1/γ + c(log t)1/γ−1 log log t]γ }(4.4)

=−κd exp
{−d1−1/γ cγ

(
1 + o(1)

)
log log t

} = o(1).

Now, using relative compactness of R
d ×[y,∞) in Ĥτ , we obtain from Lemma 4.4

that

P

(
N(t)− art

drt

≤ y, r(t) > 2dt

)
= P

(
�τ

t

(
R

d × [y,∞)
) = 0, r(t) > 2dt

)
→ P

(
�τ (

R
d × [y,∞)

) = 0
)

= exp{−(1 − γ )−dθe−γy}.
This proves (a) as

art =
(
d log t + d(1/γ − 1) log log t − d log log log t

)1/γ

(4.5)
= at + bt + ct + o(dt ),

drt = dt + o(dt ).(4.6)

To prove (b), recall from Lemma 2.1(c) that N(t) = �t(z) and argue analogously
as in (a). �

4.3. Sharp approximation of Lt by N(t). In this part we show that up to fourth
order, that is, up to o(dt ), we can approximate Lt by N(t).

PROPOSITION 4.6 [Sharp approximation of Lt by N(t)]. As t →∞,

P
(
N(t) + o(dt ) ≤ Lt ≤ N(t)+ o(dt )

) → 1.

Note that Theorem 1.4 follows directly by combining the weak limit theorem
for N(t) (Proposition 4.5) and Proposition 4.6. The remainder of this section will
be devoted to the proof of Proposition 4.6; we start by introducing some notation.

Denote M
(0)
n := Mn and, for 0 < i ≤ κd(n)nd − 1, we set

M(i)
n := max

{
ξ(z) : |z| ≤ n, ξ(z) �= M(j)

n ∀j < �i }.
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Let 0 < ρ1 < ρ2 < 1 and

kn := �nρ1 and mn := �nρ2 .
Further, let f,g : (0,∞) → (0,∞) be two monotonically continuous functions go-
ing to zero and infinity, respectively. Assume that logft = o(log t) and t−1 loggt =
o(dt ), that is, that the convergence of ft to zero and of gt to infinity is not too fast.
Recall that Jt denotes the number of jumps of the random walk X before time t .
We split U(t) in the form U(t) = U1(t) +U2(t) +U3(t), where

U1(t) := E0

[
exp

{∫ t

0
ξ(Xs) ds

}

× 1
{
rtft ≤ Jt ≤ rtgt ,∃i < kJt max

0≤s≤t
ξ(Xs) = M

(i)
Jt

}]
,

U2(t) := E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1
{
rtft ≤ Jt ≤ rtgt , max

0≤s≤t
ξ(Xs) ≤ M

(kJt )

Jt

}]
,

U3(t) := E0

[
exp

{∫ t

0
ξ(Xs) ds

}
(1{Jt < rtft } + 1{Jt > rtgt })

]
.

The strategy of the proof of Proposition 4.6 is as follows: We first show that the
contributions of U2 and U3 are negligible by showing that, with probability close
to one, we have that U2 = o(U) and U3 = o(U) (see Lemma 4.8 below). Then
we study U1 very carefully and show that, with high probability, 1

t
logU1(t) ≤

N(t) + o(dt ) (see Lemma 4.9 below). These steps (except studying U3) require
detailed information about the asymptotic behavior of the upper order statistics,
which is collected in Lemma 4.7.

LEMMA 4.7 (Upper order statistics). There is a constant c > 0 such that, al-
most surely:

(i) M
(0)
n −M

(kn)
n ≥ c(logn)1/γ eventually for all n,

(ii) M
(kn)
n −M

(mn)
n ≥ c(logn)1/γ eventually for all n.

PROOF. Recall that, by Lemma 4.1, we have

lim
n→∞M(0)

n (logn)−1/γ = d1/γ

almost surely. Hence, to prove (i) and (ii), it suffices to show that, for each ρ ∈
(0,1)

lim
n→∞M(nρ)

n (logn)−1/γ = (d − ρ)1/γ .

