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CORNER PERCOLATION ON Z
2 AND

THE SQUARE ROOT OF 171

BY GÁBOR PETE

Microsoft Research

We consider a four-vertex model introduced by Bálint Tóth: a dependent
bond percolation model on Z

2 in which every edge is present with probability
1/2 and each vertex has exactly two incident edges, perpendicular to each
other. We prove that all components are finite cycles almost surely, but the
expected diameter of the cycle containing the origin is infinite. Moreover,
we derive the following critical exponents: the tail probability P(diameter of
the cycle of the origin >n) ≈ n−γ and the expectation E(length of a typical
cycle with diameter n) ≈ nδ , with γ = (5 − √

17)/4 = 0.219 . . . and δ =
(
√

17 + 1)/4 = 1.28 . . . . The value of δ comes from a singular sixth order
ODE, while the relation γ + δ = 3/2 corresponds to the fact that the scaling
limit of the natural height function in the model is the additive Brownian
motion, whose level sets have Hausdorff dimension 3/2. We also include
many open problems, for example, on the conformal invariance of certain
linear entropy models.

1. Introduction and results. We consider the following corner percolation
model introduced by Bálint Tóth. Intuitively, it is the maximal entropy probability
measure on subsets of the edges of the lattice Z

2 in which the set of edges incident
to any given vertex is one of the four possible corners: �,�,�,�. However, this
seemingly local constraint allows for only 2N bits of free choice to determine a
configuration in an N × N square, as follows. Take two doubly infinite sequences,
{ξ(n)}n∈Z and {η(m)}m∈Z, of i.i.d. +/− signs, each possibility having probability
1/2. If ξ(n) = +1, then we keep the “even” edges of Z

2 along the vertical line
{n} × Z, that is, the edges {(n,2k), (n,2k + 1)} for all k ∈ Z, and we delete the
“odd” edges {(n,2k − 1), (n,2k)}. If ξ(n) = −1, we delete the even and keep the
odd edges. Analogously, we delete every second edge along the horizontal line
Z × {m}, according to the sign η(m). Thus, we get a random 2-regular subgraph
G = G(ξ,η) of Z

2; see Figure 1. Each connected component of G is clearly a
cycle or a bi-infinite path.
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FIG. 1. Finite portions of some configurations.

THEOREM 1.1. G has no infinite components a.s. Moreover, each vertex is
enclosed by infinitely many cycles. The expected diameter of the cycle containing
the origin is infinite.

Another way to look at this result is that a certain random walk on Z
2 with

long-term memory, which describes the component of the origin (and will be de-
fined later on), is null recurrent. Given the fact that dependent percolation models
and strongly self-interacting random walks are usually considered to be difficult,
the proof of this first theorem is remarkably simple. The key step is to notice that
looking at the components of G as contour lines in a map, one can define a nat-
ural height function H(n + 1

2 ,m + 1
2) on the faces of the lattice Z

2 (see Figure 3
below) which will turn out to equal �Xn+Ym

2 �, where {Xn}+∞
n=−∞ and {Ym}+∞

m=−∞
are two independent bi-infinite simple random walks on Z, certain functions of
the sequences ξ and η. Moreover, a detailed analysis of this connection makes it
possible to understand the model quite thoroughly, for example, to determine the
two most natural exponents.

THEOREM 1.2. The exponents for the tail probability

P(n) := P(the diameter of the cycle of the origin > n) ≈ n−γ

and for the expectation

L(n) := E(length of a typical cycle with diameter n) ≈ nδ

exist, meaning that γ = limn→∞ − logP(n)
logn

and δ = limn→∞ logL(n)
logn

. The values

are γ = (5 − √
17)/4 = 0.219 . . . and δ = (

√
17 + 1)/4 = 1.28 . . . .
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FIG. 2. A cycle of length 17,996.

We will define precisely what a “typical cycle” means in Section 4. The intu-
itive meaning of the exponent δ is the “dimension” of typical large cycles; see
Figure 2. The relation γ + δ = 3/2 corresponds to the fact that the height func-
tion H(n + 1

2 ,m + 1
2) has a natural scaling limit, the sum of two independent

Brownian motions, H(t, s) = 1/2(Wt + W ′
s), and the level sets of this so-called

additive Brownian motion have Hausdorff dimension 3/2 [36]. Finer geometric
properties of these levels sets (which are often shared by those of the Brownian
sheet) have been studied by Dalang, Mountford and Walsh in a series of papers
[20–26, 44]; see [19] for a survey and, from a capacity point of view, for ex-
ample, in [41]. Only after most of our work had been completed did we learn
from Davar Khoshnevisan about the former papers, which contain the continuous
analogs of some of our results (e.g., [22] finds a closed Jordan curve in the level
set). One might guess that this curve should be the properly defined scaling limit
of large cycles in our model, with Hausdorff dimension (which is presently un-
known) δ = (

√
17 + 1)/4 = 1.28 . . . . However, passing to the limit seems to be a

nontrivial task. See Section 7 for more details.
Another motivation for our model, which also provides some naive explanation

as to why one would expect Theorem 1.1 to hold and the critical exponents γ and
δ to exist, is that corner percolation can be viewed as a linear entropy version of
several classical conformally invariant models of statistical physics, as follows.

First, each edge of Z
2 has probability 1/2 to be in G, so we can view G as

critical bond percolation [33, 39] “conditioned” on the property that at each ver-
tex, we see one of the four corners. However, this seemingly “local conditioning”
introduces serious long-range dependence and ruins the global behavior of the
model. Critical percolation is conformally invariant (proven at least on the trian-
gular lattice by Smirnov [52]), while the additive Brownian motion appearing in
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our scaling limit is not. Furthermore, our tail exponent γ for critical independent
percolation is 5/48 [43]; for other exponents, see [53]. Note that it is often the
conformal invariance that is responsible for the rationality of certain critical ex-
ponents; in the physics literature, this is understood via connections to conformal
field theory (CFT) [6], while, mathematically, it is understood via Schramm’s sto-
chastic Loewner evolutions (SLE) [48, 54]. See [3] for connections between SLE
and CFT. Nevertheless, even without conformal invariance, the irrationality of such
exponents is quite unusual.

Another conformally invariant process is the double dimer model, which is the
union of two independent “uniform random perfect matchings” of Z

2, while corner
percolation is the union of a horizontal and a vertical perfect matching. In [37],
Kenyon proved that the natural height function of the model has the Gaussian free
field as its scaling limit, which is the conformally invariant two-time-dimensional
version of Brownian motion; see [51]. Also, in the double dimer model, it is true
that each vertex of Z

2 is surrounded by infinitely many closed cycles almost surely
[50, 38]. The height function fluctuations in an n × n subsquare of Z

2 are of order
logn, as opposed to our

√
n, and it is conjectured that the exponent for the cycle

length is 3/2. A large range of similar random height function models is studied
in [38] and [50], but those methods are not applicable in our strongly dependent
model, where the Gibbsian “finite energy” condition completely fails.

Tóth defined corner percolation as a degenerate 4-vertex version of the famous
6-vertex model [4, 5]. Many features of that model are not yet properly understood,
but, being a generalization of the double dimer model, it is believed (sometimes
proved—see, e.g., [31]) to behave in similar ways.

One can view the component of a fixed vertex in G as the path of the following
random walk on Z

2 with long-term memory. At odd steps, we go up or down
with probability 1/2 each, at even steps, we go right or left with probability 1/2
each, but whenever we visit one of the infinite horizontal or vertical lines we have
already visited, we must take the same direction as we did the first time on this
line. If we consider the same walk without memory, just insisting on the alternating
vertical/horizontal directions, then we get an “almost simple random walk,” which
is recurrent with infinite expected time of return, with the Brownian motion as its
scaling limit. Thus, one might think, our path should also be closed, with infinite
expected length. However, this argument is very weak. A little bit surprisingly, if
we “interpolate” between these two recurrent walks (the almost simple random
walk and the corner percolation path), by doing SRW (simple random walk) in
the horizontal coordinate and the walk with memory vertically, then the resulting
random walk on a randomly oriented lattice has been shown to be transient [14].
See Section 7 for more details on this model.

Since the distribution of the first version of this paper, corner percolation has
inspired the definition of several linear entropy percolation models, including Ben-
jamini’s trixor, our k-xor and Angel’s odd-trixor models on the triangular lattice;
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see Section 7 for definitions and some results. One shocking development is the
following conjecture, strongly supported by computer simulations.

CONJECTURE 1.3. The linear entropy k-xor (k ≥ 4) and odd-trixor models on
the triangular lattice have the same conformally invariant scaling limit as critical
percolation.

Corner percolation is also related to Winkler’s nonoriented dependent percola-
tion; see [57] and [2]. With a little additional work, which we will not present here,
our methods imply the known result that there is no percolation in that model with
three characters, while there is percolation in the case of four characters. However,
there seems to be no natural meaning of our height function in that model; nor does
the more puzzling oriented version [32] have a natural interpretation in our model.

Further aspects of the criticality of corner percolation, such as noise sensitiv-
ity/stability and the effect of biased coins, will also be discussed in Section 7,
along with several more open problems.

We now turn to the discussion of the height function; see Figure 3. First, color
the faces of Z

2 black and white in a chessboard manner: let a face (n+ 1
2 ,m+ 1

2) ∈
(Z + 1/2)× (Z + 1/2) be black if m+n is even and white if m+n is odd. Fix the
height of the black face touching the origin from the northeast to be H(1

2 , 1
2) = 0.

Note that any component of G(ξ,η), called a contour line hereafter, has all black
faces along one side and all white faces along the other. Now, take a simple directed
path through faces from (1

2 , 1
2) to some (n + 1

2 ,m + 1
2). Walking on this path,

whenever we cross a contour from its black side toward its white side, we add 1
to the height and whenever we cross a contour from its white side toward its black
one, we subtract 1. Clearly, the height H(n + 1

2 ,m + 1
2) determined in this way

does not depend on the path taken. The level of a contour will be the height H(·, ·)
of the black faces along the contour.

FIG. 3. Definition of the height function.
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This height function can also be defined directly from the sign sequences {ξ(n)}
and {η(m)}. Let us first take ξ∗(n) := (−1)n+1ξ(n) and η∗(m) := (−1)m+1η(m).
Then setting X0 = 0, Xn := ∑n

j=1 ξ∗(j) for n > 0 and Xn := −∑0
j=n+1 ξ∗(j) for

n < 0, and similarly for Ym, but with η∗(j) instead of ξ∗(j), defines two bi-infinite
simple random walks, {Xn} and {Ym}, on Z. It is now straightforward to check that

H

(
n + 1

2
,m + 1

2

)
=

⌈
Xn + Ym

2

⌉
.(1.1)

This single observation will be the key to our short proof of Theorem 1.1 in Sec-
tion 2. Moreover, as we will see, most of the interesting phenomena in corner
percolation can be formulated in a tractable way in terms of these simple random
walks.

