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The present paper provides exact expressions for the probability distri-
butions of linear functionals of the two-parameter Poisson–Dirichlet process
PD(α, θ). We obtain distributional results yielding exact forms for density
functions of these functionals. Moreover, several interesting integral iden-
tities are obtained by exploiting a correspondence between the mean of a
Poisson–Dirichlet process and the mean of a suitable Dirichlet process. Fi-
nally, some distributional characterizations in terms of mixture representa-
tions are proved. The usefulness of the results contained in the paper is
demonstrated by means of some illustrative examples. Indeed, our formulae
are relevant to occupation time phenomena connected with Brownian motion
and more general Bessel processes, as well as to models arising in Bayesian
nonparametric statistics.

1. Introduction. Let (Pi)i≥1, with P1 > P2 > · · · > 0 and
∑∞

k=1 Pk = 1, de-
note a sequence of (random) ranked probabilities having the two-parameter (α, θ)

Poisson–Dirichlet law, denoted by PD(α, θ) for 0 ≤ α < 1 and θ ≥ 0. A descrip-
tion, as well as a thorough investigation of its properties, is provided in [37];
see also [31, 32] and [35]. Equivalently, letting Vk , for any k ≥ 1, denote in-
dependent random variables such that Vk has Beta(1 − α, θ + kα) distribution,
the PD(α, θ) law is defined as the ranked values of the stick-breaking sequence
W1 = V1, Wk = Vk

∏k−1
j=1(1 − Vj ) for k ≥ 2. Interestingly, PD(α, θ) laws can also

be obtained by manipulating random probabilities of the type Pi = Ji/T̃ , where
T̃ = ∑∞

i=1 Ji and the sequence (Ji)i≥1 stands for the ranked jumps of a subor-
dinator. If the Ji ’s are the ranked jumps of a gamma subordinator considered up
to time θ > 0, then the total mass T̃ has a gamma distribution with shape θ and
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scale 1, and (Pi)i≥1 follows a PD(0, θ) law. At the other extreme, letting the Ji ’s
be the ranked jumps of a stable subordinator of index 0 < α < 1, (Pi)i≥1 follows
a PD(α,0) distribution. For both α and θ positive, the PD(α, θ) model arises by
first taking the ranked jumps governed by the stable subordinator conditioned on
their total mass T̃ and then mixing over a power tempered stable law proportional
to t−θfα(t), where fα(t) denotes a density, with respect to the Lebesgue measure
on R, of an α-stable random variable. We further recall that there is also the case
of PD(−κ,mκ), where κ > 0 and m = 1,2, . . . , which corresponds to symmetric
Dirichlet random vectors of dimension m and parameter κ . All of these models
represent natural extensions of the important one-parameter family of Poisson–
Dirichlet distributions, PD(0, θ), which is closely connected with the Dirichlet
process.

Specifically, the corresponding PD(α, θ) random probability measures are de-
fined as follows. Independent of the sequence (Pi)i≥1, or equivalently to the stick-
breaking weights (Vi)i≥1, let (Zi)i≥1 denote a collection of independent and iden-
tically distributed (i.i.d.) random elements which take values in a Polish space X

endowed with the Borel σ -algebra � and have common nonatomic distribution H .
One can then construct a PD(α, θ) class of random probability measures, as

P̃α,θ (·) =
∞∑

k=1

PkδZk
(·) =

∞∑
k=1

WkδZk
(·).

When α = 0, this is equivalent to the Dirichlet process which represents a corner-
stone in Bayesian nonparametric statistics; see [10–12]. The law of P̃α,θ may be
denoted as �

(α,θ)
(·|H). In particular, a random probability measure with distribu-

tion �
(−κ,mκ)

(·|H) can be represented as

P̃−κ,mκ(·) =
m∑

i=1

Gi

G̃
δZi

(·),(1)

where G̃ = ∑m
i=1 Gi and the Gi ’s are independent with Gamma(κ,1) distribu-

tion, which in our notation, means that a density function for Gi is of the form
[�(κ)]−1xκ−1e−x for any x > 0. In [33], one can find a description of this model
as Fisher’s model; see also [19] for more references.

