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ON A CLASS OF OPTIMAL STOPPING PROBLEMS FOR
DIFFUSIONS WITH DISCONTINUOUS COEFFICIENTS

BY LUDGER RÜSCHENDORF AND MIKHAIL A. URUSOV1

University of Freiburg and Berlin University of Technology

In this paper, we introduce a modification of the free boundary problem
related to optimal stopping problems for diffusion processes. This modifi-
cation allows the application of this PDE method in cases where the usual
regularity assumptions on the coefficients and on the gain function are not
satisfied. We apply this method to the optimal stopping of integral functionals
with exponential discount of the form Ex

∫ τ
0 e−λsf (Xs) ds, λ ≥ 0 for one-

dimensional diffusions X. We prove a general verification theorem which
justifies the modified version of the free boundary problem. In the case of no
drift and discount, the free boundary problem allows to give a complete and
explicit discussion of the stopping problem.

1. Introduction. This paper is concerned with a class of optimal stopping
problems for integral functionals with exponential discount Ex

∫ τ
0 e−λsf (Xs) ds

for a one-dimensional diffusion process (Xs). An example is the problem of stop-
ping a Brownian motion as close as possible to its maximum as it can be reduced
to this kind of stopping problem [see Graversen, Peskir and Shiryaev (2000) or
Peskir and Shiryaev (2006), Chapter 8, Section 3.1]. The literature on optimal
stopping problems for diffusion processes is very rich. An effective method for
solving problems of this type is to develop a connection with some related free
boundary problems (of Stefan type). There are two types of results on this connec-
tion. One type of result is based on solving the related free boundary problem with
the smooth fit condition (in certain cases, the smooth fit condition is replaced by
the continuous fit condition, also, additional conditions may be necessary). This
allows to find explicit solutions of the initial optimal stopping problem in certain
cases. Many examples of this approach (with explicit solutions) are presented in
the recent comprehensive book of Peskir and Shiryaev (2006).

Further, for some classes of optimal stopping problems for regular diffusion
processes with smooth coefficients, existence and regularity results for the corre-
sponding free boundary problems have been established under different kinds of
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smoothness and boundedness conditions on the coefficients of the diffusion and on
the gain function.

On the other hand, starting with the work of Bensoussan and Lions (1973), gen-
eral existence and regularity results for solutions of optimal stopping problems in
terms of variational inequalities have been established. These are formulated with
differential operators in the weak sense and allow weaker assumptions on the regu-
larity of the coefficients and on the gain function. We refer to the book of Friedman
(1976) for strong results in this direction [see also Nagai (1978) and Zabczyk
(1984)]. Results of this type have led, in particular, to the development of some
effective numerical solution methods [see, e.g., Glowinski, Lions and Trémolières
(1976) and Zhang (1994)]. The method of variational inequalities is, however, typ-
ically more difficult to use in concrete examples, where one wants to find explicit
solutions, compared to the formulation in terms of the free boundary PDE’s.

In our paper, we discuss in detail the optimal stopping of integral functionals
Ex

∫ τ
0 e−λsf (Xs) ds in the case of not necessarily continuous coefficients of the

diffusion X and for an interesting class of not necessarily continuous (cumulative)
gain functions f . It is therefore obvious that the classical formulation of the free
boundary problem is not applicable to these stopping problems. In Section 2, a
suitably generalized formulation of the free boundary problem is given and a ver-
ification theorem, together with uniqueness results for this free boundary problem
and for the optimal stopping time (Theorem 2.1), are proved. An important point
in establishing this verification theorem is to establish variational inequalities for
the solutions of our generalized free boundary problem (Lemma 2.6).

We would like to mention some related papers of Salminen (1985), Beibel and
Lerche (2000), Dayanik and Karatzas (2003) and Dayanik (2003), where prob-
lems of maximizing Ex[e−Aτ g(Xτ )I (τ < ∞)] over all stopping times τ are stud-
ied (A is a continuous additive functional of X). These authors use different ap-
proaches, obtain some general results and explicitly treat several examples. Their
approaches are also applicable to diffusions with discontinuous coefficients. Nei-
ther of these approaches is based on the free boundary method (the one we use
here). Another difference with our paper is that we consider optimal stopping of
integral functionals.

After finishing this paper, we became aware of the work Lamberton and Zer-
vos (2006), where some interesting results about the value function of the problem
of maximizing Ex[e−Aτ g(Xτ )I (τ < ∞)] are proved. Neither the function g nor
the coefficients of the diffusion X are supposed to be continuous. Lamberton and
Zervos (2006) prove that the value function V in the problem they consider is the
difference of two convex functions and satisfies a certain variational inequality.
The results in our paper go in the opposite direction. Theorem 2.1 states that the
solution of a certain (modified) free boundary problem is the value function V in
the problem we consider. One of the conditions in this free boundary problem is
that V should be differentiable and V ′ absolutely continuous. The weaker con-
dition mentioned above, that V is the difference of two convex functions, is not
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sufficient for Theorem 2.1. The free boundary problem loses the uniqueness prop-
erty and there appear solutions of the free boundary problem that have nothing
to do with the stopping problem we consider [see Remark (i) after Theorem 2.1].
The reason is that the integral functionals Ex

∫ τ
0 e−λsf (Xs) ds are “more regular”

than the functionals Ex[e−Aτ g(Xτ )I (τ < ∞)]. Hence, one may expect that value
functions for integral functionals should also be “more regular.”

In Section 3, we study in complete detail the case of diffusions without drift
and with zero discount. Necessary and sufficient conditions for the existence of
solutions of the free boundary problem are established (Theorem 3.1). Also, in
the case that the free boundary problem has no solutions, the optimal stopping
problem is dealt with (Theorems 3.2 and 3.9). We discuss finiteness of the value
function, obtain explicit formulas for the value function and the optimal stopping
time and determine approximately optimal stopping time sequences in the case
where there is no optimal stopping time. Finally, the Appendix contains several
technical lemmas which are used in the proofs and can be helpful in studying
related questions.

2. Stopping problem, free boundary problem and verification theorem.

2.1. Setting of the problem. Let X = (Xt)t∈[0,∞) be a continuous stochastic
process with values in the extended real line R∪ {�} and explosion time ζ , that is,
the following two properties hold:

(i) X is R-valued and continuous on [0, ζ );
(ii) if ζ < ∞, then X ≡ � on [ζ,∞) and either limt↑ζ Xt = ∞ or limt↑ζ Xt =

−∞.

If ζ = ∞ a.s., then X is called nonexplosive.
We consider stopping problems for diffusions X defined by

dXt = b(Xt) dt + σ(Xt) dBt ,(2.1)

where B is a Brownian motion and b, σ are Borel functions R → R. In the sequel,
we assume that the coefficients b and σ satisfy the Engelbert–Schmidt condition

σ(x) 
= 0 ∀x ∈ R
1

σ 2 ∈ L1
loc(R),

b

σ 2 ∈ L1
loc(R),(2.2)

where L1
loc(R) denotes the class of locally integrable functions on R. Under this

condition, the SDE (2.1) has a unique (in law, possibly explosive) weak solution
for any starting point X0 = x [see Engelbert and Schmidt (1985, 1991) or Karatzas
and Shreve (1991), Chapter 5, Theorem 5.15]. Let us note that condition (2.2) is
weak enough. For example, if b is locally bounded and σ is locally bounded away
from zero, then (2.2) holds.

Let f : R → R be a Borel function such that there exist points x1� ≤ x1r < x2� ≤
x2r in R such that f > 0 on (x1r , x2�), f = 0 on [x1�, x1r ] ∪ [x2�, x2r ] and f < 0
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FIG. 1.

on (−∞, x1�) ∪ (x2r ,∞) (see Figure 1). Throughout the following, we assume
that the function f satisfies the condition

f

σ 2 ∈ L1
loc(R),

1

f
∈ Bloc(x) ∀x ∈ R \ ([x1�, x1r ] ∪ [x2�, x2r ]),(2.3)

where Bloc(x) denotes the class of functions R → R locally bounded at x

[g ∈ Bloc(x) if it is bounded in a sufficiently small neighborhood of x]. Finally,
let us note that f/σ 2 ∈ L1

loc(R) holds for all locally bounded functions f , due
to (2.2).

In the paper, we use the following convention. For any function g : R → R, we
define g(�) = 0.

Let X be a (possibly explosive) solution of (2.1) on some probability space
(�,F ,Px), where Px(X0 = x) = 1, x ∈ R. By (F X

t ), we denote the filtration
generated by X satisfying the usual conditions. In this paper, we consider the class
of optimal stopping problems defined for functions f as specified above by

V ∗(x) = sup
τ∈M

Ex

∫ τ

0
e−λsf (Xs) ds.(2.4)

Here, λ ≥ 0 and M is the class of (F X
t )-stopping times τ such that

Ex

∫ τ

0
e−λsf +(Xs) ds < ∞ or Ex

∫ τ

0
e−λsf −(Xs) ds < ∞.(2.5)

Let us remark that it is enough to consider only stopping times τ ≤ ζ because
f (�) = 0. Setting (2.4) is a well-motivated class of stopping problems arising, for
example, in connection with various versions of options of Asian type. The gain
function f positively rewards the case where the process stays in a favorable do-
main [x1�, x2r ] and puts negative weight in the case where this domain is left. From
this formulation, one may expect that two-sided stopping times play an essential
role.