For example, having proven Theorem 1.1, we can divide all the contours in G

into two classes: a cycle is an up-contour if it has black faces along its exterior side;
white faces along its interior side; it is a down-contour otherwise. In Figure 3, there
are four up-contours and four down-contours; the directions of the other contours
are impossible to determine from this finite piece of the configuration. It will turn
out that each up-contour in G can be identified with a so-called “compatible pair
of up-excursions” in {Xn} and {Ym}, while down-contours are given by pairs of
down-excursions. We will now define these compatible pairs.

An up-excursion of height h ≥ 1 and length 2k ≥ 2 in {Xn} is a subsequence
{Xj }a+2k

j=a , also denoted by X[a, a + 2k], such that Xa = Xa+2k , while Xj > Xa

for all a < j < a + 2k and max{Xj − Xa :a ≤ j ≤ a + 2k} = h. Analogously,
a down-excursion of height h ≥ 1 and length 2k ≥ 2 in {Xn} is a subsequence
X[a, a + 2k] such that Xa = Xa+2k , while Xj < Xa for all a < j < a + 2k and
max{Xa − Xj :a ≤ j ≤ a + 2k} = h. We say that two up-excursions (resp. two
down-excursions) X[a, a + 2k] and Y [b, b + 2�] form a compatible pair if they
have the same height h and Xa + Yb + h is even (resp. odd).

The main combinatorial statement concerning the model is the following propo-
sition, for which we will give a short proof in Section 3 using the height function
representation. Our original proof involved a delicate induction and, in fact, the
strong combinatorial structure of contours revealed by that proof (and well visible
in Figure 2) was what led us to discover the representation by the simple random
walks {Xn}, {Ym} and the height function (1.1) hidden in the original description
of the model.

First, note that any closed cycle of G has a smallest enclosing rectangle [a +
1, c] × [b + 1, d]; the finite subsequences X[a, c] and Y [b, d] will be called the
marginals of the rectangle.

PROPOSITION 1.4. The smallest enclosing rectangle of any up-contour (resp.
down-contour) gives a pair of compatible up-excursions (resp. down-excursions)
as marginals. Conversely, the rectangle given by any pair of compatible up-
excursions (resp. down-excursions) has an up-contour (resp. down-contour) that
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spans this rectangle. The level of the contour is simply the value Xa +Yb +h given
by the marginal excursions X[a, c] and Y [b, d]. See Figures 3 and 5.

With this tool available, we can now give a rough outline of a strategy to under-
stand the exponents γ and δ. First, instead of insisting that the diameter be large
or that it be exactly n, we will work with the height h of the excursions that give
the contour. Thus, we will consider the quantities P(h) := P(the height of the mar-
ginal excursions of the cycle of the origin is > h) and L(h) := E(length of a cycle
given by two compatible excursions of height h). Since the length of an excursion
of height h divided by h2 has a nontrivial limiting distribution as h → ∞, with
exponential tails, the statements

γ = lim
n→∞

− logP(n)

logn
, δ = lim

n→∞
logL(n)

logn

will turn out to be equivalent to

2γ = lim
h→∞

− logP(h)

logh
, 2δ = lim

h→∞
logL(h)

logh
.

To compute L(h), the main difficulty is that the actual shape of a contour is a
rather strange “product” of the two marginal excursions, which will be described
by the so-called “Two Cautious Hikers” algorithm in Section 3, and hence the
length is difficult to find directly. It is much easier to give the total length of con-
tours on that same level (say level 0) within the enclosing rectangle. This is roughly
ch3, corresponding to the fact that an n × n square has roughly

√
n levels of the

height function H(·, ·), with roughly n3/2 faces on a typical level. However, a typ-
ical enclosing rectangle contains many more level-0 contours than just the one that
touches its four sides (see, e.g., Figure 4). So, we need to subtract the total length
of these additional contours, which all turn out to be contained entirely within our
large enclosing rectangle (Lemma 3.1) and, hence, they are given by subexcursion
pairs within our excursions. Such a subexcursion pair, with a certain height m,
gives a contour of expected length L(m). So, if we compute the expected num-
ber of compatible subexcursion pairs of a given height m and giving a contour on
level 0, then, multiplying this expected number by L(m), we get their share in the
total length of contours. Subtracting these products for all possible m’s, we can
write a recursion for L(h) involving all of the L(m) with m < h. This plan will
be carried out in Section 5, giving the recursion (5.6). This recursion can then be
converted into a sixth order linear ordinary differential equation with nonconstant
coefficients for the generating function of the sequence L(h); see (5.18). This ODE
has an isolated singularity of the first kind at 1 and the exact size of the singularity
of the solution can be determined by the so-called general Frobenius method of
linear ODE theory. The rate of growth of the sequence L(h) can then be found
using a standard Tauberian theorem.
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FIG. 4. The contours on a fixed level, with a distinguished large cycle.

Writing a similar recursion for the sequence P(h) seems harder, so we will find
its decay rate by proving the relation γ + δ = 3/2. This is done in Section 6 by
considering the expected total number of edges on relatively large level-0 contour
cycles in an n × n box.

2. A short proof of Theorem 1.1. We will prove a stronger statement: almost
surely, for any fixed vertex and on any given level, there are infinitely many contour
cycles surrounding that vertex.

Consider the square boundary

QN := {
(n + 1/2,m + 1/2) : max{|n|, |m|} = N

}
in the dual lattice (Z + 1/2) × (Z + 1/2). Note that if, for some 0 < N < M , the
restrictions of the height function satisfy H(QN) > 0 and H(QM) < 0, then there
must be a closed contour on level 0 surrounding the origin.

Now, consider the following event AN = AN({Xn}) for a simple random walk
{Xn}∞n=−∞ on Z:

AN := {
Xn ≥ −√

N for n ∈ {−N, . . . ,N − 1,N};X−N >
√

N;XN >
√

N;
Xn ≤ 2

√
N for n ∈ {−2N, . . . ,2N − 1,2N};

X−2N < −2
√

N;X2N < −2
√

N
}
.

By Brownian scaling, there exists an absolute constant α > 0 such that P(AN) > α

for all N ≥ 2. Moreover, AM becomes asymptotically independent of AN
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as M → ∞. In fact, there exists 0 < K < ∞ such that P(AKN |AN) and
P(AKN |Ac

N) are both at least α/2 for any N > 0.
The point of this construction is that if both the horizontal and vertical random

walks, {Xn} and {Yn}, satisfy AN , then we have H(QN) > 0 and H(Q2N) < 0.
These two random walks are independent, thus BN := AN({Xn})∩AN({Yn}) has
P(BN) > α2. Moreover, P(BKN |BN) and P(BKN |Bc

N) are both at least α2/2 if
K is large enough, independently of N . Thus, in the sequence BKi , i = 1,2, . . . ,

each event has a uniform positive probability to occur, independently of the occur-
rence or failure of the previous events. This means that infinitely many BN ’s occur
almost surely and we have infinitely many closed contours on level 0 surrounding
the origin. Actually, this argument shows that P(diameter > n) ≤ Cn−β , where
β > 0 could be explicitly calculated.

To get infinitely many contours on an arbitrary level � ∈ Z, we only have to
consider translated versions of the events AN , which still have a uniform positive
probability, so the same proof works.

To show that the expected diameter of the cycle of the origin is infinite, notice
that whenever this cycle is not the smallest possible (of length 4), then it intersects
the x- or the y-axis in a point different from the origin. So, with a fixed positive
probability, this happens at the positive half of the x-axis, and at the intersection,
there is a face with H(N + 1

2 , 1
2) = 0. Since Y0 = 0, this means that XN = 0 for

this N . If we take the smallest such N > 0, we get an excursion of length N of
the simple random walk {Xn} on one hand and a chord of the contour cycle on the
other. Since the probability that an SRW excursion has length larger than n decays
like π−1/2n−1/2 (see [29], Section 3.3), we have that P(diameter > n) ≥ cn−1/2.

3. The combinatorial description of contours. Before giving the proof of
Proposition 1.4 using the height function representation, let us point out what the
relevance of excursions in the {Xn} and {Ym} sequences is to the configuration
G(ξ,η). Given the subconfigurations ξ [a + 1, c] and η[b + 1, d], replace the kth
“+” sign with an opening parenthesis “(” if k is odd and with a closing “)” if k

is even. Similarly, replace the kth “−” sign with an opening bracket “[” if k is
odd, and with a closing “]” if k is even. Then, as it is immediate to see, we get a
meaningful bracketing if and only if X[a, c] and Y [b, d] are both SRW excursions.
As one can see from the proof below, if there is a contour cycle spanning the
rectangle ξ [a + 1, c] × η[b + 1, d], then the corresponding matching between the
opening and closing brackets and parentheses is “responsible” for the apparent
symmetries of Figure 2. See also Figure 5.

PROOF OF PROPOSITION 1.4. It will also follow from the proof that for each
edge of a contour cycle that touches the enclosing rectangle, the opposite edge on
the rectangle is also contained in the cycle and the row or column connecting these
two edges is fully contained in the interior of the cycle. Such a row or column will
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FIG. 5. A compatible pair determining a cycle with four passages.

be called a passage. We also claim that the passages occur exactly at the maxima
of the marginal up-excursions and at the minima of the marginal down-excursions.

We will only consider up-contours and up-excursions. The case of down-
contours and down-excursions can clearly be treated in the same way.

Suppose, first, that the walks X[a, c] and Y [b, d] form a compatible pair of up-
excursions of height h, with Xa = Xc = 0 and Yb = Yd = −h. It is then clear that
Xn + Ym > 0 on the set

P := {(n,m) :Xn = h or Yn = 0; a < n < c and b < m < d},
but Xn + Ym ≤ 0 on the faces on the outer boundary of the rectangle R :=
[a + 1, c] × [b + 1, d]. The set of faces given by P includes a cross that spans
the rectangle R in both directions, so the outer boundary of the component of
{(n + 1/2,m + 1/2) :Xm + Ym > 0} containing this cross must be an up-contour
spanning R.