To simplify further computations, note that ξ̂ (z) = ξ(z)γ defines a field of inde-
pendent exponentially distributed random variables. Then we have M̂n = (Mn)

γ ,
where M̂n = max|z|≤n ξ̂ (z) and so it suffices to show that

lim
n→∞ M̂(nρ)

n (logn)−1 = d − ρ.(4.7)
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Denote by �n := κd(n)nd the number of points in the ball of radius n. By [5],
Proposition 4.1.2, the distribution of M̂

(nρ)
n is given by

P
(
M̂(nρ)

n ≤ x
) = �nρ ∑

i=0

(
�n

i

)
e−xi(1 − e−x)�n−i .(4.8)

Then, for each 0 < ε < d − ρ, we obtain using
(�n

i

) ≤ �i
n that

P
(
M̂(nρ)

n ≤ (d − ρ − ε) logn
)

=
�nρ ∑
i=0

(
�n

i

)
n−i(d−ρ−ε)(1 − n−d+ρ+ε)�n−i

≤ (1 − n−d+ρ+ε)�n−nρ
�nρ ∑
i=0

(�nn
−d+ρ+ε)i

≤ exp
{−(

1 + o(1)
)
�nn

−d+ρ+ε}(nρ + 1)
(
nρ+ε(1 + o(1)

)
κd

)nρ

= exp
{−nρ+ε(1 + o(1)

)
κd

}
.

Since this sequence is summable, the Borel–Cantelli lemma implies that

M̂(nρ)
n > (d − ρ − ε) logn eventually for all n.(4.9)

To prove the eventual upper bound, we again use (4.8) and obtain

P
(
M̂(nρ)

n ≥ (d − ρ + ε) logn
) = �n∑

�nρ +1

(
�n

i

)
n−i(d−ρ+ε)(1 − n−d+ρ+ε)�n−i

≤
�n∑

�nρ +1

(
�n

i

)
n−i(d−ρ+ε).

We can approximate the binomial coefficient using Stirling’s formula, which gives(
�n

i

)
≤ �i

n

i! ≤
(

e�n

i

)i

for i large enough. This implies, eventually for all n,

P
(
M̂(nρ)

n ≥ (d − ρ + ε) logn
) ≤ �n∑

�nρ +1

[
e�n

ind−ρ+ε

]i

≤ �n

[
e�n

nd+ε

]nρ

= e−εnρ(1+o(1)) logn ≤ e−nρ

,

where we estimated the sum by its largest term. Again, the sequence is summable
and so the Borel–Cantelli lemma implies M̂

(nρ)
n < (d − ρ + ε) logn eventually for

all n, which, together with the eventual lower bound (4.9), completes the proof
of (4.7). �
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LEMMA 4.8 [U2(t) and U3(t) are negligible]. As t →∞,

P
(
U2(t) ≤ e−tU(t)

) → 1 and P
(
U3(t) ≤ e−tU(t)

) → 1.

PROOF. First, let us find upper bounds for U2 and U3 similar to the upper
bound for U found in Lemma 2.2. More precisely, let us show that almost surely

1

t
logU2(t) ≤ max{rt ft≤n≤rt gt }

[
M(kn)

n − n

t
log

n

2det

]
− 2d + o(1),(4.10)

1

t
logU3(t) ≤ max{n<rtft }∪{n>rtgt }

[
Mn − n

t
log

n

2det

]
− 2d + o(1)(4.11)

eventually for all t . The proofs of the two inequalities follow the same line of
argument as the proof for the upper bound of U(t). Similarly to (2.1), we have that

U2(t) =
∑

rt ft≤n≤rt gt

E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1
{
Jt = n, max

0≤s≤t
ξ(Xs) ≤ M(kn)

n

}]

≤ ∑
rt ft≤n≤rt gt

etM
(kn)
n P0(Jt = n) = ∑

rt ft≤n≤rt gt

etM
(kn)
n −2dt (2dt)n

n! .

