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COUPLING HIDDEN MARKOV MODELS FOR THE DISCOVERY
OF Cis-REGULATORY MODULES IN MULTIPLE SPECIES

BY QING ZHOU AND WING HUNG WONG1

UCLA and Stanford University

Cis-regulatory modules (CRMs) composed of multiple transcription fac-
tor binding sites (TFBSs) control gene expression in eukaryotic genomes.
Comparative genomic studies have shown that these regulatory elements are
more conserved across species due to evolutionary constraints. We propose a
statistical method to combine module structure and cross-species orthology
in de novo motif discovery. We use a hidden Markov model (HMM) to cap-
ture the module structure in each species and couple these HMMs through
multiple-species alignment. Evolutionary models are incorporated to con-
sider correlated structures among aligned sequence positions across differ-
ent species. Based on our model, we develop a Markov chain Monte Carlo
approach, MultiModule, to discover CRMs and their component motifs si-
multaneously in groups of orthologous sequences from multiple species. Our
method is tested on both simulated and biological data sets in mammals and
Drosophila, where significant improvement over other motif and module dis-
covery methods is observed.

1. Introduction. Gene transcription is regulated by interactions between tran-
scription factors and their binding sites on DNA. The analysis of genomic se-
quences for short sequence elements (cis-regulatory elements) that mediate such
interactions is an important problem in computational biology. In this paper we
develop a method for predicting cis-regulatory elements based on the statistical
modeling of combinatorial control by multiple transcription factors, and of cross-
species conservation of the regulatory roles of these factors. The remaining part
of this Introduction provides a review of relevant literature and background of our
approach. Section 2 presents our statistical model. Section 3 develops the computa-
tional algorithms for inference from this model. Sections 4 and 5 present evidence
for the effectiveness of the proposed method through both simulation studies and
applications to genomic data. Section 6 contains concluding remarks and discus-
sions of future work. The last section is an Appendix on mathematical details.

A transcription factor (TF) recognizes and binds to many different sites in the
genome. The sites for a TF are usually not identical but share similarity that can be
summarized by a statistical model called a motif. A motif is often parameterized
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by a position-specific weight matrix (PWM) that summarizes the relative frequen-
cies for the four types of nucleotides at each position of the site. Computational
methods for motif discovery and TFBS prediction were initiated by Stormo and
Hartzell (1989) and further developed in Lawrence and Reilly (1990), Lawrence et
al. (1993) and Liu, Neuwald and Lawrence (1995). An alternative approach based
on word enumeration instead of PWM was proposed by Bussemaker, Li and Sig-
gia (2000), Hampson, Kibler and Baldi (2002), Liu, Brutlag and Liu (2002) and
Sinha and Tompa (2002).

A number of approaches have been developed recently to increase the accu-
racy of TFBS prediction based on the PWM formulation. The first approach uti-
lizes the concept of cis-regulatory modules [Yuh, Bolouri and Davidson (1998),
Loots et al. (2000)]. A cis-regulatory module is a short sequence element (typi-
cally 100–500 bp in length) containing a cluster of TFBSs for one or more TFs.
Different TFs binding to the same cis-regulatory module cooperate in their control
of gene transcription through mechanisms such as synergistic binding or sequen-
tial recruitment. Computational methods that search for CRMs given the PWMs of
several interacting TFs were proposed by Frith, Hansen and Weng (2001), Frith et
al. (2002) and Berman et al. (2002). Such searches were combined with the align-
ment of orthologous sequences from several related species [Sinha, van Nimwegen
and Siggia (2003)]. When the PWMs are unknown, a de novo module discov-
ery method has been developed using a hierarchical mixture model for the CRM
[Zhou and Wong (2004)]. This method, called CisModule, has been applied suc-
cessfully to predict the CRMs that control Ciona muscle development [Johnson et
al. (2005)]. In addition, a model that considers transition probabilities and neigh-
boring distances between TFBSs has been proposed in Thompson et al. (2004),
and was further developed to identify CRMs given a collection of potential PWMs
[Gupta and Liu (2005)].

Several recent methods employ a second approach, that is, multiple genome
comparison, to enhance the power of cis-regulatory analysis. PhyloCon [Wang
and Stormo (2003)] builds multiple alignments among orthologs and extends these
alignments to identify motif profiles. CompareProspector [Liu et al. (2004)] bi-
ases motif search to more conserved regions based on conservation scores. Or-
thoMEME [Prakash et al. (2004)] identifies pairs of orthologous TFBSs in two
species. With a given alignment of orthologs and a phylogenetic tree, EMnEM
[Moses, Chiang and Eisen (2004)], PhyME [Sinha, Blanchette and Tompa (2004)]
and PhyloGibbs [Siddharthan, Siggia and Nimwegen (2005)] detect motifs based
on more comprehensive evolutionary models for TFBSs. Finally, when evolution-
ary distances among the genomes are too large for the orthologous sequences to
be reliably aligned, Li and Wong (2005) proposed an ortholog sampler that finds
motifs in multiple species independent of ortholog alignments.

Modeling CRMs enhances the performance of de novo motif discovery because
it allows the use of information encoded by the spatial correlation among TFBSs
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in the same module. Likewise, the use of multiple genomes enhances motif predic-
tion because it allows the use of information from the evolutionary conservation of
TFBSs in related species. Although both types of information have been exploited
separately, they have not been utilized simultaneously for de novo prediction for
cis-regulatory elements. We believe that an approach that utilizes both pieces of
knowledge can further improve the power for de novo prediction. In this paper
we use a hidden Markov model (HMM) to capture the co-localization tendency
of multiple TFBSs within each species, and then couple the hidden states (which
indicate the locations of modules and TFBSs within the modules) of these HMMs
through multiple-species alignment. We develop evolutionary models separately
for background nucleotides and for motif binding sites in order to capture the dif-
ferent degrees of conservation among the background and among the binding sites.
We develop a Markov chain Monte Carlo algorithm for sampling CRMs and their
component motifs simultaneously from their joint posterior distribution. We test
the method on both simulated and well-annotated biological data sets, and demon-
strate that it provides significant improvement over other de novo motif and module
discovery methods. Compared to alignment-based motif discovery methods such
as PhyME [Sinha, Blanchette and Tompa (2004)] and PhyloGibbs [Siddharthan,
Siggia and van Nimwegen (2005)], our approach has two unique features: (1) We
consider module information through a hidden Markov model; (2) The multiple
alignments of orthologous sequences are dynamically updated, so that the uncer-
tainty in the alignments is taken into account. The advantages of these features are
illustrated by the examples in this article.

2. The coupled hidden Markov model. Our input data consist of upstream
or regulatory sequences of n (co-regulated) genes from N species, that is, a total
of n × N sequences. Assuming these genes are regulated by CRMs composed of
binding sites of K TFs, one wants to find these TFBSs and their motifs (PWMs).
We only consider N closely related species in the sense that their orthologous TFs
share the same binding motif, which applies to groups of species within mammals,
or within Drosophila, and so on. Please note that our model, to be developed in this
section, is applicable to the situation where different genes have distinct numbers
of orthologs, that is, some orthologs are missing for some genes. For notational
ease, missing orthologs are treated as zero-length sequences, so that we always
assume n sequences from each species.

2.1. The HMM for module structure. Let us first focus on the module struc-
ture in one sequence. We assume that the sequence is composed of two types of
regions, modules and background. A module contains multiple TFBSs separated
by background nucleotides, while background regions contain only background
nucleotides. Accordingly, we assume that the sequence is generated from a hid-
den Markov model with two states, a module state (M) and a background state
(B). In a module state, the HMM either emits a nucleotide from the background
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FIG. 1. The coupled hidden Markov model (c-HMM). (A) The HMM for module structure in one
sequence. (B) Multiple alignment of three orthologous sequences (upper panel) and its correspond-
ing graphical model representation of the c-HMM (lower panel). The nodes represent the hidden
states. The vertical bars in the upper panel indicate that the nucleotides emitted from these states
are aligned and thus collapsed in the lower panel. Note that a node will emit wk nucleotides if the
corresponding state is Mk (k = 1, . . . ,K). (C) The evolutionary model for motifs using one base of
a motif as an illustration. The hidden ancestral base is Z, which evolves to three descendant bases
X(1), X(2) and X(3). Here the evolutionary bond between X(1) and Z is broken, implying that X(1)

is independent of Z. The bond between X(2) and Z and that between X(3) and Z are connected,
which means that X(2) = X(3) = Z.

model (of nucleotide preference) θ0, or it emits a binding site of one of the K

motifs (PWMs) �1,�2, . . . ,�K . The probability for emission from θ0 and �k

(k = 1,2, . . . ,K) is denoted by q0 and qk , respectively (
∑K

k=0 qk = 1) [Figure
1(A)]. Note that a module state can be further decomposed to K + 1 states, cor-
responding to within-module background (M0) and K motif binding sites (M1 to
MK ), that is, M = {M0,M1, . . . ,MK}. Assuming that the width of motif k is wk ,
a binding site of this motif, a piece of sequence of length wk , is treated as one state
of Mk as a whole (k = 1,2, . . . ,K). The transition probability from a background
to a module state is r , that is, the chance of initiating a new module is r . The transi-
tion probability from a module state to a background state is t , that is, the expected
length of a module is 1/t . We denote the transition matrix by

T =
[

T (B,B) T (B,M)

T (M,B) T (M,M)

]
=

[
1 − r r

t 1 − t

]
.(1)

This model can be viewed as a stochastic version of the hierarchical mixture model
(HMx) defined in Zhou and Wong (2004).