For real numbers α < β , we denote by Tα,β the stopping time

Tα,β = inf{t ∈ [0,∞) :Xt ≤ α or Xt ≥ β}(2.6)
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(as usual, inf ∅ = ∞). It is important that, under our assumptions, Tα,β ∈ M (see
Lemma A.3 in the Appendix).

Let μL denote the Lebesgue measure on (R,B(R)). Using the occupation times
formula [see Revuz and Yor (1999), Chapter VI, Corollary (1.6)], one can verify
that

μL({t ∈ [0,∞) :Xt ∈ A}) = 0, Px-a.s.

for sets A of Lebesgue measure 0. Hence, problem (2.4) remains unchanged if we
change the function f on a set of μL-measure 0. In particular, the cases, where
some of the values f (x1�), f (x1r ), f (x2�) and f (x2r ) are nonzero, reduce to the
situation under consideration.

The interesting point in the formulation of assumptions (2.2) and (2.3) is that
they allow discontinuities in b, σ and f , which is of interest in various applica-
tions. For example, in modeling stock prices, it is reasonable to consider volatilities
σ that jump to a higher range of values when the price reaches a certain threshold.

REMARKS. (i) All results of Section 2 also remain valid for J ∪ {�}-valued
diffusions X, where J = (�, r), −∞ ≤ � < r ≤ ∞, the functions b, σ and f :J →
R satisfy conditions similar to (2.2) and (2.3) (one should replace R with J ) and
X explodes when it tends either to � or to r at a finite time.

(ii) One main reason why we consider functionals of the form shown in Figure 1
is that one encounters concrete stopping problems of this type in the literature. For
example, Graversen, Peskir and Shiryaev (2000) reduce the problem of stopping a
Brownian motion B = (Bt )t∈[0,1] as close as possible to its maximum

inf
τ

E

(
max

t∈[0,1]Bt − Bτ

)2

to the problem of the form (2.4) with an Ornstein–Uhlenbeck process X, dXt =
Xt dt + √

2dBt , λ = 2 and f (x) = 3 − 4�(|x|), where � is the distribution
function of the standard Gaussian random variable [see also Peskir and Shiryaev
(2006), Chapter VIII, Section 30.1]. Note that f has the form shown in Figure 1.

As another example, we consider the following stopping problem of Karatzas
and Ocone (2002), which they study in order to solve a stochastic control problem
[see also Dayanik and Karatzas (2003), Section 6.9]:

inf
τ

Ex

[
e−λτ δX2

τ +
∫ τ

0
e−λsX2

s ds

]
, x ∈ J := (0,∞),(2.7)

where λ ≥ 0, δ > 0 and dXt = −θ dt + dBt , θ > 0 (X is absorbed when it
reaches 0). The local martingale that appears in Itô’s formula applied to the process
(e−λt δX2

t ) is a uniformly integrable martingale whenever λ > 0. Simple computa-
tions show that in the case λ > 0, problem (2.7) can be reduced to the problem of
the form (2.4) with the state space J = (0,∞) (see the previous remark) and

f (x) = (λδ − 1)x2 + 2δθx − δ.



852 L. RÜSCHENDORF AND M. A. URUSOV

This function f has the form shown in Figure 1 if λδ < 1 and λδ + θ2δ > 1 [cf.
Dayanik and Karatzas (2003), Section 6.9, Case III].

Actually, the class of functions f that have the form shown in Figure 1 is a “nat-
ural class for which one expects optimal stopping times to be two-sided,” though
there exist functions f not of this form with corresponding two-sided optimal stop-
ping times and it can happen that optimal stopping times for functions of this form
are not two-sided (see Section 3 of the present paper).

2.2. Free boundary problem and main results. In order to solve problem (2.4),
the free boundary problem (with smooth fit conditions) is usually formulated as
follows:

σ 2(x)

2
V ′′(x) + b(x)V ′(x) − λV (x) = −f (x), x ∈ (x∗

1 , x∗
2 );(2.8)

V (x) = 0, x ∈ R \ (x∗
1 , x∗

2 );(2.9)

V ′+(x∗
1 ) = V ′−(x∗

2 ) = 0,(2.10)

where V ′+ and V ′− denote, respectively, right and left derivatives of V . The form
of the free boundary problem (2.8)–(2.10) is motivated by the form of the func-
tion f . It is natural to expect that the optimal continuation domain here is some
interval (x∗

1 , x∗
2 ) [one can also expect that the continuation domain should contain

(x1�, x2r )]. The usual way to make use of this free boundary problem is to take an
appropriate solution (V , x∗

1 , x∗
2 ) of the problem (2.8)–(2.10) and then to prove that

V = V ∗ and Tx∗
1 ,x∗

2
is an optimal stopping time in (2.4).

We say that the free boundary problem (2.8)–(2.10) loses a solution of the op-
timal stopping problem (2.4) if (2.4) has a two-sided optimal stopping time of the
form Tα,β for some real α < β and the triplet (V ∗, α,β) is not a solution of (2.8)–
(2.10). This does not happen in many concrete examples with continuous b, σ and
f . However, it would be a fairly general situation if b, σ or f are discontinuous.
The reason is that (2.8) is too restrictive in that case: one should not require this
equality to be held for all x ∈ (x∗

1 , x∗
2 ) if one wants to allow discontinuities in b, σ

and f .
Below, we shall see that the following modified free boundary formulation is

“no-loss” in the sense that it does not lose solutions of (2.4), even if b, σ and f are
allowed to be discontinuous:

V ′ is absolutely continuous on [x∗
1 , x∗

2 ];(2.11)

σ 2(x)

2
V ′′(x) + b(x)V ′(x) − λV (x) = −f (x)

(2.12)
for μL-a.a. x ∈ (x∗

1 , x∗
2 );

V (x) = 0, x ∈ R \ (x∗
1 , x∗

2 );(2.13)

V ′+(x∗
1 ) = V ′−(x∗

2 ) = 0.(2.14)
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We say that a triplet (V , x∗
1 , x∗

2 ) is a solution of (2.11)–(2.14) if x∗
1 and x∗

2 are real
numbers, x∗

1 < x∗
2 , V ∈ C1([x∗

1 , x∗
2 ]) and the triplet (V , x∗

1 , x∗
2 ) satisfies (2.11)–

(2.14). Formally, under V ′(x∗
1 ) and V ′(x∗

2 ) in (2.11), one should understand, re-
spectively, right and left derivatives. However, (2.13) and (2.14) imply that the
two-sided derivatives exist at both points. We shall see below that condition (2.11)
is important.

We say that a solution (V , x∗
1 , x∗

2 ) of (2.11)–(2.14) is trivial if V ≡ 0. For ex-
ample, if x1� < x1r or x2� < x2r , then taking any x∗

1 < x∗
2 belonging either to

[x1�, x1r ] or to [x2�, x2r ], we get a trivial solution (0, x∗
1 , x∗

2 ). Of course, we are
only interested in nontrivial solutions.

The modified free boundary problem (2.11)–(2.14) can be equivalently formu-
lated in the following way, which will be sometimes more convenient for us:

V ′(x) =
∫ x

x∗
1

2

σ 2(t)
[λV (t) − b(t)V ′(t) − f (t)]dt, x ∈ (x∗

1 , x∗
2 );(2.15)

V (x) = 0, x ∈ R \ (x∗
1 , x∗

2 );(2.16)

V ′−(x∗
2 ) = 0.(2.17)

Similarly, a triplet (V , x∗
1 , x∗

2 ) is a solution of (2.15)–(2.17) if x∗
1 and x∗

2 are real
numbers, x∗

1 < x∗
2 , V ∈ C1([x∗

1 , x∗
2 ]) and the triplet (V , x∗

1 , x∗
2 ) satisfies (2.15)–

(2.17). Clearly, a triplet (V , x∗
1 , x∗

2 ) is a solution of (2.11)–(2.14) if and only if it
is a solution of (2.15)–(2.17). In connection with (2.15), note that for any function
V ∈ C1(R), we have (λV − bV ′ − f )/σ 2 ∈ L1

loc(R), which follows from (2.2)
and (2.3).

The first main result of this paper is a verification theorem for the optimal stop-
ping problem (2.4). Its proof will be given in Section 2.3.

THEOREM 2.1 (Verification theorem). If (V , x∗
1 , x∗

2 ) is a nontrivial solution of
the free boundary problem (2.11)–(2.14), then it is the unique nontrivial solution.
V is the value function in the optimal stopping problem (2.4), that is, V = V ∗ and
Tx∗

1 ,x∗
2

is the unique optimal stopping time in (2.4).

REMARKS. (i) Condition (2.11) ensures uniqueness of the nontrivial solution
of the free boundary problem (2.11)–(2.14). Problem (2.12)–(2.14) may have non-
trivial solutions that have nothing to do with the stopping problem (2.4).