Since M
(kn)
n ≤ Mn, the rest of the computations in Lemma 2.2 is true with Mn

replaced by M
(kn)
n , which implies the first inequality. In a similar way, we obtain

that

U3(t) =
∑

{n<rtft }∪{n>rtgt }
E0

[
exp

{∫ t

0
ξ(Xs) ds

}
1{Jt = n}

]

≤ ∑
{n<rtft }∪{n>rtgt }

etMn−2dt (2dt)n

n! .

We can again use the computations in Lemma 2.2 with N replaced by {n < rtft } ∪
{n > rtgt } to complete the proof of the second inequality.

Let us now prove the statements of the lemma. Using the lower bound for U(t)

from Proposition 4.2, the bound (4.10) and the first estimate from Lemma 4.7, we
have eventually

1

t
log

U2(t)

U(t)
≤ max

rt ft≤n≤rt gt

[
M(kn)

n − n

t
log

n

2det

]
− N(t)+ o(1)

≤ max
rt ft≤n≤rt gt

[
Mn − n

t
log

n

2det

]
− c(log(rtft ))

1/γ −N(t) + o(1)

≤ N(t)− N(t)− dt

(
1 + o(1)

)
cd1−1/γ log t

= dt

(
N(t) − at − bt − ct

dt

− N(t) − at − bt − ct

dt

− (
1 + o(1)

)
cd1−1/γ log t

)
,
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where the last line converges in law to −∞ by Proposition 4.5. This proves
P(U2(t) ≤ e−tU(t)) → 1.

Further, using (4.11) and again the lower bound for U(t) from Proposition 4.2,
we have eventually

1

t
log

U3(t)

U(t)
≤ max{n<rtft }∪{n>rtgt }

[
Mn − n

t
log

n

2det

]
− N(t)+ o(1).(4.12)

Denote the maximum in the previous line by St . Analogously to Lemma 2.1(b),
one can prove that

St ≤ max
{
M2dt + 2d, max{|z|<rtft }∪{|z|>rtgt }

�t(z)

}
,

where �t(z) is defined by (4.2). The computations (4.3) and (4.4) imply that, for
any y > 0,

P(M2dt + 2d ≥ at + ybt ) = o(1).(4.13)

Further, for each y ∈ R we pick τ < y and apply Lemma 4.4 to show that, for each
ε > 0, eventually

P

(
max{|z|<rtft }∪{|z|>rtgt }

�t(z) − art ≤ drt y

)
(4.14)

= P
(
�τ

t

({|x| < ft or |x| > gt } × [y,∞)
) = 0

) −→ 1,

since ft → 0, gt → ∞ and �τ
t → �τ in law on Ĥτ . Using (4.13), (4.14), and

the relations (4.5) and (4.6), we obtain that (St − at − bt − ct )/dt ⇒ −∞. This
together with (4.12) implies that

1

t
log

U3(t)

U(t)
≤ dt

(
St − at − bt − ct

dt

− N(t)− at − bt − ct

dt

)
⇒ −∞,

as the second term converges to a nontrivial random variable by Proposi-
tion 4.5. �

LEMMA 4.9 [The upper bound on U1(t)]. As t →∞, P(1
t

logU1(t) ≤ N(t)+
o(dt )) → 1.

PROOF. In order to obtain such a precise bound, we need to carefully estimate
the contribution of different types of trajectories to the Feynman–Kac formula.
Denote by

Pn = {
y = (y0, y1, . . . , yn) :y0 = 0, |yi−1 − yi | = 1,

∃0 ≤ l < kn s.t. max
0≤i≤n

ξ(yi) = M(l)
n

}
the set of all discrete time paths in Z

d with n steps, hitting a point where one of
the kn maximal values of ξ over the ball of radius n is achieved. Let (τi)i∈N0 be a
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sequence of independent exponentially distributed random variables with parame-
ter 2d . Denote by E the expectation with respect to (τi). Averaging over all random
paths following the same geometric path y (with different timings), we obtain

U1(t) =
∑

rt ft≤n≤rt gt

∑
y∈Pn

(2d)−n

× E

[
exp

{
n−1∑
i=0

τiξ(yi)+
(
t −

n−1∑
i=0

τi

)
ξ(yn)

}
(4.15)

× 1

{
n−1∑
i=0

τi < t,

n∑
i=0

τi > t

}]
.