Conversely, suppose that we have an up-contour, say on level 0, with enclosing
rectangle [a + 1, c] × [b + 1, d]. Then, for every n ∈ [a, c], there is an m′ ∈ [b, d]
with Xn + Ym′ = 0 and for every n ∈ (a, c), there is an m′′ ∈ (b, d) with Xn +
Ym′′ > 0. Similarly, for every m ∈ [b, d], there is an n′ ∈ [a, c] with Xn′ + Ym = 0
and for every m ∈ (b, d), there is an n′′ ∈ (a, c) with Xn′′ + Ym > 0. This implies
that

maxX[a, c] − minX[a, c] = maxY [b, d] − minY [b, d]
and the minima can only be obtained at the endpoints. Moreover, there must be
at least two places, n1, n2 ∈ [b, d], with (maxX[a, c]) + Yni

= 0, thus minY [b, d]
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must be actually obtained at both endpoints, so Y [b, d] is an up-excursion. Simi-
larly, X[a, c] must also be an up-excursion. That they are compatible follows from
the displayed equation.

Finally, it is clear that the set of faces corresponding to P is exactly the union
of all the passages. �

The following result concerning the global arrangement of contours on a fixed
level will be used several times. See Figure 4.

LEMMA 3.1. If Ci , for i = 1,2, are two contour cycles on the same level
with enclosing rectangles [ai + 1, ci] × [bi + 1, di], then one of the following
three possibilities holds: [a1 + 1, c1] ⊆ [a2 + 1, c2], [a2 + 1, c2] ⊆ [a1 + 1, c1] or
[a1 +1, c1]∩ [a2 +1, c2] = ∅. The analogous statement also holds for the vertical
marginals. Furthermore, C2 can never intersect the enclosing rectangle of C1.

PROOF. If both cycles are up-contours, or both are down-contours, then the
first statement is obvious from the possible ways that two up-excursions (or two
down-excursions) can be arranged in one SRW trajectory. Note that, here, we did
not even have to use the fact that the two contours are on the same level.

If C1 is an up-contour and C2 is a down-contour, then, by symmetry, it is enough
to rule out the possibility that a1 < a2 ≤ c1 < c2 and b1 < b2 ≤ d1 < d2. Let us
assume this possibility now. We may also assume that the level of the contours is
0 and so, for mi := minX[ai, ci] = X(ai) = X(ci) and Mi := maxX[ai, ci], and
for ni := minY [b1, d1] = Y(b1) = Y(d1) and Ni := maxY [b1, d1] = N1, we have
m1 + N1 = n1 + M1 = 0 and m2 + N2 = n2 + M2 = 1.

On the other hand, a1 < a2 ≤ c1 implies maxX[a2, c2] = X(a2) = X(c2) =
M2 ≤ M1, and a2 ≤ c1 < c2 implies minX[a2, c2] = m2 ≤ m1. Similarly,
maxY [b2, d2] = Y(b2) = Y(d2) = N2 ≤ N1 and minX[b2, d2] = n2 ≤ n1. Com-
bining all of these relations between mi,Mi, ni and Ni , we find that 1 ≤ m2 −
m1 ≤ 0, a contradiction.

For the second statement, note that if C2 intersected the enclosing rectangle
R1 of C1, then, next to that intersection there would be a 0-valued face touching
R1 from the inside. But, by Proposition 1.4, this face would not only have a side
which is an edge of C2, but also another side which is an edge of C1. From the
existence of this face, one can easily see that the only way to have two distinct
cycles, C1 and C2, would be if C1 were a cycle of length 4; but, then, R1 = C1 and
C2 cannot intersect R1 at all. �

Though we will not use the following result later, let us describe how the exact
shape of the contour cycle is determined by the compatible pair of excursions of
height h.

Let the two up-excursions be X[0,2k] and Y [0,2�], with minima X(0) =
X(2k) = 0, Y(0) = Y(2�) = −h and maxima X(mi) = h, Y(nj ) = 0, where the
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maximum places are m1 < · · · < ms and n1 < · · · < nt , respectively. Consider
the parts X[0,m1] and Y [0, n1], and let Y ′(j) := −Y(n1 − j) for j = 0, . . . , n1.
Imagine that two hikers, starting from a lake at the foot of two mountains that
are described by the curves X[0,m1] and Y ′[0, n1], want to reach the two peaks,
one hiker for each peak, in such a way that their height levels always agree
during hiking. It is known from a popular combinatorics exercise (at least in
Hungary) that this is always possible: Consider the graph that has vertex set
V := {(i, j) : X(i) = Y ′(j), 0 ≤ i ≤ m1, 0 ≤ j ≤ n1} and edge set E connect-
ing the vertices of V that are accessible from each other in one step by the two
hikers. Then every vertex has degree 2 or 4, except for (0,0) and (m1, n1), which
have degree 1. Hence, it is clear that there must be a path in (V ,E) connecting
(0,0) and (m1, n1), and this gives a path that the hikers can follow.

Of course, there can be several different paths between (0,0) and (m1, n1). The
following algorithm, which we call the algorithm of the Two Cautious Hikers,
distinguishes one particular path, which will correspond to the part of the contour
cycle that is determined by the excursion parts X[0,m1] and Y [0, n1].

Let us suppose that Xavier, the hiker climbing the mountain given by X[0,m1],
is “cautious” when going up, while Yvonne, the hiker climbing the Y ′[0, n1]-
mountain, is “cautious” when going down. This means that during their paths,
it never happens that both of them backtrack, but whenever they arrive at a vertex
of V from which there are four edges going out, and at which they have never been
before, they choose the edge on which Xavier backtracks if they have to continue
upward, and on which Yvonne backtracks if they continue downward. When they
arrive at a degree 4 vertex where they have already been, they choose the one edge
which they have not previously used; see Figure 6. Starting from (0,0), this rule
always gives a unique way to continue the path, until they reach (m1, n1).

This path (xi, yi)
T
i=0 through the vertices of V , with (x0, y0) = (0,0) and

(xT , yT ) = (m1, n1), gives a sequence of zeros X(xi) + Y(yi) = 0, while one of
the two sums, X(xi) + Y(yi+1) and X(xi+1) + Y(yi), is 1 and the other is −1,
depending on whether the hikers went up or down from step i to step i + 1. Mark
an edge of Z

2 if it is between such a 0- and a 1-valued face along the path. It is
immediate to check that the marked edges form the part of the contour cycle inside

FIG. 6. Part of a contour described by the Two Cautious Hikers.
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the rectangle given by X[0,m1] and Y [0, n1], and the length of this part of the con-
tour is just 2T . The other three parts of the contour inside the rectangles given by
the horizontal marginals X[0,m1], X[ms,2k] and the vertical marginals Y [0, n1],
Y [nt ,2�] can be described in the same way. The parts of the contour given by mar-
ginals X[mi,mi+1] and Y [nj , nj+1] can be handled by breaking these subexcur-
sions into smaller mountains. Summarizing, we have proven the following result.

PROPOSITION 3.2. The contour cycle given by a compatible pair of excur-
sions can be naturally broken into several pieces, each of which corresponds to a
path through the zero set Xn + Ym = 0 that is given by the Two Cautious Hikers
algorithm.

4. What is a typical contour cycle? The natural definition for a typical con-
tour of diameter n is the following. Consider corner percolation in a large N × N

box, with N � n, and pick one of the diameter-n cycles contained in the box, uni-
formly at random. Then, as N → ∞, the distribution of this random cycle should
converge to the distribution we seek to define. However, it would be very hard
to work directly with this definition because, as we see from Proposition 1.4, the
natural parameter for a cycle is not its diameter, but the height of the compatible
excursions giving rise to it. Thus, we will consider “typical cycles of height h,”
and although our results will not imply that the large-N limit distribution for the
cycles of diameter n exists, it will be clear that for large enough N , the expectation
of the length of the randomly chosen cycle of diameter n is close to nδ , in the sense
given in Theorem 1.2.

Similarly to the above, a typical cycle of height h is the large N limit of a
uniformly chosen cycle of height h from the N × N box. But, this time, we have a
direct way to describe this limit. By the symmetry between up- and down-contours
and between different levels, and by simple properties of SRW excursions that we
will discuss below, choosing one of these cycles uniformly at random from the
box gives the same distribution on lattice cycles as choosing uniformly at random
one of the height-h up-excursions from the marginal random walk X along the
box and then, conditioned to have at least one compatible up-excursion in the Y

marginal (the event of which has a probability tending to 1 as N → ∞), choosing
one of them uniformly at random and considering the up-contour determined by
this compatible pair. And the large-N limit of this distribution is simply the up-
contour determined by two independent up-excursions of height h. The simplest
construction of an excursion conditioned to have height h, denoted by Eh, is the
following.

Run a simple random walk from 1, conditioned to reach h before 0, until it
reaches h. Then run another simple random walk, now started from h, conditioned
to hit 0 before hitting h + 1, until it reaches 0. The two legs of this walk will be
referred to as there and back. To compute anything about these conditioned walks,
we will use the following basic lemma. This construction is a version of Doob’s
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h-transform [28], with h(i) := Pi (A) below; we include the proof for complete-
ness.

LEMMA 4.1. Let {Xn}∞n=0 be any time-homogeneous Markov chain on the
state space N and let A be an event in the stationary σ -field. Then {Xn} condi-
tioned on A is again a Markov chain, with transition probabilities

P(Xn+1 = j |Xn = i,A) = Pj (A)

Pi (A)
P(Xn+1 = j |Xn = i),

where Pi (A) := P(A|X0 = i) is supposed to be positive.

PROOF. Note that P(A|Xn+1 = j,Xn = i) = P(A|Xn+1 = j) = Pj (A) for
any invariant event A. Then

P(Xn+1 = j |Xn = i,A) = P(Xn+1 = j,Xn = i,A)

P(Xn = i,A)

= P(A|Xn+1 = j,Xn = i)P(Xn+1 = j,Xn = i)

P(A|Xn = i)P(Xn = i)

= Pj (A)

Pi(A)
P(Xn+1 = j |Xn = i). �

In our case, let Xn be simple random walk with X0 = 1, stopped at 0 and h. Then
A := {Xn = h eventually} is a stationary event and, as shown by a well-known
martingale argument, Pi (A) = i/h. Therefore, the new transition probabilities in
the first leg of the excursion are

pthere(i, i − 1) = i − 1

2i
, pthere(i, i + 1) = i + 1

2i
for i = 1, . . . , h − 1.

(Note the consistency property that these values do not depend on h.) Similarly, in
the second leg, the transition probabilities are

pback(j, j − 1) = h + 2 − j

2(h + 1 − j)
,

pback(j, j + 1) = h − j

2(h + 1 − j)
for j = h,h − 1, . . . ,1.

We will denote the measure given by these there and back Markov chains by
P

there(·) and P
back(·), with corresponding expected values E

there(·) and E
back(·).

If a chain is started at some value i, we denote the corresponding measure using a
subscript i.

