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Abstract.

Research on methods of meta-analysis (the synthesis of related

study results) has dealt with many simple study indices, but less attention
has been paid to the issue of summarizing regression slopes. In part this is
because of the many complications that arise when real sets of regression
models are accumulated. We outline the complexities involved in synthesiz-
ing slopes, describe existing methods of analysis and present a multivariate
generalized least squares approach to the synthesis of regression slopes.
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We begin with a discussion of the rationale for sum-
marizing regression slopes, a practice that has become
more prevalent in meta-analyses in recent years. We
then examine the methods for summarizing slopes that
have been proposed to date, and the assumptions and
data requirements of those methods. We conclude by
presenting a generalized least squares (GLS) approach
to the synthesis of regression slopes for continuous pre-
dictors and outcomes, with remarks on the challenges
and limitations to synthesis of such estimates.

1. SYNTHESIZING SLOPES

While it is by no means common or well under-
stood, the synthesis of regression slopes has received
increased attention in recent years (e.g., Baker et al.,
2003; Peterson and Brown, 2005; Roberts, 2005; Rose
and Stanley, 2005). This growing interest is likely re-
lated to the increasingly complex models investigated
in primary research, at least in the social sciences. Re-
searchers want to model the effects of multiple predic-
tors as well as to control for potential confounding vari-
ables, and in the context of a primary study this is often
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achieved by including such variables in complex mod-
els. Results of techniques like structural equation mod-
eling, hierarchical linear modeling and multiple regres-
sion have often been omitted from meta-analyses be-
cause of a lack of knowledge about how to synthe-
size indices from these analyses, and because of the
complexities and assumptions underlying the process
of synthesis.

The main purposes of this paper are to point out
the complexities and potential problems in synthesiz-
ing slopes from regression models, to describe exist-
ing methods for summarizing slopes and to present
a new synthesis approach based on generalized least
squares estimation. We focus only on the case of mul-
tiple regression, though clearly other analyses involve
regression-like models with similar assumptions. We
begin with the simple case where all studies examine
very similar models and discuss techniques for estimat-
ing a combined regression model across studies. Mod-
eling to examine the impact of study features, design
differences and study quality (e.g., Pang, Drummond
and Song, 1999) is touched on briefly. Other compli-
cations such as publication bias (e.g., Doucouliagos,
2005; Stanley, 2005) are beyond the scope of our dis-
cussion.

Consider a model in study i relating some predictors
X1 through Xp to an outcome Y for case j. Specifi-
cally, in study i,

(D) Yij =Bio+ BitXiji +---+ BirXijp +eij

for j =1 to n; cases. The usual assumptions of nor-
mality and homoscedasticity of errors apply such that
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eij ~ N(O, ol.z), and linearity of the X-Y relations is
also assumed within each study. Often in a synthesis
one predictor (let us say Xp) is of primary interest; be-
low we refer to this as the focal predictor. Now assume
we have a series of studies i = 1 to k, and each of them
involves a regression with X as a predictor of Y; typi-
cally also other predictors (say, X, through Xp) appear
in these studies. We may wish to summarize the slopes
representing the relation of X to Y (estimates of S
through Bx1), and on occasion perhaps to summarize
all P slopes for X through Xp, across the k studies.

While syntheses of slopes imply a variety of fairly
stringent assumptions, this has not deterred researchers
from combining regression slopes (though some exist-
ing summaries have been done without regard to the
underlying assumptions). Crouch (1995, 1996) sum-
marized slopes from a diversity of models representing
tourism demand and Lau and colleagues (Lau, Sigel-
man, Heldman and Babbitt, 1999) used regressions to
examine the effectiveness of negative political adver-
tisements. Farley, Lehmann and Sawyer (1995) encour-
aged marketing researchers to synthesize regression
slopes, and more recently Peterson and Brown (2005)
reviewed the use and synthesis of standardized slopes
in meta-analysis in the field of psychology. Two con-
troversial and very different syntheses of regression
results in education dealt with the topic of whether
educational expenditures relate to achievement out-
comes (Hanushek, 1989; Hedges, Laine and Green-
wald, 1994). A recent issue of the Journal of Eco-
nomic Surveys (e.g., Roberts, 2005; Rose and Stanley,
2005) focused exclusively on meta-analyses of regres-
sion coefficients on a variety of economic topics, and
many others have synthesized regressions on diverse
topics in economics (e.g., Card and Krueger, 1995;
Doucouliagos and Paldam, 2006), in large part thanks
to the seminal work of Stanley and Jarrell (1989).

In spite of their widespread use in economics, meth-
ods for summarizing regression slopes have received
less attention in the statistical literature than methods
for synthesizing other indices used in meta-analysis
such as standardized mean differences, correlations,
and proportions (or transformed proportions such as
odds ratios). Analytic approaches may be proposed in
the methods sections of substantive syntheses without
much attention to the statistical behavior of the estima-
tors and tests involved. In this article we provide a mul-
tivariate formulation for the synthesis of slopes, begin-
ning with discussions of the assumptions required and
of problems that meta-analysts may encounter when

synthesizing slopes. We then briefly review several ex-
isting univariate and multivariate approaches. Most ex-
isting approaches are univariate, which avoid some, but
not all, of the issues and assumptions that underlie the
synthesis of sets of regression slopes. Other approaches
to combining slopes are more complex, but require ac-
cess to raw data which is quite unusual to have in the
meta-analysis context.

2. ASSUMPTIONS AND PROBLEMS IN
SYNTHESIZING SLOPES

The synthesis of regression slopes is difficult for sev-
eral reasons, and a variety of problems must be dealt
with in the process. Problems include nonequivalence
of the metrics for the predictors and outcomes across
studies, lack of information in study reports and the es-
timation of very diverse models across studies. Slopes
are identically distributed across studies when the out-
come Y and the focal predictor X are measured simi-
larly, when the same additional X's appear in each study
(i.e., the same model is estimated in each study), and
when X and Y scores are similarly distributed. Each of
these conditions is often not met across studies, which
is a concern for the meta-analysis of slopes. We con-
sider each condition in turn.

2.1 Y Is Measured Similarly Across Studies

This consideration is important because even if only
a single predictor appears in each of a collection of
k regression equations, the raw regression slope in
each study depends on the scales of that predictor and
the outcome. This is evident in the language com-
monly used to describe the raw regression slope—
the predicted change in the outcome Y given one unit
change in X. Also this is easily seen in the formula
for the slope in a bivariate regression, which is b =
rxy(Sy/Sx). Here rxy is the correlation between X
and Y, Sy is the standard deviation of the Y scores and
Sx is the standard deviation of the X scores. For two
raw-scale slopes to be comparable across studies, the
scales of Y and X must be the same (or proportional,
e.g., both X and Y could be linearly transformed us-
ing the same transformation). Indeed, for total equiv-
alence of scales, the measures of Y and X should be
equally reliable across studies, which is rare (Amemiya
and Fuller, 1984; Hunter and Schmidt, 2004).