Lamberton and Zervos (2006) prove that value functions of a wide class of stop-
ping problems of the form “maximize Ex[e−Aτ g(Xτ )I (τ < ∞)] over all stopping
times τ” are differences of two convex functions. It therefore seems to be of in-
terest whether our free boundary formulation will still have a unique nontrivial
solution if we replace (2.11) by the weaker condition “V is the difference of two
convex functions.” The answer is negative, as the following example shows.
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Consider the case λ = 0 and b ≡ 0 and suppose that there exists a nontriv-
ial solution (V , x∗

1 , x∗
2 ) of (2.11)–(2.14) (see Section 3 for necessary and suffi-

cient conditions). We take any continuous function h : R → R such that h = 0

on (−∞, x∗
1 ] ∪ [x∗

2 ,∞), h′ = 0 μL-a.e. on [x∗
1 , x∗

2 ], ∫ x∗
2

x∗
1

h(t) dt = 0 and h is not

absolutely continuous on [x∗
1 , x∗

2 ] (such a function h can be easily constructed
through the Cantor staircase function). We set H(x) = ∫ x

−∞ h(t) dt , x ∈ R and de-
fine the function Ṽ by the formula Ṽ = V + H . Clearly, the triplet (Ṽ , x∗

1 , x∗
2 )

satisfies (2.12)–(2.14) and Ṽ is the difference of two convex functions. However,
Ṽ has nothing to do with the stopping problem (2.4) because Ṽ 
= V = V ∗.

(ii) It is interesting to note that we always have strict inequalities x∗
1 < x1� and

x∗
2 > x2r , regardless of the size of the negative values the function f takes to the

left of x1� or to the right of x2r (see Proposition 2.9 below). This is different from
problems of the form

sup
τ

Ex[e−λτ g(Xτ )I (τ < ∞)].
In such problems, a point, where g or g′ have a discontinuity, can be a boundary
point of the stopping region [for the corresponding examples, see Salminen (1985),
page 98, Example (iii), Øksendal and Reikvam (1998), Section 4 or Dayanik and
Karatzas (2003), Sections 6.7 and 6.11].

The following result states that the modified free boundary formulation (2.11)–
(2.14) is “no-loss” in the sense described above. This justifies the modification of
the free boundary as (2.11)–(2.14). In the following theorem, we do not need the
structure of the gain function f as specified in Figure 1; we need only the condition
f/σ 2 ∈ L1

loc(R).

THEOREM 2.2. Let f be any Borel function R → R such that f/σ 2 ∈
L1

loc(R). If there exist real numbers x∗
1 < x∗

2 such that Tx∗
1 ,x∗

2
is an optimal stopping

time in (2.4), then the triplet (V ∗, x∗
1 , x∗

2 ) is a solution of (2.11)–(2.14).

REMARKS. (i) Theorem 2.2 was stated as a conjecture in the first version of
this paper. The proof will be given in a subsequent paper (joint with D. Belomest-
ny) which is concerned with this “no-loss” result. The results of Section 3 imply
Theorem 2.2 in the particular case b ≡ 0 and λ = 0.

(ii) It follows from Theorems 2.1 and 2.2 that for functions f that have the
form shown in Figure 1 and satisfy (2.3), the stopping problem (2.4) has a two-
sided optimal stopping time if and only if the free boundary problem (2.11)–(2.14)
has a nontrivial solution. It would be interesting to obtain “simple” necessary and
sufficient conditions for this in terms of b, σ , f and λ. We cannot do it in this
generality. However, this is done in Section 3 in the particular case b ≡ 0 and
λ = 0 (see Theorem 3.1).
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(iii) As seen from the discussion above, assumption (2.11) is a key assumption
on the value function in the framework of this paper. By Theorem 2.2, (2.11) holds
whenever (2.4) has a two-sided optimal stopping time. However, it is interesting to
obtain sufficient conditions on the diffusion coefficients, f and λ to ensure that the
value function V ∗ in problem (2.4) satisfies (2.11), no matter what form optimal
stopping times have.

We cannot solve this problem in general. It follows, however, from the results of
Section 3 that in the particular case b ≡ 0 and λ = 0 (f of the form as in Figure 1),
the value function V ∗ satisfies (2.11) if and only if V ∗ is finite (one can also see
necessary and sufficient conditions for this in terms of σ and f in Section 3).
Compare this with Lamberton and Zervos (2006) and also see Remark (i) after
Theorem 2.1.

In the rest of Section 2.2, we study a generalization of our stopping problem
and point out some interesting effects. We now consider functions f that have
the following form: there exist four segments Ii = [xi,�, xi,r ], xi,� ≤ xi,r , 1 ≤ i ≤
4, xi,r < xi+1,�, 1 ≤ i ≤ 3 such that f = 0 on

⋃4
i=1 Ii , f > 0 on (x1,r , x2,�) ∪

(x3,r , x4,�), and f < 0 on the rest of real line (we now have two favorable domains
compared with one for functions f specified in Figure 1). We suppose that (2.2)
and the following modification of (2.3) hold:

f

σ 2 ∈ L1
loc(R),

1

f
∈ Bloc(x) ∀x ∈ R

∖ ( 4⋃
i=1

Ii

)
.

To account for the possibility that the stopping region has the form (−∞, x∗
1 ] ∪

[x∗
2 , x∗

3 ] ∪ [x∗
4 ,∞), we formulate the modified free boundary problem

V ′ is absolutely continuous on [x∗
1 , x∗

2 ] and on [x∗
3 , x∗

4 ];(2.18)

σ 2(x)

2
V ′′(x) + b(x)V ′(x) − λV (x) = −f (x)

(2.19)
for μL-a.a. x ∈ (x∗

1 , x∗
2 ) ∪ (x∗

3 , x∗
4 );

V (x) = 0, x ∈ R \ [(x∗
1 , x∗

2 ) ∪ (x∗
3 , x∗

4 )];(2.20)

V ′+(x∗
1 ) = V ′−(x∗

2 ) = V ′+(x∗
3 ) = V ′−(x∗

4 ) = 0(2.21)

and define its solution (V , x∗
1 , x∗

2 , x∗
3 , x∗

4 ) in a way similar to that for (2.11)–(2.14).
The following optimal stopping result for the class of functions f with two

favorable regions as introduced above can be proven similarly to the proof of The-
orem 2.1 (see Section 2.3).

THEOREM 2.3. If (V , x∗
1 , x∗

2 , x∗
3 , x∗

4 ) is a solution of the free boundary prob-
lem (2.18)–(2.21) such that V 
≡ 0 on (x∗

1 , x∗
2 ) and V 
≡ 0 on (x∗

3 , x∗
4 ), then it is the
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unique solution with this property. V is the value function in the optimal stopping
problem (2.4), that is, V = V ∗, and the unique optimal stopping time in (2.4) is
given by the formula

Tx∗
1 ,x∗

2 ,x∗
3 ,x∗

4
= inf{t ∈ [0,∞) :Xt /∈ (x∗

1 , x∗
2 ) ∪ (x∗

3 , x∗
4 )},

where inf ∅ := ∞. Moreover, x∗
1 < x1,�, x∗

2 , x∗
3 ∈ (x2,r , x3,�) and x∗

4 > x4,r .

REMARK. For some functions f of the modified form, the optimal stop-
ping region is two-sided, that is, it is of the form (−∞, x∗

1 ] ∪ [x∗
2 ,∞) [one can

think on a function f such that |f | is “small” on (x2,r , x3,�) and “large” on⋃
i=1,2,4,5(xi−1,r , xi,�) with x0,r := −∞ and x5,� := ∞]. Therefore, it is interest-

ing to understand whether Theorem 2.1 also remains true in this case (to account
for two-sided solutions of the stopping problem). The answer is “No”! The form
of the function f shown in Figure 1 is crucial for Theorem 2.1.

To illustrate this issue, let us consider some function f as in Figure 1 such
that the free boundary problem (2.11)–(2.14) with f instead of f has a nontrivial
solution (V , x∗

1 , x∗
2 ). Then, let us construct a function f of the form we consider

now by modifying f on [x∗
2 ,∞) in such a way that f > 0 on some (x∗

2 , x∗
2 + ε)

[note that f < 0 on some (x∗
2 − δ, x∗

2 ) by Remark (ii) after Theorem 2.1]. Clearly,
(V , x∗

1 , x∗
2 ) is also a nontrivial solution of (2.11)–(2.14) for this new function f ,

but the stopping time Tx∗
1 ,x∗

2
is no more optimal in (2.4) because it is equal to 0 if

the starting point belongs to the favorable region (x∗
2 , x∗

2 + ε).

2.3. Auxiliary results and proofs. Below, we work in the setting of Section 2.1
(in particular, f has the form specified in Figure 1). At first, we need a uniqueness
result for the Cauchy problem in (2.15).

LEMMA 2.4 (Uniqueness for the Cauchy problem). Let I be an interval in
R that is either open, semi-open or closed and either bounded or unbounded. Let
g : I → R be a function such that g/σ 2 ∈ L1

loc(I ). Let a ∈ I , c ∈ R and V , Ṽ be
functions I → R that satisfy the equation

V ′(x) = c +
∫ x

a

2

σ 2(t)
[λV (t) − b(t)V ′(t) − g(t)]dt, x ∈ I.

If V (x0) = Ṽ (x0) and V ′(x0) = Ṽ ′(x0) for some x0 ∈ I , then V = Ṽ on I .