Note that, as y can have self-intersections, some of the values of ξ over y can be
the same. We would like to avoid the situation when the maximum of ξ over y is
taken at more than one point. Therefore, for each path y, we slightly change the
potential over y. Namely, we denote by i(y) := min{i : ξ(yi) = max0≤j≤n ξ(yj )}
the index of the first point where the maximum of the potential over the path is
attained. Then we define the modified version of the potential ξy : {0, . . . , n}→ R

by

ξ
y
i =

{
ξ(yi), if i �= i(y),
ξ(yi) + 1, if i = i(y).

Using ξ(yi) ≤ ξ
y
i , we obtain that

E

[
exp

{
n−1∑
i=0

τiξ(yi)+
(
t −

n−1∑
i=0

τi

)
ξ(yn)

}
1

{
n−1∑
i=0

τi < t,

n∑
i=0

τi > t

}]

≤ E

[
exp

{
n−1∑
i=0

τiξ
y
i +

(
t −

n−1∑
i=0

τi

)
ξy
n

}
1

{
n−1∑
i=0

τi < t,

n∑
i=0

τi > t

}]

= (2d)n+1etξ
y
n

∫
R

n+1+
exp

{
n−1∑
i=0

xi[ξy
i − ξy

n − 2d] − 2dxn

}

(4.16)

× 1

{
n−1∑
i=0

xi < t,

n∑
i=0

xi > t

}
dx0 · · · dxn

= (2d)ne−2dt etξ
y
n

∫
R

n+
exp

{
n−1∑
i=0

xi[ξy
i − ξy

n ]
}

× 1

{
n−1∑
i=0

xi < t

}
dx0 · · · dxn−1.
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The substitution x̂i = xi for i �= i(y) and x̂n = t − ∑n−1
i=0 xi shows that one can

interchange the rôle played by ξ
y
n and ξ

y
i(y) in the last expression (more generally,

one can show that it is symmetric with respect to all indices). We obtain

etξ
y
n

∫
R

n+
exp

{
n−1∑
i=0

xi[ξy
i − ξy

n ]
}

1

{
n−1∑
i=0

xi < t

}
dx0 · · · dxn−1

= e
tξ

y
i(y)

∫
R

n+
exp

{ ∑
i �=i(y)

x̂i[ξy
i − ξ

y
i(y)]

}

× 1

{ ∑
i �=i(y)

x̂i < t

}
dx̂0 · · · dx̂i(y)−1 dx̂i(y)+1 dx̂n(4.17)

≤ e
tξ

y
i(y)

∫
R

n+
exp

{ ∑
i �=i(y)

x̂i[ξy
i − ξ

y
i(y)]

}
dx̂0 · · · dx̂i(y)−1 dx̂i(y)+1 dx̂n

= e
tξ

y
i(y)

∏
i �=i(y)

1

ξ
y
i(y) − ξ

y
i

.

Denote by n(y) = |{y0, . . . , yn}| the number of different points in the path y. Since
the path visits n(y) different points, it cannot leave the ball of radius n(y). There-
fore, we have that

ξ
y
i(y) ≤ M

(0)
n(y) + 1.(4.18)

By construction, ξ
y
i(y) − ξ

y
i ≥ 1 for all i �= i(y). Hence, we can drop some terms in

the product in order to obtain a further upper bound. Further, since the path visits
n(y) different points, there are indices j1 > · · · > jn(y)−1, which are all different
from i(y), such that

ξ
y
ji
≤ M

(i)
n(y) ≤ M(i)

n , 1 ≤ i < n(y).