We consider an example where Y is a measure of
the quality of teaching—often represented as student
achievement. Our examples are drawn from an ongoing
synthesis of studies of the relationship of teacher quali-
fications to measures of the quality of teaching. Across
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studies student achievement is typically measured us-
ing different tests of different constructs (math, read-
ing, etc.), which may be presented as posttests, differ-
ence scores or other measures of change over time and
the like. We have identified over 190 studies that exam-
ine measures of student learning and to date, from 65
studies with measures coded in detail, we have identi-
fied 79 different measures of student learning (and cod-
ing is not complete). At least in this synthesis, Y is not
measured similarly across studies.

In some areas, particularly in economics where out-
puts may be monetary, outcomes will be measured sim-
ilarly or can be transformed or adjusted to be rea-
sonably similar. For instance, Ashenfelter, Harmon
and Oosterbeek (1999) examined returns to schooling,
where the outcome was earnings, and earnings scales
can be reasonably well equated across countries and
over time. However, in many areas this will not be pos-
sible.

2.2 Focal X Is Measured Similarly Across Studies

This is also a problematic assumption. Again in
some realms, such as the study of economic inputs
measured in dollars or other forms of currency, this
may not be an issue (e.g., per pupil expenditures were
examined by Hedges, Laine, and Greenwald, 1994).
In the Ashenfelter, Harmon and Oosterbeek (1999)
review, schooling was apparently measured in years,
which would also be comparable across studies. Even
in such cases, however, adjustments (e.g., for inflation,
for exchange rates) will sometimes be required. Also
when the index of study results is an elasticity (com-
mon in economics) and represents proportional change
in X and Y, the scale of X may not be as critical. In
other areas, however, the focal X’s may not be mea-
sured similarly. Shi and Copas (2004) noted that ex-
posure (dose) variables are often measured categori-
cally in medical dose-response studies. They referred
to the problem of having such categorizations (which
can vary across studies) as the problem of “grouped
dose levels.”

In our synthesis of the literature on teacher quali-
fications, studies examine such predictors as degrees
earned, counts of courses taken, numbers of credits
taken, performance on teacher tests and teaching ex-
perience. Some of these (e.g., counts of courses taken)
may be measured fairly similarly across most stud-
ies, while others (teacher test performance) are not.
Even such things as teaching experience are not al-
ways measured as ratio-scale, continuous variables

(e.g., years of experience). We have found such varia-
tions as dichotomies representing novice versus experi-
enced teachers, categorical representations (e.g., teach-
ers with 0-5 years, 610 years, or more than 10 years
experience) and years transformed to represent nonlin-
ear effects (e.g., squared years of experience).

2.3 Same Additional X’s Across Studies

This condition is virtually never met. In practice,
studies nearly always estimate different models. In fact
it can be argued that differences in the models ana-
lyzed should be expected across studies, as researchers
develop and elaborate on models present in the litera-
ture in attempts to refine prediction and to explain ad-
ditional variation in the outcomes of interest. Stanley
and Jarrell (1989) raised a concern about differences
in models in the context of model specification, and
argued that syntheses of regression results should ex-
amine aspects of models such as the functional form
of the variables involved and differences in the inde-
pendent variables included in the regressions. Many
economists have dealt with this issue by modeling re-
gression slopes or other indices of effect as functions
of dummy variable predictors that represent differences
in model specification (e.g., Doucouliagos and Paldam,
2006; Stanley, 2001).

Some examples of how models can vary widely
come from the literature on teacher qualifications and
the quality of teaching. Wu and Becker (2004) ex-
amined regression models of the impact of teacher
experience on student outcomes based on two large-
scale survey data sets: the Coleman Equality of Educa-
tional Opportunity (EEO) data (Coleman et al., 1966)
and the National Education Longitudinal Study: 1988
(NELS:88) (e.g., Ingels et al., 1992). Wu and Becker
found 92 different models for the prediction of stu-
dent achievement in 12 studies using the EEO data
set. Nine of those had examined teacher experience.
Similarly, 55 different models appeared in the 11 stud-
ies based on the NELS:88 data set; 6 of those mod-
els had examined teacher experience. More critically,
other than teacher experience, the 9 models using the
EEO data set together contained 122 different addi-
tional independent variables, and the 6 models based
on the NELS:88 data set contained 103 other inde-
pendent variables. The regression models contained a
diversity of additional variables, including socioeco-
nomic status, teacher salary, teacher/pupil ratio, school
characteristics, student and family characteristics, and
the like.
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The question of whether models are similar across
studies is important because the metric of the raw slope
for X depends on both the outcome (Y) and X, and be-
cause of model specification issues. In particular, each
slope’s precision, degree of bias and covariation with
other slopes depend on the other X’s in the model. To
the extent that a model is not properly specified, all
slopes in the model are potentially biased.

Also how intercorrelated the slopes are (i.e., the de-
gree of multicollinearity) depends on what Xs are in-
cluded. The covariance matrix Cov(b;), where b; is the
vector of slopes for study i, contains this information.
[Notation and formulas for Cov(b;) are introduced be-
low.] One simple example suffices to make this point:
Consider the slope for X| when there is only one ad-
ditional X in the model (say X;). The correlation be-
tween the slopes for X1 and X3 [i.e., Corr(bx1, bx2)]is
the opposite of the bivariate correlation Corr(X1, X»)
between X and X, (Stapleton, 1995). When addi-
tional X’s are added the slope covariances depend on
the partial correlation between X; and X», control-
ling for other X’s. Even this simple fact reveals that
each slope’s distribution depends on other predictors
in the model. However, in practice, the covariance ma-
trix among the slopes in primary studies is rarely re-
ported (though matrices of correlations among predic-
tors are sometimes reported). So it will be unusual to
find full Cov(b;) matrices in published studies, and
in such cases caution may be needed in synthesizing
slopes from very different models.

The extent to which differences in the models esti-
mated across studies lead to important differences in
slopes across studies is unclear. Therefore, the question
of model specification is relevant here. If all of the dif-
ferent versions of models are (reasonably) well speci-
fied, then each one should provide unbiased and rela-
tively independent estimates of the regression slopes.
The impact of model differences likely depends on
both model specification and on the relationships of the
focal X to the additional variables. Let us consider the
focal predictor or some “base set” of predictors that ap-
pear in a well specified model. If additional variables
are relatively independent of the predictors in the base
set, the slopes of the base set of predictors (and their
distributions) may not be much affected by the addi-
tion of those new variables. However to the extent that
added variables are highly correlated with the base pre-
dictors or with the outcome, the slopes of the base pre-
dictors will differ and will also be biased. We suspect
that there will be some limitations to the application

of the estimation approach shown here when the mod-
els used across different studies differ widely, and in
particular when some suffer from multicollinearity or
other forms of misspecification.

