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THE RARITY OF DNA PROFILES1

BY BRUCE S. WEIR

University of Washington

It is now widely accepted that forensic DNA profiles are rare, so it was
a surprise to some people that different people represented in offender data-
bases are being found to have the same profile. In the first place this is just
an illustration of the birthday problem, but a deeper analysis must take into
account dependencies among profiles caused by family or population mem-
bership.

1. Introduction. In the 20 years since the introduction of DNA profiles for
forensic identification there has developed a wide-spread belief that it is unlikely
two people will share the same profile. Assuming at least 10 alleles or 55 geno-
types at each locus, a 13-locus system in common use allows for at least 1021

different profiles, which far exceeds the total number of people in the world. It is
difficult to attach a meaningful estimate to the probability that a person chosen at
random would have a particular profile, but a good first step is to assume indepen-
dence of all (26) alleles in a profile to arrive at an estimate that “reaches a figure
altogether beyond the range of the imagination” in the language Galton (1892)
used to describe probabilities for fingerprints. Given such arguments, what is to be
made of recent findings that the profiles of two people in a database of offender
profiles either match or come very close to matching? Is there a need to re-think
the understanding that profiles are rare?

There are forensic, statistical and genetic aspects to discussions of profile rarity.
The key forensic issue centers on the comparison of two profiles, often one from a
crime-scene sample and one from a suspect. The relevant calculations must recog-
nize the existence of two profiles rather than focusing on only one of them. The
statistical aspects are addressed initially by the “Birthday Problem.” The proba-
bility that a person chosen randomly has a particular birthday is 1/365, ignoring
leap-year complications, but there is over 50% probability that two people in a
group of 23 people share a birthday. This result recognizes that the number of
pairs of people, 253, is much greater than the number of people, 23, and that the
particular shared birthday is not specified. The finding of DNA profile matching in
an Arizonan database of 65,000 profiles [Troyer, Gilroy and Koeneman (2001)] be-
comes less surprising when it is recognized that there are over two billion possible
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pairs of profiles in that database. The genetic aspects rest on the shared evolu-
tionary history of humans. The very fact that the population is finite means that
any two people have shared ancestors and the resulting dependencies increase the
probability of profile matching.

2. Forensic issues. The interpretation of DNA forensic evidence E requires
the probabilities of that evidence under alternative hypotheses, referred to here as
Hp and Hd for the case where they represent the views of prosecution and defense
in a criminal trial. A simple scenario is when the profile GC of a crime-scene stain
matches that, GS , of a suspect. The hypotheses may be as follows:

Hp: the suspect is the source of the crime-scene stain.

Hd : the suspect is not the source of the crime-scene stain.

A quantity of interest to those charged with making a decision is the posterior odds
of the prosecution hypothesis after the finding of matching DNA profiles:

Posterior odds = Pr(Hp|E)

Pr(Hd |E)
.

From Bayes’ theorem,

Pr(Hp|E)

Pr(Hd |E)
= Pr(E|Hp)

Pr(E|Hd)
× Pr(Hp)

Pr(Hd)
,

Posterior odds = LR × Prior odds

and it is the likelihood ratio LR that is estimated by forensic scientists. In paternity
disputes this quantity is called the paternity index. Those who equate Pr(E|Hp)

and Pr(Hp|E), as in “The odds were billions to one that the blood found at the
scene was not O.J.s” [Anonymous (1997)], are said to have committed the “Pros-
ecutor’s Fallacy” [Thompson and Schumann (1987)].

The likelihood ratio for a single-contributor DNA profile can be expressed as

LR = Pr(GS,GC |Hp)

Pr(GS,GC |Hd)

= Pr(GS |GC,Hp)

Pr(GS |GC,Hd)

Pr(GC |Hp)

Pr(GC |Hd)

= 1

Pr(GS |GC,Hd)

by recognizing that the crime-scene stain profile does not depend on the alternative
hypotheses and that the two profiles must match under the prosecution hypothesis.
Among the many advantages of adopting this approach to comparing competing
hypotheses is the clarification that it is match probabilities Pr(GS |GC) for pro-
files from two people that are relevant rather than profile probabilities Pr(GS).
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In the discussion of matching profiles in a database, GC and GS can refer
to the profiles from different people and the issue is whether or not matching is
unlikely.