This consistency property of the transition probabilities was possibly first noted
in [46], proving that these conditioned walks can be obtained by watching a three-
dimensional Bessel process when it hits positive integer points. This also implies
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that the limit of our excursions Eh, as h → ∞, normalized to have height 1, is two
Bessel first passage bridges put back-to-back, which is D. Williams’ description
of Itô’s Brownian excursion conditioned to have height 1. For more details on the
combinatorial aspects of Brownian excursion theory, see [47].

An observation similar to this consistency property is the following. Let Ti

denote the first hitting time of the value i by the simple random walk. Then,
conditioning a walk started at v first on A = {Th < T0} and then further on
B = {Ti < Tj }, where v ∈ [i, j ] ⊆ [0, h], is the same as first conditioning on B
and then, after hitting i, conditioning on A. It follows that for any fixed integer
q ≥ 1, the distribution of the qth sub-up-excursion of type i ↗ j ↘ i in Eh (i.e.,
an interval of steps of Eh that is an up-excursion with minimum i and maximum
j ), conditioned on its existence, is just the distribution of a standard up-excursion
of height j − i. This observation shows that the large-N limit of typical height-h
up-contours considered at the beginning of this section is indeed the up-contour
given by two independent copies of Eh.

For the computations in Section 5, we will often use the following lemma.

LEMMA 4.2. Let Ti denote the first hitting time of the value i. Then

P
there
j (Ti < Th) = (h − j)i

(h − i)j
and P

back
i (Tj < T0) = (h + 1 − j)i

(h + 1 − i)j

for 1 ≤ i ≤ j ≤ h in the first case and 0 ≤ i ≤ j ≤ h in the second.

PROOF. For a death-and-birth chain {Xn} on Z
+ with absorbing state 1

and transition probabilities pi = P(Xn+1 = i + 1|Xn = i) and qi = P(Xn+1 =
i − 1|Xn = i), if we define

ϕ(x) :=
x−1∑
m=1

m∏
i=2

qi

pi

, ϕ(1) := 0,(4.1)

then {ϕ(Xn)} is a martingale as far as Xn ∈ {2,3, . . .} and

Px(Ta < Tb) = ϕ(b) − ϕ(x)

ϕ(b) − ϕ(a)
(4.2)

for 1 ≤ a ≤ x ≤ b; see [29], Section 5.3. For the chain P
there, as computed after

Lemma 4.1, we have qi/pi = (i − 1)/(i + 1), so

ϕthere(x) =
x−1∑
m=1

2

m(m + 1)
= 2

(
1 − 1

x

)
(4.3)

and (4.2) then gives the first result. The second result follows from the relation
P

back
j (Ti < T0) = P

there
h+1−j (Th+1−i < Th+1) with the there chain understood as the

first leg of Eh+1. �
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The two independent copies of an excursion of height h will be denoted by
Eh and E∗

h , and the cycle determined by them will be denoted by C(Eh,E
∗
h).

Even though we understand the structure of the excursions Eh well, our Two
Cautious Hikers algorithm suggests that computing the expected length L(h) :=
E|C(Eh,E

∗
h)| will not be an easy task. Nevertheless, at least we can easily prove

the following intuitively clear monotonicity result which will be used at the end of
Section 5.

LEMMA 4.3. For any h ∈ Z
+,L(h) ≤ L(h + 1).

PROOF. Consider an up-contour C = C(Eh+1,E
∗
h+1) and perform the follow-

ing procedure to get an up-contour C ′, distributed as C(Eh,E
∗
h).

Deleting all the maxima of the up-excursion Eh+1 clearly gives an excursion of
height h, denoted by e, which is distributed as Eh. On the other hand, deleting the
minima of an up-excursion can give several excursions of height at most h, at least
one of which has exactly height h. Denote all of these excursions by e1, . . . , ek ,
appearing in this order, and let us suppose that the height of ei is h, 1 ≤ i ≤ k. Let
the maximum of e1 be e1(a) = m ≤ max ei and the maximum of ek be ek(b) = n ≤
max ei . Let a′ be the first time when ei reaches m and b′ be the last time when it
is n. Now, build an excursion f that starts like e1, up to time a, then take the part
of ei between a′ and b′, and finish with the part of ek from time b until its end. It
is easy to see that this f has the distribution of Eh.

The point of this construction is that taking the contour cycle C′ determined by e

and f has the distribution of C(Eh,E
∗
h), while it is not difficult to see that each edge

in C′ has a natural copy in C, thus |C′| ≤ |C|. That is, we have coupled the random
variables C(Eh+1,E

∗
h+1) and C(Eh,E

∗
h) so that |C(Eh,E

∗
h)| ≤ |C(Eh+1,E

∗
h+1)|,

which implies L(h) ≤ L(h + 1). �

Instead of a “typical cycle,” one could try to define the analogs of L(n)

and L(h) using the cycle containing the origin. However, that would corre-
spond to picking a cycle of diameter n or of height h from a large N × N

box not uniformly, but weighted by the lengths of the cycles. Therefore, the
expected length of the cycle of the origin, conditioned on having height h, is
E(|C(Eh,E

∗
h)|2)/E|C(Eh,E

∗
h)|, which is of the same order as L(h) iff the second

moment estimate E(|C(Eh,E
∗
h)|2) ≤ K(E|C(Eh,E

∗
h)|)2 holds with some constant

K < ∞. We conjecture that this is the case, but cannot prove it.
We will show in Section 5 that L(h) ∼ ch2δ with some constant c and δ =

(1+√
17)/2. How do we get the asymptotics for L(n) from this? It is well known,

and follows easily, for example, from our Lemma 4.2 or the Bessel process rep-
resentation mentioned above, that the length of Eh divided by h2 has a nontrivial
limiting distribution as h → ∞, with exponential lower and upper tails. Therefore,

P
(
h2/K < diameter of C(Eh,E

∗
h) < Kh2)

> 1 − exp(−cK).(4.4)
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Setting K = C logh and using the trivial polynomial bounds n < L(n) < n2, from
L(h) = �(h2δ), we easily get


(nδ/ logn) ≤ L(n) ≤ O(nδ logn),(4.5)

which gives the first part of Theorem 1.2.
On the other hand, with the identity

lim
h→∞

logP(h)

logh
= 2 lim

n→∞
logP(n)

logn
,(4.6)

we have to be a bit more careful because now, we need the exponential tails not
for Eh and C(Eh,E

∗
h), but for the cycle Co going through the origin. However, the

weighting by the length is only of polynomial order against the exponential decay
in the tail:

P
(|C(Eh,E

∗
h)| > Kh4) ≤ P

(
diameter of C(Eh,E

∗
h ) >

√
Kh2) ≤ exp

(−c
√

K
)

implies

P(h2/K < diameter of Co < Kh2) > 1 − Ch4 exp(−cK).(4.7)

This is slightly weaker than (4.4), but still good enough to imply (4.6), provided
that at least one of those limits exists.

5. The expected length of a typical contour. Take a contour C determined
by a pair of compatible excursions of height h. Without loss of generality, we
may assume that C is an up-contour on level 0 and that the marginal excursions
X[a, a + 2k] and Y [b, b + 2�] have endpoints Xa = Xa+2k = 0 and Yb = Yb+2� =
−h. We may also assume that h ≥ 2; otherwise, we would simply have |C| = 4.
Besides C, there are many other contours on level 0 intersecting the interior of the
smallest enclosing rectangle R = [a +1, a +2k]× [b+1, b+2�]. By Lemma 3.1,
all these contours are entire cycles, denoted by C1, . . . ,Ct , given by compatible
subexcursion pairs within X[a, a + 2k] and Y [b, b + 2�]. Thus, if we denote by T ′
the set of all horizontal edges in R separating 0- and 1-level faces, and by T ′′ the
set of such vertical edges, then the following recursion-type relation holds:

|C| = |T ′| + |T ′′| −
t∑

i=1

|Ci |.(5.1)

This is the relation that we will turn into an actual recursion for L(h), by taking
expectations w.r.t. our measure on the independent pair of excursions Eh and E∗

h .
A horizontal edge in R, between the faces (n+1/2,m+1/2) and (n+1/2,m+

3/2), is in T ′ if and only if there is an i ∈ {0,1, . . . , h} such that Xn = i and
{Ym,Ym+1} = {−i,−i + 1}. The condition for a vertical edge to be in T ′′ can be
written analogously. Thus,

|T ′|+ |T ′′| =
h−1∑
i=0

VX[a,a+2k](i)UY [b,b+2�](−i)+
h−1∑
i=0

UX[a,a+2k](i)VY [b,b+2�](−i),
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where VX[a,a+2k](i) is the number of visits of X[a, a+2k] to i, while UX[a,a+2k](i)
is the number of steps n with {Xn,Xn+1} = {i, i + 1}; the analogous numbers for
Y [b, b + 2�] are VY (i) and UY (i). Taking expectation w.r.t. (Eh,E

∗
h ), we get

T (h) = T ′(h) + T ′′(h) = 2
h∑

i=1

Vh(i)Uh(h − i),(5.2)

where we have used the notation T ′(h) := E|T ′(Eh)| and Vh(i) := E(VEh
)(i), etc.

and the fact that the variables VEh
(i) and UEh

(i) are independent of the analogous
variables for E∗

h .
Now, we will similarly translate the expected total length of the additional con-

tour cycles C1, . . . ,Ct into terms of the pair (Eh,E
∗
h). The additional up-contours

are given exactly by the sub-up-excursion pairs in which the subexcursion of
X[a, a+2k] is of the form i ↗ j ↘ i and the subexcursion of Y [b, b+2�] is of the
form −j ↗ −i ↘ −j , where 1 ≤ i < j ≤ h − 1. Similarly, the additional down-
contours are given exactly by the sub-down-excursion pairs in which the X-sub-
excursion is of the form j ↘ i ↗ j and the Y -sub-excursion is of the form
1 − i ↘ 1 − j ↗ 1 − i, where 1 ≤ i < j ≤ h.

The observation about the subexcursions of Eh immediately preceding
Lemma 4.2, the linearity of expected values and the multiplication of expected
values for independent variables collectively imply that taking the expected value
of the relation (5.1) w.r.t. our measure on (Eh,E

∗
h), we get the following recursion

for L(h):

L(h) = T (h) − ∑
1≤i<j≤h−1

Nh(i, j)Nh(h − j,h − i)L(j − i)

(5.3)
− ∑

1≤i<j≤h

Mh(i, j)Mh(h + 1 − j,h + 1 − i)L(j − i),

where Nh(i, j) is the expected number of i ↗ j ↘ i sub-up-excursions and
Mh(i, j) is the expected number of j ↘ i ↗ j sub-down-excursions of Eh for
0 ≤ i < j ≤ h.