The choice of P̃α,θ for α > 0, or of P̃−κ,mκ, has attractive features which make
them viable models for Bayesian nonparametric analysis, as shown in [5, 33], and
[18, 19]. However, for the case α > 0, most investigations of PD(α, θ) laws appear
in applications related to excursion/occupation time phenomena, as outlined in
[37, 38] and, more recently, to combinatorial/probabilistic aspects of coalescent
and phylogenetic processes; see [35] and [4] for numerous references along this
line of research.

This paper studies the laws of mean functionals of the PD(α, θ) class. We also
briefly address the case PD(−κ,mκ), which, as we shall show, essentially follows
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from the case of the Dirichlet process. In particular, for any nonnegative-valued
function f such that P̃α,θ (f ) is finite, we obtain explicit formulae for the density
and the cumulative distribution function (c.d.f.) of linear functionals

P̃α,θ (f ) =
∫

X

f (x)P̃α,θ (dx) =
∞∑

k=1

Pkf (Zk) =
∞∑

k=1

f (Zk)Vk

k−1∏
j=1

(1 − Vj ).(2)

As such, we extend analogous formulae for Dirichlet processes, corresponding to
the case of α = 0, given by [6]. We do this by first resorting to the Cauchy–Stieltjes
transforms of order θ for P̃α,θ (f ), as derived in [44, 45], and also to a transform
of order θ + 1 deduced from [21], where, in particular, θ = 0 for P̃α,0(f ). We
then apply an Abel-type inversion formula described in [42] and finally combine
those results with mixture representations of P̃α,θ (f ) laws. We note that the case
of P̃α,0(f ) for general f is the most tractable, yielding explicit and simple expres-
sions for the densities and c.d.f. which are expressed in terms of Abel transforms
of H . The fact that our results have a strong connection to Abel transforms should
not be totally surprising in view of the work in [14] where the laws of integrals of
Bessel local times are investigated.

Interest in the results we are going to display and prove might arise in various
contexts. In the paper, we will focus on specific issues related to (i) properties
of the paths of Bessel processes and (ii) Bayesian nonparametric statistical infer-
ence. As for the former, we obtain results for pairs of parameters of the type (α,0)

and (α,α), thus achieving useful expressions for the distribution of the lengths
of excursions of Bessel processes and Bessel bridges. For example, we recover
the important special cases of PD(1/2,0) and PD(1/2,1/2) which correspond to
lengths of excursions of Brownian motion and Brownian bridge, respectively. As
for (ii) above, knowledge of the probability distribution of P̃α,θ (f ) can be useful
for prior specification in applications where one is interested in making inference
on a mean of the Poisson–Dirichlet process. However, apart from these two areas
of research witch we are going to describe in more detail in the sequel, it is worth
mentioning other potential applications of our results. For example, in [9, 25] and
[45], it has been shown that results on means of the Dirichlet process have impli-
cations and interpretations relevant to, for example, the Markov moment problem,
continued fraction theory and exponential representations of analytic functions.
Since the PD(0, θ) model can be seen as the limiting case of the PD(α, θ) distrib-
ution, as α → 0, we expect that some aspects of our work may also be applicable
to these areas. Two other important applications of the PD(0, θ) process for which
our results could be of some interest relate to random combinatorial structures (see
[2] for an exhaustive account) and population genetics.

The outline of the paper is as follows. In Section 2, we describe two areas of in-
vestigation for which our results are relevant and state an interesting distributional
identity connecting PD(α, θ) and PD(0, θ) means. In Section 3, we show how to
use an inversion formula for Cauchy–Stieltjes transforms in order to determine
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a density function of P̃α,θ (f ), as (α, θ) varies in (0,1) × [0,+∞). In Section 4,
these general results are applied in order to determine generalized arcsine laws cor-
responding to mean functionals of a PD(α,0) process: we show how to recover a
well-known result and provide a representation for a density of

∫
xP̃α,0(dx) when

E[P̃α,θ ] coincides with the uniform distribution on (0,1). Section 5 provides exact
forms for a density of P̃α,θ (f ) for any choice of f which makes the random mean
finite almost surely. In Section 6, a few distributional identities are given which
prove to be useful in order to evaluate the distributions of means of PD(α,1 − α)

and of PD(α,α) processes. Finally, Section 7 describes an algorithm for exact sim-
ulation whose formulation is suggested by results illustrated in Sections 2 and 6.
All proofs are deferred to the Appendix.