3. Statistical issues. Diaconis and Mosteller (1989) discussed basic statisti-
cal techniques for studying coincidences and stated the law of truly large num-
bers: “With a large enough sample, any outrageous thing is likely to happen.” Can
we attach probabilities for very unlikely events to occur? In the forensic context,
Kingston (1965) addressed match probabilities long before the advent of DNA pro-
filing. If a particular item of evidence has a probability P , then he assumed that the
unknown number x of occurrences of the profile in a large population of N people
is Poisson with parameter λ = NP . Suppose a person with the particular profile
commits a crime, leaves evidence with that profile at the scene, and then rejoins
the population. A person with the profile is subsequently found in the population
and a simple model says that the probability that this suspect is the perpetrator is
1/x. Although x is not known, it must be at least one, so the probability that the
correct person has been identified is the expected value of 1/x given that x ≥ 1.
Those people who would equate x to its expected value λ and then assign equal
probabilities to all λ people are said to have committed the “Defense Attorney’s
Fallacy” [Thompson and Schumann (1987)].

Balding and Donnelly (1995), referring to Eggleston (1983) and Lenth (1986),
pointed out that Kingston’s conditioning on at least one individual having the pro-
file is not the same as the correct conditioning, that a specific individual (the sus-
pect) has the profile. They gave a general treatment of this “island problem” and
then Balding (1999) followed with a discussion of uniqueness of DNA profiles.
He started with the event that a person (the perpetrator) sampled at random from
a population of size (N + 1) has a particular profile. The remaining people in the
population each have independent probability P of having the same profile. A sec-
ond person (the suspect) is drawn from the population and may be the same person
as the first (event G). The second person is found to have the same profile as the
first (event E). If U is the event that the suspect has the profile and that no-one else
in the population has the profile, then

Pr(U |E) = Pr(U |G,E)Pr(G|E).

Now Pr(G|E) = Pr(E|G)Pr(G)/[Pr(E|G)Pr(G) + Pr(E|Ḡ)Pr(Ḡ)] by Bayes’
theorem, and Pr(E|G) = 1, Pr(E|Ḡ) = P , Pr(G) = 1/(N + 1). Moreover, for in-
dependent profiles, Pr(U |G,E) = (1 − P)N so that Pr(U |E) > 1 − 2λ. For the
USA, with a population of about 3 × 108, a profile with a probability of 10−10

would give λ = 0.03 and the probability that the correct person has been identified
of at least 0.94. This is not as dramatic a number as the original 10−10.

The birthday problem has to do with multiple occurrences of any profile, not a
particular profile as treated by Kingston and Balding. Mosteller (1962) refers to
the latter as the “birthmate problem.” The probability that at least two of a sample



RARITY OF DNA PROFILES 361

of n people have the same unspecified birthday (or DNA profile), in the case where
every birthday (or profile) has the same probability P , is

Pr(At least one match) = 1 − Pr(No matches)

= 1 − {1(1 − P)(1 − 2P) · · · [1 − (n − 1)P ]}

≈ 1 −
n−1∏
i=0

e−iP ≈ 1 − e−n2P/2

For the USA example of P = 10−10, the chance of some profile being replicated
in the population of N = 3 × 108 is essentially 100%. The Arizona Department of
Public Safety [Troyer, Gilroy and Koeneman (2001)] reported a nine-locus match
in a database of 65,493 for a profile that had an estimated probability of 1 in
7.54 × 108. Using that probability, the chance of finding two matching profiles
in the database would be about 94%, so the finding is not unexpected. DNA pro-
files do not have equal or independent probabilities, however, so these calculations
are approximate at best.

4. Genetic issues. DNA profiles are genetic entities and, as such, are shaped
by the evolutionary history of a population. Whereas it is sufficient to take sam-
ples from a population to provide descriptive statistics of that particular population,
predictions of matching probabilities that recognize evolutionary events are neces-
sarily expectations over replicate populations. There is no reason to believe that a
particular population has properties that are at expectation.