Therefore, we now need to compute the expected values Vh(i), Uh(i), Nh(i, j)

and Mh(i, j) for our excursion measure Eh. This will be done using Lemma 4.2.

LEMMA 5.1. (i) For the expected number of visits to i by Eh, we have

Vh(i) = 2
i(h − i)

h
+ 2

i(h + 1 − i)

h + 1
for i = 1, . . . , h − 1,

while Vh(0) = 2 and Vh(h) = 2(1 − 1/(h + 1)).
(ii) For the expected number of {i, i + 1}-crossings, we have

Uh(i) = 2
(h − i)(i + 1)

h
+ 2

(h − i + 1)(i + 1)

h + 1
− 2 for i = 0, . . . , h − 1.
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PROOF. Count the number of visits of the there leg to i, where 1 ≤ i ≤ h − 1,
using the following method. There will necessarily be a first visit to i. Then the
next step is to i − 1 with probability (i − 1)/(2i) and to i + 1 with probability
(i + 1)/(2i). In the first case, there will certainly be a next visit to i; in the sec-
ond case, a second visit occurs with probability P

there
i+1 (Ti < Th) = (h−i−1)i

(h−i)(i+1)
, by

Lemma 4.2. Adding up these possibilities, we find that a second visit to i occurs
with probability 1 − h

2i(h−i)
and we reach h without a second visit with probabil-

ity h
2i(h−i)

. After each visit to i, we have these same possibilities independently,
hence the number of visits to i is a geometric random variable with expected value
2i(h−i)

h
. Treating the back leg similarly, we have proven (i).

To prove (ii), first notice that

Uh(i) = E
there(2|{n :Xn = i,Xn+1 = i + 1}| − 1)

+ E
back(2|{n :Xn = i + 1,Xn+1 = i}| − 1).

Then the computation of these expectations is very similar to part (i). In the there
leg, at the first visit to i +1, which is just after the first (i, i +1)-crossing, there will
be a second (i, i +1)-crossing with probability P

there
i+1 (Ti < Th), and so on; thus, we

have a geometric random variable with mean 1/(1 −P
there
i+1 (Ti < Th)) = (h−i)(i+1)

h
.

The back leg can be treated in the same way and so the proof is complete. �

Turning to the computation of Nh(i, j) and Mh(i, j), note that Nh(i, j) =
N there

h (i, j) + Nback
h (i, j) whenever j < h, and Nh(i, h) = 1 + Nback

h (i, h), with
the obvious notation. Similarly, Mh(i, j) = M there

h (i, j) + Mback
h (i, j) for j < h,

and Mh(i, h) = Mback
h (i, h).

LEMMA 5.2. For 1 ≤ i < j ≤ h, we have

N there
h (i, j) = i

h

h − i

(j − i)(j + 1 − i)
,

Nback
h (i, j) = i

h + 1

h + 1 − i

(j − i)(j + 1 − i)
,

M there
h (i, j) = h − j

h

j

(j − i)(j + 1 − i)
,

Mback
h (i, j) = h + 1 − j

h + 1

j

(j − i)(j + 1 − i)
.

PROOF. For i < j , let Rthere
h (j ↘ i) denote the expected number of segments

in the trajectory of the there leg of Eh that go from j to i, visiting only vertices in
{i+1, i+2, . . . , j −1} meanwhile. Similarly, let Rback

h (i ↗ j) denote the expected
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number of segments in the trajectory of the back leg that go from i to j , visiting
only vertices in {i + 1, i + 2, . . . , j − 1} meanwhile. Now, observe that

N there
h (i, j) = Rthere

h (j ↘ i) − Rthere
h (j + 1 ↘ i),

Nback
h (i, j) = Rback

h (i ↗ j) − Rback
h (i ↗ j + 1),

(5.4)
M there

h (i, j) = Rthere
h (j ↘ i) − Rthere

h (j ↘ i − 1),

Mback
h (i, j) = Rback

h (i ↗ j) − Rback
h (i − 1 ↗ j).

Whenever the there leg is at j , either {Th < Ti} or {Ti < Th} will happen and
in the latter case, there will be exactly one segment of the trajectory counted in
Rthere

h (j ↘ i) before we return to j . Then we again have an independent try for
{Th < Ti}, and so on, until we actually reach h. Thus, the number of j ↘ i cross-
ings is a geometric random variable and

Rthere
h (j ↘ i) = P

there
j (Ti < Th)

1 − P
there
j (Ti < Th)

= (h − j)i

h(j − i)
,

where we have used Lemma 4.2 to get the second equality. Similarly,

Rback
h (i ↗ j) = P

back
i (Tj < T0)

1 − P
back
i (Tj < T0)

= (h + 1 − j)i

(h + 1)(j − i)
.

Plugging these results into the equations of (5.4), we get the identities of
Lemma 5.2. �

Now, we plug the formulas of Lemma 5.1 into (5.2) and after simple algebraic
manipulations, with the main tool being

∑k
i=1 ia = ka+1/(a + 1) + O(ka), we get

T (h) = 16

15
h3 + O(h2) as h → ∞.(5.5)

Next, collecting the coefficients of L(m) for m = j − i = 1,2, . . . , h−1 in (5.3)
into Y (h,m), again with the same simple, but extensive, algebraic manipulations,
we get

L(h) = T (h) −
h−1∑
m=1

Y (h,m)L(m)(5.6)

with

Y (h,m) = 4

15

(
h3

m4 − m

h2

)
− 4

3

(
h

m2 − 1

m

)

(5.7)

+ O(h2)

m4 + O(h)

m3 + O(1)

m2 + O(h−1)

m
+ O(h−2),
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where the implicit constants in O(·) are independent of both h and m. Note that it
is possible to get exact formulas in (5.5) and (5.7) using the lower order terms in
the closed formula for

∑k
i=1 ia . However, the use of symbolic computation soft-

ware is strongly recommended here: the exact formulas fill a couple of pages,
unfortunately.

It will be convenient to remove the h2 factor from the denominator in (5.7), so
we define K(h) := h2L(h) and Q(h) := h2T (h) = (16/15)h5 + O(h4) and

X(h,m) := h2

m2 Y (h,m)

= 4

15

(
h5

m6 − 1

m

)
− 4

3

(
h3

m4 − h2

m3

)
(5.8)

+ O(h4)

m6 + O(h3)

m5 + O(h2)

m4 + O(h)

m3 + O(1)

m2 ,

and thus rewrite (5.6) as

K(h) = Q(h) −
h−1∑
m=1

X(h,m)K(m).(5.9)

The exact explicit solution of such a recursion seems impossible, so how can it
give the growth rate of K(h)? Before embarking on a search for the solution, we
describe a naive approach which will show what the main ideas are.

Consider a simplified continuous analog of (5.9),

k(t) = 16

15
t5 −

∫ t

1

[
4

15

(
t5

s6 − 1

s

)
− 4

3

(
t3

s4 − t2

s3

)]
k(s) ds,(5.10)

which is a linear Volterra integral equation of the second kind. The general theory
([17]) says that since both (16/15)t5 and the integral kernel are smooth in the
domain 1 ≤ s ≤ t < ∞, there exists a unique smooth solution k(t). This k(t) is
actually the solution of the sixth order linear ordinary differential equation that we
get by differentiating (5.10) six times:

0 = k(6)(t) + 8

t4 k′′(t) − 32

t5 k′(t) + 32

t6 k(t),(5.11)

with initial conditions {k(1), k′(1), . . . , k(5)(1)} determined by the derivatives of
(16/15)t5 at t = 1. This ODE is a special case of Euler’s equation

tnx(n)(t) + a1t
n−1x(n−1)(t) + · · · + an−1tx

′(t) + anx(t) = 0,

where the ai ’s are constants. This equation has two singular points, 0 and ∞,
both regular. See [16], Chapter 4, which will be our standard reference, for back-
ground. Now, with a change of variables t = eu, we get a linear ODE with con-
stant coefficients, which can be explicitly solved: a fundamental set of solutions is
{tμ(log t)k}, where μ runs through the roots of the associated indicial equation,

(μ)n + (μ)n−1a1 + · · · + μan−1 + an = 0,
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with the notation (μ)n := μ(μ − 1) · · · (μ − n + 1), while k runs through the non-
negative integers less than the multiplicity of the root μ. In the case of (5.11), the
indicial equation is

μ(μ − 1)(μ − 2)(μ − 3)(μ − 4)(μ − 5) + 8μ(μ − 1) − 32μ + 32 = 0,(5.12)

with roots μ1,2 = 1, μ3,4 = 4 and μ5,6 = (5 ± √
17)/2, so we get that the general

solution is

k(t) = c1t
(
√

17+5)/2 + c2t
4 log t + c3t

4 + c4t log t + c5t + c6t
(5−√

17)/2.(5.13)

With certain initial conditions, some coefficients ci in (5.13) might vanish, but we
know that ch2 ≤ L(h) ≤ Ch3, so we expect c′t4 ≤ k(t) ≤ C′t5 and it seems likely
that the growth rate will be t (

√
17+5)/2 as t → ∞.

If we use Q(t) instead of (16/15)t5, and the full X(t, s) as the integral kernel,
we arrive at a nonhomogeneous Euler-type ODE with nonconstant coefficients
ai = ai(t). These ai(t) and Q(6)(t) are still holomorphic at t = ∞, so we can
use the Frobenius method (see [16], Section 4.8 and [42], Section 3.4), to find
a fundamental set of solutions very similar to the constant coefficient case, with
growth rates determined by the roots μ1, . . . ,μ6. Now, one possibility to make
this argument rigorous would be to adapt the Frobenius method to the discrete
equation (5.9), as h → ∞, with differentiation replaced by the discrete difference
operator (�K)(h) := K(h + 1) − K(h). Although this adaptation seems possible,
we will adopt a more traditional approach.

To begin the actual proof, consider the generating function κ(z) :=∑∞
m=1 K(m)zm. Because of the polynomial bounds on K(m), the radius of con-

vergence of κ(z) around z = 0 is 1. The task is then to convert (5.9) into an ODE
involving κ(z), with a singularity at z = 1 and to read off the rate of growth of
K(m) from the size of the singularity of the solution κ(z).