We conclude this introductory section by recalling a useful fact. Indeed, note

that P̃α,θ (f )
d= ∫

xP̃ ∗
α,θ (dx), where both P̃α,θ and P̃ ∗

α,θ are Poisson–Dirichlet

processes with E[P̃α,θ (·)] = H(·) and E[P̃ ∗
α,θ (·)] = H ◦ f −1(·) =: η(·). This ex-

plains why, with no loss of generality, we will confine ourselves to considering
simple random means of the type Mα,θ (η) := ∫

xP̃α,θ (dx); see [41] for this line of
reasoning. Moreover, the assumption of diffuseness of H has been made only for
consistency with the typical definition of the Poisson–Dirichlet random probability
measure. Obviously, η might have atoms, as will be seen in most of our examples;
in any case, our results are still valid. Finally, in the sequel, Cη will denote the
convex hull of the support of η, that is, Cη := co(supp(η)).

2. Related areas of application. As already highlighted in the previous sec-
tion, the main results achieved in the present paper find immediate application
in two seemingly unrelated areas of research: the theory of Bessel processes and
Bayesian nonparametric statistical inference. Below, we provide a brief description
of the connection.

2.1. Occupation times for Bessel processes and models for phylogenetic trees.
For functionals P̃α,θ (f ), the generality of the space X is important as it allows
one to formally describe phenomena where, for instance, X denotes path spaces
of stochastic processes. Surprisingly, for general (α, θ), very little is known about
the laws of the simple, but important, case of P̃α,θ (IC) where IC is the indica-
tor function of set C ∈ �, satisfying E[P̃α,θ (IC)] = H(IC) = p ∈ (0,1). Hence,
f (Z) = IC(Z) is a Bernoulli random variable with success probability p, other-
wise denoted Bernoulli(p). In what follows, we will also let P̃α,θ (C) stand for the
random mean P̃α,θ (IC) and H(C) = H(IC). Using the representation provided
in (2), one obtains

P̃α,θ (C) =
∞∑

k=1

YkVk

k−1∏
j=1

(1 − Vj ),
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where (Yk) are i.i.d. Bernoulli(p). The simple case corresponds to P̃0,θ (C), which,
since the Dirichlet process arises as a normalized gamma process, is well known
to be a Beta(θp, θ(1 − p)) random variable. This is apparent from the fact that
if we set Za to be a gamma random variable with density function at x given by

[�(a)]−1xa−1e−x
IR+(x), then P̃0,θ (C)

d= Zθp/(Zθp + Zθp̄), where Zθp and Zθp̄

are independent and p̄ = 1 − p. The other known case corresponds to P̃α,0(C),
which has the Cauchy–Stieltjes transform

E
[(

1 + zP̃α,0(C)
)−1] = (1 + z)α−1p + p̄

(1 + z)αp + p̄
.(3)

Such a transform has been inverted in [27], yielding, as α varies in (0,1), the
densities

q
α,0(x) = pp̄ sin(απ)xα−1(1 − x)α−1

I(0,1)(x)

π [p̄2x2α + p2(1 − x)2α + 2pp̄xα(1 − x)α cos(απ)] ,(4)

otherwise known as generalized arcsine laws. It is worth noting that this, as dis-
cussed in [3, 36] and [38], also corresponds to the fraction of time spent positive
by a skew Bessel process of dimension 2 − 2α. Following [38], let Y = (Yt , t ≥ 0)

denote a real-valued continuous process such that (i) the zero set Z of Y is the
range of an α-stable subordinator and (ii) given |Y |, the signs of excursions of
Y away from zero are chosen independently of each other to be positive with
probability p and negative with probability p̄ = 1 − p. Examples of this kind
of process are: Brownian motion (α = p = 1/2); skew Brownian motion (α = 1/2
and 0 < p < 1); symmetrized Bessel process of dimension 2 − 2α; skew Bessel
process of dimension 2 − 2α. Then, for any random time T which is a measurable
function of |Y |,