PROOF. Let us set U = V − Ṽ and

y = inf{x ∈ I ∩ [x0,∞) :U(x) 
= 0}
(inf ∅ := ∞) and suppose that U 
≡ 0 on I ∩ [x0,∞). Then, y < d , where d de-
notes the right endpoint of the interval I ∩ [x0,∞), and we have

U ′(x) =
∫ x

y

2

σ 2(t)
[λU(t) − b(t)U ′(t)]dt, x ∈ I.(2.22)
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Let δ ∈ (0,1] be sufficiently small so that y + δ < d and

max
(∫ y+δ

y

2λ

σ 2(t)
dt,

∫ y+δ

y

2|b(t)|
σ 2(t)

dt

)
≤ 1

3

[see (2.2)], set m = supx∈[y,y+δ] |U ′(x)| and note that m > 0 and |U | ≤ m on
[y, y + δ]. Now, taking x ∈ [y, y + δ] such that |U ′(x)| = m, we obtain from (2.22)
that m ≤ 2

3m. This contradiction implies that U ≡ 0 on I ∩ [x0,∞). Similarly,
U ≡ 0 on (−∞, x0] ∩ I . �

In Lemmas 2.5–2.8 below, we additionally assume that

b is locally bounded on R.(2.23)

In the following, let (V , x∗
1 , x∗

2 ) be any nontrivial solution of the free boundary
problem (2.15)–(2.17).

LEMMA 2.5. Let y ∈ [x∗
1 , x∗

2 ] and assume that (2.23) holds.

(i) If V attains a local maximum at y and V (y) ≥ 0, then f (y) ≥ 0.
(ii) If V attains a local minimum at y and V (y) ≤ 0, then f (y) ≤ 0.

PROOF. (i) Since V ′(y) = 0, we have

V ′(x) =
∫ x

y
g(t) dt, x ∈ [x∗

1 , x∗
2 ],

where g(t) = (2/σ 2(t))[λV (t) − b(t)V ′(t) − f (t)]. If f (y) < 0, then g > 0 in
a sufficiently small neighborhood of y [see (2.3) and (2.23)]. Hence, for a suffi-
ciently small ε > 0, V ′ > 0 on (y, y + ε) and V ′ < 0 on (y − ε, y) [if y = x∗

1 or
y = x∗

2 , one should consider, respectively, only (y, y + ε) or only (y − ε, y)]. This
contradicts the fact that V attains a local maximum at y.

(ii) One can apply the reasoning above to the functions −V and −f . �

LEMMA 2.6. Under assumption (2.23), we have x∗
1 ≤ x1r , x∗

2 ≥ x2� and V ≥
0 on R.

PROOF.

(I) Let us assume that x∗
2 < x2�. There are several cases to consider.

(1) Suppose that x∗
2 ∈ (x1r , x2�) and x∗

1 ≥ x1� (see Figure 2). It follows from
(2.15)–(2.17), (2.3) and (2.23) that V < 0 on (x∗

2 −ε, x∗
2 ) for a sufficiently

small ε > 0. If x∗
1 < x1r , then, by Lemma 2.4, V = 0 on [x∗

1 , x1r ]. Let
us take y ∈ [x∗

1 , x∗
2 ] such that V (y) = infx∈[x∗

1 ,x∗
2 ] V (x). The reasoning

above ensures that y ∈ (x1r , x2�). Since f > 0 on (x1r , x2�), we obtain a
contradiction with Lemma 2.5.



858 L. RÜSCHENDORF AND M. A. URUSOV

FIG. 2.

(2) Suppose that x∗
2 ∈ (x1r , x2�) and x∗

1 < x1� (see Figure 3). It follows from
(2.15)–(2.17), (2.3) and (2.23) that V < 0 on (x∗

2 − ε, x∗
2 ) and V > 0 on

(x∗
1 , x∗

1 + ε) for a sufficiently small ε > 0. By a, we denote any point in
(x∗

1 , x∗
2 ) such that V (a) = 0. Let us take y ∈ [x∗

1 , a] and z ∈ [a, x∗
2 ] such

that V (y) = supx∈[x∗
1 ,a] V (x) and V (z) = infx∈[a,x∗

2 ] V (x) and note that
y < a < z and V (y) > 0 > V (z). By Lemma 2.5, f (y) ≥ 0 and f (z) ≤ 0.
Due to the form of the function f and the fact that y < z < x2�, we obtain
that y, z ∈ [x1�, x1r ].

Since V ′(y) = 0, we have

V ′(x) =
∫ x

y

2

σ 2(t)
[λV (t) − b(t)V ′(t)]dt, x ∈ [y, z].(2.24)

In the case where λ > 0, it follows from (2.24), (2.23) and V (y) > 0 that
V ′ > 0 on a sufficiently small interval (y, y + ε). This contradicts the fact
that V attains a local maximum at y.

Finally, in the case where λ = 0, the function Ṽ (x) = V (y), x ∈ [y, z]
is a solution of (2.24) on the interval [y, z]. By Lemma 2.4, V = Ṽ on
[y, z], hence V (y) = V (z). We obtain a contradiction with V (y) > 0 >

V (z).
(3) Suppose that x∗

2 ≤ x1r . If x∗
1 ≥ x1�, then, by Lemma 2.4, V ≡ 0. Since we

consider a nontrivial solution (V , x∗
1 , x∗

2 ) of (2.15)–(2.17), we get x∗
1 <

FIG. 3.
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FIG. 4.

x1�. We now obtain a contradiction by reasoning similar to that in part
(1). Thus, we have established that x∗

2 ≥ x2�. Similarly, x∗
1 ≤ x1r .

(II) In the next part, we prove that V ≥ 0 on R.
Let us first prove that V ≥ 0 on [x2�, x

∗
2 ]. If x∗

2 ≤ x2r , then, by Lemma 2.4,
V = 0 on [x2�, x

∗
2 ]. In the case where x∗

2 > x2r (see Figure 4), it follows from
(2.15)–(2.17), (2.3) and (2.23) that V is strictly decreasing on a sufficiently
small interval [x∗

2 − ε, x∗
2 ], hence V > 0 on [x∗

2 − ε, x∗
2 ). To prove that V

is decreasing on [x2�, x
∗
2 ], assume that this is not the case. There then exist

points y and z, x2� ≤ y < z < x∗
2 , such that V (y) < V (z) = supx∈[y,x∗

2 ] V (x).
By Lemma 2.5, f (z) ≥ 0, hence z ≤ x2r . Since V ′(z) = 0, we obtain from
(2.15) that

V ′(x) =
∫ x

z

2

σ 2(t)
[λV (t) − b(t)V ′(t)]dt, x ∈ [y, z].(2.25)

If λ > 0, then V ′ < 0 on some interval (z − ε, z), due to (2.23). This contra-
dicts the fact that V attains a local maximum at z. If λ = 0, then the func-
tion Ṽ (x) = V (z), x ∈ [y, z] is a solution of (2.25) on the interval [y, z]. By
Lemma 2.4, V = Ṽ on [y, z], hence V (y) = V (z), and this is a contradiction.
Thus, V ≥ 0 on [x2�, x

∗
2 ]. Similarly, V ≥ 0 on [x∗

1 , x1r ].
Finally, if there exists a point y ∈ (x1r , x2�) such that V (y) < 0, then we

obtain a contradiction with Lemma 2.5 by considering z ∈ (x1r , x2�) such that
V (z) = infx∈[x1r ,x2�] V (x). This completes the proof. �

In the following lemma, we establish the main part of the verification theo-
rem.

LEMMA 2.7. Under assumption (2.23), V ∗ = V and Tx∗
1 ,x∗

2
is an optimal stop-

ping time in the stopping problem (2.4).

PROOF. Let x ∈ R be fixed. At first, we prove that we can apply Itô’s formula
in the standard form to e−λ(t∧T−n,n)V (X

T−n,n

t ), n ∈ N (we stop X at T−n,n because
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it can explode) and obtain

e−λ(t∧T−n,n)V (Xt∧T−n,n)

= V (x) +
∫ t∧T−n,n

0
e−λsV ′(Xs)σ (Xs) dBs(2.26)

+
∫ t∧T−n,n

0
e−λsG(Xs) ds, Px-a.s., t ∈ [0,∞),

where G(y) = σ 2(y)V ′′(y)/2 + b(y)V ′(y) − λV (y), y ∈ R. Note that the term∫ t∧T−n,n

0 e−λsG(Xs) ds is well defined (though it contains V ′′ that is defined only
μL-a.e.) because

μL({t ∈ [0,∞) :Xt ∈ A}) = 0, Px-a.s. whenever μL(A) = 0,(2.27)

which, in turn, can be derived from the occupation times formula [see Revuz and
Yor (1999), Chapter VI, Corollary (1.6)].

It follows from (2.11) that V is the difference of two convex functions. By the
Itô–Tanaka formula [see Revuz and Yor (1999), Chapter VI, Theorem (1.5)], we
get

V (X
T−n,n

t ) = V (x) +
∫ t∧T−n,n

0
V ′(Xs)σ (Xs) dBs

+
∫ t∧T−n,n

0
V ′(Xs)b(Xs) ds + 1

2

∫
R

L
y
t (X)V ′(dy),(2.28)

Px-a.s., t ∈ [0,∞),

where V ′(dy) denotes the (signed) Radon measure on (R,B(R)) with the distri-
bution function V ′. Since V ′(dy) = V ′′(y) dy [see (2.11)], the term with the local
time in (2.28) can be rewritten by the occupation times formula as follows:∫

R

L
y
t (X)V ′(dy) =

∫
R

L
y
t (X)V ′′(y) dy

=
∫ t

0
V ′′(Xs) d[X]s

=
∫ t

0
V ′′(Xs)σ

2(Xs) ds, Px-a.s., t ∈ [0,∞).