Some empirical investigations have attempted to
shed light on the role of additional primary-study
predictors on regression slopes. Peterson and Brown
(2005) found no impact of either sample size or the
number of additional predictors in regression models
on the relation between the standardized slope and a
corresponding zero-order correlation. Their analyses
included slopes from an incredibly wide range of areas
and encompassed different predictors and outcomes
from studies in psychology, sociology, marketing and
management. It is possible that by looking across so
many diverse regression models the impact of the na-
ture of the models would be diluted. Ashenfelter and
colleagues (1999) attempted a more nuanced investiga-
tion in their review of studies of returns to schooling:
they assessed the importance of the presence of con-
trols for ability and measurement error in the primary-
study regressions. Their analyses suggested a compli-
cated pattern of impact of ability controls, with effects
for returns to schooling in the United States increasing
when ability was controlled and effects in non-U.S.
studies decreasing. In contrast, the inclusion of con-
trols for measurement error did not appear to signifi-
cantly affect the slopes.

An analysis by Doucouliagos and Paldam (2006) ex-
amined models for the effects of economic develop-
ment aid on the accumulation of capital in the countries
that receive such aid. To explore differences in sample
and model specification, their analyses examined aid-
effectiveness elasticities as the outcome and included
as many as 11 dummy variable predictors that repre-
sented study differences. These dummy variables rep-
resented the type of model examined in the primary
study (e.g., fiscal response models versus growth equa-
tions), the nature of the data set used (its type and coun-
tries included) and the presence of three different con-
trol variables. Controls for endogeneity and the model
type variables had significant impacts on the elastici-
ties, as did sample size. In this analysis, differences in
the forms of the models examined in the primary re-
search played a large role in the synthesis results.

3. EXISTING METHODS FOR SUMMARIZING
SLOPES

Next we examine methods that have been proposed
for synthesizing regression slopes. These techniques
have been described in the literature, but some do not
appear to have been used in meta-analytic practice.
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3.1 Summaries of Slopes or Functions of Slopes

Several authors have used direct and simple sum-
maries of slopes or differences in slopes, although none
has provided a clear statistical justification for the ap-
proaches used. Jarrell and Stanley (1990) used slopes
for a dummy variable that represented union member-
ship (from regression models predicting log wage val-
ues) in a review of the differences in wages between
union and non-union workers. In a similar analysis,
Stanley and Jarrell (1998) examined the gender gap
in wages. Using ordinary least squares (OLS) regres-
sion analyses, Jarrell and Stanley examined two mod-
els for the wage gap due to union membership. One
had 20 predictors representing differences in sample
and model specification, and the other included 77 pre-
dictors. The initial 20 predictors represented differ-
ences in model specification such as the nature of the
wage variables used and differences in the samples an-
alyzed (e.g., whether blue-collar, white-collar or gov-
ernment workers were included). The other model in-
cluded those 20 predictors, plus allowed those predic-
tors to vary over time, and also included 10 indicators
identifying particular data sets that were used and 27
indicator variables representing multiple findings con-
tributed by 27 primary-study authors.

Jarrell and Stanley applied OLS in spite of acknowl-
edging that the errors in their model were likely to be
heteroscedastic, noting that “[v]arious efforts to adjust
for the problem made little difference in this applica-
tion” (Jarrell and Stanley, 1990, page 56). Similarly
Stanley and Jarrell used OLS methods and tested for
homoscedasticity using “conventional tests” (Stanley
and Jarrell, 1998, page 961). It is not clear why these
authors did not find heteroscedasticity, unless their re-
sults arose from roughly equal sized samples, because
as will be shown below, slopes will typically not have
equal variances across studies and thus errors from
models with slopes as outcomes will typically not be
homoscedastic either.

3.2 Summaries of ¢ Statistics

Stanley and Jarrell (1989) encouraged economists to
summarize regression slopes and suggested using the
t statistic (i.e., the slope divided by its standard error)
as an index. They suggested this metric as a way to
deal with heteroscedasticity of slopes across studies,
which could occur because of sample size differences
and differences in precision. They also argued that di-
viding b by its standard error removes problems due
to use of different scales across studies. While sum-
maries of ¢ values have long existed (e.g., Walker and

Saw, 1978), there are some drawbacks to their use. First
and of greatest concern, the ¢ contains information on
sample size and precision as well as effect magnitude.
Thus ¢ can become large either when the slope itself is
large or when its standard error is small, which occurs
both when the sample is large and when there is little
variation in the regression residuals. Stanley and Jarrell
argued that the ¢ “is a standardized measure of the crit-
ical parameter of interest” (2005, page 304), but they
did not say what the parameter of interest is. Clearly ¢
is not an estimator of 8. Also these authors do not ex-
plain whether one can use a summary of the ¢ values
to obtain a slope estimate after pooling or summariz-
ing the ¢ values. Moreover, it is sometimes difficult to
determine the direction of an effect from a ¢ test if a
slope is not presented and the test is not significant or
when the researcher reports only the absolute value of
the ¢. Given all of these concerns, ¢ values are likely to
be less meaningful than other indices based on slopes
when findings are to be interpreted.

While Stanley and Jarrell did not initially describe
exactly how one would summarize ¢ values, in practice
what they and others have often done is to model ¢s or
functions of ¢s in terms of predictors that characterize
the regression models in their synthesis. For instance,
Card and Krueger (1995) examined log |#| values rep-
resenting the effects of different levels of the minimum
wage on employment rates. They estimated ordinary
least squares regressions for the log |¢| values which in-
cluded as predictors the log of the square root of the er-
ror degrees of freedom in the primary study, a dummy
indicating whether the data included a subsample of
teenagers and the number of explanatory variables in
the primary-study regression model.

Based on Jarrell and Stanley’s recommendation,
Lau, Sigelman, Heldman and Babbitt (1999) used ¢
values in a summary of results from group compari-
son studies and regression studies that focused on the
effect of negative political advertisements on political
campaigns. They found that about one-quarter of their
data points “come from ordinary least squares (OLS)
or logistic regression equations, and there is no uni-
versally accepted method for handling such data in a
meta-analysis” (Lau et al., 1999, page 855). To avoid
losing data, they extracted ¢ statistics associated with
regression coefficients that represented mean differ-
ences between groups exposed to negative advertise-
ments and control groups (exposed to no advertise-
ments or positive advertisements). They converted the
t values into standardized mean differences (ds), via
d = 2t/(df)'/?. They argued that the ds obtained via
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this transformation could be combined with other ds
from group comparisons. However, to the extent that
the primary-study regression models included other
important control variables, these ts likely produced
partial effect sizes, which do have slightly different dis-
tributions from “typical” zero-order effect sizes (Keef
and Roberts, 2004).

