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Bayesian Checking of the

Second Levels of Hierarchical Models

Valen E. Johnson

This article extends Bayarri and Berger’s (1999) pro-
posal for model evaluation using “partial posterior”
p values to the evaluation of second-stage model as-
sumptions in hierarchical models. Applications focus
on normal-normal hierarchical models, although the fi-
nal example involves an application to a beta-binomial
model in which the distribution of the test statistic is
assumed to be approximately normal.

The notion of using partial posterior p values is po-
tentially appealing because it avoids what the authors
refer to as “double use” of the data, that is, use of the
data for both fitting model parameters and evaluating
model fit. In classical terms, this phenomenon is syn-
onymous to masking and is widely known to reduce
the power of test statistics for diagnosing model inad-
equacy. In the present context, masking is avoided by
defining the reference distribution of a test statistic ¢ by
the partial posterior distribution, defined as

J (Xobs | )7 (0)

S (tobs 1 0)

Heuristically, the partial posterior distribution con-
tains information in the data x,,s about model para-
meter 6 not reflected in #,5,. From this definition, it
follows that the partial posterior distribution and (full)
posterior distribution are equivalent when ¢ is ancil-
lary, and that the partial posterior distribution and prior
distribution coincide when ¢ is sufficient. The latter
fact suggests that partial posterior distributions defined
with respect to improper prior densities may not be
proper when the test statistic is “approximately suffi-
cient” for some subset of parameter values. It also pre-
cludes the use of partial posterior model assessment for
objective Bayesian models using test statistics that are
sufficient, although the authors presumably regard suf-
ficient test statistics as being useful only for assessing
the adequacy of (proper) prior distributions. Nonethe-
less, insight regarding the relative advantages of the
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proposed methodology as test statistics vary from be-
ing “nearly sufficient” to “nearly ancillary” would be
useful.

Under regularity assumptions specified in Robins,
van der Vaart and Ventura (2000), partial posterior
p values also have the important property of being
asymptotically uniformly distributed under the null
model. Prior-predictive p values and their extensions to
p values based on pivotal quantities (described below)
share this property—even in finite samples. p values
based on posterior predictive and related reference dis-
tributions do not, which makes it difficult to interpret
these diagnostics for purposes of formal model assess-
ment. Bayarri and Costellanos (B&C) provide convinc-
ing examples that illustrate this difficulty and highlight
the dangers associated with the naive use of nonuni-
form p values. However, it should be noted that the
extreme p values reported by the authors are perhaps
also somewhat suspect given the relatively small sam-
ple sizes considered in the examples. That is, even ig-
noring errors associated with the numerical approxi-
mation of the partial posterior density and the resulting
distribution of the test statistic, asymptotic uniformity
of the partial posterior p values may not have been
achieved to the level of accuracy required for the report
of partial posterior p values down to the number of sig-
nificant digits provided. This concern is heightened by
the plots in the third column of Figure 1, which suggest
that partial posterior p values are anticonservative for
moderate sample sizes.

The significant advantage of partial posterior p
values—that of reducing masking—does not come
without cost, and two potentially difficult tasks must
be performed to construct these diagnostics. First, it
is necessary to estimate the sampling density of the
chosen test statistic as a function of the model para-
meter 6. In the article, this task is performed only for
cases in which the sampling density of the test statistic
can be easily approximated by exploiting a translation-
invariance property of the normal distribution. Such
a strategy is unlikely to work outside of normal fam-
ily problems or for more sophisticated test statistics
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FiG. 1.

Quantile-quantile plots of group mean residuals. The top row depicts the qq-plot obtained from three posterior draws from the

model utilizing O’ Hagan’s prior, while the bottom row depicts qq-plots derived from the three draws from the posterior defined using the

truncated version of B&C’s improper prior specification.

(e.g., the x? discrepancy function advocated in Gel-
man, Meng and Stern, 1996, or the Shapiro—Wilks test
statistic illustrated below).

Second, the partial posterior distribution function of
the test statistic must be evaluated at its observed value.
Because the partial posterior distribution is propor-
tional to the ratio of the posterior distribution based
on the full data to the sampling distribution of the test
statistic determined in the previous step, performing
numerical simulations to obtain the value of the par-
tial posterior distribution function at the observed test
statistic is also likely to be troublesome. Indeed, even
for what are very simple hierarchical models, the au-
thors felt obliged to provide appendices describing the
MCMC algorithms used to perform these calculations.

Partial posterior methods also do not seem well-
suited for the construction of diagnostic plots. Graph-
ical diagnostics—which are critical to model criticism
and exploration—often involve the display of transfor-
mations of all data values, and thus are functions of
a sufficient statistic. As noted above, this makes the
use of partial posterior methods inappropriate for the
construction of such plots and may limit the utility of
this approach in the exploratory stages of model refine-
ment.