2.2. Coupling HMMs via multiple alignment. The HMMs in different or-
thologs are coupled through multiple alignment, so that the hidden states of aligned
bases in different species are collapsed into a common state [Figure 1(B)]. For in-
stance, the nucleotides of state 4 in the three orthologs are aligned in Figure 1(B).
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Thus, these three states are collapsed into one state, which determines whether
these aligned nucleotides are background or binding sites of a motif. (Note that
these aligned nucleotides in different orthologs are not necessarily identical.) Here
hidden states refer to the decomposed states, that is, B and M0 to MK , which spec-
ify the locations of modules and motif sites. This coupled hidden Markov model
(c-HMM hereafter) has a natural graphical model representation [lower panel of
Figure 1(B)], in which each state is represented by a node in the graph and the
arrows specify the dependence among them. The transition (conditional) probabil-
ities for nodes with a single parental node are defined by the same T in (1). We
define the conditional probability for a node with multiple parents as follows: If
node Y has m parents, each in state Yi (i = 1,2, . . . ,m), then we have

P(Y |Y1, . . . , Ym) = 1

m

m∑
i=1

P(Y |Yi) = CB

m
T (B,Y ) + CM

m
T (M,Y ),(2)

where CB and CM are the numbers of the parents in states B and M , respectively
(m = CB +CM ). This equation shows that the transition probability to a node with
multiple parents is defined as the weighted average from the parental nodes in
background states and module states. We use the same emission model described
in the previous section for unaligned states. For aligned (coupled) states, we as-
sume star-topology evolutionary models with one common ancestor, although the
method can be readily generalized to a tree topology. The c-HMM first emits (hid-
den) ancestral nucleotides by the emission model defined in Figure 1(A), given the
coupled hidden states. Then, different models are used for the evolution from the
ancestral to descendant nucleotides depending on whether they are background or
TFBSs.

2.3. The evolutionary model. A neutral substitution matrix is used for the evo-
lution of aligned background nucleotides, both within and outside of modules, with
a transition rate of α and a transversion rate of β:

� =




1 − µb β α β

β 1 − µb β α

α β 1 − µb β

β α β 1 − µb


 ,(3)

where the rows and columns are ordered as A, C, G and T , and µb = α + 2β is
defined as the background mutation rate. We assume an independent evolution
for each position (column) of a motif under the nucleotide substitution model
of Felsenstein (1981), which was also used in Sinha, van Nimwegen and Siggia
(2003). Suppose the weight vector of a particular position in the motif is θ . The
ancestral nucleotide, denoted by Z, is assumed to follow a discrete distribution
with the probability vector θ on {A,C,G,T }. If X is a corresponding nucleotide
in a descendant species, then either X inherits Z directly (with probability µf )
or it is generated independently from the same weight vector θ (with probability
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1 − µf ). The parameter µf , which is identical for all the positions within a motif,
reflects the mutation rate of the TFBSs. This model takes PWM into account in the
binding site evolution, which agrees with the nonneutral constraint of TFBSs that
they are recognized by the same protein (TF). It is obvious that, under this model,
the marginal distribution of any motif column is identical in all the species. This
evolutionary model introduces another hidden variable which indicates whether
X is identical to or independent of Z for each base of an aligned TFBS. We call
these indicators evolutionary bonds between ancestral and descendant bases [Fig-
ure 1(C)]. If X = Z, we say that the bond is connected; if X is independent of Z,
we say that the bond is broken.

3. Gibbs sampling and Bayesian inference.

3.1. Basic framework. Our full model involves the following parameters: the
transition matrix T defined in equation 1, the mixture emission probabilities
q0, q1, . . . , qK , the motif widths w1, . . . ,wK , the PWMs �1, . . . ,�K , the back-
ground models for ancestral nucleotides and all current species, and the evolu-
tionary parameters α, β and µf . We take as input the number of TFs, K and the
expected module length, L, and fix the transition probability t = 1/L in T . Com-
pared to the HMx model in Zhou and Wong (2004), this model has three extra free
parameters, α, β and µf , related to the evolutionary models. Independent Poisson
priors are put on motif widths and flat Dirichlet distributions are used as priors
for all the other parameters. With a given alignment for each ortholog group, we
treat as missing data the locations of modules and motifs (i.e. the hidden states),
the ancestral sequences and the evolutionary bonds. We develop a Gibbs sam-
pler (called MultiModule, hereafter) to sample from the joint posterior distribu-
tion of all the unknown parameters and missing data. To consider the uncertainty
in multiple alignment, we adopt an HMM-based multiple alignment [Baldi et al.
(1994), Krogh et al. (1994)] conditional on the current parameter values. This is
achieved by adding a Metropolis–Hastings step in the Gibbs sampler to update
these alignments dynamically according to the current sampled parameters, espe-
cially the background substitution matrix � [equation (3)]. In summary, the input
data of MultiModule are groups of orthologous sequences, and the program builds
an initial alignment of each ortholog group by a standard HMM-based multiple
alignment algorithm. Then each iteration of MultiModule is composed of three
steps: (1) Given alignments and all the other missing data, we update motif widths
and other parameters by their conditional posterior distributions; (2) Given current
parameters, with probability u, we update the alignment of each ortholog group;
(3) Given alignments and parameters, a dynamic programming approach is used to
sample module and motif locations, ancestral sequences and evolutionary bonds.
(See the Appendix for the details of the Gibbs sampling of MultiModule.) The
probability u is typically chosen in the range [0.1,0.3].
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Motif and module predictions are based on their marginal posterior distributions
constructed by the samples generated by MultiModule after some burn-in period
(usually the first 50% of iterations). We estimate the width of each motif by its
rounded posterior mean. We record the following posterior probabilities for each
sequence position in all the species: (1) Pk , the probability that the position is
within a site for motif k, that is, the hidden state is Mk (k = 1,2, . . . ,K); (2) Pm,
the probability that the position is within a module, that is, the hidden state is M ;
(3) Pa , the probability that the position is aligned. All the contiguous segments
with Pk > 0.5 are aligned (and extended if necessary) to generate predicted sites
of motif k given the estimated width wk . The corresponding average Pa over the
bases of a predicted site is reported as a measure of its conservation. We collect
all the contiguous regions with Pm > 0.5 as candidates for modules, and a mod-
ule is predicted if the region contains at least two predicted motif binding sites.
The boundary of a predicted module is defined by the first and last predicted bind-
ing sites it contains. We use 0.5 as the threshold for posterior probabilities. This
threshold determines the trade-off between the sensitivity and the specificity of the
predictions. In our experience, values in the range of [0.5,0.7] for the threshold
usually give good performance for the posterior inference on the model. Smaller
threshold often results in many false positive predictions.

Under the c-HMM, if we fix r = 1 − t = 1 in the transition matrix T [equation
(1)], then MultiModule reduces to a motif discovery method, assuming the exis-
tence of K motifs in the sequences. This setting is useful when the motifs do not
form modules, and we call it the motif mode of MultiModule.

3.2. Multimodality and combined prediction. Although MultiModule con-
verges to the target posterior distribution eventually, from the examples in Sec-
tion 5 we find that it usually reaches some local mode quickly and then moves
around the mode for a long time. Since the waiting time for between-mode tran-
sition is exponentially long, we often run multiple short chains for MultiModule
instead of one long chain, that is, we apply MultiModule to a particular data set
multiple times with random initialization. In this way, it has a much greater chance
to explore different major local modes which often correspond to different motif
compositions of predicted modules. However, we note that our module prediction
is quite consistent and that major motifs are usually predicted repeatedly in multi-
ple runs (see Section 5.1). We employ a heuristic to select representatives of these
motifs by ranking all the predicted motifs according to a Bayesian score derived in
Jensen et al. (2004):

Score = n

[
w∑

i=1

∑
j

log
(

�̂ji

θ0j

)
+ log(ρ)

]
− 1.5w log(n + 3),(4)

where j = A,C,G,T , n is the number of predicted sites, �̂ is the estimated motif
weight matrix constructed by predicted sites, θ0 is the background distribution, and
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w is the width of the motif. The parameter ρ (<1) is the prior odds of observing
a motif site over a background nucleotide. We take ρ = 1/500, which gives good
balance between the specificity of a predicted motif pattern and the number of
predicted sites. Using the average Pm of each sequence position over these multiple
runs and the top K distinct motifs ranked by (4), we define combined–predicted
modules by the same criterion introduced in Section 3.1.