AT =
∫ T

0
I(0,+∞)(Ys) ds(5)

denotes the time spent positive by Y up to time T . Furthermore, remarkably,
AT /T

d= At/t
d= A1 = A and A

d= P̃α,0(C). We see that the case of α = 1/2,
in (4) is the density found by [24] for the fraction of time spent positive by a skew
Brownian motion. Moreover, when p = 1/2, this coincides with Lévy’s famous
result yielding the arcsine law for Brownian motion. That is, when p = 1/2, the
random probability P̃1/2,0(C) has a Beta(1/2,1/2) distribution; see [28].

In [38], it is also shown that the fraction of time spent positive by a skew Bessel
bridge of dimension 2 − 2α corresponds to the law of P̃α,α(C). This random vari-
able also arises, among other places, in Corollary 33 of [34]. Another recent in-
stance is that of P̃α,1−α(C), which equates with the limiting distribution of a phylo-
genetic tree model described in Proposition 20 of [16]. However, results for these
models are only well known for α = 1/2, which corresponds to skew Brownian
bridges. In particular, setting p = 1/2 yields the Lévy result for Brownian bridge
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which implies that P̃1/2,1/2(C) is uniform on [0,1]. A density for P̃1/2,θ (C) and
general p has been obtained by several authors; see, for instance, equation (3.4) in
[5]. The case of (1/2, θ) when p = 1/2 is then Beta(θ + 1/2, θ + 1/2); see also
equation (65) in [1] for the density of P̃1/2,1/2(C) for general p and yet another
application related to the law of P̃α,α(C).

While the cases of Bernoulli Yk’s are indeed quite interesting, we do wish to
reiterate that it is substantially more difficult to obtain results for the more general
case where the Yk’s have a general distribution η.

2.2. Bayesian nonparametric statistics. The topic of this paper can be natu-
rally connected to a large body of literature in Bayesian nonparametrics which is
aimed at investigating the probability distribution of functionals of random prob-
ability measures. Besides the pioneering work in [6], we mention: [7] and [30],
where nonlinear functionals of the Dirichlet process are studied; [40, 29] and [17],
which provide developments and refinements of the earlier results in [6]; [21] and
[41], which yield distributional results for means of a class in random probability
measures that generalize the Dirichlet process. The interest in random probability
measures in Bayesian nonparametric statistics is motivated by the fact that they
define priors on spaces of probability distributions.

Here, we briefly describe the contribution in [6] since it has inspired our own
approach. A first result contained in that paper consists of an important formula
for the generalized Cauchy–Stieltjes transform of order θ of the mean functional

P̃0,θ (f ) of the Dirichlet process P̃0,θ with parameter measure θH . Supposing
that f : X → R is such that

∫
X

log(1 + |f (x)|)H(dx) < ∞, the Cifarelli and
Regazzini [6] show that

E

[
1

(z + P̃0,θ (f ))θ

]
= e−θ

∫
X

log(z+f (y))H (dy) = e−θ
∫
R

log(z+x)η(dx)(6)

for any z ∈ C such that | arg(z)| < π and η = H ◦ f −1. The expression in (6) es-
tablishes that the Cauchy–Stieltjes transform of order θ of P̃0,θ (f ) is equivalent
to the Laplace transform of Gθ(f ), where P̃0,θ (f ) = Gθ(f )/Gθ(1) and Gθ is a
gamma process with shape θH. The importance of (6) in different contexts was
recognized by [9, 25] and [45]. In this regard, it is called the Markov–Krein iden-
tity for means of Dirichlet processes. It is called the Cifarelli–Regazzini identity in
[22]. With considerable effort, Cifarelli and Regazzini [6] then apply an inversion
formula to (6) to obtain an expression for the distribution of

∫
xP̃0,θ (dx) as fol-

lows. Let q0,θ
denote the density of

∫
xP̃0,θ (dx), where P̃0,θ is a Dirichlet process

with parameter measure θη, set 
(x) := η((0, x]) for any x > 0, and let

R(t) =
∫

R+\{t}
log(|t − x|)η (dx).(7)
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Then, from [6] (see also [7]), one has, for θ = 1,

q0,1(x) = 1

π
sin(π
(x))e−R(x)(8)

and when θ > 1,

q0,θ
(x) = (θ − 1)