As a simple example, consider the estimation of profile probabilities at a single
locus A. If a sample of n genotypes provides estimates p̃i for the frequencies pi of
alleles Ai , then genotypic frequency estimates are p̃2

i for homozygotes AiAi and
2p̃i p̃j for heterozygotes AiAj under the assumption of random mating within the
population. Taking expectations of these estimates, over repeated samples from the
same population and over replicates of the sampled population, provides

E(p̃2
i ) = p2

i + pi(1 − pi)

[
θ + 1 + (2n − 1)θ

2n

]
,

E(2p̃i p̃j ) = 2pipj + 2pipj

[
θ + 1 + (2n − 1)θ

2n

]

[Weir (1996)] to introduce the population coancestry coefficient θ which mea-
sures the relationship between pairs of alleles within a population relative to the
relationship of alleles between populations. To illustrate the meaning of “relative
to” consider a fanciful example of a large community of people, all of whom are
first cousins to each other. If these people pair at random, their children will form
a population in which genotypic frequencies are products of allele frequencies.
A child’s two alleles, one from each parent, are independent. From the perspective
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of an observer outside the community, however, the allele pairs within the commu-
nity appear to be dependent, with θ = 1/16. This value of θ is needed to predict
genotypic frequencies for the community children on the basis of population-wide
allele frequencies.

For large sample sizes, the expected genotypic frequencies reduce to the para-
metric values p2

i +pi(1−pi)θ and 2pipj (1−θ). The sample allele frequencies p̃i

are unbiased for the parametric values pi and θ is serving to provide the variance
of the sample values—in particular, pi(1 − pi)θ is the variance over populations
of allele frequencies within one population. In the situation where alleles are se-
lectively neutral, it is convenient to regard θ as the probability that a random pair
of alleles in the same population are identical by descent, ibd, meaning that they
have both descended from the same ancestral allele. Identity by descent is also an
expectation over replicate populations.

The probabilities of pairs of genotypes require measures of relationship anal-
ogous to θ but for up to four alleles. Two individuals that are both homozygous
AiAi for the same allelic type, for example, may carry two, three, four or two
pairs of alleles that are ibd. For the class of evolutionary models where there is
stationarity under the opposing forces of mutation introducing genetic variation
and genetic drift causing variation to be lost, and allelic exchangeability, these
higher-order ibd probabilities may all be expressed in terms of θ . The distribution
of allele frequencies over replicate populations is Dirichlet for this class of models
and a very useful consequence is that the probability of drawing an allele of type
Ai from a population given that ni of the previous n alleles drawn were of that
type is [niθ + (1 − θ)pi]/[1 + (n − 1)θ ] [Balding and Nichols (1997)]. This pro-
vides, for example, the probability of two members of the same population being
homozygotes AiAi :

Pr(AiAi,AiAi) = pi[θ + (1 − θ)pi][2θ + (1 − θ)pi][3θ + (1 − θ)pi]
(1 + θ)(1 + 2θ)

.

From this and similar expressions for other genotypes, it is possible to predict
the probability that two members of a population will match, that is, have the same
two alleles at a locus [Weir (2004)],

P2 = ∑
i

Pr(AiAi,AiAi) + ∑
i

∑
j �=i

Pr(AiAj ,AiAj )

= ∑
i

Pr(AiAiAiAi) + 2
∑
i

∑
j �=i

Pr(AiAiAjAj )

= 1

D
[6θ3 + θ2(1 − θ)(2 + 9S2)

+ 2θ(1 − θ)2(2S2 + S3) + (1 − θ)3(2S2
2 − S4)].

The first line specifies the genotypes, the second shows the corresponding sets
of alleles, and the third shows the value from the Dirichlet assumption. Random
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mating is assumed for the second line. The third line employs the notation Sk =∑
i p

k
i , k = 2,3,4, and D = (1 + θ)(1 + 2θ).