We multiply both sides of (5.9) by zh and sum the equation for all positive h’s.
To write the resulting equation as an ODE, first notice that

∞∑
h=2

h−1∑
m=1

hk

m�
K(m)zh =

∞∑
m=1

K(m)

m�

∞∑
n=m+1

nkzn.(5.14)

It is not difficult to see that for |z| < 1,
∞∑

n=m+1

nkzn = zm+1

(1 − z)k+1

(
k!fk(z) + (k)k−1fk−1(z)m(1 − z) + · · ·

(5.15)
+ kf1(z)m

k−1(1 − z)k−1 + mk(1 − z)k
)
,

where each fi(z) is an entire function with fi(1) = 1. This formula implies, for
example, that

ρ(z) :=
∞∑

h=1

Q(h)zh z=1� 16/15

(1 − z)6 ,(5.16)
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where the notation f (z)
z=z0� g(z) means that f (z) = g(z)(1 + ε(z)), where ε(z) is

an entire function with ε(z0) = 0.
Now, because of the m6 denominator in X(h,m), let us define φ(z) :=∑∞
m=1

K(m)

m6 zm. Then
∑∞

m=1
K(m)

m5 zm = φ′(z)z and, in general,

∞∑
m=1

K(m)

m�
zm = φ(6−�)(z)z6−� + a�,5−�φ

(5−�)(z)z5−� + · · · + φ′(z)z(5.17)

for 0 ≤ � ≤ 5, with a�,j ∈ Z constants, j = 2, . . . ,5 − �.
Plugging (5.15) into (5.14) and then using (5.17) and (5.16), we can turn (5.9)

into the following ODE for φ(z), with a singularity at z = 1, and initial conditions
at z = 0 easily computable from the first few values of K(h):

φ(6)(z)z6 + a0,5φ
(5)(z)z5 + · · · + φ′(z)z

= ρ(z) + φ(5)(z)
z6

1 − z

(
− 4

15
+ 4

15
+ 4

3
− 4

3

)

+ φ(4)(z)z5
{

f1(z)

(1 − z)2

(
− 4

15
(5)1 + 4

3
(3)1 − 4

3
(2)1

)
+ A4,0

1 − z

}

+ φ(3)(z)z4
{

f2(z)

(1 − z)3

(
− 4

15
(5)2 + 4

3
(3)2 − 4

3
(2)2

)

+ f1(z)A3,1

(1 − z)2 + A3,0

1 − z

}

+ φ(2)(z)z3
{

f3(z)

(1 − z)4

(
− 4

15
(5)3 + 4

3
(3)3

)

+ f2(z)A2,2

(1 − z)3 + f1(z)A2,1

(1 − z)2 + A2,0

1 − z

}

+ φ′(z)z2
{

f4(z)

(1 − z)5

(
− 4

15
(5)4

)
+ f3(z)A1,3

(1 − z)4

+ f2(z)A1,2

(1 − z)3 + f1(z)A1,1

(1 − z)2 + A1,0

1 − z

}

+ φ(z)z

{
f5(z)

(1 − z)6

(
− 4

15
5!

)
+ f4(z)A0,4

(1 − z)5 + · · · + A0,0

1 − z

}
,

where the Ai,j ’s are constants, explicitly computable from the integers a�,j in
(5.17) and the exact coefficients in the O(·) error terms in (5.8).

Now, changing variables v = 1 − z, that is, writing ψ(v) := φ(1 − v) and
σ(v) := ρ(1 − v), and multiplying both sides by v6, we arrive at the equation

v6ψ(6)(v)
v=0� 16

15 − 8ψ ′′(v)v2 + 32ψ ′(v)v − 32ψ(v).(5.18)
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The holomorphic correction factor on the right-hand side, as well as the initial
conditions at v = 1, can be computed explicitly. This is again a nonhomogeneous,
nonconstant coefficient version of (5.11), but we are now interested in the singu-
larity of the solution at v = 0. [Notice that getting the same ODE is an accident,
due only to the fact that the indicial equation (5.12) is invariant under the transfor-
mation μ �→ 5 − μ.] For the homogeneous version, the general Frobenius method
([42], Section 3.4) gives a fundamental set of solutions,

ψ1(v) := f1,0(v)v + f1,1(v)v logv + f1,2(v)v log2 v,

ψ2(v) := f2,0(v)v + f2,1(v)v logv + f2,2(v)v log2 v + f2,3(v)v log3 v,
(5.19)

ψ3(v) := f3,0(v)v4, ψ4(v) := f4,0(v)v4 + f4,1(v)v4 logv,

ψ5(v) := f5,0(v)v(5+√
17)/2, ψ6(v) := f6,0(v)v(5−√

17)/2,

where the fi,j ’s are entire functions with fi,0(0) = 1 and arbitrarily many coef-
ficients in their Taylor expansions can be computed explicitly, the coefficients of
which decay superexponentially. From (5.19), we get a solution of the nonhomo-
geneous equation by the standard method (see [16], Theorem 3.6.4):

ψ(t) = ψh(t) +
6∑

i=1

ψi(t)

∫ t

1

Wi(s)

W(s)
σ (s)s6 ds,(5.20)

where s6σ(s)
s=0� 16/15 is the nonhomogeneity term, W(t) := det(ψ(j−1)

i (t))6
i,j=1

is the Wronskian of the ODE (5.18), Wi(t) is the determinant obtained from W(t)

by replacing the ith row (ψ
(j−1)
i (t))6

j=1 by (0, . . . ,0,1) and ψh(t) is the solution
of the homogeneous equation with the given initial conditions at t = 1. One can
easily see that the integrand is an entire function, so the integral does not depend on
the path of integration. It follows that the solution ψ(t) of (5.18) has a leading term
∼ ct(5−√

17)/2 as t → 0, unless the initial conditions accidentally kill this term. To
show that this cancellation in (5.20) does not happen, it is enough to calculate the
first few coefficients in the Taylor expansions of the fi,j (v)’s in (5.19) because we
can control the size of the error by the superexponential decay of these coefficients.
We spare the reader these details.

From ψ(v) ∼ cv(5−√
17)/2, it follows that ψ(4)(v) ∼ c′v(−3−√

17)/2 as v → 0
and, hence, by (5.17),

∞∑
m=1

L(m)zm =
∞∑

m=1

K(m)

m2 zm ∼ c′(1 − z)(−3−√
17)/2 as z → 1.

The standard Tauberian theorem for power series ([30], Theorem 5 of Sec-
tion XIII.5) gives that

h∑
m=1

L(m) ∼ c′′h(3+√
17)/2, moreover, L(h) ∼ c′′′h(1+√

17)/2 as h → ∞,
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where the second conclusion requires some additional hypothesis: for example, it
is enough if L(m) is monotone increasing. But we know this from Lemma 4.3,
hence L(h) ∼ c′′′h2δ with 2δ = (1 +√

17)/2. Using this combined with the end of
Section 4, we get (4.5) and the proof of the first part of Theorem 1.2 is complete.

6. The scaling relation γ + δ = 3/2.
PROOF. Consider the 2N × 2N box BN := {(n,m) : max{|n|, |m|} ≤ N}

around the origin. An edge e = {(n,m), (n + 1,m)}, where n + m is, say, even, is
in a 0-level contour if H(n + 1/2,m + 1/2) = 0 and H(n + 1/2,m − 1/2) = 1.
We will denote this event by Oe. The classical De Moivre–Laplace theorem ([29],
Section 2.1) tells us that P(Xn = k) = �(n−1/2) for k = O(

√
n), which immedi-

ately implies that P(Oe) = �(N−1/2) for (n,m) ∈ BN and min{|n|, |m|} = 
(N),
that is, for most edges inside the box BN . [Here, the constant in the lower bound
of �(N−1/2) depends, of course, on the constant in 
(N).] From the linearity of
expectation, it follows that the total expected length of 0-level contours inside BN

is �(N3/2).
We call a closed contour a medium cycle if it goes through an edge inside R :=

B2N/3 \ BN/3 and its height is between h∗ and 2h∗, where h∗ = c∗
√

N/ logN

with some small constant c∗ > 0. Let us denote the total length of medium cycles
contained entirely in BN , a random variable, by λ(N) and, if only those on some
level � ∈ Z are continued, by λ�(N). Summing for all edges in R, by the linearity
of expectation,

Eλ(N) = �
(
N2(

P(h∗) − P(2h∗)
))

.(6.1)

Note that if ω(N) := C
√

logN , with C large enough, then the probability that
there are contours in BN on any level � with |�| > ω(N)

√
N is at most o(N−1/2).

Thus,

Eλ(N) = ∑
�∈Z

Eλ�(N) = ∑
|�|<ω(N)

√
N

Eλ�(N) + o(N3/2).(6.2)

We now need the following simple lemma.

LEMMA 6.1. Let S be any finite set of faces and F a face of Z
2 such that

H̃ (S ∩ F) ≡ 0 is possible, where H̃ (n + 1
2 ,m + 1

2) := Xn + Ym. In other words,
the graphical distance between any two faces in S ∪ F is even. Then the condi-
tional probability P(H̃ (S) ≡ 0 | H̃ (F ) = 2�), where � ∈ Z, is maximized at � = 0.
Furthermore, if dist(S,F ) > t and � <

√
t/100, then P(H̃ (S) ≡ 0 | H̃ (F ) = 2�) >

P(H̃ (S) ≡ 0 | H̃ (F ) = 0)/2.

PROOF. We start by proving the first statement for the case when |S| = 1.
Suppose that F = (1/2,1/2) and take n,m ∈ Z such that n + m is even. The
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stationarity and spatial reflection symmetry of SRW imply that

P(Xn + Ym = 0|X0 + Y0 = 2�)

= P(Xn + Ym = 2�|X0 + Y0 = 0)
(6.3)

= P(Xn + Ym = 2�|X0 = Y0 = 0)

= ∑
j∈Z

P(Xn = j |X0 = 0)P(Ym = j − 2�|Y0 = 0).

Now, it is well known that for any n ∈ Z, the sequences P(X2n = 2�|X0 = 0) and
P(X2n+1 = 2� + 1|X0 = 0) are decreasing as |�| increases and that 0 < a1 ≤ · · · ≤
ak and 0 < b1 ≤ · · · ≤ bk imply that a1bπ(1) + · · · + akbπ(k) is maximal when π

is the identical permutation. It follows that (6.3) is maximized at � = 0 and we are
done. The case |S| > 1 is similar—we just have to use the fact that for any finite
set N ⊂ Z, the sequence P(X2n = 2� for all n ∈ N |X0 = 0) is decreasing in |�|.

For the second statement, first note that dist(S,F ) > t implies that there is a face
F ∗ sharing one coordinate with F , separating F from S in the other coordinate,
and such that dist(F ∗,F ) ≥ t/2. Recall, now, that two simple random walks started
at distance 2� from each other with � <

√
t/100 can be coupled to coincide after at

most t/2 steps with probability larger than 1/2. This, the Markov property P(Xn =
j |Xt/2 = i,X0 = 0) = P(Xn = j |Xt/2 = i) for any n > t/2 and the first statement
of our lemma collectively imply the second statement. �

This lemma clearly implies that Eλ�(N) ≤ Eλ0(N) for all � and that Eλ0(N) ≤
10Eλ�(N) for |�| < √

N/100. Hence, (6.2) gives



(√

NEλ0(N)
) ≤ Eλ(N) ≤ ω(N)

√
NEλ0(N) + o(N3/2).