4. Simulation studies. Transcription factors Oct4, Sox2 and Nanog are be-
lieved to cooperate in the regulation of genes important to self renewal and pluripo-
tency of embryonic stem (ES) cells [Boyer et al. (2005)]. We used the following
model to simulate data sets in this study: We generated 20 hypothetical ancestral
sequences, each of length 1000 bps. Twenty modules, each of 100 bps and contain-
ing one binding site of each of the three TFs, were randomly placed in these se-
quences. TFBSs were simulated from their known weight matrices with logo plots
[Schneider and Stephens (1990)] shown in Figure 2. Then based on the choices
of the background mutation rate µb [with α = 3β in equation (3)] and the motif
mutation rate µf , we generated sequences of three descendant species according
to the evolutionary models in Section 2.3. The indel (insertion–deletion) rate was
fixed to 0.1µb. After the ancestral sequences were removed, each data set finally
contains 60 sequences from three species. Our simulation study was composed of
two groups of data sets, and in both groups we set µf = 0.2µb but varied the value
of µb. In the first group, we set µb = 0.1 to mimic the case where species are evo-
lutionarily close. In the second group, we set µb = 0.4 to study the situation for
remotely related species. For each group we generated 10 data sets independently.

We applied MultiModule to these data sets under three different sets of pro-
gram parameters: (A) Module mode, L = 100, u = 0.2; (B) Motif mode, u = 0.2;
(C) Motif mode, u = 0. For each set of parameters, we ran MultiModule for 2,000
iterations with K = 3, searching both strands of the sequences. Initial alignments
were built by ordinary HMM-based multiple alignment methods. If u = 0, these
initial alignments were effectively fixed along the iterations.

The results are summarized in Table 1, which includes the sensitivity, the speci-
ficity and an overall measurement score of the performance, defined as the geo-
metric average of the sensitivity and specificity. This overall score equals zero if

FIG. 2. Logo plots for the motifs in the simulated studies: (A) Oct4, (B) Sox2 and (C) Nanog.
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TABLE 1
Results for the simulation study

Oct4 (60)
N2/N1

Sox2 (60)
N2/N1

Nanog (60)
N2/N1

Three motifs in total (180)

Sensitivity Specificity Overall

(A) 38.7/57.4 51.6/66.0 40.8/46.3 73% 77% 75%
(B) 27.7/45.3 52.2/91.3 27.6/37.8 60% 62% 61%
(C) 22.2/36.7 42.4/89.6 23.6/39.0 49% 53% 51%

(A) 18.8/24.8 22.7/30.6 21.0/33.9 35% 70% 49%
(B) 9.3/29.4 34.0/51.1 21.7/31.6 36% 58% 46%
(C) 5.1/8.1 14.2/18.2 8.3/14.2 15% 68% 32%

NOTE: N2 and N1 refer to the numbers of correct and total predictions for each motif, respectively.
TF names are followed by the numbers of true sites in parentheses. The upper and lower halves refer
to the average results over 10 independently generated data sets with µb = 0.1 and 0.4, respectively.
“Overall” is the geometric average of sensitivity and specificity. For each data set, the optimal results
(in terms of overall score) among three independent runs under the same parameters were used for
the calculation of averages. Parameter sets (A), (B), (C) are defined as follows: (A) Module mode,
L = 100, u = 0.2; (B) Motif mode, u = 0.2; (C) Motif mode, u = 0.

either sensitivity or specificity is zero; it equals 1 if both of them are 1; when sen-
sitivity = specificity = x, the overall score equals x. These properties make it a
good overall measurement of predictions. One sees that updating alignments im-
proves the performance for both µb = 0.1 and 0.4, and the improvement is more
significant for the latter setting [cf. results of (B) and (C) in Table 1]. The reason
is that the uncertainty in alignments for the cases with µb = 0.4 is higher than that
for µb = 0.1, and thus updating alignments, which aims to average over different
possible alignments, has a greater positive effect. Considering module structure
shows an obvious improvement for µb = 0.1, but it is only slightly better than
running the motif mode for µb = 0.4 [cf. (A) and (B) in Table 1]. We noticed that
for µb = 0.4, MultiModule found all the three motifs under both parameter set-
tings [(A) and (B)] for five data sets, and the predictions in (A) with an overall
score of 70% definitely outperformed that in (B) with an overall score of 58%. For
the other five data sets, no motifs were identified in setting (A), but in setting (B)
(motif mode) subsets of the motifs were still identified for some of the data sets.
We suspect that this was caused by the slower convergence of MultiModule in set-
ting (A), because of its higher model complexity, especially when the species are
farther apart. One possible quick remedy of this is to use the output from setting
(B) as initial values for setting (A), which will be a much better starting point for
the posterior sampling.

In all the simulation studies, motif widths were updated in the range of [6,15]
by a Metropolis–Hastings step (Section A.4). To illustrate the posterior inference
of motif width in MultiModule, we report in Table 2 the histograms of the motif
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TABLE 2
Selected posterior distributions of motif widths for Oct4, Sox2, Nanog and a spurious motif

Width Oct4 Sox2 Nanog Spurious

6 0 0 0 0.755
7 0.053 0.859 0 0.198
8 0.891 0.141 0 0.036
9 0.056 0 0.159 0.011
10 0 0 0.841 0

[11,15] 0 0 0 0

NOTE: The true motif widths are 8, 7 and 10 for Oct4, Sox2 and Nanog, respectively (see
Figure 2).

widths of the three TFs from a single run of 1000 Monte Carlo samples after burn-
in for one of the simulated data sets with µb = 0.1, where all the three motifs
were unambiguously identified. The posterior probabilities were all concentrated
on their respective true motif widths. On the other hand, we also report in this
table the motif width distribution when MultiModule output a false motif (i.e., it
was none of the three true motifs). One sees that, in this case, the motif width was
mostly sampled as w = 6 and decayed very fast for w > 6. This was due to the
fact that we restricted the motif width to be between 6 and 15. If we removed this
restriction, the width would further decrease to smaller values, which would be a
good indication that this motif might be spurious.

5. Applications to biological data sets. We tested MultiModule on two anno-
tated data sets from mammals and fruit flies. Our computational predictions were
compared to experimental validations reported previously. Detailed comparison
with several published motif and module discovery methods was conducted based
on these data sets. Hereafter we say that a predicted site is a correct prediction or
that a predicted site overlaps an experimentally verified site if the starting position
of the predicted site is within 3 bps to that of a verified site. This definition is used
for assessing the performance of all the computational methods mentioned in this
article. In the following examples, we set u = 0.2 to update ortholog alignments in
MultiModule.

5.1. Muscle-specific genes in mammals. Our first test data set is the 24
skeleton–muscle-specific genes of human and mouse orthologs [Wasserman et al.
(2000)]. We combined putative dog orthologs based on UCSC genome alignment
(http://www.genome.ucsc.edu). The muscle-specific expression of these genes is
controlled by five TFs, MEF, MYF, SP1, SRF and TEF, with 16, 25, 21, 14 and 7
experimentally validated binding sites in the human genes, respectively [Thomp-
son et al. (2004)]. These binding sites form 24 validated modules. Here a validated

http://www.genome.ucsc.edu
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module is defined as a sequence fragment containing at least two TFBSs satisfy-
ing the condition that the distance between any two neighboring sites is < 100 bps.
The module boundaries are defined by the first and last TFBSs it contains. The total
length of these modules is 2716 bps, distributed in 21 human genes. Upstream 3 kb
of the human, mouse and dog orthologs were extracted and aligned by mLAGAN
[Brudno et al. (2003)]. Based on these alignments, we calculated a conservation
score (CS) for each sequence position. Using a threshold, we N-masked noncon-
served bases which are more than 1 kb from the TSSs (transcription start site), that
is, all the bases within 1 kb are kept irrespective of their CSs. The purpose is to
detect promoter and conserved distal enhancer elements. Repeats were masked by
“N” using a repeat-masking program (http://repeatmasker.org/). The preprocessing
reduced our data set to an average effective length (“N”s are not counted) of 1604
bps per sequence.