∫ x

0
(x − t)θ−2 1

π
sin(πθ
(t))e−θR(t) dt.(9)

Additionally, an expression for the c.d.f., which holds for θ
 not having jumps
greater than or equal to 1, is given by [6] as∫ x

0
(x − t)θ−1 1

π
sin(πθ
(t))e−θR(t) dt.(10)

In particular, 10 holds for all θ > 0 if η is nonatomic. We note that while there
are various formulae to describe the densities of

∫
xP̃0,θ (dx), descriptions for the

range 0 < θ < 1 prove to be difficult; see, for example, [6, 40] and [29].
Here, we provide a new description for the density, which holds for all θ > 0.

This result will be obvious from our subsequent discussion concerning the inver-
sion formula for the Cauchy–Stieltjes transform and otherwise follows immedi-
ately from (10).

PROPOSITION 2.1. Assume that η admits a density on R
+ and suppose that

R defined in (7) is differentiable. Then, the density of the Dirichlet process mean
functional

∫
xP̃0,θ (dx) may be expressed, for all θ > 0, as

q0,θ
(y) = 1

π

∫ y

0
(y − t)θ−1dθ,η(t) dt,(11)

where

dθ,η(t) = d

dt
sin(πθ
(t))e−θR(t).(12)

It is apparent that practical usage of these formulae require tractable forms for
R and its derivative, which are not always obvious.

We close the present section with an important distributional identity which
connects P̃α,θ (f ) with mean functionals of the Dirichlet process. For a measurable
function f : X → R

+ such that H(f α) < ∞, let Qα,0 denote the probability distri-
bution of P̃α,0(f ). This means that

∫
X

log(1 + x)Q
α,0(dx) = E[log(1 + P̃α,0(f ))].

The last expression is finite, since
∫
X

f α(x)H(dx) < ∞. Hence,
∫
R+ xP̃0,θ (dx) <

∞ almost surely. From Theorem 4 in [45], note that, for any z such that |z| < π ,

exp
{
−θ

∫
R+

log[z + x]Q
α,0(dx)

}
=

{∫
R+

[z + x]αη(dx)

}−θ/α

.(13)

From the Cifarelli–Regazzini identity (6), the left-hand side in (13) coincides
with the generalized Stieltjes transform of order θ of the random Dirichlet mean
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M0,θ (Qα,0), whereas the right-hand side is the generalized Stieltjes transform of
order θ of P̃α,θ (f ). These arguments can be summarized in the following theo-
rem, which states a distributional identity between the mean

∫
R+ xP̃0,θ (dx) of a

Dirichlet process and a suitable linear functional of a PD(α, θ) process.

THEOREM 2.1. Let f : X → R
+ be a measurable function such that H(f α) <

∞, where α ∈ (0,1). If Q
α,0 stands for the probability distribution of P̃α,0(f ), with

P̃α,0 such that E[P̃α,0(·)] = H(·), then

P̃α,θ (f )
d=

∫
R+

xP̃0,θ (dx),(14)

where P̃0,θ is a Dirichlet process with E[P̃0,θ (·)] = Q
α,0(·) and the symbol

d= is
used to denote equality in distribution. Moreover, the probability distribution of
P̃α,θ (f ) is absolutely continuous with respect to the Lebesgue measure on R.

It is worth noting that an alternative proof of (14) can be given, based on a
construction of Gnedin and Pitman [13].

The last part of the statement in Theorem 2.1—that is the absolute continuity of
the probability distribution of P̃α,θ (f ) with respect to the Lebesgue measure—
can be deduced from the absolute continuity of the probability distribution of∫
R+ xP̃0,θ (dx) which is proved in Proposition 2 of [29]. Hence, the probability

distribution Qα,θ of P̃α,θ (f ) has a density with respect to the Lebesgue measure
on R, which we denote qα,θ .