On the other hand, since y ∈ Pn, there exists 0 ≤ l < kn such that ξ
y
i(y) = M

(l)
n + 1

and so

ξ
y
i(y) − ξ

y
ji
≥ M(l)

n + 1 −M(i)
n ≥ M(l)

n −M(i)
n , 1 ≤ i < n(y).(4.19)

Note that this estimate becomes trivial for i ≤ l and therefore will use it only for
mn ≤ i < n(y).

Combining (4.16), (4.17) and using the estimates (4.18) and (4.19), we get

E

[
exp

{
n−1∑
i=0

τiξ(yi)+
(
t −

n−1∑
i=0

τi

)
ξ(yn)

}
1

{
n−1∑
i=0

τi < t,

n∑
i=0

τi > t

}]

≤ (2d)ne−2dt e
tξ

y
i(y)

∏
i �=i(y)

1

ξ
y
i(y) − ξ

y
i
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≤ max
0≤l<kn

[
(2d)ne−2dt e

t (M
(0)
n(y)+1)

n(y)−1∏
i=mn

1

M
(l)
n −M

(i)
n

]

≤ (2d)ne−2dt+t e
tM

(0)
n(y)

(
M(kn)

n −M(mn)
n

)−n(y)+mn.

Combining this with (4.15), we obtain

U1(t) ≤
∑

rt ft≤n≤rt gt

∑
y∈Pn

e−2dt+t e
tM

(0)
n(y)

(
M(kn)

n −M(mn)
n

)−n(y)+mn

≤ rtgt max
rt ft≤n≤rt gt

max
1≤p≤n

exp
{
n log(2d) − 2td + t + tM(0)

p

− (p − mn) log
(
M(kn)

n −M(mn)
n

)}
.

Note that by the first estimate from Lemma 4.1, we have, eventually for all n,

max
1≤p≤n

logMp = logMn ≤ 1

γ
log logn +O(1).

Using the second statement of Lemma 4.7, we obtain

1

t
logU1(t) ≤ max

rt ft≤n≤rt gt

max
1≤p≤n

{
M(0)

p − p − mn

t
log

(
M(kn)

n − M(mn)
n

)} + o(dt )

≤ max
rt ft≤n≤rt gt

max
1≤p≤n

{
M(0)

p − p − mn

t
log(c(logn)1/γ )

}
+ o(dt )

= max
rt ft≤n≤rt gt

max
1≤p≤n

{
M(0)

p − p

t
log(logn)1/γ

}
+ o(dt )

≤ max
rt ft≤n≤rt gt

max
1≤p≤n

{
Mp − p

t
logMp

}
+ o(dt )

≤ max
p>0

{
Mp − p

t
logMp

}
+ o(dt ) = N(t)+ o(dt ),

which completes the proof. �

PROOF OF PROPOSITION 4.6. The lower bound has been proved in Proposi-
tion 4.2. To prove the upper bound, recall that U(t) = U1(t) + U2(t) + U3(t) and
so

Lt = 1

t
logU1(t) + 1

t
log

(
1 + U2(t)

U1(t)
+ U3(t)

U1(t)

)
.

By Lemma 4.8, the last term converges to zero in law, and, by Lemma 4.9, the
probability that the first term is bounded by N(t)+ o(dt ) converges to 1. �
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4.4. Almost sure asymptotics. In this section we prove Theorem 1.3. In order
to do so, we find bounds for N(t) and N(t). First, we find a lower bound for N(t)

(and so on Lt ) which holds eventually and observe that it coincides with the first
two terms of the weak asymptotic of Lt proved in Theorem 1.4. This gives us the
liminf asymptotic for Lt . Further, we find a lower bound for N(t) which holds
infinitely often and an eventual upper bound for N(t), and see that the bounds
coincide. This gives the limsup asymptotic for Lt as it is squeezed between N(t)

and N(t).
The next three lemmas provide estimates for the bounds of N(t) and N(t). The

proofs all follow the same pattern: one replaces Mr in the definition of N(t) or
N(t) by its upper or lower bound computed in Lemma 4.1, and then finds the
maximum of the new deterministic function. Note that this approach cannot be
used to find an upper bound for N(t), which would hold infinitely often.