We applied MultiModule with K = 5 and L (expected module length) = 200
bps. Our pilot study suggests that running multiple short chains is more efficient
for MultiModule (see supplemental notes). Thus, we ran the program 50 times in-
dependently and 1000 iterations each run. All the predicted motifs were ranked by
their Bayesian scores [equation (4)], and the top five distinct motifs corresponded
to the binding patterns of SRF, MEF, SP1 and MYF [Figure 3(A) and (B)], and
an AC-rich motif which seems to be a repetitive pattern. We note that MultiMod-
ule failed to discover any motifs close to that of TEF, mainly due to the fact that
the TEF sites are not enriched enough in this data set (only seven sites in 24 se-
quences). For the other four known TFs, MultiModule predicted a total of 97 sites
in the human genes from the top five ranking motifs, and 45 of them overlap corre-
sponding validated sites. Thus, it achieves a sensitivity of 59% and a specificity of
46% for these four motifs (Table 3). Note that the specificity is likely to be under-
estimated since our predictions may include some functional binding sites which
have not been experimentally validated yet. The 50 runs contained at least two
distinct modes in module composition, denoted by mode A and mode B. In mode
A, MultiModule found five motifs corresponding to MEF, MYF, SP1, SRF and the
AC-rich motif. In mode B, MultiModule found four motifs, including MYF, SP1,
MEF and the AC-rich motif, with some validated SRF sites contained in the pre-
dicted MEF sites, that is, one motif was a mixture of MEF and SRF. One sees that
these two motifs are both AT-rich in the middle [Figure 3(A)]. Please note that it
is possible that MultiModule output fewer motifs than the pre-specified K , when
the posterior motif site probabilities Pk of all sequence positions are <0.5 (the
posterior probability threshold) for some k. We randomly selected one representa-
tive from each mode and checked their overlaps in base pair level with validated
modules. Both modes predicted modules at a sensitivity of 65% and a specificity
of 41% approximately (Table 4). We averaged posterior module probabilities over
the 50 independent runs for each sequence position and used these average Pm’s
to generate our combined predictions with the top five predicted motifs. This com-
bined prediction shows a significant improvement in specificity without loss of

http://repeatmasker.org/
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FIG. 3. Motif and module predictions for the muscle-specific gene set. Logo plots for (A) exper-
imentally validated and (B) de novo predicted binding sites for MEF, MYF, SP1 and SRF in the
human genes. (C) The Bayesian inference for the gene TNNI1 in the human (top), mouse (middle)
and dog (bottom) orthologs. The green curved lines report the posterior module probabilities (Pm).
Conserved regions (defined as posterior alignment probability Pa > 0.5) are indicated by brown bars
and dots, of which the vertical heights report the corresponding values of Pa . Predicted motif sites
and experimentally validated sites are indicated by vertical lines and bars, respectively.

much sensitivity (Table 4). The Bayesian inference by marginal posterior proba-
bilities is illustrated in Figure 3(C) using the gene TNNI1 as an example, which
contains two known modules. One sees that (1) high peaks of Pm emerge at the
two known modules; (2) the posterior module and motif probabilities are coupled
in conserved regions and thus show similar shape among the orthologs.

We note that the bases in the combined-predicted modules showed a very high
average Pm and the Pm values for 82% of them were >0.9 [Figure 4(A)]. This
implies that the module predictions were quite consistent among independent runs
despite the slightly different motif composition. The average Pa’s of predicted mo-
tifs and modules (Tables 3 and 4) were much higher than the overall average of all
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TABLE 3
Predicted motifs in the muscle-specific genes

Human Mouse
Predicted

Dog
Predicted

Avg.
Pa (%)TFs Validated Predicted Overlaps

MEF 16 25 (10∗) 13 (7∗) 26 24 99
MYF 25 34 13 35 31 97
SP1 21 16 8 21 16 70
SRF 14 22 11 22 22 98
Total 76 97 45 104 93 93

NOTE: Tabulated are the numbers of validated TFBSs, predicted sites and overlapping sites (i.e.,
correct predictions) for the human sequences. We also include the total number of predicted sites in
the mouse and dog sequences.
∗Among the predicted MEF sites, 10 of them overlap the predicted SRF sites, in which seven turn
out to be experimentally validated SRF binding sites.

the sequence positions (58%), which indicates that functional elements are more
likely to be located in aligned blocks. We observed that the background mutation
rate µb was significantly higher than that of TFBSs µf [Figure 4(B)]. From the
respective definitions of µb and µf , one sees that, for a TFBS, the equivalent mu-
tation rate comparable to the definition of µb is < µf . Thus, the observation that
µb > µf convinces that even within aligned blocks, TFBSs still show a signifi-
cantly lower evolutionary rate than their surrounding background nucleotides.

5.2. Early developmental genes in Drosophila. Regulatory regions that con-
trol early body development in Drosophila melanogaster (Dm, hereafter) were
identified in previous experimental studies [e.g., Berman et al. (2002)]. As a test
of MultiModule, we extracted all the identified regulatory regions that interact

TABLE 4
Predicted modules in the muscle-specific genes

Predicted Overlaps Sensitivity Specificity Avg.
modules (bps) (bps) (%) (%) Pa (%)

Mode A 4159 1728 64 42 85
Mode B 4412 1768 65 40 87
Combined 2835 1566 58 55 89

NOTE: Tabulated are the total numbers of bases in the predicted modules in the human gene set
with validated modules (the 21 human genes with at least one defined module of validated TFBSs).
Overlaps report the number of overlaps between the predicted and validated modules in base pair
level. Sensitivity = (# overlaps) / (# bases in all validated modules = 2716 bps). Specificity =
(# overlaps) / (# bases in the predicted modules).
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FIG. 4. (A) Histogram of the average posterior module probabilities (Pm) over the 50 independent
runs of all the bases in the combined-predicted modules. (B) Posterior distributions of the back-
ground and motif mutation rates, µb and µf , respectively, calculated by pooled samples from the 50
runs.

with at least one of the three TFs, Bicoid (Bcd), Hunchback (Hb) and Krüppel
(Kr), which form complex combinatorial patterns that regulate early developmen-
tal genes. These extracted regions form a data set of 26 Dm sequences. We fur-
ther extracted orthologous regions in Drosophila pseudoobscura (Dp, hereafter)
based on UCSC genome alignment and obtained 23 of them. Thus, our full data
set contains 49 sequences with an average length of 1209 bps. In this data set, 34
functional binding sites in Dm with experimental validations are available based
on TRANSFAC 9.1 release [Wingender et al. (2000)]: 12 Bcd sites in three se-
quences, 14 Hb sites in four sequences, and 8 Kr sites in two sequences. The genes
with validated sites are referred to as validated gene set in this example.

We applied MultiModule to this data set with K = 3 and L = 200 for 50 inde-
pendent runs, each 1000 iterations. We ranked all the predicted motifs in multiple
runs by the same Bayesian score [equation (4)], and the top two distinct motifs
correspond to the known Hb and Kr binding patterns [Figure 5(A) and (B)]. The
third motif resembles the known Bcd binding pattern [Figure 5(C)]. Our predicted
motif binding sites overlap substantially with validated ones for the three TFs with
an overall sensitivity of 44% and specificity of 47% (Table 5). Some of our pre-
dicted Kr sites turned out to be validated Bcd sites, which is consistent with the
fact that these two TFs actually bind to some overlapping functional sites. Such
sites are not counted as correct predictions for Bcd in Table 5. Since the majority
of the sequences in this data set are not annotated for TFBSs, we include in Table
5 the sum of squared distances (SSD) between the predicted and the known motif
weight matrices as another quality measure of the predictions. These SSDs are ap-
proximately 1/10 of the expected SSDs between a random weight matrix and the
known ones for the three TFs.
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FIG. 5. Results of the Drosophila early developmental genes. Logo plots for the known (upper
panel) and the predicted (lower panel) motifs in Dm for the three TFs: (A) Hb, (B) Kr and (C) Bcd.
The predicted motifs in Dp of these three TFs are identical to those in Dm. (D) The predicted regu-
latory network of the genes Bcd, Hb, Kr, Gt and Kni in early Drosophila body patterning. An arrow
from gene Y to gene X indicates that gene Y regulates gene X based on our predicted modules.