3. The probability distribution of P̃α,θ (f ). The present section provides a
general expression of the density function of the mean of a two-parameter Poisson–
Dirichlet distribution by resorting to an inversion formula for the (generalized)
Cauchy–Stieltjes transform of order θ > 0. Before getting into the details, let us in-
troduce some new notation that will be used henceforth. Let H be some nonatomic
distribution on (X,�) and let f : X → R

+ be any function in the set

�α(H) := {f : X → R
+ s.t. f is measurable and H(f α) < +∞}.

Moreover, as anticipated in the Introduction, P̃α,θ denotes a random probability
measure with law �

(α,θ)
(·|H). We confine our attention to functions in �α(H) for

two reasons. First, the integrability condition H(f α) = ∫
X

f α(x)H(dx) < +∞ is
necessary and sufficient for the (almost sure) finiteness of P̃α,0(f ); see Proposi-
tion 1 in [41] for a proof of this result. Hence, one can use the absolute continuity
of �

(α,θ)
(·|H) with respect to �

(α,0)
(·|H) in order to obtain P̃α,θ (f ) < ∞ with

probability 1. Second, we consider only nonnegative functions since the inver-
sion formula we resort to applies to functionals P̃α,θ (f ) for a measurable function
f : X → R

+.
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Given a function f in �α(H), the transform of order θ > 0 of P̃α,θ (f ) is, for
any z ∈ C such that | arg(z)| < π ,

Sθ [z; P̃α,θ (f )] = E

[
1

(z + P̃α,θ (f ))θ

]
=

{∫
X

[z + f (x)]αH(dx)

}−θ/α

.(15)

Such a representation is to be attributed to [26] and also appears, with different
proofs, in [44] and [45]. This transform turns out to work well in the case where
θ > 1. Additionally, we will need the transform of order θ + 1, that is,

Sθ+1[z; P̃α,θ (f )] =
∫
X
[z + f (x)]α−1H(dx)

{∫
X
[z + f (x)]αH(dx)}θ/α+1 .(16)

In particular, for θ = 0, we have, importantly, the Cauchy–Stieltjes transform of
order 1 of the PD(α,0) mean functionals,

S1[z; P̃α,0(f )] =
∫
X
[z + f (x)]α−1H(dx)∫
X
[z + f (x)]αH(dx)

.(17)

The transforms (16) and (17) can be obtained as special cases of Proposition 6.2 in
[21] with n = 1. Moreover, for θ > 0, (16) can be obtained by taking a derivative
of (15). When inverting (15) or (16), one obtains the probability distribution of
P̃α,θ (f ). Since Theorem 2.1 implies that the probability distribution of P̃α,θ (f ) is,
for any (α, θ) ∈ (0,1) × R

+, absolutely continuous with respect to the Lebesgue
measure on R, we obtain the density function, qα,θ of P̃α,θ (f ).

The particular inversion formula we are going to use has recently been given in
[42]; see also [43]. In [8], one can find a detailed account of references on inversion
formulae for generalized Cauchy–Stieltjes transforms.

THEOREM 3.1. Let f be a function in �α(H) and define

�α,θ (t) := 1

2π i
lim
ε↓0

{Sθ [−t − iε; P̃α,θ (f )] − Sθ [−t + iε; P̃α,θ (f )]}.(18)

The density function qα,θ of P̃α,θ (f ), evaluated at a point y in Cη = co(supp(η)),
then coincides with

qα,θ (y) =
∫ y

0
(y − t)θ−1�′

α,θ (t) dt.(19)

When θ > 1, the expression above can be rewritten as

qα,θ (y) = (θ − 1)

∫ y

0
(y − t)θ−2�α,θ (t) dt.(20)

It is worth noting that if θ = 1, then qα,1 = �α,1, thus yielding the same result
as in [46]. The case corresponding to θ < 1 can also be dealt with by computing
the transform Sθ+1[z; P̃α,θ (f )]. One then obtains

qα,θ (y) = θ

∫ y

0
(y − t)θ−1�̃α,θ+1(t) dt,(21)
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where

�̃α,θ+1(t) := 1

2π i
lim
ε↓0

{ ∫
X
[−t − iε + f (x)]α−1H(dx)

[∫
X
(−t − iε + f (x))αH(dx)]θ/α+1

(22)

−
∫
X
[−t + iε + f (x)]α−1H(dx)

[∫
X
(−t + iε + f (x))αH(dx)]θ/α+1

}
.