Another index that is related to the ¢ value is Timm’s
(2004) “ubiquitous effect size.” This index can repre-
sent a single slope or a linear combination of slopes.
Timm’s index resolves the problem of dependence of
the ¢ on sample size because it incorporates a multi-
plier that reduces the influence of the sample size on
its value. However, to date Timm’s index has not been
used in syntheses of slopes and Timm did not provide
methods for synthesizing his index.

3.3 lterative Least Squares Regressions

An iterative GLS approach was proposed by Hanu-
shek (1974) to summarize slopes representing returns
to schooling. Hanushek’s method optimally requires
the raw data in order to estimate a covariance matrix
among the slopes. However, he suggested an alterna-
tive approach whereby part of the covariance matrix
could be estimated using OLS regression across stud-
ies and the estimate obtained from this step would then
be added to a function of raw data from the origi-
nal (within-study) regressions. To the extent that the
approach requires raw data and infrequently reported
summary values from the original studies, it will not
be applicable in many meta-analytic settings.

3.4 Dose-Response Models in Epidemiology

Greenland (1987), Greenland and Longnecker
(1987) and Shi and Copas (2004) considered slopes
that relate the amount of exposure to some substance
to odds-ratio outcomes. Typical studies relate levels
of exposure (e.g., to alcohol, to smoke as in passive
smoking, etc.) to outcomes including diagnoses of var-
ious kinds of cancer and other diseases. These studies
fit into the regression framework because researchers
want to know whether the level of exposure to some
substance predicts higher levels of problematic out-
comes (e.g., higher rates of cancer). Some issues are
similar to those for continuous outcomes, but the out-
come metric differs in these cases because it is typi-
cally a dichotomy (survival versus death, presence of
some disease versus no disease, etc.). In the epidemiol-
ogy literature typical fixed and random-effects synthe-
ses of the dose-response slopes have been conducted
(weighting by the within-study slope variances), and

the issue of dependence has been addressed by incor-
porating a within-study covariance between odds ratios
(at different exposure levels) into the analyses. This
covariance is different from the covariance between
slopes, which is incorporated in our methods below.

Shi and Copas (2004) argued for the use of maxi-
mum likelihood estimators of the mean dose-response
slope and a between-studies variance component for
the slopes, and they also describe a likelihood test of
homogeneity of the dose-response slopes. Shi and Co-
pas considered a bivariate regression because only one
predictor (exposure to the dosing variable) was used
in the within-study model. They argued that their ap-
proach is also approximate for adjusted odds ratios
(e.g., adjusted for age or other predictors), provided the
adjustments are not great. The adjusted odds ratio case
is similar to the typical situation in most areas of social
science, where multiple control variables are included
in each regression model.

3.5 Validity-Generalization Approaches

A considerable literature exists concerning the syn-
thesis of test validities (e.g., Hunter and Schmidt,
2004). This area is known as validity generalization,
with a key issue being whether test validities generalize
(i.e., can be applied reasonably well) across job types
and job settings. Test validities are typically indices
that represent the relation between a predictive test
(e.g., an employment selection test) and some later out-
come such as job performance. A key issue in this lit-
erature is the effect of differential test reliability across
studies, thus corrections for measurement error are a
standard part of the validity-generalization approach.
While test validities are most often represented by cor-
relation coefficients, on occasion more complex regres-
sion models are used to examine test validity. Raju,
Fralicx and Steinhaus (1986) estimated the mean slope
and between-studies variation in slopes with correc-
tions for unreliability in X, where X is a predictive
test whose validity is of interest. Their methods par-
allel those presented by Hunter and Schmidt (2004)
for analyzing correlation coefficients, which have been
controversial in the meta-analysis literature (see, e.g.,
Hedges, 1988). Even so, they were used by Crouch
(1995, 1996) and Root and colleagues (2003). Later
Raju, Pappas and Williams (1989) conducted an em-
pirical Monte Carlo study of a validity data base to ex-
amine the performance of methods using slopes and
correlations and covariances to represent validities.
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3.6 Weighted Least Squares (Univariate)
Approaches

The weighted least squares (WLS) approach was
used by Bini, Coelho and Diniz-Filho (2001), who
cited Hedges and Olkin (1985) as the basis of their
approach. Greenland and Longnecker (1987) also de-
scribed this approach. If we consider the model in (1)
above relating some Xs to Y for person j in study i,
we may want an estimate of the slope for one predic-
tor, say Xi. Estimating model (1) in each of k stud-
ies (using the same estimation method, such as ordi-
nary least squares) produces independent and approxi-
mately normally distributed estimates of the population
slopes B11, Bo1s - - -, Bk1. If we denote those estimates
as by1, bay, ..., by; we can use least squares methods
to summarize the slopes. Thus, for instance, we can
compute the combined slope b.1,

k b
2) by==———

where k is the number of slopes combined, b;; is the
slope for X from study i and w; is the weight for that
slope in the ith study, which is the reciprocal of the
slope variance [w;; = 1/ Var(b;1)]. The variance of b.;
is given as
1

Ywit

This approach could also be applied to partial corre-
lations or standardized regression slopes. If standard
errors were not available, one could weight by sample
size, as the relevant standard errors are typically a func-

tion of n or of the degrees of freedom for the regression
model.

3) Viby) =

3.7 Multivariate Bayesian Approach

One last proposed method for simultaneously es-
timating a set of regression models was given by
Novick and colleagues (Novick, Jackson, Thayer and
Cole, 1972) in the context of the validity of college-
admissions prediction, where all predictors are consis-
tently measured across colleges. Furthering a Bayesian
method attributed to Lindley, the authors argued for a
multistage Bayesian formulation involving raw data, its
parameters (the slopes) and hyperparameters (e.g., the
variances of the slopes). However, while the method
constitutes an improvement beyond the methods above
because it is multivariate and uses simultaneous esti-
mation, this approach requires full access to the raw
data so is not applicable in the meta-analytic context.

4. MULTIVARIATE GLS APPROACH

Most of the analyses presented above are reasonable
if one wants to synthesize estimates of a single pop-
ulation slope and if most of the studies involving that
slope examine simple models. However, within the ith
sample, the P + 1 slopes b;o, b;1, . .., b; p are often cor-
related and there may be interest in obtaining an overall
regression model (rather than a single slope estimate).
To synthesize slope vectors by, by, ..., by, we need
generalized least squares (GLS) methods, primarily be-
cause of the unequal variances of effects for studies
of different sizes. [Stanley and Jarrell argued that one
could obtain estimates of the vector of slopes by solv-
ing a system of equations with the slopes as endoge-
nous variables (Stanley and Jarrell, 1989, page 169).
However, they did not discuss exactly how to do so or
how to deal with the fact that within each study the
slopes will be intercorrelated.] An overview of the use
of GLS for dependent standardized-mean-difference
effect sizes was given by Raudenbush, Becker and
Kalaian (1988), and we apply a similar approach here
to sets of slopes.