We combined all the 50 independent runs to generate our combined predictions.
In this way, we predicted 70 modules covering 16855 bps (Table 6): 86%, 49%
and 30% of these modules contain the predicted Hb, Kr and Bcd binding sites,
respectively. We used these combined predictions to define regulatory interactions
among the maternal gene Bcd and the four gap genes in our data set, Hb, Kr, Gt
and Kni, which are the most important TFs controlling early body patterning in
Drosophila. Known regulatory interactions among these genes are available based
on previously reported experiments [Sanchez and Thieffry (2001)]. In our simpli-
fied analysis, gene X is defined to be regulated by gene Y if the regulatory region
of gene X contains a predicted module composed of at least one binding site for the
TF encoded by gene Y. Remarkably, all our predicted interactions [Figure 5(D)]
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TABLE 5
Motifs predicted in the Drosophila early developmental genes

Validated genes in Dm Full Dm
Predicted (SSD)

Full Dp
Predicted (SSD)

Pa

(%)TFs Validated Predicted Overlaps

Hb 14 18 9 156 (0.31) 143 (0.28) 57
Kr 8 4 4 54 (0.41) 37 (0.38) 53
Bcd 12 10 2 65 (0.36) 60 (0.41) 75
Total 34 32 15 275 240 56

NOTE: Predictions in validated gene set and in full gene set are tabulated. SSD is the sum of squared
distance between a predicted and the corresponding known weight matrices. Other fields are defined
similarly to those in Table 3. Validated genes in Dm refer to the genes with known TFBSs for the
corresponding TFs. Exact binding sites are not available for the remaining genes although they are
known to be controlled by these TFs.

are exactly identical to those known ones, and our analysis recovers all the known
interactions with Bcd, Hb and Kr as regulators. In this data set, the predicted mo-
tifs and modules also showed higher conservation (Tables 5 and 6) compared with
the overall average Pa of 33%.

5.3. Comparing with other methods. We compared the performance of Mul-
tiModule on the two data sets with that of AlignACE [Roth et al. (1998)], Com-
pareProspector [Liu et al. (2004)], EMnEM [Moses, Chiang and Eisen (2004)]
and CisModule [Zhou and Wong (2004)]. AlignACE finds multiple motifs using
a repeatedly masking strategy. We ran the program under its default setting to
search for motifs with different combinations of input parameters for motif width
and expected number of sites. For these two data sets, AlignACE output 40 to 60
motifs for each run, and we repeated the program five times for each data set in-
dependently, which generated around 250 motifs. CompareProspector searches for
motifs in one species with a given conservation score for each sequence position

TABLE 6
Predicted modules in the Drosophila early developmental genes

Modules
(#)

Modules
(bps)

Pa

(%)

Motifs in % of modules

TFs Hb (%) Kr (%) Bcd (%)

Dm 37 8650 42 84 54 30
Dp 33 8205 45 88 42 30
Total 70 16855 43 86 49 30

NOTE: Tabulated are the number and total length (in the unit of base pair) of the predicted modules,
their average alignment probability (Pa ) and the percentage of the modules containing each detected
motif.
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calculated based on a multiple alignment. We ran CompareProspector with each
known motif width and a total of 300 independent runs for each data set. EMnEM
takes as input one alignment for each ortholog group with a given phylogenetic
tree. We input the alignments built by mLAGAN [Brudno et al. (2003)] and used a
phylogenetic tree with branch length (in the unit of substitution per site) estimated
by Xie et al. (2005) from mammalian upstream sequences for the first data set.
We ran EMnEM with each known motif width w and set all the w-mers as ini-
tial consensus. For the above three methods, we defined representative output for
each known motif by the highest score predicted motif (as reported by respective
programs) that match the known pattern. CisModule is a single-species module
discovery method. We ran it 50 times independently under the same parameters
(K and L) as those used in MultiModule. The predicted motifs of CisModule
were ranked by the same score function [equation (4)]. For all the methods, we
used exactly the same sequences after preprocessing as described in the previous
sections.

The two test data sets in total contain 117 validated TFBSs for the eight known
motifs. Table 7 summarizes the performance of each method on these data sets with
respect to motif identification and site prediction. MultiModule identified more
known motifs than all the other methods. It also found much more validated TFBSs
than the other methods did, with at least about 70% of improvement in sensitivity:
MultiModule detected 60 validated TFBSs, while the other methods detected at
most 35 validated sites. In addition, the specificity of MultiModule is the highest
one among all the programs for these tests. This indicates that the high sensitivity

TABLE 7
Performance comparison on the two test data sets

# correctly
identified

motifs

For correctly identified motifs

# of # of Sensitivity Specificity Overall
Methods predicted overlaps (%) (%) (%)

ALnACE 6 106 31 26 29 28
CompPr 6 64 27 23 42 31
EMnEM 5 102 35 30 34 32
CisMod 5 110 35 30 32 31
MltMod 7 129 60 51 47 49

NOTE: We compare different methods based on their predictions with respect to the validated gene
sets (i.e., genes with validated TFBSs) which are exactly the same as those used in the applications
of MultiModule to these data sets. “ALnACE,” “CompPr,” “EMnEM,” “CisMod” and “MltMod”
refer to AlignACE, CompareProspector, EMnEM, CisModule and MultiModule, respectively. We
report the number of known motifs each method identified. For correctly identified motifs, the num-
bers of predicted sites and correct predictions (# overlaps) are reported. Sensitivity is calculated by
(# overlaps) / (total number of validated TFBSs = 117). Specificity is calculated by (# overlaps) /

(# predicted sites). Overall score is defined as the geometric average of sensitivity and specificity.
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of MultiModule does not come at the expense of specificity. In terms of overall
performance, MultiModule shows 53% to 81% of improvement compared to the
other four methods.

6. Discussion. We have proposed and illustrated a new computational ap-
proach based on a coupled hidden Markov model for de novo discovery of CRMs
and motifs in sequences from multiple species. Our simulation and test results
convey three pieces of information about this approach. First, modeling sequence
orthology provides more information than using a conservation score or simply
pooling sequences from multiple species into a heterogeneous data set as illus-
trated from the comparison with other methods. Second, the use of module struc-
ture to identify clusters of motif patterns is usually more powerful than identifying
each motif independently. Third, updating multiple alignments improves the sen-
sitivity of motif prediction. From this study, we observe that for species within
mammals or within Drosophila, aligned regions are usually much longer than the
width of TFBSs, and TFBSs definitely show lower mutation rates compared with
aligned background nucleotides as shown in Figure 4(B), which is also true for the
Drosophila data set.

Since MultiModule samples from a complicated joint probability distribution
by a Gibbs sampler, the problem of multimodality needs to be considered. We ob-
serve that it is helpful to integrate out weight matrices and other parameters even
in an approximate sense (Section A.6) for the convergence of MultiModule. To
further alleviate the possibility of local traps, we combine samples from multiple
randomly initialized chains to construct superior estimates in practice. An alterna-
tive approach to this end is the use of more sophisticated Monte Carlo algorithms
to handle multimodality, such as the parallel tempering [Geyer (1991)] or the equi-
energy sampler [Kou, Zhou and Wong (2006)]. The computational complexity of
MultiModule is approximately proportional to 2NKL, where N is the number of
species, K is the number of TFs, and L is the total length of sequences, which is
scalable with a reasonable selection of orthologous species. It is worth mentioning
that the complexity of the motif mode of MultiModule is linear in N . The use of
c-HMM is not restricted to de novo discovery. With given PWMs and other para-
meters, MultiModule can be used to scan for modules in ortholog groups. From
our experience, for de novo motif finding, MultiModule is suitable to handle se-
quences with an average length less than 2 kb. If the average search region is much
larger, some preprocessing is needed to reduce it to save the computational cost
and to increase the motif site enrichment. This was the reason why we removed
the nonconserved bases in the first application of the muscle-specific genes.

For the current implementation of MultiModule, we assume that the number of
motifs K is fixed and known. But in real module discovery applications, the ex-
act value of K is usually unknown. It would be desirable to develop a coherent
approach to estimate this number simultaneously. However, up to now, we do not
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have an efficient method to complete this task. The dimensionality of the parame-
ter space is determined by K . With all kinds of missing data in our model, it is
impossible to integrate out both the parameters and the missing data to obtain the
marginal distribution of K . Thus, we decide to fix K for the current implemen-
tation. When K is set to be smaller than the true number of motifs, the program
usually finds subsets of the motifs that are highly enriched (some repetitive pat-
terns may be included as well, such as the AC rich pattern in the first application).
When K is set to be greater than the true value, the program may output fewer
than K motifs, as we pointed out in Section 5.1. Our suggestion is to apply some
pilot runs of MultiModule with different K in a reasonable range, say, between 2
and 6, and check how many distinct motifs it actually outputs. Then one may make
a decision on the suitable value of K and perform multiple runs to generate final
predictions. In our experience, this ad hoc approach is usually acceptable for most
applications.