Partial matches occur when two individuals share one allele at a locus, rather
than the two required for a match. As Diaconis and Mosteller (1989) said: “We
often find ‘near’ coincidences surprising.” The probability that two individuals
partially match is

P1 = 2
∑
i

∑
j �=i

Pr(AiAi,AiAj ) + ∑
i

∑
j �=i

∑
k �=i,j

Pr(AiAj ,AiAk)

= 4
∑
i

∑
j �=i

Pr(AiAiAiAj ) + 4
∑
i

∑
j �=i

∑
k �=i,j

Pr(AiAiAjAk)

= 1

D
[8θ2(1 − θ)(1 − S2) + 4θ(1 − θ)2(1 − S3)

+ 4(1 − θ)3(S2 − S3 − S2
2 + S4)],

with the same meaning for the three rows as for P2. Finally, for two individuals to
mismatch, that is, have no alleles in common,

P0 = ∑
i

∑
j �=i

Pr(AiAi,AjAj ) + 2
∑
i

∑
j �=i

∑
k �=i,j

Pr(AiAi,AjAk)

+ ∑
i

∑
j �=i

∑
k �=i,j

∑
l �=i,j,k

Pr(AiAj ,AkAl)

= ∑
i

∑
j �=i

Pr(AiAiAjAj ) + 2
∑
i

∑
j �=i

∑
k �=i,j

Pr(AiAiAjAk)

+ ∑
i

∑
j �=i

∑
k �=i,j

∑
l �=i,j,k

Pr(AiAjAkAl)

= 1

D
[θ2(1 − θ)(1 − S2) + 2θ(1 − θ)2(1 − 2S2 + S3)

+ (1 − θ)3(1 − 4S2 + 4S3 + 2S2
2 − 3S4)].

Values of P2 are shown in Table 1 for 13 commonly-used forensic loci, using
Caucasian allele frequencies reported by Budowle and Moretti (1999) and various
values of θ . Assuming independence of these loci, the full 13-locus match proba-
bilities are the products of the 13 separate values and these products are also shown
in Table 1. The probabilities of finding at least one matching pair among 65,493
individuals are given in Table 1, along with the sample size needed to give a 50%
probability of at least one match. The column headed “Actual” shows the propor-
tion of pairs of profiles that match at each locus in the very small sample of 203
Caucasian profiles reported by the FBI [Budowle and Moretti (1999)].

The finding of Troyer, Gilroy and Koeneman (2001) was for a pair of profiles
that matched at nine loci, partially matched at three loci and mismatched at one
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TABLE 1
Probabilities that two unrelated noninbred1 people match at common loci, based on allele

frequencies reported by Budowle and Moretti (1999)

θ

Locus Actual2 0.000 0.001 0.005 0.010 0.030

D3S1358 0.077 0.075 0.075 0.077 0.079 0.089
vWA 0.063 0.062 0.063 0.065 0.067 0.077
FGA 0.036 0.036 0.036 0.038 0.040 0.048
D8S1179 0.063 0.067 0.068 0.070 0.072 0.083
D21S11 0.036 0.038 0.038 0.040 0.042 0.051
D18S51 0.027 0.028 0.029 0.030 0.032 0.040
D5S818 0.163 0.158 0.159 0.161 0.164 0.175
D13S317 0.076 0.085 0.085 0.088 0.090 0.101
D7S820 0.062 0.065 0.066 0.068 0.070 0.080
CSF1PO 0.122 0.118 0.119 0.121 0.123 0.134
TPOX 0.206 0.195 0.195 0.198 0.202 0.216
THO1 0.074 0.081 0.082 0.084 0.086 0.096
D16S539 0.086 0.089 0.089 0.091 0.094 0.105
All loci 2 × 10−15 2 × 10−15 3 × 10−15 4 × 10−15 2 × 10−14

Prob.3 0.000,004 0.000,004 0.000,006 0.000,009 0.000,050
Sample size4 28 million 27 million 22 million 18 million 7.7 million

1Apart from evolutionary-driven inbreeding and relatedness.
2Observed proportion of matches in data of Budowle and Moretti (1999).
3Probability of at least one matching pair among 65,493 individuals.
4Sample size to give 50% probability of at least one match.