To use GLS, we need estimates of the P + 1 slopes
from each of the k£ samples (this includes the intercept
b;p) and their covariance matrices Cov(b;). It is also
possible to include studies that examine subsets of the
P predictors; we comment on how this would be done
as we discuss details of the approach. Within sample
i, the OLS estimate of 8; = (B0, Bit, .., Bip) is fre-
quently reported. The estimator is

b; = (bio, bi1, ..., bip) = (X X) XY,

with ¥; = Cov(b;) = (X!X,)"'o?, where X; is the
matrix of predictor values in the ith sample, plus a
constant if the intercept is included. Typically oiz is
not known, but rather is estimated with Sl-z, the mean
squared error (MSE) of the regression in study i. In
large samples, b; is normally distributed with mean f;
and variance X;, which is the basis for the GLS ap-
proach. We will assume a common fixed-effects model
(see Hedges and Vevea, 1998) which presumes that
all samples incorporate the same P predictors in the
within-study regression model, and also assume that
the vectors b; estimate a common population slope
vector f3.

We stack the k sample slope vectors and make a
blockwise diagonal matrix of the Cov(b;) matrices,
then apply GLS estimation. First define

b
b= |
bi
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and
Cov(bp) 0 0 0
¥ 0 Cov(by) O 0
- 0 0 .. 0
0 0 0 Cov(by)

Olkin (2003) pointed out that in some cases the co-
variance matrices Cov(b;) could be pooled; below we
discuss the case where a pooled MSE is available.

Then under the assumption that each slope vector b;
is estimating 8, we have the model

™ bio 7 10 0 07
b1 0100
: 00---0
b 000 1 go
1P - " - 1
b= : =WB+e=| .. . x| . | +e.
bro 1000 Bp
: 01---0
| bip 1000 1.

The slopes are modeled as a function of 8 (the vector of
P + 1 population slopes) and a design matrix W com-
posed of zeros and ones that identify which slopes are
estimated in each sample. When all samples examine
the same predictors, a stack of (P +1) x (P + 1) iden-
tity matrices serves as W in the model b = Wg + e,
with Cov(e) = Cov(b) from above. If the samples do
not all estimate the same model (i.e., some models use
fewer than the full set of P predictors), we can still
use the GLS formulation to include those results in the
synthesis. In such cases the component of W that rep-
resents a sample with fewer than P predictors would
not be a full identity matrix; row p + 1 of the identity
matrix for sample i would be omitted if the pth pre-
dictor was not included in study i. However, as men-
tioned above, the interpretations (and distributions) of
slopes from reduced models would not be exactly the
same as for slopes from models with all P predictors,
and estimation of such quantities as 01.2 will be more
complicated because oiz and al.z/ (from samples i and
i") may represent different population quantities if dif-
ferent sets of predictors were examined in samples i
and i’.

It is also possible to modify this approach somewhat
to examine the influence of particular additional pre-
dictors on a focal predictor’s slope. For instance, sup-
pose the focus was on the role of teacher verbal abil-
ity as a predictor of student achievement. It could be
of interest to see whether the slope for teacher verbal
ability is different when a measure of students’ prior

achievement is included in the model. This could be
accomplished by adding a column to the W matrix that
would contain a 1 in each row representing a verbal-
ability slope that came from a model that also in-
cluded prior achievement. A small example illustrates
this idea. Suppose that X is teacher verbal ability, X»
is prior achievement and X3 is socioeconomic status.
Two studies are available, only one of which (say study
1) includes prior achievement. The GLS model would
be

S
b1
b2

b= bi3 =Wg+e
bao
ba1
| b3
7100007
01001
00100 ]| [P
00010/ [P

= _ x| Bo | +e
10000| |5
01000 i
(00010

The last column of W contains a 1 in row 2 (the row
for the verbal-ability slope in study 1), showing that
the first study included prior achievement (X»7) in the
study-level model. Row 6—the row for the verbal-
ability slope in study 2—does not have a 1 in the last
column because study 2 did not include X». Also study
2 does not have a row of W with a 1 in column 2 be-
cause there is no estimate of ;.

This model contains a fifth parameter, denoted y; in
the display, that represents the difference in the slope of
teacher verbal ability when prior achievement is con-
trolled. From this model we can determine that for
study 1, the expected value of b1 is B1 + y1, while for
study 2, E[b>1] = B1. By including additional columns
for key control variables or for other study features, the
meta-analyst can examine hypotheses about whether
the focal slope is affected by those elements of the orig-
inal studies and their regression models. The details of
such tests are described below. We caution, however,
that including large numbers of added predictors may
lead to multicollinearity, thus meta-analysts would be
wise to carefully examine their models for the presence
of this problem.
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Regardless of the components of W and f, we esti-
mate B and its covariance as

ﬁ* — (W/Z—IW)—lw/Z—lb
and
Cov(B) = W3z~'w)~!.

Often, as noted above, we do not know Cov(b) = X;
thus we typically substitute an estimate, which we shall
denote V, and compute instead

) g=WVIW)'WVTp
and
(5) Cov(B) = WV Iw)~ !,

With large samples and under typical regularity condi-
tions,

B ~N(B,Cov (B));

thus confidence intervals for each element of 8 are
available, using ,3p + Z1—a/2/Cpp, Where Zj_q)2 is
the upper tail 1 —«/2 critical value of the standard nor-
mal distribution and C ), is the pth diagonal element of

the Cov(ﬁ ) matrix, the variance of ﬁ . Also a test of the
hypothesis that the pth slope 8, = 0 can be obtained
via

A

Pp
Ve’
which is a standard normal deviate under the null hy-
pothesis that 8, = 0. The value of Z is compared to the
cutpoints of the standard normal distribution.

Several other tests are available as well. A test of
model fit, which is essentially a test of homogeneity of
the regression intercepts and slopes across samples and
across predictors, is given by

/=

Or={b—-WB)'V ' (b-W§),

which has a large-sample chi-squared distribution with
(k — 1)(P 4+ 1) degrees of freedom if all slopes and
intercepts are included. If F additional columns are
added to W to represent study features, then the de-
grees of freedom will be (k — 1)(P + F + 1). If the
magnitudes of the intercepts are not of interest, a mod-
ified Qg test can also be computed by including only
the predictor slopes, thus reducing the dimension of W
and including only those values of interest in b, ﬁ and
V!, In that case, Qg is chi-squared with (k — 1) P de-
grees of freedom. If Qg is large relative to cutpoints
of the appropriate chi-squared distribution, the slopes

vary beyond what one would expect to see given only
sampling variability.