Substituting this in (2.28), we obtain

V (X
T−n,n

t ) = V (x) +
∫ t∧T−n,n

0
V ′(Xs)σ (Xs) dBs

+
∫ t∧T−n,n

0
[σ 2(Xs)V

′′(Xs)/2 + b(Xs)V
′(Xs)]ds,(2.29)

Px-a.s., t ∈ [0,∞).
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Now, applying Itô’s formula to e−λ(t∧T−n,n)Yt , where Yt = V (X
T−n,n

t ), and using
(2.29) we get (2.26). For the sequel, note that in (2.26), we have G = −f I[x∗

1 ,x∗
2 ]

μL-a.e. [see (2.12)].
Since T−n,n ↑ ζPx -a.s. as n ↑ ∞, we have

e−λ(t∧T−n,n)V (Xt∧T−n,n) → e−λtV (Xt), Px-a.s. on {ζ > t}.
Additionally, by our definition g(�) = 0 for any function g : R → R and using the
fact that V has compact support, we get

e−λ(t∧T−n,n)V (Xt∧T−n,n) → 0 = e−λtV (Xt), Px-a.s. on {ζ ≤ t}.
Similarly treating the right-hand side of (2.26), we obtain

e−λtV (Xt) = V (x) + Mt +
∫ t

0
e−λsG(Xs) ds, Px-a.s., t ∈ [0,∞),(2.30)

where

Mt =
∫ t

0
e−λsV ′(Xs)σ (Xs) dBs(2.31)

is a local martingale. Indeed,∫ t

0
[e−λsV ′(Xs)σ (Xs)]2 ds < ∞, Px-a.s., t ∈ [0,∞)

because
∫ t

0 σ 2(Xs) ds < ∞ Px -a.s. on the set {ζ > t} and, further, V ′ has compact
support.

Let τ ∈ M be an arbitrary stopping time and let τn ↑ ∞ be a localizing sequence
for M (so that each Mτn is a uniformly integrable martingale). Setting F = −G,
we obtain from (2.30) that

V (x) = Ex

[
e−λ(τ∧τn)V (Xτ∧τn)

] + Ex

∫ τ∧τn

0
e−λsF (Xs) ds.(2.32)

(Note that the first term on the right-hand side is finite because V is bounded.
Hence, the second term is also finite). By Lebesgue’s bounded convergence theo-
rem,

Ex

[
e−λ(τ∧τn)V (Xτ∧τn)

] → Ex[e−λτV (Xτ )], n → ∞.

Since F = f I[x∗
1 ,x∗

2 ] μL-a.e., we have F+ ≤ f + μL-a.e. and F− ≤ f − μL-a.e.
Since τ ∈ M, we have

Ex

∫ τ

0
e−λsF+(Xs) ds < ∞ or Ex

∫ τ

0
e−λsF−(Xs) ds < ∞.

Separately considering F+ and F− and applying the monotone convergence the-
orem, we get

Ex

∫ τ∧τn

0
e−λsF (Xs) ds → Ex

∫ τ

0
e−λsF (Xs) ds, n → ∞.
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Thus, (2.32) implies the definitive equation

V (x) = Ex[e−λτV (Xτ )] + Ex

∫ τ

0
e−λsF (Xs) ds.(2.33)

By Lemma 2.6, V (y) ≥ 0 for all y ∈ R and F(y) ≥ f (y) for μL-a.a. y ∈ R. Ap-
plying (2.27), we obtain from (2.33) that

V (x) ≥ Ex

∫ τ

0
e−λsf (Xs) ds

for each τ ∈ M. Hence, V (x) ≥ V ∗(x). Putting τ = Tx∗
1 ,x∗

2
in (2.33), we see that

V (x) = Ex

∫ Tx∗
1 ,x∗

2

0
e−λsf (Xs) ds.

This completes the proof. �

We can now strengthen Lemma 2.6.

LEMMA 2.8. Under assumption (2.23), we have x∗
1 ≤ x1�, x∗

2 ≥ x2r and V >

0 on (x∗
1 , x∗

2 ).

PROOF. We recall that for the solution X of SDE (2.1) under condition (2.2),
it holds that Px(Ty < Tz) > 0 and Px(Tz < Ty) > 0 for any y < x < z, where

Ty = inf{t ∈ [0,∞) :Xt = y}
with the usual agreement inf ∅ = ∞ and where Tz is similarly defined [see
Engelbert and Schmidt (1985, 1991) or Karatzas and Shreve (1991), Chap-
ter 5.5.A–B]. Applying Lemma 2.7, we obtain

V (x) = V ∗(x) ≥ Ex

∫ Tx1�,x2r

0
e−λsf (Xs) ds > 0, x ∈ (x1�, x2r ).

Hence, x∗
1 ≤ x1� and x∗

2 ≥ x2r . Finally, it remains to recall the following fact,
which is established in part (II) of the proof of Lemma 2.6: if x∗

1 < x1� (resp.
x∗

2 > x2r ), then V > 0 on (x∗
1 , x1�] (resp. on [x2r , x

∗
2 )). �

PROOF OF THEOREM 2.1. (1) At first, we additionally assume (2.23). We
still need to prove the uniqueness of the nontrivial solution of (2.15)–(2.17) and
the uniqueness of the optimal stopping time in (2.4).

It follows from Lemmas 2.7 and 2.8 that for any nontrivial solution (V , x∗
1 , x∗

2 )

of (2.15)–(2.17), we have

V = V ∗,
x∗

1 = sup{x ≤ x1� :V ∗(x) = 0},
x∗

2 = inf{x ≥ x2r :V ∗(x) = 0}.
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Hence, the nontrivial solution of (2.15)–(2.17) is unique.
Consider any x ∈ R and any stopping time τ ∈ M. If Px(τ < Tx∗

1 ,x∗
2
) > 0, then,

by Lemma 2.8, Ex[e−λτV (Xτ )] > 0. Hence, (2.33) implies that τ is not optimal
in problem (2.4). Now, assume that Px(τ > Tx∗

1 ,x∗
2
) > 0 and consider the process

Yt = XTx∗
1 ,x∗

2
+t − XTx∗

1 ,x∗
2

(note that Tx∗
1 ,x∗

2
< ∞ Px -a.s.). For any ε > 0, we have

supt∈[0,ε] Yt > 0 Px -a.s. and inft∈[0,ε] Yt < 0 Px-a.s. [see, e.g., Karatzas and Shreve
(1991), Chapter 5.5.A–B]. It then follows from (2.33), V ≥ 0 on R and F > f

μL-a.e. on R \ [x∗
1 , x∗

2 ] that τ is not optimal in (2.4). Thus, there exists no other
optimal stopping time in (2.4) except Tx∗

1 ,x∗
2
.

(2) We now prove the result without assuming (2.23). For some fixed c ∈ R, we
consider the scale function of the process X

p(x) =
∫ x

c
exp

(
−

∫ y

c

2b(z)

σ 2(z)
dz

)
dy, x ∈ R.(2.34)

We define the process X̃t = p(Xt), p(�) := �, with the state space J ∪ {�},
J = (p(−∞),p(∞)). We then have

dX̃t = σ̃ (X̃t ) dBt ,

with σ̃ (x) = (p′σ) ◦ p−1(x), x ∈ J . We shall use the alternative notation P̃x for
the measure Pp−1(x) so that P̃x(X̃0 = x) = 1. Consider now the stopping problem

Ṽ ∗(x) = sup
τ∈M

Ẽx

∫ τ

0
e−λsf̃ (X̃s) ds,

where f̃ = f ◦ p−1. Clearly, it is a reformulation of the problem (2.4) in the sense
that Ṽ ∗ = V ∗ ◦ p−1 and a stopping time τ ∗ is optimal in the problem V ∗(x) if
and only if it is optimal in the problem Ṽ ∗(p(x)). Note that conditions (2.2) and
(2.3) for the functions b̃ ≡ 0, σ̃ and f̃ are satisfied [one should replace R with
J in (2.2) and (2.3)]. Now, the result follows from part (1) and the fact that the
triplet (V , x∗

1 , x∗
2 ) is a nontrivial solution of (2.11)–(2.14) if and only if the triplet

(Ṽ , x̃∗
1 , x̃∗

2 ) := (V ◦p−1,p(x∗
1 ),p(x∗

2 )) is a nontrivial solution of the free boundary
problem

Ṽ ′ is absolutely continuous on [x̃∗
1 , x̃∗

2 ];(2.35)

σ̃ 2(x)

2
Ṽ ′′(x) − λṼ (x) = −f̃ (x) for μL-a.a. x ∈ (x̃∗

1 , x̃∗
2 );(2.36)

Ṽ (x) = 0, x ∈ J \ (x̃∗
1 , x̃∗

2 );(2.37)

Ṽ ′+(x̃∗
1 ) = Ṽ ′−(x̃∗

2 ) = 0(2.38)

[we also use Remark (i) at the end of Section 2.1]. �

Finally, we prove the result stated in Remark (ii) after the formulation of Theo-
rem 2.1.
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PROPOSITION 2.9. If (V , x∗
1 , x∗

2 ) is a nontrivial solution of the free boundary
problem (2.11)–(2.14), then x∗

1 < x1� and x∗
2 > x2r .