This and (6.1) together give




(
N3/2

√
logN

(
P(h∗) − P(2h∗)

)) − o(N)

(6.4)
≤ Eλ0(N) ≤ O

(
N3/2(

P(h∗) − P(2h∗)
))

.

On the other hand, what is the number μ0(N) of medium 0-level cycles in BN ?
Consider just one box D with side-length N/3 inside R. Combining the arguments
of Section 2 and Lemma 6.1, we know that there is a medium 0-level cycle inside
D with a uniform positive probability, hence we have a lower bound 0 < m ≤
Eμ0(N).

For an upper bound, consider the event D = D(N, c∗,K) := {the diameter of
each medium cycle is at most Kh2∗ logh∗, while the smaller sides of their en-
closing rectangles are all at least h2∗/(K logh∗)}. For any large K , if c∗ is small
enough, then (4.7) implies that the probability of D is at least 1 − N−10, while
Kh2∗ logh∗ ≤ N/3 and h2∗/(K logh∗) ≥ c′N/(K log2 N).
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On the event D , the maximum size of a set of medium cycles such that none of
them contains another one in its interior is clearly bounded by C1 log4 N for some
large constant C1. On the other hand, the length of a nested sequence of 0-level
medium cycles enclosing each other can be bounded as follows.

Fix a vertex v and let C1, . . . ,Ct be the sequence of 0-level medium cycles
whose enclosing rectangle contains v, with Ci being in the interior of Ci+1, for
all i. Note that if Ci is an up-contour, then Ci+1 must be a down-contour and vice
versa. By symmetry, we may assume that C1 is an up-contour. Now, the down-
excursions e2, e′

2 that give C2 must have endpoints strictly greater than the max-
imum of the up-excursions e1, e′

1 giving C1. This means that the SRW’s {Xn}
and {Ym}, in order to form e2 and e′

2, respectively, must increase by at least the
height of C1 from the endpoints of e1 and e′

1. Then, in order to form e3 and e′
3,

the up-excursions giving C3, the SRW’s must decrease by at least the height of
C2 from the endpoints of e2 and e′

2, and so on. The time it takes for {Xn} to form
the sequence of up- and down-excursions e1, e2, . . . , et stochastically dominates
the time it takes to form a similar sequence, but without the requirement that ei

must be compatible with e′
i . Since e1 has length at least c′N/(K log2 N) and et

has length at most N/3, the expectation of t is bounded by C2 log2 N for some
large constant C2.

Altogether, on D , we have μ0(N) ≤ C1C2 log6 N . On Dc, we still have
μ0(N) ≤ N2, hence

m ≤ Eμ0(N) ≤ C3 log6 N.(6.5)

The possible arrangement of all the 0-level cycles in these nested sequences is
restricted by Lemma 3.1. Now, recall that the j th subexcursion of Eh with height
k < h has the distribution of Ek . These two facts together imply that the cycles in
the nested sequences can be chosen one by one so that each has the unconditional
distribution of Ek for some k. This, our result (4.5) on L(N) and (6.5) collectively
imply


(Nδ/ logN) ≤ Eλ0(N) ≤ O(Nδ log7 N).(6.6)

Now, comparing (6.4) with (6.6) yields


(Nδ−3/2/ logN) ≤ P(h∗) − P(2h∗) ≤ O(Nδ−3/2 log7.5 N) + o(N−1/2).

Since δ > 1, the term o(N−1/2) is negligible and substituting back N =
�(h2∗ logh∗) gives



(
h2(δ−3/2)∗ / log1.5 h∗

) ≤ P(h∗) − P(2h∗) ≤ O
(
h2(δ−3/2)∗ log7.5 h∗

)
.

We can sum this over h∗ = 2kh for k = 0,1,2, . . . and any fixed h, arriving at



(
h2(δ−3/2)/ log1.5 h

) ≤ P(h) ≤ O
(
h2(δ−3/2) log7.5 h

)
.(6.7)

That is, P(h) ≈ h−2γ with γ = 3/2 − δ. (4.6) then completes the proof of the
second half of Theorem 1.2. �
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7. Concluding remarks and open problems.

The level sets of additive Brownian motion. In this subsection, we review the
connections between our results and what is known about the additive Brownian
motion.

Our Proposition 1.4 in the continuous setting is [25], Proposition 2.2. The main
result of [24] concerning the additive Brownian motion is that given the zero set
and the sign of a single excursion, the signs of all other excursions are deter-
mined. In corner percolation, if all 0-level curves are given, then deciding whether
one cycle is an up- or down-contour is simply a matter of deciding which of the
two possible chessboard colourings of the faces of Z

2 to take and this obviously
also determines the direction of all other cycles. Dalang and Mountford proved
in [22] that there is a unique closed Jordan curve J in the boundary ∂B of the
Brownian bubble B , the latter being defined as a connected component of the set
{(s, t) ∈ R

2 :Bt + B∗
s > 0}. It is natural to guess that the curves C(Eh,E

∗
h) have

this J as their scaling limit, and the Hausdorff dimension of J is almost surely
(
√

17 + 1)/4. Passing to the limit seems to be a nontrivial task, but, based on our
results on the structure of the 0-level corner percolation set, we conjecture that
the scaling limit of large cycles exists, is a simple loop and equals J . In [44], it
was proven that 1 ≤ dim(J ) ≤ dim(∂B) < 3/2 and the survey [19] announces the

still unpublished result that dim(∂B) = 3/2 − (5 −
√

13 + 4
√

5)/4 = 1.421 . . . .

The strict inequalities dim(J ) < dim(∂B) < 3/2 should be surprising only at first
sight: on one hand, each macroscopic cycle J has many tree-like sets attached to
it, and the ones from the inside contribute significantly to ∂B; on the other hand, it
was shown in [36] that almost all points of the level set are points of total discon-
nection, hence not in the boundary of any bubble.

Note that a Brownian excursion has a dense countable set of local extrema (see
[45], Section 9) and two independent copies will not have any of them on the same
height a.s. This means, on one hand, that there are no continuous analogs of the
degree 4 points where the Two Cautious Hikers had to practice their caution and
this lack of choice may serve as a simple intuitive explanation of the uniqueness
of the Jordan curve inside ∂B . But, on the other hand, the denseness of the local
extrema makes it unclear how to define a graph at all (which is why the definition
of J took up the entire paper [22]).

It could be interesting to study the set of outermost corner percolation cycles
contained in a large finite box, and the scaling limit of this set. For conformally
invariant models, such loop ensembles are the subject of active research; see [12,
13, 55]. One can also consider the tree structure of all the nested contour cycles.
Could the scaling limit of this tree structure be described using Aldous’ continuum
random tree [1]?
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Biased coins. There are two natural versions of the model involving biased
coins instead of fair ones. The first is when we define the ± sequences ξ and η

using a p-biased coin for some 0 < p < 1. Then the random walks {Xn} and {Ym}
will have every even step biased to one direction and every odd step biased to
the other, so the main features of these walks are the same as if they were simple
random walks. In particular, the proof of Theorem 1.1 in Section 2, relying on
Brownian approximation, goes through verbatim. Furthermore, the formulas of
Lemmas 4.2 and 5.1 will hold asymptotically for h → ∞ and i, j = �(h), which
means that the main coefficients in (5.9), hence the ODE (5.18), will be the same.
Checking whether the cancellation of the leading term ψ6(t) in (5.20) happens for
any value of p would require some additional work which we have not done.

In the second version, the random walks {Xn} and {Ym} are themselves biased
to, say, the positive direction: P(Xn+1 = Xn +1) = P(Ym+1 = Ym +1) = p > 1/2.
Here, one can easily prove that there are infinitely many infinite contour lines going
from (+∞,−∞) to (−∞,+∞) with finite nested sequences of contour cycles
between them. This model is no longer critical and the behavior of the sequences
Pp(n) and Lp(n) is already a large deviation question. On the other hand, we can
try to define the near-critical exponent

Pp(the contour of the origin is infinite) = (p − 1/2)β+o(1).

It would be interesting to prove that this β exists and to find its value.

The cycle of the origin. Does the second moment estimate

E(|C(Eh,E
∗
h )|2) ≤ K(E|C(Eh,E

∗
h)|)2

hold for some constant K < ∞? As explained in Section 4, this would imply
that the cycle containing the origin, conditioned to have diameter n, has expected
length nδ+o(1). The analogous results are known for critical Bernoulli percolation;
see [40].

Crossing probability and corner percolation on a torus. Noise stability and dy-
namical corner percolation. The criticality of Bernoulli(1/2) bond percolation
on Z

2 is intimately related to the fact that the left-right crossing probability in
an n × n square is bounded away from 0 and 1; the exact value is actually 1/2
(with the appropriate choice of exactly what a left-right crossing means). In cor-
ner percolation, from the graph being 2-regular, it immediately follows that we
cannot have both a left-right and an up-down crossing, while these events clearly
have the same probability, hence this probability is at most 1/2. In a configuration
without either type of crossing, the largest contours intersecting the sides of the
square are all located on at most two levels, so our Lemma 3.1 can be applied to
their possible arrangements. This does not leave many possibilities for noncross-
ing configurations, so we conjecture (also supported by computer simulations) that
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their probability tends to 0 as n → ∞ and thus the left-right crossing probability
tends to 1/2. A related result is that corner percolation on the torus Z2n × Z2n has
a noncontractible cycle with probability tending to 1, or, equivalently, the infinite
doubly-2n-periodic corner percolation configuration lifted to the universal cover
Z

2 will have an infinite path. This is because the only way to avoid this is to have
X0 = X2n and Y0 = Y2n for the fundamental domain [0,2n] × [0,2n]. However,
we do not know the distribution of the homology classes of the noncontractible
cycles.

The fact that the left-right crossing probability in critical Bernoulli percola-
tion is 1/2 also gave rise to the study of noise sensitivity by Benjamini, Kalai
and Schramm [9]: if we resample an arbitrary ε > 0 proportion of the percolation
configuration in an n × n square, then having a left-right crossing in the new con-
figuration will be asymptotically independent of having one previously. Moreover,
Schramm and Steif [49] give a good estimate on the rate with which ε = ε(n) can
go to 0 so that we still have asymptotic independence, and this proves that criti-
cal percolation (at least on the triangular lattice) is also dynamically sensitive: if
each variable in the configuration is updated independently according to a Poisson
clock, then a.s. there will be exceptional times when there exists an infinite clus-
ter. In corner percolation, the exceptional configurations with neither left-right nor
up-down crossings are similar to those in which flipping a small number of signs
changes the situation from having a left-right crossing to an up-down crossing,
hence we conjecture that the event of a left-right crossing in corner percolation
is noise stable: this event occuring in a configuration has an n-independent posi-
tive correlation with it occurring after each sign is resampled independently with
probability ε > 0. Furthermore, the proof in Section 2 suggests that having no
infinite components is a dynamically stable property, that is, there are no excep-
tional times a.s. In contrast, recurrence of simple random walk Z

2 is dynamically
sensitive [35].