A test of the composite hypothesis that § = 0 is
given by

05 =B'Cov(P)B.
which is chi-squared with P + 1 degrees of freedom
under the null hypothesis that § = 0 or with P degrees

of freedom if only predictor slopes are included (see,
e.g., Hedges and Olkin, 1985).

4.1 Special Cases of the GLS Approach

The problem with the approach just described its that
it is extremely rare to find the full covariance matrix of
the slopes Cov(b) reported in a primary research study.
Thus it is useful to note that the estimator shown in (4)
simplifies to the weighted least squares (WLS) univari-
ate estimator given in (2) if the off-diagonals in Cov(b)
or V are set equal to zero.

Another special case is one in which it is possible to
pool the estimates of 01.2 across studies. If all studies
examine the same model and separate estimates of oiz
are available, then it is possible to remove the MSE
values from the Cov(b) matrices and use a blockwise
diagonal matrix X* containing the (X;X,-)_l matrices
in place of V in formulas (4) and (5). It is shown in the
Appendix that

(6) B=(WXH'W)~'W X" ™'b
produces an estimate of 8 equivalent to the value that
would be obtained from a pooled sample. This is be-

cause (X*)~! is a blockwise diagonal matrix contain-
ing the values of X/X., and the product W'(X*)~'W
sums the XX, values across the k studies. Similarly
(X*)~"!b equals the sum across studies of the values
of the products XY, leading to equivalence with the
estimator based on the pooled sample.

Values of (X;Xl.)_1 can be estimated if each study
reports the covariance matrix for the slopes and Sl-z, the
estimate of al-z (or other quantities that allow compu-
tation of Sl.z, e.g., the variance of the outcome and the
R? for the regression). Each element of Cov(b) is di-
vided by the estimated MSE: (X/X,)~! = Cov(b;)S; %.
This method requires that a pooled value of the MSE
(say SZ) be obtained and multiplied by the covariance
of the synthesized slope estimator computed using X*,
to compensate for Si2 being removed when X* is sub-
stituted for V. Thus the matrix of covariances among
the synthesized slopes is

(7) Cov(B) = (W' (X*)~'w)~ 152,
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One possible estimator S2 could be
ST=Y dfe;S? | Y dfe;,
i i

where dfe; is the degrees of freedom for error in study
i. Unfortunately primary researchers do not always re-
port the value of Sl-z, the mean squared error of the re-
gression model in the primary study. Given this and the
rarity of finding full Cov(b;) matrices, it is expected
that this special case will be relatively uncommon.

4.2 Limitations

The discussion of special cases focuses our atten-
tion to the fact that one weakness of the proposed GLS
approach is that it uses the Cov(b;) matrices that are
rarely reported. It is unlikely, even with more stringent
reporting requirements, that authors will routinely be-
gin to report these matrices, particularly in primary re-
search studies where many models with large numbers
of predictors are estimated and compared.

There are two possible approaches to this prob-
lem. One is to simply assume the slopes are inde-
pendent, use the squared standard errors of the slopes
as the diagonal elements of Cov(b;) and set the off-
diagonal elements to zero. This produces weighted
least squares estimates. A slightly more conservative
approach would be to assume a common correlation
value among all slopes [e.g., Corr(bip, b;p) = 0.2]
and then compute the off-diagonal elements of each
Cov(b;) matrix as the product of the slope standard er-
rors (SEs) and that common correlation, specifically,
Cov(bip, bjp) = Corr(b;p, b;,)*SE(b;p)*SE(b;)y).

One final point regarding this issue relates to model
specification in the primary research studies in the
meta-analysis. That is, if a model is well specified
in study i, there should be no serious multicollinear-
ity and the degree of covariation among the slopes in
Cov(b;) should not be great. In such cases, setting
all off-diagonal elements of Cov(b;) to zero would
not have serious consequences. However, reporting
conventions in many fields do not require authors to
mention whether multicollinearity was assessed or to
report on multicollinearity diagnostics. So the meta-
analyst must trust that the primary study authors actu-
ally checked for multicollinearity and that any models
reported upon are relatively free from this problem.

5. EXAMPLE

In this example we use data from the base year of
the National Education Longitudinal Study of 1988

(NELS:88). NELS:88 is a survey of a national sample
of high-school students from over 1000 schools. The
same measures are used across schools and when an-
alyzed with proper weights, the full sample represents
the U.S. grade 10 high-school population from 1988.
In our example we use as “studies” 13 schools with
samples of more than 45 students; we do not use the
NELS:88 sampling weights that would produce results
that reflect the national population. Both the school-
level sampling weights and the within-school weights
that could be used to make each school’s estimates re-
flective of the population of that school were ignored.

5.1 Model

Our regression model uses three of the standardized
cognitive tests administered as part of the NELS:88
survey—the science, mathematics and reading scales.
This model views science achievement as a function
of math and reading test performance. Specifically, Y
represents the NELS:88 science achievement test, X
is the mathematics test and X» is the reading test. The
model estimated in study i is

Yij=Po+Bi1X1j+ P2Xoj +eij

for student j, with error ¢;;. We use ordinary least
squares to obtain school level estimates of this model.
Computations were done using PROC REG and PROC
IML in SAS.

Our analyses are based on the item-response-theory
estimated number-right scores for these test batteries;
therefore the raw slopes can be interpreted as the pre-
dicted change in the science test score for a one item
increase in the math or reading test score. The science
test had 25 items, the math test had 40 and the reading
test had 21 items. Means across the 13 schools were
13.5 or 54% correct on science (SD = 5.7), 24.4 or
61% correct on math (SD = 10.4) and 13.9 or 66% cor-
rect for reading (SD = 5.7). The correlation between
math and reading scores was ryg = 0.70, and each pre-
dictor was also correlated with the outcome at about
that same level (rys = 0.70, rgs = 0.67) in the full
sample.

5.2 Results

The regression model with X| and X» as predictors
of Y was estimated within each of the schools, and the
slope estimates and fitted models are shown in Table 1.