PROOF. Since the triplet (V , x∗
1 , x∗

2 ) is a nontrivial solution of (2.11)–(2.14)
if and only if the triplet (Ṽ , x̃∗

1 , x̃∗
2 ) := (V ◦ p−1,p(x∗

1 ),p(x∗
2 )) is a nontrivial

solution of (2.35)–(2.38), we assume, without loss of generality, that b ≡ 0.
By Lemma 2.8, x∗

1 ≤ x1�. If we suppose that x∗
1 = x1�, then (V , x∗

1 , x∗
2 ) will also

be a nontrivial solution of (2.11)–(2.14) with the function f instead of f , where

f (x) =
{

0, if x ∈ [x1�, x1�],
f (x), otherwise,

with an arbitrary x1� < x1l . Since f has the form considered in the paper (see Fig-
ure 1), we obtain the contradiction with Lemma 2.8. Thus, x∗

1 < x1� and, similarly,
x∗

2 > x2r . �

3. Investigation of the stopping problem in the case b ≡ 0 and λ = 0. In
this section, we consider the case b ≡ 0 and λ = 0 in detail. The assumptions on
the functions f and σ remain the same as in Section 2. We define the functions g

and h : R → R by

g(x) = −2f (x)

σ 2(x)
, h(x) =

∫ x

0
g(y) dy.

The function h is well defined because f/σ 2 ∈ L1
loc(R) [see (2.3)]. Due to the form

of the function f , we have g > 0 on (−∞, x1�) ∪ (x2r ,∞), g = 0 on [x1�, x1r ] ∪
[x2�, x2r ] and g < 0 on (x1r , x2�). Hence, h is strictly increasing on (−∞, x1�] and
[x2r ,∞), it is constant on [x1�, x1r ] and [x2�, x2r ] and it is strictly decreasing on
[x1r , x2�]. We set h(∞) = limx→∞ h(x) and h(−∞) = limx→−∞ h(x).

For any c ∈ R, we define the function H(x, c) = h(x) − c, x ∈ R. If c ∈ R is
chosen in such a way that H(x1�, c) > 0 and H(−∞, c) < 0 [resp. H(x2r , c) < 0
and H(∞, c) > 0], then we denote by αc [resp. βc] the unique point in (−∞, x1�)

[resp. (x2r ,∞)] such that H(αc, c) = 0 [resp. H(βc, c) = 0]. For an illustration,
see Figure 5.

3.1. Necessary and sufficient conditions for the existence of a nontrivial solu-
tion of the free boundary problem (2.15)–(2.17). We consider the condition

(A1) h(∞) > h(−∞) [or, equivalently,
∫ ∞
−∞ g(y) dy > 0; note that

∫ ∞
−∞ g(y) dy

is well defined because
∫ ∞
−∞ g−(y) dy = ∫ x2�

x1r
g−(y) dy < ∞].

If (A1) holds, we additionally introduce the following conditions:

(A2) If h(∞) < h(x1�), then
∫ ∞
αh(∞)

H(y,h(∞)) dy < 0;

(A3) If h(−∞) > h(x2r ), then
∫ βh(−∞)

−∞ H(y,h(−∞)) dy > 0.
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FIG. 5.

THEOREM 3.1. The free boundary problem (2.15)–(2.17) has a nontrivial so-
lution if and only if conditions (A1)–(A3) hold. In this case, the nontrivial solution
is unique.

PROOF. Assume that conditions (A1)–(A3) are satisfied. We set m1 =
h(x2r ) ∨ h(−∞) and m2 = h(x1�) ∧ h(∞). There exist c1 and c2, m1 < c1 <

c2 < m2, such that∫ βc1

αc1

H(y, c1) dy > 0 and
∫ βc2

αc2

H(y, c2) dy < 0.

There then exists c∗ ∈ (c1, c2) such that∫ βc∗

αc∗
H(y, c∗) dy = 0.

It is now clear that the triplet (V ,αc∗, βc∗) is a nontrivial solution of (2.15) –(2.17),
where

V (x) =
⎧⎨⎩

∫ x

αc∗
H(y, c∗) dy, if x ∈ (αc∗, βc∗),

0 otherwise.
(3.1)

The converse and the uniqueness can also be easily verified (alternatively, the
uniqueness follows from Theorem 2.1). �

It is a remarkable fact that the value function of the optimal stopping problem
can be determined in explicit form [see (3.1)] based on the free boundary formu-
lation (2.15)–(2.17). This shows the usefulness of the modified formulation of the
free boundary problem.

3.2. Study of the optimal stopping problem when (A1)–(A3) are not satisfied.
Suppose that at least one of the conditions (A1)–(A3) is violated. It is also inter-
esting to consider the stopping problem (2.4) in this case. For the sequel, note that
our assumption b ≡ 0 implies that the solution X of (2.1) does not explode and is
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recurrent [see Engelbert and Schmidt (1985, 1991) or Karatzas and Shreve (1991),
Chapter 5.5.A]. If at least one of conditions (A1)–(A3) is violated, then we are in
the situation of exactly one of the following three cases:

Case 1: h(∞) ≤ h(−∞) [or, equivalently,
∫ ∞
−∞ g(y) dy ≤ 0];

Case 2: h(−∞) < h(∞) < h(x1�) and
∫ ∞
αh(∞)

H(y,h(∞)) dy ≥ 0;

Case 3: h(x2r ) < h(−∞) < h(∞) and
∫ βh(−∞)

−∞ H(y,h(−∞)) dy ≤ 0.

Note that each of these cases excludes the other ones.
For an illustration, see Figure 6.

3.3. Study of case 1. In case 1, h(∞) and h(−∞) are finite. We set

m = h(∞) + h(−∞)

2
, K+ =

∫
R

H+(y,m)dy, K− =
∫

R

H−(y,m)dy.

Recall that for any real numbers α < β , Tα,β ∈ M and, moreover,

Ex

∫ Tα,β

0
|f (Xs)|ds < ∞, x ∈ R

(see Lemma A.3).

THEOREM 3.2 (Solution of the stopping problem in case 1).

(i) For any τ ∈ M and x ∈ R, we have

Ex

∫ τ

0
f (Xs) ds < V ∗(x),

that is, there exists no optimal stopping time.
(ii) There exist sequences an ↓ −∞ and bn ↑ ∞ such that for any x ∈ R,

Ex

∫ Tan,bn

0
f (Xs) ds → V ∗(x),(3.2)

that is, the sequence of stopping times {Tan,bn} is asymptotically optimal.
(iii) If K+ = ∞ or K− = ∞, then

V ∗(x) = ∞, x ∈ R.
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If K− ≤ K+ < ∞, then

V ∗(x) =
∫ x

−∞
H(y,m)dy, x ∈ R.

If K+ ≤ K− < ∞, then

V ∗(x) = −
∫ ∞
x

H(y,m)dy, x ∈ R.

In particular, we have

K+ ∨ K− < ∞ ⇐⇒ V ∗(x) < ∞ ∀x ∈ R,

K+ ∨ K− = ∞ ⇐⇒ V ∗(x) = ∞ ∀x ∈ R.

Let us also note that K+ ∨ K− can be finite only if h(∞) = h(−∞).

REMARKS. (i) The situation of case 1 can be heuristically interpreted as the
situation when the “negative tails” of the function f are light compared with the
“positive midst.” This interpretation suggests that it is never optimal to stop (be-
cause X is recurrent and λ = 0), which agrees with Theorem 3.2. In this connec-
tion, we note that τ ≡ ∞ is not an optimal stopping time here because τ /∈ M (see
Lemma 3.3).

(ii) We would like to remark that the asymptotic optimality of Tan,bn in (3.2) is
not true for all sequences an ↓ −∞ and bn ↑ ∞. At the end of this subsection, we
present a corresponding example.

The proof of Theorem 3.2 will follow from Lemmas 3.6–3.8 below. At first,
however, we need several auxiliary results.

LEMMA 3.3. For the stopping time τ ≡ ∞, we have τ /∈ M.

PROOF. Since X is a recurrent continuous local martingale, we have [X]∞ =
∞, Px -a.s. Then, for the local time of X, we have L

y∞ = ∞ Px-a.s. for any y ∈ R

[Revuz and Yor (1999), Chapter VI, Example (1.27)]. By the occupation times
formula, ∫ ∞

0
f +(Xs) ds =

∫ ∞
0

f +(Xs)

σ 2(Xs)
d[X]s

=
∫

R

f +(y)

σ 2(y)
Ly∞(X)dy = ∞, Px-a.s.

Similarly,
∫ ∞

0 f −(Xs) ds = ∞, Px -a.s. �

In Lemmas 3.4–3.8 below, we assume that

K+ ≥ K−.(3.3)

The case K+ ≤ K− can be treated similarly.
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LEMMA 3.4. Let z ∈ R be an arbitrary real number. There exist sequences
{an}, {bn} and {cn} such that the following statements hold:

(i) an ↓ −∞, a1 ≤ x1�;
(ii) bn ↑ ∞, b1 ≥ x2r ;

(iii) m ≤ cn < h(an);
(iv)

∫ bn
an

H(y, cn) dy = 0;

(v) if an < z, then
∫ z
an

H(y, cn) dy ≥ ∫ z
an

H(y,m)dy − 1
n

.

In connection with statement (v), let us note that an < z for sufficiently large n.
For an illustration, see Figure 7.

PROOF OF LEMMA 3.4. At first, we take any sequences a′
n ↓ −∞ and b′

n ↑ ∞
such that a′

1 ≤ x1�, b′
1 ≥ x2r and, for any n,

∫ b′
n

a′
n

H(y,m)dy ≥ 0.