A final point that should be considered in the appli-
cation of partial posterior p values involves the trade-
off between the cost of computing these diagnostics
versus the cost of fitting expanded models that have
been targeted to detect a particular deviation from the
null model. The example in Section 4 illustrates this
point well. In that example, a normal-normal hierar-
chical model with a fixed second-stage mean p is as-

sumed. By conditioning on a test statistic that repre-
sents a component of the sufficient statistic that would
be used to estimate g (if its value was not known a pri-
ori), partial posterior model diagnostics overcome the
masking effect that plagues the other methods consid-
ered in the article. However, fitting an expanded model
in which uo was regarded as random would be sev-
eral orders of magnitude easier to implement. It would
also provide a much cleaner summary of the original
model’s inadequacy. Although this stylized example
was only proposed for purposes of illustration, I sus-
pect that similar comments might also apply to more
elaborate models.

As it happens, many of the obstacles associated with
implementing partial posterior model diagnostics can
be overcome by instead defining model diagnostics us-
ing pivotal quantities. Like partial posterior model di-
agnostics, Bayesian model diagnostics based on piv-
otal quantities also produce test statistics that have a
known reference distribution. The primary drawback
of diagnostics based on pivotal quantities is that the
joint distribution of pivotal quantities drawn from the
same posterior distribution must be evaluated using
prior-predictive methodology. However, in many cases
the reliance on prior-predictive assessment can be cir-
cumvented through the use of probabilistic bounds on
distributions of dependent order statistics.

The advantages of diagnostics based on pivotal
quantities stem from the fact that the distribution of
a pivotal quantity, say S(x,6), is the same whether it
is evaluated at the “true” (i.e., data-generating) value
of the parameter or at a value of 6 drawn from the
posterior distribution (Johnson, 2007). Furthermore,
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many pivotal test statistics are insensitive to the choice
of end-stage prior distributions in hierarchical models,
which makes their use for diagnostics in such settings
straightforward. To illustrate these diagnostics and to
demonstrate how they can be used to complement in-
formation contained in partial posterior p values, two
of the examples considered in B&C are re-evaluated
below using diagnostics based on pivotal quantities.

The first example concerns the data and model taken
from O’Hagan (2003). From the normal-normal hierar-
chical structure of this model, it follows that the com-
ponents of the pivotal vectors

B 6; —
(2) 6],:{)’1]0. l} and E={ TM}

are marginally distributed as independent, standard
normal deviates when evaluated at parameter values
drawn from the posterior distribution, provided only
that proper prior distributions are assumed for the hy-
perparameters (u, 7).

Two end-stage priors were assumed for the hyperpa-
rameters (u, 7) in B&G, one an improper prior and the
second the informative prior proposed by O’Hagan. To
replicate findings for the improper priors, I assume a
priori that

W~ U—aca), wo?) x — 4(1/a.q)
o
and
o1
T(T7) x ;l(l/a,a),

independently for a sufficiently large value of a. Al-
though the effect of the value of a (or, more gener-
ally, the limiting process used to obtain an improper
prior specification) on prior-predictive assessment of
the joint distribution of pivotal quantities is a topic
of active research, the marginal distribution of pivotal
quantities obtained for a fixed data vector is generally
insensitive to this choice.

Quantile-quantile plots of three values of E for
posterior draws of (u, r) under the proper and im-
proper prior specifications appear in Figure 1. A vi-
sual examination of these plots clearly suggests that
the fifth group mean is problematic. In practice, the ev-
idence provided by these plots—which are typical of
plots obtained for arbitrary draws of (u, t) from the
posterio—would be sufficient to trigger an examina-
tion of the distribution of observations from the fifth
group.

The notion of formal Bayesian model assessment us-
ing p values is a bit oxymoronic, but in the event that

a Bayesian p value is desired to more formally assess
the adequacy of these models, samples of pivotal vec-
tors like those displayed in Figure 1 can also be used to
construct a summary test statistic. For normal data, the
Shapiro—Wilks statistic (1965) is an attractive choice
for this purpose.

Figure 2 displays histogram estimates of the poste-
rior distribution on the p values obtained by applying
the Shapiro—Wilks test statistic to a sample of 50,000
pivotal vectors E obtained from the posterior distribu-
tions defined using both the proper and improper prior
specifications. Note that under the assumed model as-
sumptions, the marginal distribution of each of the p
values displayed in this figure are (exactly) uniform.