LEMMA 4.10 [Eventual lower bound on N(t)]. Let γ ≤ 1. Then

N(t) ≥ (d log t)1/γ + (1/γ 2 − 1/γ )d1/γ (log t)1/γ−1 log log t

+ o((log t)1/γ−1 log log t),

eventually for all t .

PROOF. By Lemma 2.1(a), the maximum N(t) is attained at r(t), which goes
to infinity. Hence, we can use Lemma 4.1, specifically the third estimate for Mr

and the last statement for logMr , to obtain

N(t) ≥ max
r≥0

[
(d log r)1/γ − (γ−1 + c)(d log r)1/γ−1 log log log r

− r

γ t
log log r − rĉ

t

]
.

Denoting by ft (r) the expression in the square brackets, we have

f ′
t (r) =

d1/γ (log r)1/γ−1(1 + o(1))

γ r
− [log log r](1 + o(1))

γ t
,(4.20)

where o(1) here is a function of r . Denoting by r̂t a maximizer of ft , we have
r̂t →∞. f ′

t (r̂t ) = 0 implies r̂t = tϕ(r̂t ), where

ϕ(r) = d1/γ (log r)1/γ−1(log log r)−1(
1 + o(1)

)
.(4.21)

This implies that

logϕ(r) = (1/γ − 1) log log r + o(log log r).(4.22)

Using r̂t = tϕ(r̂t ), we get log r̂t = log t + logϕ(r̂t ) = log t + O(log log r̂t ), which
implies

log t/ log r̂t = 1 + o(1),(4.23)
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and this yields logϕ(r̂t )/ log t = o(1). Finally, using (4.21), (4.22), (4.23) and con-
sidering only the terms up to order (log t)1/γ−1 log log t , we get

f (r̂t ) = (d log(tϕ(r̂t )))
1/γ − γ−1ϕ(r̂t ) log log(r̂t )− ϕ(r̂t ) log c

+ o((log t)1/γ−1 log log t)

= (d log t)1/γ + γ−1d1/γ (log t)1/γ−1 logϕ(r̂t ) + o((log t)1/γ−1 log log t)

= (d log t)1/γ + (1/γ 2 − 1/γ )d1/γ (log t)1/γ−1 log log t

+ o((log t)1/γ−1 log log t),

which completes the proof. �

LEMMA 4.11 [i.o. lower bound on N(t)]. Let γ ≤ 1. Then

N(t) ≥ (d log t)1/γ + [(1/γ )d1/γ−1 + (1/γ 2 − 1/γ )d1/γ ](log t)1/γ−1

× [log log t](1 + o(1)
)

infinitely often.

PROOF. Similarly to the proof of Lemma 4.10, by Lemma 2.1(a), we can use
the estimates from Lemma 4.1 for Mr in the definition of N(t). Using the second
estimate for Mr itself and the last estimate for logMr , we obtain

N(t) ≥ max
r≥0

[
(d log r)1/γ + γ−1(d log r)1/γ−1 log log r − r

γ t
log log r − rĉ

t

]
,

if the maximum of the expression in the square brackets [which we denote by
ft (r)] is attained at a point r̂t such that

Mr̂t ≥ (d log r̂t )
1/γ + γ−1(d log r̂t )

1/γ−1 log log r̂t .(4.24)

Note that f ′
t (r) has the same form (4.20) as in Lemma 4.10, and r̂t → ∞.

Therefore, we can use the same computation as in Lemma 4.10 and show that
r̂t = tϕ(r̂t ), where ϕ satisfies (4.21), and hence, (4.22) and (4.23) are also satisfied.
Using them, we get, considering only the terms up to order (log t)1/γ−1 log log t ,

f (r̂t ) = (d log(tϕ(r̂t )))
1/γ + γ−1(d log(tϕ(r̂t )))

1/γ−1 log log(tϕ(r̂t ))

+ o((log t)1/γ−1 log log t)

= (d log t)1/γ + γ−1d1/γ (log t)1/γ−1 logϕ(r̂t )

+ γ−1d1/γ−1(log t)1/γ−1[log log t](1 + o(1)
)

= (d log t)1/γ

+ [(1/γ )d1/γ−1 + (1/γ 2 − 1/γ )d1/γ ](log t)1/γ−1[log log t](1 + o(1)
)
.