TABLE 2
Expected numbers of pairs of matching or partially matching profiles in a sample of size 65,493

profiles when at least six of 13 loci match if θ = 0.03

Number of
matching loci

Number of partially matching loci

0 1 2 3 4 5 6 7

6 4,059 37,707 148,751 322,963 416,733 319,532 134,784 24,125
7 980 7,659 24,714 42,129 40,005 20,061 4,150
8 171 1,091 2,764 3,467 2,153 530
9 21 106 198 163 50
10 2 7 8 3
11 0 0 0
12 0 0
13 0
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locus. It is shown in Table 2 that, in fact, 163 such pairs of individuals are ex-
pected when loci are assumed to be independent and θ = 0.03. This value of θ

has been suggested as a very conservative value to use for forensic calculations
[National Research Council (1996)], and Table 1 shows that value makes all 13
predicted match probabilities greater than FBI observed values. It would be of in-
terest to examine the dataset of Troyer, Gilroy and Koeneman (2001) to see the
level of agreement between observed and expected numbers of matches and par-
tial matches. Weir (2004) was able to examine an Australian dataset of 15,000
profiles and showed (Table 4) very good agreement when θ was set to 0.001. The
agreement was not as good when θ was set to zero. Table 3 shows observed and
expected numbers of match/partial match combinations for the Caucasian data of
Budowle and Moretti (1999). The sample size is too small to have more than six
loci with matches and is really too small to allow strong conclusions about the role
of θ to be made. This example shows good overall agreement between observed
and expected values for θ = 0. Examination of actual offender datasets is needed.

It is clear, however, that instances of matching and partially matching profiles
are not unexpected in offender databases.

5. Effect of relatives. The previous results accommodated the effects of
shared evolutionary history on the probabilities that two individuals have the same
genotype. These probabilities are increased if the individuals have a shared family
history. Allowing for this degree of relatedness, but still assuming random mating
within a population so there is no inbreeding, requires the probabilities k2, k1, k0
that the individuals have received 2, 1 or 0 pairs of alleles identical by descent from
their immediate family ancestors. Values for these probabilities for common rela-
tionships are shown in Table 4. Individuals that share two pairs of ibd alleles must
have matching genotypes. Those that share one pair of alleles ibd may either match
or partially match, and individuals with no ibd allele sharing may match, partially
match or mismatch. Therefore, the probabilities that two individuals match, par-
tially match or mismatch at one locus are

Pr(Match) = k2 + k1

[∑
i

Pr(AiAiAi) + ∑
i

∑
j �=i

Pr(AiAjAj )

]
+ k0P2

= k2 + k1[θ + (1 − θ)S2] + k0P2,

Pr(Partial Match) = k1

[
2

∑
i

∑
j �=i

Pr(AiAiAj ) + ∑
i

∑
j �=i

∑
k �=i,j

Pr(AiAjAk)

]
+ k0P1

= k1(1 − θ)(1 − S2) + k0P1,

Pr(Mismatch) = k0P0.

Equivalent results were given by Fung, Carracedo and Hu (2003). Numerical val-
ues for the matching probabilities for the 13-locus system described in Table 1
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TABLE 3
Observed and expected numbers of profiles with specified numbers of matching or partially loci

when all 94 profiles in a dataset of Budowle and Moretti (1999) are compared to each other

No. of match-
ing loci

Number of partially matching loci

θ 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 Obs. 0 3 18 92 249 624 1077 1363 1116 849 379 112 25 4
0.000 0 2 19 90 293 672 1129 1403 1290 868 415 134 26 2
0.001 0 2 18 88 286 661 1114 1391 1286 869 418 135 26 2
0.010 0 2 14 70 236 566 992 1289 1241 875 439 148 30 3
0.030 0 1 8 42 152 396 754 1065 1118 860 471 174 39 4