In general, prior predictive methods are required
to formally evaluate the joint distributions of pivotal
quantities like those displayed in the plots of Figure 2.
However, prior predictive methods are relatively com-
putationally expensive to implement. As B&C note,
they also do not apply to models defined using im-
proper prior distributions. To avoid such computations,
bounds on order statistics from dependent variables
(Caraux and Gascuel, 1992; Rychlik, 1992) can in-
stead be used to obtain a bound on the p value asso-
ciated with the joint distribution of a pivotal quantity.
In this case, such bounds can be used to obtain a p
value for the test of the null hypothesis that the p val-
ues obtained from the Shapiro—Wilk statistic were gen-
erated from the assumed model (Johnson, 2007). For
the proper and (limiting) improper prior specifications,
these bounds are p < 0.07 and p < 0.05, respectively.
Note that both of these bounds, as well as the diagnos-
tic plots provided in Figure 1, were obtained using only
posterior samples from the assumed model: No addi-
tional MCMC (or other numerical) simulations were
required to obtain these results.

Turning now to the hospital mortality data, suppose
that the Jeffreys prior assumed for (o, ) by B&C is
truncated to the interval (a, 1/a) x (a, 1/a) for a suit-
ably small value of a. When evaluated at independent
samples of {p;}, @ and B drawn from the posterior, it
follows that values of ¢; defined by

©) §i =Beta(pi;a, B), i=1,...,12,

are marginally distributed as i.i.d. uniform deviates un-
der the assumed model. Thus, model adequacy can be
evaluated by either examining vectors of these uniform
values in probability plots, or by transforming their
values to a scale appropriate for the model at hand.
To this end, Figure 3 displays three randomly selected
quantile-quantile plots of posterior samples of {p;}
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FIG. 2. p values obtained by applying the Shapiro—Wilks test statistic to second-stage model residuals. p values displayed in the left panel
were obtained from a model based on a proper prior distribution; the right panel displays p values obtained from a model specified with an

improper prior distribution.

against quantiles from the corresponding Beta(c, B)
distribution. Each of these plots suggests that the hos-
pital mortality rates may not have been generated from
a common beta distribution.

Bayarri and Castellanos’ selection of the maximum
proportion as a test statistic to conduct partial posterior
model checks can be mimicked here by selecting the
largest uniform deviate from each posterior sample of
quantities in (3) as a summary test statistic. It follows
that for a single vector ¢; drawn from the posterior, the
twelfth order statistic, (12, has distribution function
F(x) = x'2. Figure 4 displays a quantile-quantile plot
of 250,000 ¢, values drawn from the posterior against
the corresponding expected order statistics.

Bounds on the distribution of dependent order sta-
tistics can again be applied to values displayed in Fig-
ure 4 to obtain a bound on the p value for model fit.
For this test statistic, a bound of p < 0.10 is obtained.
As before, calculation of this bound requires only out-

put available from the MCMC algorithm used to sam-
ple from the posterior distribution. No additional sim-
ulation experiments or numerical approximations are
needed.

Returning to a discussion of partial posterior p val-
ues, methodologies proposed by B&C for assessing the
adequacy of second levels of hierarchical models offer
important advantages over several competing methods,
but they also present several practical difficulties.

These difficulties include the following:

1. Numerical evaluation of partial posterior distribu-
tions is computationally and conceptually challeng-
ing even in simple normal theory problems. Defin-
ing appropriate test statistics and estimating partial
posterior distributions in more complicated models
may prove impracticable.

2. Nonuniformity of p values in finite samples, cou-
pled with the numerical approximation of partial
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FIG. 4. Quantile-quantile plot of largest uniform statistic {(12)
obtained from 250,000 posterior samples. The line indicated in the
plot has slope 1 and intercept 0.
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Quantile-quantile plots of hospitality mortality rates.

posterior distribution of the observed test statistic,
makes it difficult to assess the evidence contained
in small p values. As the authors point out, anti-
conservatism is probably better than conservatism
when diagnosing model fit. But neither is good, and
the relative error associated with small p values is
potentially quite large.

3. Propriety of partial posterior distributions may be
difficult to establish when objective priors are em-
ployed, particularly when selected test statistics rep-
resent a component of a sufficient statistic.

4. Partial posterior model checks do not naturally fa-
cilitate graphical diagnostics and other informal
model checks that are critical to the processes of
model refinement and criticism.

Partial posterior p values do, however, possess an
important property not shared by many competing
methods: Partial posterior p values can substantially
diminish the effects of masking. Indeed, evidence pro-
vided in the article suggests that partial posterior p val-
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ues are an order of magnitude less sensitive to masking
than p values computed using other standard methods.
Provided that the proposed methodology can be ex-
tended to realistically complex Bayesian models, this
property offers assurance that large deviations from
model assumptions will not be overlooked simply be-
cause, say, a variance parameter was overestimated.
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