Note that the formulas (19) and (21) lead to the almost everywhere equality

�′
α,θ = θ�̃α,θ+1(23)

for θ > 0. Finally, note that �̃α,1 is, by Widder’s inversion, the density of P̃α,0(f ).
Hence, a first approach for the determination of the distribution of P̃α,θ (f ) will
aim at the determination of �α,θ and �̃α,θ+1. This task will be completed in the
following sections. Note that once we obtain an explicit form for �α,θ , the c.d.f.
of P̃α,θ (f ) is given by

Qα,θ ((−∞, x]) =
∫ x

0
qα,θ (y) dy =

∫ x

0
(x − y)θ−1�α,θ (y) dy(24)

for all θ > 0. This result follows by using the representation in (19) and applying
integration by parts. As we shall see, this representation plays a key role in ob-
taining simpler expressions and various identities for �α,θ , hence simplifying the
formulas for the densities.

Finally, we anticipate some notation that will be useful. First, consider

�+
η,d(t) =

∫ ∞
t

(x − t)dη(dx) and �η,d(t) =
∫ t

0
(t − x)dη(dx),

which represent generalized Abel transforms of the measure η. Now, define

γα(t) = cos(απ)�η,α(t) + �+
η,α(t),

ζα(t) = sin(απ)�η,α(t), ρα,θ (t) = θ

α
arc tan

ζα(t)

γα(t)
+ πθ

α
I�α(t),

where �α := {t ∈ R
+ :γα(t) < 0}. Clearly, when α ≤ 1/2, γα(t) > 0 for all t.

4. Generalized arcsine laws. We first deal with linear functionals of the
PD(α,0) process. As such, we generalize the results of Lamperti [27] for the case
of P̃α,0(C). We also point out that Regazzini, Lijoi and Prünster [41] obtain an
expression for the c.d.f. of Mα,0(η) by exploiting a suitable inversion formula
for characteristic functions and, additionally, provides expressions for its poste-
rior density. Here, the approach we exploit leads to explicit and quite tractable
expressions for the density which is expressed in terms of Abel transforms of η.

Moreover, we also derive new expressions for the c.d.f. which can indeed be seen
as generalized arcsine laws.
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THEOREM 4.1. Let η be a probability measure on (X,�) with X ⊂ R
+ and

set �α,η := {y ∈ R
+ :

∫
X

|y − t |α−1η(dt) < +∞}∩Cη. If
∫

tαη(dt) < +∞ and the
Lebesgue measure of �c

α,η is zero, then a density function of the random variable

Mα,0(η) = ∫
xP̃α,0(dx), denoted by q

α,0 , coincides with

q
α,0(y) = sin(απ)

π

�+
η,α(y)�η,α−1(y) + �+

η,α−1(y)�η,α(y)

[�+
η,α(y)]2 + 2 cos(απ)�+

η,α(y)�η,α(y) + [�η,α(y)]2
(25)

for any y ∈ �α,η.

The proof is provided in the Appendix. The result for the form of the density is
new. We are also able to obtain, in view of obvious difficulties with direct integra-
tion, a rather remarkable expression of the c.d.f., given in the next theorem.

THEOREM 4.2. Let η be a probability measure on R
+ such that

∫
xαη(dx) is

finite and the Lebesgue measure of the set �c
α,η is zero. If t 
→ 
(t) = η((−∞, t])

is Lipschitz of order 1 at any y ∈ �α,η, then the c.d.f. of Mα,0(η) is given by

Q
α,0((−∞, x]) = 1

απ
arc tan

(
ζα(x)

γα(x)

)
(26)

for any x in Cη and α in (0,1).

Applying Theorem 4.2 to the case α = 1/2, we obtain the following result.