1 Obs. 0 12 48 203 574 1133 1516 1596 1206 602 193 43 3
0.000 0 7 50 212 600 1192 1704 1768 1320 692 242 51 5
0.001 0 7 49 208 592 1182 1698 1770 1328 700 246 52 5
0.010 0 5 40 178 527 1094 1637 1779 1393 767 282 62 6
0.030 0 3 26 125 401 905 1475 1749 1496 901 363 88 10

2 Obs. 0 7 61 203 539 836 942 807 471 187 35 2
0.000 1 9 56 210 514 871 1040 877 511 196 45 5
0.001 1 9 56 208 512 872 1046 886 519 200 46 5
0.010 1 8 50 193 494 875 1096 969 593 239 57 6
0.030 0 5 38 160 445 861 1178 1140 765 339 89 11

3 Obs. 0 6 33 124 215 320 259 196 92 16 1
0.000 1 7 36 116 243 344 334 220 94 23 3
0.001 1 6 36 116 244 348 339 224 96 24 3
0.010 0 6 35 117 256 380 387 268 120 32 4
0.030 0 5 31 115 275 447 499 379 187 54 7

4 Obs. 1 5 17 29 54 82 67 16 6 0
0.000 0 3 15 40 70 81 61 29 8 1
0.001 0 3 15 40 71 82 63 30 8 1
0.010 0 3 15 44 81 98 78 40 12 1
0.030 0 3 16 52 105 139 122 68 22 3

5 Obs. 0 1 2 6 12 14 6 5 0
0.000 0 1 4 9 13 11 6 2 0
0.001 0 1 4 9 13 12 7 2 0
0.010 0 1 4 11 16 15 9 3 0
0.030 0 1 6 15 25 26 17 6 1

6 Obs. 0 1 0 2 2 0 0 0
0.000 0 0 1 1 1 1 0 0
0.001 0 0 1 1 2 1 0 0
0.010 0 0 1 2 2 1 1 0
0.030 0 0 1 3 4 3 1 0
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TABLE 4
Identity probabilities for common family relationships

Relationship k2 k1 k0

Identical twins 1 0 0
Full sibs 1

4
1
2

1
4

Parent and child 0 1 0
Double first cousins 1

16
3
8

9
16

Half sibs 0 1
2

1
2

Grandparent and grandchild 0 1
2

1
2

Uncle and nephew 0 1
2

1
2

First cousins 0 1
4

3
4

Unrelated 0 0 1

are shown in Table 5 for common relationships. Clearly, the probabilities increase
with the degree of relationship.

Pairs of relatives with related common ancestors within their family are inbred,
and the three ibd probabilities k2, k1, k0 must be replaced by a more extensive
set of nine probabilities �i, i = 1,2, . . . ,9, for the various patterns of ibd among
all four alleles carried by the two relatives [Weir, Anderson and Hepler (2006)].
These are defined in Table 6, along with numerical values for the situation of full

TABLE 5
Matching probabilities for common family relationships (with θ = 0.03)

Not First- Parent Full-
Locus related cousins –child sibs

D3S1358 0.089 0.124 0.229 0.387
vWA 0.077 0.111 0.213 0.376
FGA 0.048 0.078 0.166 0.345
D8S1179 0.083 0.119 0.227 0.384
D21S11 0.051 0.081 0.172 0.349
D18S51 0.040 0.068 0.150 0.335
D5S818 0.175 0.216 0.339 0.463
D13S317 0.101 0.139 0.252 0.401
D7S820 0.080 0.115 0.219 0.379
CSF1PO 0.134 0.173 0.288 0.428
TPOX 0.216 0.261 0.397 0.503
THO1 0.096 0.133 0.241 0.395
D16S539 0.105 0.143 0.256 0.404
Total 2 × 10−14 2 × 10−12 6 × 10−9 5 × 10−6
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TABLE 6
Identity probabilities for inbred relatives carrying alleles (a, b) and (c, d),

and values for example of siblings whose parents are first cousins

ibd alleles Probability Example∗

a, b, c, d �1 1/64
a, b and c, d �2 0
a, b, c or a, b, d �3 2/64
a, b only �4 1/64
a, c, d or b, c, d �5 2/64
c, d only �6 1/64
(a, c and b, d)
or (a, d and b, c) �7 15/64
a, c or a, d

or b, c or b, d �8 30/64
none �9 12/64

∗First cousin provides alleles a, c to sibs, second cousin provides alleles b,
d to sibs.