This can be done due to (3.3). We now construct the sequence {c′
n} in the following

way. If
∫ b′

n

a′
n

H(y,m)dy = 0, we take c′
n = m. If

∫ b′
n

a′
n

H(y,m)dy > 0, we take c′
n

sufficiently close to m so that the following properties are satisfied:

(a) m < c′
n < h(a′

n);

(b)
∫ b′

n

a′
n

H(y, c′
n) dy ≥ 0;

(c) if a′
n < z, then

∫ z
a′
n
H(y, c′

n) dy ≥ ∫ z
a′
n
H(y,m)dy − 1

n
.
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Since c′
n > m ≥ h(∞), we have

∫
R

H−(y, c′
n) dy = ∞. Consequently, there ex-

ists b′′
n ≥ b′

n such that ∫ b′′
n

a′
n

H(y, c′
n) dy = 0.

Finally, let us denote by {bn} any monotone subsequence of {b′′
n} and by {an} and

{bn} the corresponding subsequences of {a′
n} and {c′

n}. Clearly, statements (i)–(v)
hold. �

Now, let {an}, {bn} and {cn} be any sequences satisfying conditions (i)–(v) of
Lemma 3.4. We consider the optimal stopping problem

V ∗
n (x) = sup

τ≤Tan,bn

Ex

∫ τ

0
f (Xs) ds,(3.4)

where the supremum is taken over all stopping times τ ≤ Tan,bn (note that by
Lemma A.3, τ ∈ M whenever τ ≤ Tan,bn ). We define

Vn(x) =
⎧⎨⎩

∫ x

an

H(y, cn) dy, if x ∈ (an, bn),

0, otherwise.

Vn is then continuous and Vn > 0 on (an, bn) (see Figure 7).

LEMMA 3.5. Vn is identical to the optimal stopping value in (3.4), that is,
Vn = V ∗

n , and Tan,bn is the unique optimal stopping time.

PROOF. If x /∈ (an, bn), then the statement is clear; thus, let x ∈ (an, bn). Let
Ṽn be any function such that Ṽn ∈ C1(R) ∩ C2((−∞, an] ∪ [bn,∞)) and Ṽn = Vn

on [an, bn]. Note that we cannot take Ṽn = Vn because V ′
n has discontinuities at

the points an and bn. We can apply Itô’s formula in the standard form to Ṽn(X) (as
in the proof of Lemma 2.7) and obtain

Ṽn(Xt) = Ṽn(x) +
∫ t

0
Ṽ ′

n(Xs)σ (Xs) dBs

+ 1
2

∫ t

0
Ṽ ′′

n (Xs)σ
2(Xs) ds, Px-a.s., t ∈ [0,∞).

Hence, by (2.12),

Vn(Xt) = Vn(x) + Mt −
∫ t

0
f (Xs) ds, Px-a.s. on {t ≤ Tan,bn},(3.5)

where

Mt =
∫ t

0
V ′

n(Xs)σ (Xs) dBs
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(we used also (2.27) because V ′′(y)σ 2(y)/2 = −f (y) only for μL-a.a. y ∈
[an, bn]). By Lemma A.1 and boundedness of V ′

n on (an, bn), MTan,bn is a uni-
formly integrable martingale. Hence, we obtain from (3.5) that for any stopping
time τ ≤ Tan,bn ,

Vn(x) = ExVn(Xτ ) + Ex

∫ τ

0
f (Xs) ds.

This implies the statement of Lemma 3.5. �

LEMMA 3.6. For any x ∈ R,

Ex

∫ Tan,bn

0
f (Xs) ds = V ∗

n (x) ↑ V ∗(x), n ↑ ∞.

PROOF. The equality is a part of Lemma 3.5. The sequence {V ∗
n (x)}n∈N is

increasing and for each n, V ∗
n (x) ≤ V ∗(x). By the monotone convergence theorem

applied separately to f + and f −, we have, for any τ ∈ M,

Ex

∫ τ

0
f (Xs) ds = lim

n→∞Ex

∫ τ∧Tan,bn

0
f (Xs) ds ≤ lim

n→∞V ∗
n (x).

Hence, V ∗
n (x) ↑ V ∗(x). �

Let us recall that we still assume that K+ ≥ K− [see (3.3)].

LEMMA 3.7. If K+ = ∞, then

V ∗(x) = ∞, x ∈ R.(3.6)

If K+ < ∞, then

V ∗(x) =
∫ x

−∞
H(y,m)dy, x ∈ R.(3.7)

PROOF. Let us recall that∫ z

an

H(y,m)dy − 1

n
≤

∫ z

an

H(y, cn) dy ≤
∫ z

an

H(y,m)dy

(see Lemma 3.4). By Lemmas 3.5 and 3.6,

V ∗(z) = lim
n→∞V ∗

n (z) = lim
n→∞Vn(z) = lim

n→∞

∫ z

an

H(y, cn) dy

= lim
n→∞

∫ z

an

H(y,m)dy =
∫ z

−∞
H(y,m)dy.

Since z is an arbitrary point in R, we obtain (3.7). Finally, it remains to note that
the right-hand side of (3.7) is identically infinite if K+ = ∞. �
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LEMMA 3.8. For any τ ∈ M and x ∈ R,

Ex

∫ τ

0
f (Xs) ds < V ∗(x).

PROOF. We prove this result by contradiction. Assume that there exists τ ∈ M

and x ∈ R such that

Ex

∫ τ

0
f (Xs) ds = V ∗(x).(3.8)

(1) At first, we consider the case V ∗(x) < ∞. By Lemma 3.3, there exists a
sufficiently large n such that Px(τ < Tan,bn) > 0. By Lemma A.3, τ ∨ Tan,bn ∈ M.
To obtain a contradiction, it is enough to prove that

Ex

∫ τ∨Tan,bn

0
f (Xs) ds > Ex

∫ τ

0
f (Xs) ds.(3.9)

If N is a process such that NTan,bn is a uniformly integrable martingale, then

Ex[NτI (τ < Tan,bn)] = Ex[NTan,bn
I (τ < Tan,bn)].(3.10)

We rewrite (3.5) as

Vn(x) + Mt = Vn(Xt) +
∫ t

0
f (Xs) ds Px-a.s. on {t ≤ Tan,bn}

and substitute the process Nt = Vn(x) + Mt in (3.10). We obtain

Ex

[(
Vn(Xτ ) +

∫ τ

0
f (Xs) ds

)
I (τ < Tan,bn)

]
(3.11)

= Ex

[∫ Tan,bn

0
f (Xs) dsI (τ < Tan,bn)

]
.(3.12)

Since we assume (3.8) and V ∗(x) < ∞, Ex

∫ τ
0 f (Xs) ds is finite. Hence, Ex[∫ τ

0 f (Xs) dsI (τ <

Tan,bn)] is finite. Together with (3.11) and Ex[Vn(Xτ ) × I (τ < Tan,bn)] > 0, this
implies that

Ex

[∫ Tan,bn

0
f (Xs) dsI (τ < Tan,bn)

]
> Ex

[∫ τ

0
f (Xs) dsI (τ < Tan,bn)

]
.(3.13)

Finally, we add the finite quantity Ex[∫ τ
0 f (Xs) dsI (τ ≥ Tan,bn)] to both sides of

(3.13) and obtain (3.9).
(2) We now consider the case V ∗(x) = ∞. By the occupation times formula,

we have

Ex

∫ τ

0
f +(Xs) ds =

∫ x2�

x1r

f +(y)

σ 2(y)
ExL

y
τ (X)dy(3.14)
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[note that f + = 0 outside (x1r , x2�)] and, similarly,

Ex

∫ τ

0
f −(Xs) ds =

∫
R

f −(y)

σ 2(y)
ExL

y
τ (X)dy.(3.15)

It follows from (3.8) that Ex

∫ τ
0 f +(Xs) ds = ∞. Lemma A.2, formula (3.14) and

local integrability of f +/σ 2 imply that ExL
y
τ (X) = ∞, ∀y ∈ R. Hence, (3.15)

yields Ex

∫ τ
0 f −(Xs) ds = ∞. This contradicts τ ∈ M. �

This concludes the proof of Theorem 3.2 in the case K+ ≥ K−. The case K+ ≤
K− can be dealt with in a similar way. We omit the details.

EXAMPLE. Consider the situation h(∞) = h(−∞), K+ = ∞ and K− < ∞.
We shall construct sequences an ↓ −∞ and bn ↑ ∞ such that

lim
n→∞Ex

∫ Tan,bn

0
f (Xs) ds < V ∗(x)(3.16)

for all x ∈ R [of statement (ii) of Theorem 3.2].
The construction is illustrated by Figure 8. For c ∈ (h(x2�), h(x1r )), we use the

notation γc for the unique point in (x1r , x2�) such that h(γc) = c. Let {bn} be a
sequence, bn ↑ ∞ and b1 ≥ x2r . Further, let {cn} be a sequence such that cn ↓ m

and:

(a) m < cn < h(x1r );
(b)

∫ γcn
αcn

H(y, cn) dy > K− [note that
∫ γc
αc

H(y, c) dy ↑ K+ = ∞ as c ↓ m];

(c)
∫ bn
γcn

(−H(y, cn)) dy ≤ K− [note that
∫ bn
γm

(−H(y,m))dy < K− for all n].

For each n, we have
∫ bn
αcn

H(y, cn) dy > 0. Since
∫ αcn−∞ H(y, cn) dy = −∞, there

exists an < αcn such that ∫ bn

an

H(y, cn) dy = 0.
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Clearly, an → −∞. Without loss of generality, we assume that the sequence {an}
is monotone (otherwise, we consider a monotone subsequence) and define

Un(x) =
⎧⎨⎩

∫ x

an

H(y, cn) dy, if x ∈ (an, bn),

0, otherwise.