It remains to check that condition (4.24) holds infinitely often. This is true by
Lemma 4.1, using that t �→ r̂t is a continuous function converging to infinity. �



2492 R. VAN DER HOFSTAD, P. MÖRTERS AND N. SIDOROVA

LEMMA 4.12 [Eventual upper bound on N(t)]. Let γ ≤ 1. Then

N(t) ≤ (d log t)1/γ + [(1/γ )d1/γ−1 + (1/γ 2 − 1/γ )d1/γ ](log t)1/γ−1

× [log log t](1 + o(1)
)

eventually for all t .

PROOF. As before, by Lemma 2.1(a), we can use the estimates from Lem-
ma 4.1 for Mr in the definition of N(t). Using the first estimate, we obtain

N(t) ≤ max
r>0

[
(d log r)1/γ + γ−1(d log r)1/γ−1 log log r

+ (log r)1/γ−1(log log r)δ − r

t
log

r

2det

]
.

Denote by r �→ ft (r) the function in the square brackets and denote by r̂t a point
where ft attains its maximum. Note that r̂t →∞ and compute

f ′
t (r) =

d1/γ (log r)1/γ−1(1 + o(1))

γ r
− 1

t
log

r

2dt
.

Since f ′
t (r̂t ) = 0, we obtain r̂t = tϕ(t, r̂t ), where

ϕ(t, r̂t ) = γ−1d1/γ (log r̂t )
1/γ−1

(
log

r̂t

2dt

)−1(
1 + o(1)

)
as r̂t →∞. Using this, we get

r̂t

t
log

r̂t

2dt
= γ−1d1/γ (log r̂t )

1/γ−1(
1 + o(1)

)
and, hence, ϕ(t, r̂t ) = r̂t /t → ∞ for γ < 1 and is bounded for γ = 1. Taking the
logarithm of the last equality, we obtain logϕ(t, r̂t ) + log logϕ(t, r̂t ) = (1/γ −
1) log log r̂t + o(log log r̂t ). Dividing by log r̂t , we get logϕ(t, r̂t ) = o(log r̂t ),
which implies that logϕ(t, r̂t ) = o(log t) since we have from r̂t = tϕ(t, r̂t ) that
log r̂t = log t + logϕ(t, r̂t ). Finally, we obtain, considering only the terms up to
order (log t)1/γ−1 log log t , that

ft (r̂t ) = (d log(tϕ(t, r̂t )))
1/γ + γ−1(d log(tϕ(t, r̂t )))

1/γ−1 log log(tϕ(t, r̂t ))

+ o((log t)1/γ−1 log log t)

= (d log t)1/γ + γ−1d1/γ (log t)1/γ−1 logϕ(t, r̂t )

+ γ−1d1/γ−1(log t)1/γ−1[log log t](1 + o(1)
)

= (d log t)1/γ + [(1/γ )d1/γ−1 + (1/γ 2 − 1/γ )d1/γ ]
× (log t)1/γ−1[log log t](1 + o(1)

)
,
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which completes the proof. �

We are finally ready to describe the almost sure behavior of Lt up to second
order.

PROOF OF THEOREM 1.3. We know from Proposition 4.2 that N(t)+O(1) ≤
Lt ≤ N(t)+O(1) eventually for all t . The first statement of the theorem now fol-
lows from Lemmas 4.11 and 4.12. To prove the second one, note that Theorem 1.4
implies

Lt − (d log t)1/γ

(d log t)1/γ−1 log log t
⇒ d(1/γ 2 − 1/γ ),

and so d(1/γ 2 − 1/γ ) is an upper bound for the liminf. Since Lt ≥ N(t) + O(1),
the equality follows now from Lemma 4.10. �
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