sibs whose parents are first cousins. The various matching probabilities become

Pr(Match) = (�1 + �7) + (�2 + �3 + �5 + �8)[θ + (1 − θ)S2],
+ 1

1 + θ
(�4 + �6)[2θ2 + 3θ(1 − θ)S2 + (1 − θ)2S3]

+ �9P2,

Pr(PartialMatch) = (�3 + �5 + �8)(1 − θ)(1 − S2)

+ 2(1 − θ)

1 + θ
(�4 + �6)[θ + (1 − 2θ)S2 − (1 − θ)S3]

+ �9P1,

Pr(Mismatch) = �2(1 − θ)(1 − S2)

+ 1 − θ

1 + θ
(�4 + �6)[1 − (2 − θ)S2 + (1 − θ)2S3] + �9P0.

Relatedness will increase the probability that two individuals will have match-
ing or partially matching DNA profiles and it would not be surprising if very large
offender databases had profiles from related people. It is difficult, however, to turn
the question around and infer relatedness of people whose profiles have a high de-
gree of matching. The current set of less than 20 STR loci is not enough to give
good estimates of the degree of relatedness [Weir, Anderson and Hepler (2006)],
and even unrelated people can have very similar profiles.

6. Discussion. DNA profiling has proven to be a powerful tool for human
identification in forensic and other contexts. Different people, identical twins ex-
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cepted, have different genetic constitutions and it is hoped that an examination of a
small portion of these constitutions will allow for identification or differentiation.
Current forensic DNA profiling techniques examine between 10 and 20 regions of
the genome, representing of the order of 103 of the 109 nucleotides in the com-
plete genome. Nevertheless, the probability that a randomly chosen person has a
particular forensic profile can easily reach the small value of 10−10. Even when the
forensic scientist is careful to present probabilities in the preferred format such as
“the probability of a person having this profile given that we know the perpetrator
has the profile,” the numbers remain small and the evidence that a defendant also
has that profile can be compelling.

Given the widespread belief that specific forensic profiles are rare, there has
been some concern expressed at the finding of matching or nearly matching pro-
files in databases of less than 100,000. Such findings were predicted by Weir
(2004), unaware that they had already been reported [Troyer, Gilroy and Koene-
man (2001)] for the case of two profiles matching at nine of 13 loci. At the simplest
level, the apparent discrepancy is merely an application of the birthday problem.
If all DNA profiles have the same probability P , and if profiles are independent,
then the probability of at least two instances of any profile in a set of n profiles is
approximately 1 − exp(−n2P/2). This probability can be large even for small P

and it can be 50% when n is of the order of 1/
√

P . The widespread practice of
collecting profiles from people suspected of, arrested for, or convicted of crimes
has already led to the establishment of large databases: the National DNA Data-
base (NDNAD) in the United Kingdom had over three million profiles in February
2006 and the Combined DNA Index System (CODIS) in the United States had
over four million profiles in February 2007. These and other national databases
are growing.

This note has looked a little more closely at the probability of finding match-
ing profiles in a database. The first observation was that DNA profiles are genetic
entities with evolutionary histories that impose dependencies among profiles. The
formulation of dependencies was made for single loci, but there is empirical evi-
dence [Weir (2004), Figure 1] that sufficiently large “correction” for dependencies
within loci will also accommodate between-locus dependencies. This means tak-
ing sufficiently large values of the parameter θ .

Incorporation of “θ -corrections” for the case of unrelated individuals refers to
the dependencies generated by the evolutionary process. These would not be de-
tected from observations taken solely within a population, but they are necessary
to enable predictions to be made. Predictions need to take variation among popu-
lations into account. Additional dependencies due to nonrandom mating, leading
to within-population inbreeding, were considered by Ayres and Overall (1999).
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