424 B.J. BECKER AND M.-J. WU

TABLE 1
Fitted regressions and MSE values for full sample and 13 schools

MSE

Sample n; Fitted regression (S% for school;)

Full 664  2.552+0.245X +0.358X, 14.44
1 64 5.470+0.219X; +0.260X, 17.46
2 59 3.591 +0.246X; +0.270X, 14.24
3 67  5.619+0.040X; + 0.638X> 14.05
4 45 4.381+0.181X; +0.392X, 10.75
5 47 4305+ 0.260X +0.282X, 9.32
6 45 2.346+0.185X +0.195X, 14.60
7 45 0.228+0.283X; +0.339X, 9.80
8 56 2.289+0.289X; +0.312X, 13.32
9 45 3.600+0.248X +0.263X, 12.65

10 51 2.156+0.192X; + 0.498X, 6.50

11 48 3.621+0.133X +0.413X, 11.02

12 45 3.144+0.250X + 0.382X, 17.65

13 47 3.781+0.251X; +0.151X, 13.20

The data from the 13 schools were also pooled (used
as a single sample) and the full model including in-
tercepts was estimated across all schools (for all 664
cases); this result is labeled “Full sample.” The esti-
mated model from this analysis of the 13 schools to-
gether was f,- =2.552+0.245X,; +0.358X>; and it
is shown in the first row of Table 1. (The subscript j
has been omitted from the table entries for simplicity.)
Inspection of the models for the 13 schools shows some
variation in the slopes and intercepts; the most unusual
looking model is for school 3. Also casual inspection

of the mean squared errors shows some variation in the
Sl.2 values, with school 10 showing the smallest value.
However, Levene’s test suggests the error variances are
not different [F(12,651) = 1.25, p = 0.25], indicat-
ing that it is reasonable to proceed with the analysis
based on the pooled MSE. (Although here we have the
raw data and can compute Levene’s test, in practice
other tests that do not require raw data such as Fax
or Cochran’s C could be used to test residual variance
equality.)

The upper triangles of the covariance, correlation
and X/X. matrices among the slopes for three of the
schools and the full sample are shown in Table 2. The
XX, matrices are used in the third method of esti-
mation using the pooled MSE. The elements of the
Cov(b;) matrices are obtained as the products of the
entries in (X/X;)™! times the MSE [e.g., for school
1, the first entry in Cov(by) is 1.934, which is within
rounding error of 17.463 x 0.1107 = 1.933]. Also the
MSE pooled across the 13 schools is S2 = 12.83.

Table 3 repeats the OLS results for the pooled sample
(to facilitate comparisons) and also presents the slopes
estimated using the three synthesis methods described
above. The first set of results is based on the GLS es-
timation method with mean and variance given in (4)
and (5). While the intercept differs somewhat from the
pooled-sample intercept, the slope coefficients are both
within 0.015 of the values estimated in the full sample.
Considering that the slopes represent predicted change
on a 25-point science test (given a one-point change on

TABLE 2
Covariance and X'X matrices for three studies and full sample

Sample X'X Cov (b) Corr (b)
1 M R 1 M R M R
Full | 0.01175 —0.00018 —0.00042 0.1697 —0.0026 —0.0060 —-0.32 —0.40
(n =664) M 0.00003 —0.00003 0.0014 —0.0005 —0.70
R 0.00009 0.0013
School 1 I 0.1107 —0.0037 —0.0017 1.9340 —0.0648 —0.0302 —0.61 —-0.22
(n] =64) M 0.0003 —0.0002 0.0058 —0.0043 —0.57
R 0.0006 0.0098
School 2 I 0.0914 —0.0015 —0.0034 1.3018 —0.0218 —0.0482 —0.36 —0.44
(ny) =59) M 0.0002 —0.0002 0.0028 —0.0030 —0.60
R 0.0006 0.0092
School 3 I 0.4267 —0.0103 —0.0058 5.9953 —0.1449 —0.0817 —0.65 —0.26
(n3 =67) M 0.0006 —0.0004 0.0082 —0.0063 —0.54
R 0.0012 0.0164
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TABLE 3
Results of synthesis

425

Method of Slope estimates
estimation Intercept Math Reading Cov (b) Corr (b)
M R

Full sample 2.552 0.245 0.358 I 0.1697 —0.0026 —0.0060 —-0.32 —0.40

(n = 664) M 0.0004 —0.0005 -0.70
R 0.0013

GLS 2.268 0.247 0.373 I 0.1463 —0.0021 —0.0054 -0.30 —-0.41
M 0.0003 —0.0004 —0.71
R 0.0012

WLS 2.936 0.221 0.343 I 0.1747 0 0 0 0
M 0.0004 0 0
R 0.0012

GLS using xX'x)~! 2.552 0.245 0.358 I 0.1507 —0.0023 —0.0053 —-0.32 —0.40
M 0.0004 —0.0004 —-0.70
R 0.0012

X), these are very small differences. The test of homo-
geneity of the models using Qg defined above for all
slopes and intercepts shows that indeed the slopes and
intercepts are not homogeneous (Qg = 114.16, df =
36, p < 0.001), and may not have come from a single
population. However, this test asks whether all parame-
ters are equal across schools; thus the test can also be
large if the intercepts differ. The test can be computed
for the predictor slopes only (omitting by values): when
this is done, the Qg value is smaller (Qg = 21.74,
df =24, p =0.59), and indicates the math and reading
slopes are homogeneous across schools. Also at least
one of the slopes differs from zero, according to the
Op test (O =518.16,df =2, p < 0.001).

At this point more detailed analyses of slopes for
each predictor might be of use, and standard univari-
ate meta-analysis procedures (e.g., Hedges and Olkin,
1985) could be applied to each set of slope values, or
other GLS based analyses can be used if it is desired to
model the vectors of slopes (Raudenbush, Becker and
Kalaian, 1988). Also to explore between-studies differ-
ences in models one could then examine moderating
variables as described above. If the slopes or parame-
ters for additional study features still did not appear ho-
mogeneous, one could estimate between-studies vari-
ance components for each of the slopes. A variety of
estimators for the between-studies variance exist (e.g.,
Hedges and Olkin, 1985; Sidik and Jonkman, 2005)
and an estimated between-studies variance could then
be added to each study’s sampling variance to augment
its uncertainty.

The next set of results was obtained by eliminat-
ing the off-diagonal elements from the Cov(b) ma-
trices. This is equivalent to estimating the slopes us-
ing the univariate methods shown in displays (2) and
(3). These values also do not deviate far from the full-
sample values; both slopes are within 0.025 points
of the slopes from the full sample—deviating only
slightly more than the GLS values. This is in spite of
the fact that the predictors and outcome show moder-
ate intercorrelations as can be seen by inspection of the
Corr(b) matrices shown in Table 2. Finally, the third
set of results is computed using the X* matrix in place
of the Cov(b) matrix, and the pooled MSE in place of
each Sl.2 value. As noted above the slope computed in
this way is identical to the slope for the full sample,
and the covariance matrix differs from the full sample
matrix by a constant factor equal to the ratio of the es-
timated pooled MSE to the full sample MSE (here that
ratio is 12.83/14.44 = 0.89). It is somewhat problem-
atic that the variances of slopes from the meta-analysis
are less than or equal to the values from the full sam-
ple (thus suggesting more precision). From one appli-
cation it is not possible to determine whether this is
a result of the particular nature of the example data
(11 of 13 schools show MSEs smaller than the MSE
of 14.44 for the full data set) or something more perva-
sive. Further examination of the performance of these
estimation methods via Monte Carlo methods will in-
dicate whether a consistent pattern of underestimation
is found.