Note that Un is continuous, strictly decreasing on [an,αcn] and [γcn, bn] and
strictly increasing on [αcn, γcn]. In particular,

sup
x∈R

Un(x) = Un(γcn) ≤ K−,(3.17)

by condition (c) above. One can verify, with the help of Itô’s formula, that

Ex

∫ Tan,bn

0
f (Xs) ds = Un(x), x ∈ R.(3.18)

Since K+ = ∞, we have V ∗ ≡ ∞. Together with (3.17) and (3.18), this im-
plies (3.16).

3.4. Study of cases 2 and 3. We recall that in case 2, h(−∞) < h(∞) < h(x1�)

and
∫ ∞
αh(∞)

H(y,h(∞)) dy ≥ 0, and in case 3, h(x2r ) < h(−∞) < h(∞) and∫ βh(−∞)

−∞ H(y,h(−∞)) dy ≤ 0. For real numbers α, β , we define the one-sided
stopping times

T −
α = inf{t ∈ [0,∞) :Xt ≤ α},(3.19)

T +
β = inf{t ∈ [0,∞) :Xt ≥ β},(3.20)

(as usual, inf ∅ = ∞). It is important that T −
α , T +

β ∈ M (see Lemma A.4). We
introduce the functions

V −(x) =
⎧⎨⎩

0, if x ≤ αh(∞),∫ x

αh(∞)

H(y,h(∞)) dy, if x > αh(∞),

and

V +(x) =
⎧⎨⎩−

∫ βh(−∞)

x
H(y,h(−∞)) dy if x < βh(−∞),

0, if x ≥ βh(−∞).

THEOREM 3.9 (Solution of the stopping problem in cases 2 and 3). In cases
2 and 3 the optimal stopping value V ∗ is given by V ∗ = V − (resp. V ∗ = V +). The
optimal stopping times are unique and are given by the one-sided stopping times
T −

αh(∞)
(resp. T +

βh(−∞)
).
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The proof of Theorem 3.9 is omitted. It can be obtained similarly to that of
Lemma 2.7 and Theorem 2.1. The details of that proof concerning a possible ex-
plosion of X can be omitted here. Note that, unlike case 1, the value function V ∗
is finite in cases 2 and 3.

REMARK. Case 2 can be heuristically interpreted as the situation when the
“right negative tail” of the function f is light, while the “left negative tail” of f is
heavy. This interpretation makes it natural that the optimal stopping time should
have the form T −

α for a suitably chosen α. The situation in case 3 is symmetric.

APPENDIX

Here, we prove some technical lemmas which are used in the proofs and which
also seem to be of independent interest.

Below, J = (�, r), −∞ ≤ � < r ≤ ∞, and X is a (possibly explosive) J ∪ {�}-
valued diffusion that satisfies the SDE (2.1) and starts at the point x ∈ J under
the measure Px (X explodes when it tends either to � or to r at a finite time). The
coefficients b and σ are Borel functions J → R that satisfy

σ(x) 
= 0 ∀x ∈ J
1

σ 2 ∈ L1
loc(J ),

b

σ 2 ∈ L1
loc(J ),(A.1)

where L1
loc(J ) denotes the class of functions J → R that are integrable on com-

pact subintervals of J . Let us define the strictly increasing function p by for-
mula (2.34) and the process X̃t = p(Xt), p(�) := �, with the state space J̃ ∪{�},
J̃ = (�̃, r̃) := (p(�),p(r)). We then have

dX̃t = σ̃ (X̃t ) dBt ,

with σ̃ (x) = (p′σ) ◦ p−1(x), x ∈ J̃ . Note that condition (A.1) with J̃ instead of J

holds for the functions b̃ ≡ 0 and σ̃ . We shall use the alternative notation P̃x for
the measure Pp−1(x) so that P̃x(X̃0 = x) = 1. For α < β in J , we use the notation
Tα,β of (2.6). For α < β in J̃ , we define

T̃α,β := inf{t ∈ [0,∞) : X̃t ≤ α or X̃t ≥ β} (= Tp−1(α),p−1(β)

)
.

LEMMA A.1. For any p > 0, α,β ∈ J , α < β , we have

Ex

(∫ Tα,β

0
σ 2(Xs) ds

)p

< ∞, x ∈ J(A.2)

(or, equivalently, Ex[X]pTα,β
< ∞, x ∈ J ).

PROOF. If x /∈ (α,β), then the statement is clear. Let us assume that x ∈ (α,β)

and set κ̃(y) = σ ◦ p−1(y), y ∈ J̃ . Below, we denote positive constants used in
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estimates by c1, c2, etc. Note that κ̃(y) ≤ c1σ̃ (y), y ∈ [p(α),p(β)]. We have

Ex

(∫ Tα,β

0
σ 2(Xs) ds

)p

= Ẽp(x)

(∫ T̃p(α),p(β)

0
κ̃

2(X̃s) ds

)p

≤ c2Ẽp(x)

(∫ T̃p(α),p(β)

0
σ̃ 2(X̃s) ds

)p

.

Hence, it is enough to prove (A.2) under the additional assumption b ≡ 0. Then,
(Xt∧Tα,β ) is a bounded martingale. For q ≥ 1, Burkholder–Davis–Gundy inequal-
ities yield

Ex[X]q/2
Tα,β

≤ c3Ex

(
sup
t≥0

Xt∧Tα,β

)q

< ∞.

This completes the proof. �

Below, L
y
t (X) denotes the local time of X at time t and level y.

LEMMA A.2. Let x ∈ J and τ be an arbitrary stopping time. Consider
the function h :J → [0,∞] defined by h(y) = ExL

y
τ (X). Then, either h(y) =

∞ ∀y ∈ J or h is bounded.

Let us stress that neither finiteness nor boundedness of τ is assumed.

PROOF OF LEMMA A.2. By Revuz and Yor (1999), Chapter VI, Exer-
cise (1.23),

Lp(y)
τ (p(X)) = p′(y)Ly

τ (X), Px-a.s., y ∈ J.

Hence,

h(y) = 1

p′(y)
Ẽp(x)L

p(y)
τ (X̃), y ∈ J.

Therefore, it is enough to prove the lemma under the additional assumption b ≡ 0.
For some sequences an ↓ � and bn ↑ r , set hn(y) = ExL

y
τ∧Tan,bn

(X), y ∈ J .
Since the local time remains unchanged after the explosion time, hn(y) ↑ h(y).
Assume that h(y0) < ∞ for some y0 ∈ J and consider an arbitrary y ∈ J . By the
Tanaka formula under the measure Px [see Revuz and Yor (1999), Chapter VI,
Theorem (1.2)],

|Xτ∧Tan,bn
− y| = |x − y| +

∫ τ∧Tan,bn

0
sgn(Xs − y)σ (Xs) dBs

(A.3)
+ L

y
τ∧Tan,bn

(X), Px-a.s.,
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where

sgny =
{

1, if y > 0,
−1, if y ≤ 0.

For each y, the process Mt = ∫ t∧Tan,bn

0 sgn(Xs − y)σ (Xs) dBs is a uniformly inte-
grable martingale, by Lemma A.1. Taking the expectation in (A.3), we get

Ex |Xτ∧Tan,bn
− y| = |x − y| + hn(y).(A.4)

In particular,

Ex |Xτ∧Tan,bn
− y0| = |x − y0| + hn(y0).(A.5)

Since h(y0) < ∞, we obtain from (A.5) that c := supn Ex |Xτ∧Tan,bn
| < ∞. Now,

(A.4) implies that, for any n,

hn(y) = Ex[|Xτ∧Tan,bn
− y| − |x − y|] ≤ Ex |Xτ∧Tan,bn

− x| ≤ c + |x|.
Hence, the function h is bounded. �

LEMMA A.3. For any Borel function f :J → R such that f/σ 2 ∈ L1
loc(J )

and any α,β ∈ J , α < β , we have

Ex

∫ Tα,β

0
|f (Xs)|ds < ∞, x ∈ J.

PROOF. We need only to consider the case x ∈ (α,β). Using the occupation
times formula (under the measure Px), we obtain∫ Tα,β

0
|f (Xs)|ds =

∫ Tα,β

0

|f (Xs)|
σ 2(Xs)

d[X]s =
∫ β

α

|f (y)|
σ 2(y)

L
y
Tα,β

(X)dy.(A.6)

By Lemma A.2, the function y �→ ExL
y
Tα,β

(X) is bounded on J (that is because

this function equals 0 at the point y = α). Since we have f/σ 2 ∈ L1
loc(J ), the

statement of the lemma follows from (A.6). �

Below, we use the notation T −
α and T +

β , α,β ∈ J , for one-sided stopping times,
as in (3.19) and (3.20).

LEMMA A.4. Let α,β ∈ J . For any Borel function f :J → R that has the
form shown in Figure 1 and which satisfies f/σ 2 ∈ L1

loc(J ), we have

Ex

∫ T −
α

0
f +(Xs) ds < ∞ and Ex

∫ T +
β

0
f +(Xs) ds < ∞, x ∈ J.

PROOF. The proof is similar to that of Lemma A.3. The form of f being as
shown in Figure 1 ensures that the integral on the right-hand side of the analogue
of (A.6) can be taken over the compact subinterval [x1�, x2r ] of J . �
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