In this article the module structure is modeled by a one-step Markov chain with
two states, which specifies a geometric distribution on the length of a module. This
is definitely a simple approximation to the biological reality, which only captures
the co-localization of multiple motif sites, that is, the model puts some constraints
on the possible locations of the motif sites in the same module. Our current ap-
proach should be viewed as a very first step to incorporate module and phyloge-
netic structures into de novo motif discovery. There exists substantial room for
further development in the direction. One may extend the HMM used in this arti-
cle to a higher-order Markov chain such that the transition probability to a motif
depends on the previous motif in the module. This allows the model to estimate
possible synergistic interactions between neighboring motifs. Other refinement of
the model, such as more comprehensive phylogenetic tree topology and more so-
phisticated background model, is expected to enhance the utility of this approach.
However, with the increasing model complexity, the computational efficiency and
robustness of the statistical inference based on posterior sampling will be more
challenging.

APPENDIX: THE GIBBS SAMPLER FOR THE C-HMM

Suppose the data set of interest contains sequences of n genes from N species,
S

(m)
i (i = 1,2, . . . , n,m = 1,2, . . . ,N). Without loss of generality, we assume

n = 1, since the sampling procedure for the ith ortholog group is similar for all
i. Thus, we simply denote the input sequences as S = [S(1), . . . , S(N)]. Define
� = [θ0,�1, . . . ,�K ], where θ0 = [θ(0)

0 , θ
(1)
0 , . . . , θ

(N)
0 ] denotes the background

distributions for the ancestral sequence (θ(0)
0 ) and the current species (θ(m)

0 ;m =
1,2, . . . ,N ), and �k is the PWM for the kth motif (k = 1,2, . . . ,K). Each back-
ground model is an i.i.d. multinomial distribution. We estimate θ

(m)
0 for the current

species (m = 1,2, . . . ,N ) before the Gibbs sampling iteration, and thus effectively
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assume that they are given. Let W = [w0,w1, . . . ,wK ] be the widths of the back-
ground model (w0 = 1) and the motifs (i.e., �k is a 4 × wk matrix). The transition
probability matrix T is defined in (1), and we denote q = [q0, q1, . . . , qK ]. The
neutral evolution of background nucleotides is characterized by the parameter vec-
tor φb = [1 − µb,α,2β] [equation (3)]. The probability of breaking an evolution-
ary bond between any base of an aligned TFBS and that of its ancestral site is µf .
Denote the hidden states by Y , which indicate whether the observed nucleotides
are located in a background (B) or module (M) region. For those in a module, the
hidden states Y also specify whether they are within-module background (M0) or
motif sites (M1 to MK ). Thus, the hidden states imply the locations of modules and
motif sites. We further use A to denote the multiple alignment of S(1), . . . , S(N), Z

to denote the ancestral sequence and V to denote the evolutionary bonds of aligned
TFBSs. Conceptually, we treat A,Y,Z and V as missing data and denote them by
Dmis = [A,Y,Z,V ]. All the parameters are denoted by � = [W,�,T , q,φb,µf ].

A.1. Prior and posterior distributions. MultiModule takes expected mod-
ule length L and the number of motifs (TFs) K as input and fixes the transition
probability from a module state to a background state t = 1/L. We put indepen-
dent Poisson priors with mean λ = 10 for motif widths. Flat Dirichlet (Beta) priors
are prescribed to all the other parameters. More specifically, we use a flat product
Dirichlet of dimension 4 × wk as the prior distribution for �k (k = 1,2, . . . ,K)

(i.e., the parameter for this product Dirichlet distribution is a 4 × wk matrix with
all elements = 1). We put four-, (K + 1)- and three-dimensional flat Dirichlet pri-
ors on θ

(0)
0 , q and φb, respectively. The prior distributions for r and µf are both

Beta(1, 1). With these prior distributions specified, one can write down the joint
posterior distribution of all the parameters and missing data,

P(�,Dmis|S) ∝ P(Dmis, S|�)π(�),(5)

where π(�) denotes the joint prior distribution. Of interest are the locations of
motif sites and modules, that is, the hidden states Y . One wants to perform infer-
ence based on the marginal posterior distribution of Y given all the sequence data
S,

P(Y |S) ∝
∫
�

∑
A,Z,V

P (Y,A,Z,V,S|�)π(�)d�,(6)

where all the other unknown variables are marginalized out. However, the integral
in (6) has no analytical solution, and thus, we devise a Gibbs sampling approach
to generate samples from the joint distribution [equation (5)]. Based on these sam-
ples, one can easily construct empirical marginal posterior distributions of inter-
esting variables (Y in this case).

Our Gibbs sampler contains three steps: (1) sample A given �; (2) sample
[Y,Z,V ] jointly given A and �; (3) sample � given [Y,Z,V ] and A. To sim-
plify the description, we first discuss how to sample from the conditional distrib-
utions assuming that the alignment A is given. Then we discuss how to update A
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FIG. 6. The map from the alignment of three sequences in (A) to its path representation in
3-D space in (B). The path starts from (0, 0, 0), moves along A-B-C-D-E-F-G-H, and ends at
(300, 300, 290). Shaded areas in (A) represent aligned blocks. Coordinates of aligned posi-
tions increase simultaneously along the path, such as those of sub-path D from (100, 90, 70) to
(200, 190, 170).

by one more conditional sampling step by a Metropolis–Hastings algorithm. We
also describe how to integrate out all the parameters � in (5) in an approximate
manner, so that we are effectively sampling from P(Dmis |S). We find this imple-
mentation of a collapsed Gibbs sampler [Liu (1994)] improves the convergence of
MultiModule.

A.2. Path representation of the c-HMM. Any multiple alignment of the
orthologs S = [S(1), . . . , S(N)] can be viewed as a path in the N -dimensional
space from (0,0, . . . ,0) to (L1,L2, . . . ,LN), with Lm the length of S(m)(m =
1,2, . . . ,N). The path is composed of a series of N -dimensional points, and the
coordinates of each point are the last visited positions of these N sequences. Fig-
ure 6 shows the map from a multiple sequence alignment to a path in 3-D space,
which visits all the sequence positions in a unique order. This is a natural general-
ization of the 2-D path representation of a pair-wise alignment.

Suppose the current alignment path A = a1a2 · · ·aL(A), where L(A) is the total
number of points and ad is the dth point in this path [d = 1,2, . . . ,L(A)]. Denote
the coordinates of ad by C(d) = [c(1)

d , . . . , c
(N)
d ], especially, C(1) = [0, . . . ,0] and

C(L(A)) = [L1, . . . ,LN ]. Define the emission components (EC) of ad as the sub-
set of its N coordinates which increase compared with the corresponding coordi-
nates of ad−1, that is, EC(d) = {m|c(m)

d > c
(m)
d−1,m = 1, . . . ,N}. For instance, in

Figure 6, the emission component of a point in sub-path A is the single element set
{1}, since along this sub-path only the first sequence emits nucleotides, while the
emission components of a point in sub-path D is {1,2,3}. We further denote the nu-
cleotides emitted at ad by X(d) = {x(m)

d |m ∈ EC(d)}, where x
(m)
d is the nucleotide

at position c
(m)
d in S(m). Let |EC(d)| denote the size of the emission components

of ad , that is, X(d) contains nucleotides from |EC(d)| species. If |EC(d)| ≥ 2, the
emission components are aligned to each other at ad . Let Y(d) = [y(1)

d , . . . , y
(N)
d ]

be the hidden states of ad , with y
(m)
d the hidden state at c

(m)
d (m = 1,2, . . . ,N).

The following constraints are implied by the definition of the c-HMM:
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(i) y
(i)
d = y

(j)
d , if x

(i)
d and x

(j)
d are aligned (i, j = 1,2, . . . ,N );

(ii) y
(m)
d = y

(m)
d−1, if m /∈ EC(d);

(iii) y
(m)
d = y

(m)
d+1 = · · · = y

(m)
d+wk−1 = Mk , if [c(m)

d , c
(m)
d+wk−1] is a binding site of

motif k in S(m).

Constraint (i) says that any aligned nucleotides share the same hidden state (the
coupled state). Constraint (ii) is due to the fact that if m /∈ EC(d), which implies
that c

(m)
d = c

(m)
d−1, then x

(m)
d and x

(m)
d−1 actually refer to the same nucleotide in S(m)

and thus have the same hidden state. For example, in Figure 6, the third coordinates
of the points in sub-path E are identical, and they all refer to position 170 of S(3).
Constraint (iii) is consistent with the definition that a motif binding site is treated
as one state (Mk) in our model. We define change points of the path by

CP(A) = {ad | C(d + 1) − C(d) �= C(d) − C(d − 1),1 < d < L(A)},
which are the points where the alignment path changes its direction in the
N -dimensional space. For instance, all the points shown in Figure 6(B) are change
points except the starting and ending points. By this path representation of an
alignment, we effectively augment the hidden state to an N -dimensional vector
such that the model reduces to a Markov chain in the augmented state space. Then
one may use the Markovian property to derive recursive algorithms to sample the
hidden states exactly given parameter values and an alignment.