Is corner percolation almost supercritical? Benjamini asked if corner per-
colation is also critical from the point of view that adding to it an independent
Bernoulli(ε) bond percolation process results in a unique infinite cluster for any
ε > 0. We conjecture that the answer is yes; however, it seems hard to construct an
actual proof. The uniqueness part of this question for certain models with infinite
components was shown in [8] and [10].

Between the Gaussian free field and additive BM. An ε-almost-vertical
domino tiling of the n × n square is a set of disjoint dimers that covers the n × n

square, each dimer having at least one of its vertices inside this square and the pro-
portion of the horizontal dimers being “close” to ε > 0. An ε-almost-horizontal
domino tiling is defined analogously. Now, take a uniform random tiling from each
family and take the union of them. One can prove that as n → ∞, in the weak limit,
we get a random 2-regular subgraph Gε of Z

2. As with any double dimer model,
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this model has a natural height function. (Actually, our height function could also
be defined by a version of this general procedure.) For the ε-almost-vertical tiling,
if we scale the lattice by 1/n in both directions and do not scale the values of the
height function, then the limit is a Gaussian free field h↔

ε with variance larger in
the horizontal direction than in the vertical; see [37]. The same limit hε of the
height function for Gε is then the difference of a horizontally and a vertically
stretched GFF: hε = h↔

ε − h
�
ε . As ε → 0, can we rescale hε so that it converges to

additive BM? And what happens if one takes ε tending to 0 simultaneously with
n? Limits of such degenerate (single) dimer models appear in [11].

The k-xor model on planar lattices. Benjamini suggested the following ver-
sion of corner percolation on Z

2: parametrize the edges e of Z
2 by their mid-

points (xe, ye) ∈ (1
2Z)2, with xe + ye ∈ Z + 1/2. Now, take two sequences of

i.i.d. Bernoulli(1/2) variables, {ξ(k)} and {η(k)}, parametrized by k ∈ 1
2Z, and

let ζ(e) := ξ(xe) + η(ye)mod 2. The resulting configuration of open (ζ = 1) and
closed (ζ = 0) edges still has the property that two neighboring infinite lines either
agree or complement each other, but the states of all the edges are now pairwise
(moreover, 3-wise) independent. The connected components of this graph are no
longer cycles, but one can show that the global behavior of the model is still gov-
erned by corner percolation, with the same critical exponents.

On the triangular lattice, to produce a critical model, we want site per-
colation with density 1/2. Benjamini’s trixor model has three sequences of
i.i.d. Bernoulli(1/2) variables, {ξ(k)}, {η(k)} and {ζ(k)}, parametrized by the three
families of infinite parallel lines constituting the lattice. Then the state of a vertex
in the triangular lattice is τ(v) := ξ(k) + η(�) + ζ(j)mod 2, given by the three
lines through v. This is the same model as uniform measure on 0–1 configurations
with the property that each vertex has an even number of 0-labeled (and hence an
even number of 1-labeled) neighbours; see Figure 7. As observed by Angel and
Schramm, trixor also has a natural height function, the sum of three independent
simple random walks, with the components being the level sets. This means that
the components and the contours separating them have similar long-range behav-
ior, and our proof in Section 2 implies that there are only finite components a.s.
It seems very likely that Section 6 can also be adapted to give γ + δ = 3/2, pro-
vided that these exponents for trixor exist; namely, γ would be the tail probability
exponent for the cluster of the origin to reach out far, while δ would be the expo-
nent for the expected length of a contour or (equivalently for trixor) the volume
of a cluster. According to our simulations, these exponents are γ ∈ (0.16,0.2) and
δ ∈ (1.3,1.34). The exact combinatorial description of trixor contours using the
three marginal simple random walks, in the spirit of our Proposition 1.4, seems
to be harder than for corner percolation, and even if it is possible, the natural re-
cursion will probably be in two variables, which then must be turned into a single
variable recursion and then into an ODE. Finding γ and δ for trixor would be a
welcome development.
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FIG. 7. Two trixor height function samples (side-lengths 30 and 200), with the 0-level set painted
black.

One can also take k sequences of i.i.d. Bernoulli(1/2) variables, parametrized
by k families of suitable parallel lines, and then take the xor (i.e., mod 2 sum) of
them to define a k-xor bond percolation on Z

2 or site percolation on the triangu-
lar lattice. One might speculate that these models are all critical, with exponents
γk → 5/48 and δk → 7/4, which are the exponents for the SLE6 process [43, 53].
But reality is even wilder: the simplest k = 4 choice on the triangular lattice, with
the four families of lines having angles 0,2π/3,4π/3 and π/2, already produced
simulation results γ ∈ (0.93,1.05) and δ ∈ (1.74,1.76). Further simulations by
Braverman suggest that the hitting probabilities of the exploration path also co-
incide with those of SLE6, supporting Conjecture 1.3 in the Introduction. Note
that among the conformally invariant curves SLEκ , the defining property of κ = 6
is locality [48, 54], a property that obviously holds for Bernoulli percolation, but
presently we see no explanation as to how it arises for 4-xor.

As a variation on trixor, Angel suggested considering uniform measure on 0–1
configurations on the vertices of the triangular lattice, with the constraint that each
vertex has an odd number of 1-labelled neighbours. This odd-trixor model is also
given by flipping the states of a well-chosen deterministic quarter of the vertices in
the trixor model; see Figure 8. Hence, it is again of linear entropy and simulations
by Braverman suggest locality and SLE6 hitting probabilities, again supporting
Conjecture 1.3; see Figure 9. It would be very interesting to prove at least noise
and dynamical sensitivity for 4-xor and odd-trixor. But, we no longer have a good
height function interpretation, so we cannot even prove that all the components of
4-xor or odd-trixor are a.s. finite.
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FIG. 8. From even- to odd-trixor, deterministically.

As a final variation, Krishnapur suggested using other balanced symmetric
Boolean functions of k variables instead of k-xor (which is just parity). The sim-
plest choice is majority, when k is odd. We have not studied the resulting k-ma-
jority models, except for the observation that 3-majority has strong long-range
dependence reflecting the triangular lattice.

As we learned from Diaconis [27], the natural 2-xor site percolation model on
Z

2 is used to disprove the conjecture in mathematical psychology that human vi-
sion cannot distinguish random patterns with the same first and second order statis-
tics. Note that the methods of [27] break down if one wants to produce a random
pattern that is visually different from Bernoulli percolation, but the same up to
fourth order statistics (i.e., 4-wise independent). Trixor is 5-wise independent, but
our models do not produce arbitrary large independence with a global behavior
different from the one observed in Bernoulli percolation. Nevertheless, as the very

FIG. 9. All the clusters neighboring the cluster of the origin (in black) in odd-trixor and in
Bernoulli(1/2) site percolation on the triangular lattice.
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recent work [7] shows, one might have up to roughly logn-wise independence in
an n × n square but a completely different global behavior.

There are many other ways to define loop models on the triangular or the hexag-
onal grid, mostly with quadratic entropy and conjectural conformal invariance; see
[55, 56].

Random walks on randomly oriented lattices. Fix an arbitrary ±1 sequence
{ξ(n)}n∈Z and take a simple random walk (Xj )

∞
j=0 on Z with X0 := 0. Now,

consider the two-dimensional random walk (Xk, Sk)
∞
k=0 defined by S0 := 0 and

Sk := ∑k−1
j=0 ξ(Xj ). These processes were studied in [14, 15, 34].

Note that if ξ is the i.i.d. random sequence P(ξ(n) = 1) = P(ξ(n) = −1) = 1/2,
then (Xk, Sk)

∞
k=0 is exactly the random walk we mentioned in the Introduction,

interpolating between the almost simple random walk and the corner percolation
component going through the origin.

Let us call a sequence ξ hospitable if (Xk, Sk) = 0 infinitely often a.s., and hos-
tile otherwise. Is there a characterization of hospitable sequences ξ(n) ∈ {±1}? It
was shown in [14] that a periodic sequence with the same number of +1’s and
−1’s is hospitable, while the sequence ξ(n) := sign(n) and an i.i.d. fair coin ran-
dom sequence are hostile a.s. The following is a rough explanation as to why.

By the first k steps, {Xj } visits each element of an interval of the form
[−�(

√
k),�(

√
k)] around �(

√
k) times and almost all other elements of Z

are visited much less. Therefore, if |∑m
n=−m ξ(n)| = f (m) with f (m) varying

regularly in some sense, then we expect Sk to grow like
√

kf (
√

k) and thus
P((Xk, Sk) = (0,0)) to decay like 1/(kf (

√
k)). This is summable if f (m) =


(log1+ε(m)) and then ξ is hostile. Thus, a hospitable sequence must be quite
uniform, without large fluctuations in the difference between the number of +1’s
and −1’s. In particular, when ξ is the i.i.d. fair coin sequence, then f (m) is typi-
cally

√
m, hence Sk should grow like k3/4 (see [18] for precise results) and hence

the return probabilities P((Xk, Sk) = (0,0)) should decay like k−5/4, which was
actually proven in [14].

It is easy to see that hospitality is a shift-invariant property of ξ . It would
be interesting to decide about invariance under finite permutations: if ξ is hos-
pitable and π is a permutation of Z moving only finitely many elements, is
ξ ◦π = {ξ(π(n))}n∈Z then also hospitable? If 0 = τ(0) < τ(1) < τ(2) < . . . are the
successive return times of {Xj } to 0 and Ri := Sτ(i) − Sτ(i−1), then ξ is hospitable
iff the i.i.d. jump sequence Ri gives a recurrent walk on Z. It is not very difficult
to show that a slightly stronger hypothesis, namely that Ri satisfies the weak law
of large numbers, is indeed invariant under finite permutations. Finally, hospitality
is not invariant under wobbling bijections of Z, that is, under permutations π that
move all elements of Z to at most a fixed bounded distance. For example, the al-
ternating sequence ξ(n) := (−1)n is hospitable, but the sequence ξ ◦π is hostile if
π(2n) = 2n − 1 and π(2n − 1) = 2n for n ≥ 1, while π(n) = n for n ≤ 0.
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