Our new method takes into account the interrela-
tionships among predictors from the primary studies,
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as well as heteroscedasticity of the slopes, via the
variance—covariance matrix of the slopes. Both fea-
tures should represent improvements on ordinary least
squares methods. Such OLS approaches typically in-
clude dummy variables to show the presence of specific
predictors or study features, but do not deal with the
possible dependence of the predictors in the model(s),
nor do they account for the heteroscedasticity inher-
ent in the slope estimates. Even when off-diagonal el-
ements of Cov(b) were set to zero in our analysis, the
weighted least squares slopes were very close to the
full sample slopes.

6. CONCLUSION

This paper presents a review of existing methods
for the synthesis of regression slopes and a new mul-
tivariate approach based on generalized least squares
estimation that is applicable to the meta-analytic con-
text. Table 4 summarizes the main strengths and weak-
nesses of all of the methods. Two methods require
raw data and thus are not appropriate for the meta-
analysis context. Five others focus only on a single
focal slope (or some related index such as a ¢ test of

that slope) and thus cannot provide an overall model
based on the synthesis. Also these methods ignore de-
pendence among slopes by omitting all but the focal
slope. Some additionally ignore the inherent differen-
tial precision of slopes across studies by applying ordi-
nary least squares estimation methods. The new mul-
tivariate GLS method addresses these problems, but
is itself limited because information about covariation
among slopes is typically not given in primary research
reports.

A comparison of the results of three variations of
the GLS approach applied to an educational data set is
made to the analysis of all data in a single pooled analy-
sis. The analyses produce very similar results and in
some cases have identical results (given the availability
of specific summary statistics such as mean squared er-
rors for the individual regression models). Our results
emphasize the importance of full reporting of sufficient
statistics in primary research studies; with less com-
plete information, the full GLS analysis is not possible.
However, even the less complex weighted least squares
approach appeared to provide reasonable values in one
example analysis.

TABLE 4

Methods of summarizing slopes

Method

Data needed

Strength

‘Weakness

Simple slope summaries

Summaries of ¢ statistics

Iterative least squares
approach

Dose-response models
(WLS approach for
dichotomous
outcomes)

Validity generalization
approach

Univariate WLS approach

Multivariate Bayesian
approach

Multivariate GLS
approach

Slopes

t values for slope tests

Raw data

Slopes and standard errors
for models with
dichotomous outcomes

Slopes, reliabilities of X

and sample sizes
Slopes and standard errors
Raw data

Slopes and Cov (b)
matrices

Simple, little data needed

Simple; little data needed;
Xsand Y's can be on
any scales

Accounts for covariation
among predictors
Weights by precision

Simple; little data needed

Relatively simple; weights
by precision

Collateral information can
be shared across
studies

Weights by precision;
accounts for
covariation; provides
entire pooled model

Focuses on a single focal slope; ignores
dependence and precision of slopes

Focuses on only a single focal slope; ¢
values contain irrelevant information
about sample size; unclear how an index
of effect is obtained

Iteration needed to get covariance matrix

Focuses on only a single focal slope; ignores
dependence of slopes

Reliabilities often not reported; ignores
dependence of slopes

Focuses on only a single focal slope; ignores
dependence of slopes

Multistage formulation; requires priors and
hyperparameters; X's and Y's must be on
same scales

Requires covariances among slopes, which
are often not reported
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APPENDIX: EQUIVALENCE OF FULL SAMPLE AND
SYNTHESIZED RESULTS WHEN aiz =02FORi =1
TOk

Consider k independent samples or studies each ex-
amining a model relating predictors X; through Xp to
an outcome Y for case j. Specifically, in study i,

Yij = Bio+ Bi1 Xij1 + -+ Bip Xijp + eij
for j =1 to n;.

For later use we also define X and Y by stacking the
individual X; and Y; matrices:

X Y
X Y
X=|"7| and Y=| °
X, Y,

The OLS regression slope for the full combined sample
is

(A1) p* = (X'’X)"IX'Y.

Within study i, the OLS estimate of 8; = (Bio, Bi1, - - -,
Bip) is
b; = (bio, bi1, ..., bip) = (X X,)7'XY,
with
%; = Cov(b)) = (X|X,)"lo?.

If it is reasonable to assume that the error variances o2,

for i =1 to k are equal (e.g., if the k samples are drawn
from one population), then we have

¥; = Cov(b;) = (X}X;) o

Next we define

b
b | ™
by
and
" Cov (by) 0 0 0
5 0 Cov(by) 0 0
= 0 0 0
L0 0 0 Cov(by)
mXix)! 0 0 0
—1
_ 0 (X,X,) 0 0 o2,
Lo 0 0 (XX

which is labeled X*o2 in the text. When inverted, this
matrix is

XX) 0 0 0

sol_| 0 XX) 0 0 | o
0 0 0 XX

Also the ith cross-product matrix is
roni > Xiji
J
2
DXt Do Xi
J J

> Xijp

j
ZXijZXijl

X?X,’ = J

ZXijP ZXijIXijP ZXiJZXijP
L j J
injP

J
ZXijIXijP
J

> Xip
j

The synthesized GLS slope estimator is
(A2) B* = (WX 'W)"'Wx'p,

where W is a stack of identity matrices of dimen-
sion P + 1. The first component of the estimator is
(WX ~'W), which is a sum of matrices:

Wx7Iw) = (X[ X))o? + (X5X,)0? +

e (XX o
Equivalently,
wWx'w
IR2EED D ML B D

i i J i J
YD oK 2D X Y XipXij
P i P

ZZXUP ZZX;’]’]XUP ZZXijzxijP
L i i i

2.2 Xiyr ]
i

e 22 Xin Xijp
i

> Xip
j

which is simply X'Xo? for the full sample (i.e.,
the sample pooled across studies), so WX !'W =
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(X’X)~ 162, Thus we can write
(A3) B* =[(X'X) o2 IW' T 'b.

Next we consider the term WX ~!'b. The product
WX~ ! is a matrix that is o> times a concatenation of
(X’X.) matrices, specifically

W2 =X/ X, XX, |- XX - (X)X, o2

Also, b is the stacked vector of the k individual sample
slope vectors. Thus

Wz b=X,X,b,0? + X,X,b,0° +
4 XX b0

Each component of this sumisa (P + 1) x (P + 1)
matrix. Then substituting b; = (X;Xl.)_IX;Yi into this
equation, we obtain

Wb =X\ X, X\ X)X Y,0% +
XX (X X)X Y 02
=o?[Y XY, | =0’XY.
Substituting this result into (A3), we see that
B* = X'X) oW 1b = (X'X) o 2[02X'Y]
= (X'X)" XY,
which equals b* given in (A1).
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