A.3. Sample [Y,Z,V ] given � and A. Denote Y [i, j ] = [Y (i), Y (i +
1), . . . , Y (j)] and X[i, j ] = [X(i),X(i + 1), . . . ,X(j)] for any two points ai and
aj (j ≥ i) in the path, especially, Y [i, i] = Y(i) and X[i, i] = X(i). Define

fd(y) = P
(
Y(d) = y,X[1, d]|�,A

)
,(7)

for d = 1,2, . . . ,L(A), where y is an N -dimensional vector in the augmented state
space. Let yH = {[y(1), . . . , y(N)] | y(m) = H,∀m ∈ EC(d)} for H = B (back-
ground state) or M (module state), which represents an N -dimensional state vec-
tor with H as its components in EC(d). Then we have the following recursive
summations to calculate (7):

fd(yB) = P(X(d)|θ0, φb)
∑
y

T r(yB |y, r, t)fd−1(y),(8)

fd(yM) =
K∑

k=0

[
qkP (X[d − wk + 1, d]|�k,µf ,φb)

× ∑
y

T r(yM |y, r, t)fd−wk
(y)

]
,(9)
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where Tr(yH |y, r, t) specifies the transition probability from y to yH , and
P(X(d)|θ0, φb) and P(X[d − wk + 1, d]|�k,µf ,φb) are the marginal probabili-
ties of emitting X(d) and X[d − wk + 1, d], given that the current state is B and
Mk (k = 0,1, . . . ,K), respectively. Recall that Mk is the decomposed state of M ,
which indicates whether the current hidden state is within-module background
(M0) or one of the K motifs (M1 to MK ).

Since a TFBS is treated as one state as a whole, no change points are allowed
in the interval [d − wk + 1, d] for k = 1, . . . ,K in the summation of (9). In other
words, motif sites are not allowed to be located across any change points of the
alignment. We calculate the transition probabilities in (8) and (9) according to the
definition in (2),

Tr(yH |y, r, t) = 1

|EC(d)|
∑

m∈EC(d)

T
(
y(m),H

)
, for H = B or M,(10)

where y = [y(1), . . . , y(N)] and y(j) = y
(j)
H for j /∈ EC(d) due to constraint (ii) de-

scribed in the previous section. If ad−wk
is not a change point (k ∈ {0,1, . . . ,K}),

that is, EC(d) = EC(d − i), i = 1,2, . . . ,wk , equation (10) can be simpli-
fied as Tr(yH |y, r, t) = T (H ′,H), where y(m) = H ′ for m ∈ EC(d). For exam-
ple, consider a point C(d) = [250,240,170] in sub-path E in Figure 6, whose
EC(d) = {1,2}. Suppose its hidden state is Y(d) = [B,B,M]. Since the previous
point C(d − 1) = [249,239,170] is in the same sub-path (not a change point), we
know that the hidden state Y(d − 1) is of the form [y, y,M] with y = B or M , and

Tr
(
Y(d) = [B,B,M]|Y(d − 1) = [y, y,M], r, t) = T (y,B).

If Y(d) = [Mk,Mk,M] (k = 0,1, . . . ,K), we will consider the point (d − wk) in
a similar way given that (d − wk) ∈ sub-path E.

If |EC(d)| ≥ 2, the current point ad emits a group of aligned nucleotides. In
order to calculate the marginal emission probabilities, one needs to sum over all
possible ancestral nucleotides. More specifically,

P(X(d)|θ0, φb) = ∑
z

[
θ

(0)
0 (z)

∏
m∈EC(d)

�b

(
z, x

(m)
d

)]
,(11)

where θ
(0)
0 (z) is the probability of observing nucleotide z under the ancestral

background model, and �b is the neutral substitution matrix defined in (3). For
k = 1,2, . . . ,K ,

P(X[d − wk + 1, d]|�k,µf ,φb)
(12)

=
wk∏
i=1

[∑
zi

�ki(zi)
∏

m∈EC(d)

P
(
x

(m)
d−wk+i |zi,µf ,�ki

)]
,

where �ki is the weight vector at the ith position of motif k, that is, the ith column
of �k , and P(x

(m)
d−wk+i |zi,µf ,�ki) is the probability that the ancestral nucleotide
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zi evolves to the descendant nucleotide x
(m)
d−wk+i under the evolutionary model for

TFBSs,

P
(
x

(m)
d−wk+i |zi,µf ,�ki

)
(13)

= (1 − µf ) · 1
(
x

(m)
d−wk+i = zi

) + µf �ki

(
x

(m)
d−wk+i

)
.

For k = 0, equation (12) reduces to equation (11) for within-module background.
If |EC(d)| = 1, the calculation reduces to single-species situations, such as in
CisModule [Zhou and Wong (2004)].

Using the recursions of equations (8) and (9) along the alignment path A for
d = 1,2, . . . ,L(A), one can calculate the marginal probability of observing all the
sequences S = [S(1), . . . , S(N)] given the current parameters and alignment, that
is,

P(S|�,A) = P(X[1,L(A)]|�,A) = ∑
y

fL(y),(14)

where all the hidden states Y , ancestral nucleotides Z and evolutionary bounds V

are summed over.
Based on the partial summations calculated in equations (8) and (9), we sam-

ple [Y,Z,V ] sequentially from d = L(A) to d = 1. Suppose we have sampled the
hidden state of ad+1 as Y(d + 1) = [y(1)

d+1, . . . , y
(N)
d+1], where c

(m)
d+1 is either a back-

ground nucleotide or the start position of a motif site in S(m) for m = 1, . . . ,N .
We sample the hidden state Y(d) = [y(1)

d , . . . , y
(N)
d ] of ad with probability pro-

portional to fd(Y (d))Tr(Y (d + 1)|Y (d), r, t) subject to constraints (i) and (ii) of
the c-HMM. If the emission components of ad are sampled as background, we
move to (d − 1) and repeat to sample Y(d − 1). If the emission components of
ad are sampled as state M , we further sample the motif type (i.e., the decom-
posed states M0,M1, . . . ,MK ) with probabilities proportional to the K + 1 terms
of fd(Y (d)) in (9) for k ∈ {0,1, . . . ,K}. Given the imputed value of Y(d), we
set Y(d − wk + i) = Y(d) for i = 1, . . . ,wk − 1 following constraints (iii) and
(ii). Then we move to the point (d − wk) and repeat the sampling procedure for
Y(d − wk). If |EC(d)| ≥ 2, we also sample associated ancestral nucleotides and
evolutionary bonds according to the calculations in equation (11) to equation (13).
Suppose the current emission components are background nucleotides (B or M0).
We sample the ancestral nucleotide Zd with probability

P(Zd = z) ∝ θ
(0)
0 (z)

∏
m∈EC(d)

�b

(
z, x

(m)
d

)
,

for z ∈ {A,C,G,T }. If the current emission components are binding sites of mo-
tif k, we sample each base of the ancestral binding site Zd−wk+1 · · ·Zd indepen-
dently with probabilities

P(Zd−wk+i = z) ∝ �ki(z)
∏

m∈EC(d)

P
(
x

(m)
d−wk+i |z,µf ,�ki

)
,
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for z ∈ {A,C,G,T } and i = 1,2, . . . ,wk , where P(x
(m)
d−wk+i |z,µf ,�ki) is given

by (13). Given the ancestral binding site, we update the evolutionary bond be-
tween the ancestral and current binding sites for each base independently. Denote
the evolutionary bond between x

(m)
d−wk+i [m ∈ EC(d)] and Zd−wk+i by v(m). We

connect the bond with probability

P
(
v(m) = 1

) = (1 − µf ) · 1(x
(m)
d−wk+i = Zd−wk+i)

(1 − µf ) + µf �ki(Zd−wk+i)
;

otherwise the bond will be broken.

A.4. Sample � given [Y,Z,V ] and A. Let us return to the graphical rep-
resentation of the c-HMM as illustrated in Figure 1(B). In this conditional sam-
pling step, the hidden states, the ancestral nucleotides of coupled nodes and
the evolutionary bonds associated with aligned TFBSs are given. We sample r

from Beta(CBM + 1,CBB + 1), where CBM and CBB are the numbers of tran-
sitions from B to M and from B to B , respectively. Denote the numbers of
states B , M and Mk by |B|, |M| and |Mk| for k = 0,1, . . . ,K , respectively
(|M| = ∑K

k=0 |Mk|). The conditional posterior distribution of q = [q0, q1, . . . , qK ]
is Dir(|M0| + 1, . . . , |MK | + 1). We update the ancestral background distribution
θ

(0)
0 by Dir(C(0)

B + 1), where C
(0)
B is the count vector of the imputed ancestral

background nucleotides and 1 is a vector of 1’s of length 4. Denote by Ci,Cs and
Cv the numbers of identities, transitions and transversions from the ancestral to
the current aligned background nucleotides, respectively. Then we sample φb =
[1 − µb,α,2β] from Dir(Ci + 1,Cs + 1,Cv + 1). For all the aligned TFBSs with
their imputed ancestors, we count the numbers of broken and connected evolution-
ary bonds, |V0| and |V1|, respectively, and sample µf from Beta(|V0|+1, |V1|+1).
The sufficient statistic for �ki (k = 1, . . . ,K; i = 1, . . . ,wk) has three compo-
nents, (1) the count vector of unaligned current sites, C

g
ki , (2) the count vector

of ancestral sites, Cz
ki , and (3) the count vector of aligned descendant sites with

a broken evolutionary bond, Cb
ki , since each of them is an independent sample

from �ki under our model. Then the conditional posterior distribution of �ki is
Dir(Cki + 1), where Cki = C

g
ki + Cz

ki + Cb
ki .

A Metropolis–Hastings step is implemented to update motif widths. We illus-
trate our method by one motif as an example. Given the current width w and all
sampled sites of this motif, we propose to increase or decrease one base at their left
or right ends with equal probability. After choosing one of the four possibilities,
the problem is equivalent to a model selection problem: The nucleotides observed
in the selected positions are generated from the background (H0) or from a motif
column (H1). If H1 is true, denote the weight vector of the motif column by �w

and its sufficient statistic by Cw calculated as described in the previous paragraph
for any �ki . Before calculating Cw , one needs to sample the associated evolution-
ary bonds V w , with |V w

0 | and |V w
1 | denoting the numbers of broken and connected
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bonds. Under H0, we denote by Cb = [c(0)
b , c

(1)
b , . . . , c

(N)
b ] the count vectors of an-

cestral nucleotides (c(0)
b ) and current unaligned nucleotides of different orthologs

(c(m)
b ;m = 1, . . . ,N ) in the selected positions. Denote by Ct the substitution count

matrix from an ancestral base to its descendant bases. Then we calculate the pos-
terior odds of H1 with V w over H0 by

P(H1,V
w|µf ,Y,Z,A,S)

P (H0|θ0,�b,Y,Z,A,S)

= π(H1)

π(H0)

∫
P(�w,V w,Cw|µf ,H1) d�w

P (Cb,Ct |θ0,�b,H0)
(15)

= π(H1)

π(H0)

µf
|V w

0 |(1 − µf )|V w
1 | ∫ (�w)Cw�(4) d�w

(θ0)Cb(�b)Ct

= π(H1)

π(H0)

µf
|V w

0 |(1 − µf )|V w
1 |�(Cw + 1)�(4)∏N

m=0(θ
(m)
0 )c

(m)
b (�b)Ct �(|Cw| + 4)

,

where we define RC = ∏
i,j R

Cij

ij and �(R) = ∏
i,j �(Rij ) with R and C being

matrices (vectors) of same size, |Cw| is the total counts in Cw , and the ratio of
π(H1) over π(H0) is determined by the Poisson prior for the motif width. In each
iteration, we always propose to flip the two hypotheses. The proposal from H0 to
H1 involves proposing evolutionary bonds for all the aligned nucleotides that are
identical to their ancestors. We propose to break each of these bonds independently
with probability µf . Under these proposals, the Metropolis–Hastings ratio is

RMH = P(H1,V
w|µf ,Y,Z,A,S)

P (H0|θ0,�b,Y,Z,A,S)

Q(H0|H1,V
w)

Q(H1,V w|H0)

= P(H1,V
w|µf ,Y,Z,A,S)

P (H0|θ0,�b,Y,Z,A,S)

1

µf
|V w

0 |−ns (1 − µf )|V w
1 |(16)

= π(H1)

π(H0)

µf
ns�(Cw + 1)�(4)∏N

m=0(θ
(m)
0 )c

(m)
b (�b)Ct �(|Cw| + 4)

,

where ns is the number of aligned nucleotides that are different from their ances-
tors, and Q stands for the proposal probabilities. From the definition of an evolu-
tionary bond, we always have ns ≤ |V w

0 |.

A.5. Sample A given � . To consider the uncertainty in multiple alignments,
we update A by its marginal posterior distribution given the current parameters,
that is, we want to sample from P(A|�,S). A Metropolis–Hastings step is im-
plemented for this conditional sampling step. Suppose the current alignment is A.
We propose a new alignment A∗ from an ordinary multiple sequence alignment
procedure based on an HMM [Baldi et al. (1994), Krogh et al. (1994)], denoted
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by MA-HMM so as to distinguish from c-HMM. In MA-HMM, each sequence
is aligned to a profile (or a hidden sequence template) based on an HMM with
three states, aligned, insertion and deletion. In our proposal, the transition matrix
between the three states is fixed by prior expectations as

D =

 0.998 0.001 0.001

0 0.998 0.002
0.025 0.025 0.95


 ,

where states are ordered as deletion, insertion and aligned. The rationale for se-
lecting these values is that we expect to start an aligned block every 500 bps
(D11 = D22 = 0.998) and that the average length of an aligned block is 20 bps
(D33 = 0.95). These values serve as the default parameters for all the results pre-
sented in this article. We use the current neutral substitution matrix as the emis-
sion probabilities from the profile (ancestral sequence Z) to a current aligned nu-
cleotide. Ancestral and unaligned nucleotides are emitted from their respective
background models θ

(0)
0 , θ

(1)
0 , . . . , θ

(N)
0 . Denote the probability of proposing the

alignment A∗ by Q(A∗|θ0,�b,Z,S) under the MA-HMM. Then the Metropolis–
Hastings ratio is

P(A∗|�,S)

P (A|�,S)

Q(A|θ0,�b,Z,S)

Q(A∗|θ0,�b,Z,S)
= P(S|A∗,�)

P (S|A,�)

Q(S,Z|A,θ0,�b)

Q(S,Z|A∗, θ0,�b)
,(17)

where P(S|A,�) and P(S|A∗,�) are calculated by (14) through the recursive
forward summations. Q(S,Z|A,θ0,�b) and Q(S,Z|A∗, θ0,�b) are the proba-
bilities of observing S and Z given alignments A and A∗ under the MA-HMM,
respectively, that is,

Q(S,Z|A,θ0,�b) =
N∏

m=0

(
θ

(m)
0

)c(m)
b (�b)

Ct ,(18)

where c
(m)
b and Ct are defined similarly to those in (15) but for all the sequence

positions. Note that the prior probabilities of an alignment are identical in both
c-HMM and MA-HMM, and thus are canceled at the R.H.S. of equation (17).

A.6. A collapsed sampler. Suppose the data set contains n genes. Denote
the missing data, including Y,Z,A and V , for the ith gene by Dmis,i , and let
Si = {S(m)

i }Nm=1 be the orthologous sequences of the ith gene, i = 1,2, . . . , n. Since
collapsing random components in the Gibbs sampler usually results in more effi-
cient sampling schemes [Liu, Wong and Kong (1994), Liu (1994)], we implement
a collapsed MultiModule to sample from P(Dmis,1, . . . ,Dmis,n|S) by iteratively
scanning each gene. For the ith gene, given the current imputed values of

Dmis,[−i] = {Dmis,1, . . . ,Dmis,i−1,Dmis,i+1, . . . ,Dmis,n},
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we first estimate the parameters by their conditional posterior means,

�̂[−i] = E
(
�|Dmis,[−i], S[−i]

)
,(19)

where S[−i] = {S1, . . . , Si−1, Si+1, . . . , Sn}. Then we sample the missing data for
the ith gene from

D∗
mis,i ∼ P

(
Dmis,i |�̂[−i], Si

)
.(20)

Equation (19) can be easily calculated from the conditional posterior distributions
of different parameters (Section A.4), and equation (20) is exactly the same sam-
pling procedure as described in Sections A.3 and A.5 taking �̂[−i] as the current
parameters. We want to emphasize that, although this is only an approximate way
to collapse all the parameters, it indeed improves the convergence of the Gibbs
sampler. The simulation studies were performed with this collapsed version of
MultiModule.
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