COROLLARY 4.1. Consider the setting as in Theorems 4.1 and 4.2. The den-
sity of the random variable M1/2,0(η) is given by

q1/2,0(y) = 1

π

�+
η,1/2(y)�η,−1/2(y) + �+

η,−1/2(y)�η,1/2(y)

[�+
η,1/2(y)]2 + [�η,1/2(y)]2

(27)

for any y ∈ �α,η and its c.d.f. is given by the generalized arcsine distribution

Q1/2,0((−∞, x]) = 2

π
arc sin

(
π�1/2,1/2(x)[γ 2

1/2(x) + ζ 2
1/2(x)]1/2)

.(28)

REMARK 4.1. As we see, the results for the PD(α,0) are tractable and, quite
remarkably, only require the calculation of the Abel transforms �η,α and �+

η,α.

In this regard, one can, in general, obtain explicit results much more easily than
for the case of the Dirichlet process. It is worth pointing out once again that our
expressions for the c.d.f. show that these models have indeed generalized arcsine
laws. These expression are rather surprising as it is not obvious how to integrate
with respect to the densities.
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Below, we illustrate a couple of applications of Theorem 4.1. The first example
recovers a well-known result given in [27], while the second provides an expres-
sion for the density q

α,0 when the parameter measure η coincides with the uniform
distribution on the interval [0,1].

EXAMPLE 4.1 (Lamperti’s occupation time density). Here, as a quick check
of our results, we first revisit Lamperti’s model. That is to say, the distribution of
P̃α,0(C). This corresponds to η being the distribution of a Bernoulli distribution
with success probability p = E[P̃α,0(C)] = 1 − p̄. It follows that for any d > 0,
the Abel transforms for a Bernoulli random variable are given by

�+
η,d(t) = (1 − t)dp and �η,d(t) = td p̄

for any t in (0,1). Hence, one easily sees that Lamperti’s formula in (4) is recov-
ered. In addition, we obtain the following new formula for the c.d.f.:

Q
α,0((−∞, x]) = 1

απ
arc tan

(
sin(πα)xαp̄

cos(απ)xαp̄ + (1 − x)αp

)

for any x ∈ (0,1). This may also be expressed in terms of the arcsine, using the
fact that for any t ∈ (0,1),

�α,α(t) = sin(απ)tαp̄

π [t2αp̄2 + 2 cos(απ)tα(1 − t)αp̄p + (1 − t)2αp2] .(29)

EXAMPLE 4.2 (Uniform parameter measure). We again note that, while there
are several techniques one could have used to derive expressions for the functional
P̃α,θ (C), it is considerably more difficult to obtain results for a more general choice
of P̃α,θ (f ), with f in �α(H). Here, we demonstrate how our results easily identify
the density in the case where η(dx) = I(0,1)(x) dx. For Mα,0(η) = ∫

xP̃α,0(dx),
direct calculation of the Abel transforms leads to the expression of its density as

q
α,0(y) = (α + 1) sin(απ)yα(1 − y)α

απ [y2α+2 + (1 − y)2α+2 + 2 cos(απ)yα+1(1 − y)α+1]I(0,1)(y).

Note that one easily finds γα(t) = (tα+1 cos(απ)+(1− t)α+1)/(α+1) and ζα(t) =
tα+1 sin(απ)/(α + 1), additionally providing an expression for the c.d.f. In the
Dirichlet case, the distribution of

∫
(0,1) xP̃0,θ (dx) can be determined by means of

results contained in [6] and it is explicitly displayed in [9]. Its density function on
(0,1) has the form

q0,θ
(y) = e

π
(1 − y)−(1+y)y−y sin(πy)I(0,1)(y).

5. The probability distribution of PD(α, θ) random means. In the present
section, we are going to consider more general cases than the α-stable process dealt
with in the previous section. In particular, we illustrate the results one can achieve
by applying an inversion formula provided in [42] in order to obtain the density of
Mα,θ (η) when α ∈ (0,1) and θ > 0 and then make a few remarks concerning the
case in which α < 0.
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5.1. Densities for Mα,θ (η). As suggested by the inversion formula, the eval-
uation of a density function for the random functional Mα,θ basically amounts to
the determination of the quantities �α,θ and �̃α,θ+1. We then move on, stating the
two main results of the section and providing an interesting illustration.

THEOREM 5.1. For any t ∈ �α,η and (α, θ) ∈ (0,1) × R
+, one has

�α,θ (t) = 1

π [ζ 2
α (t) + γ 2

α (t)]θ/(2α)
sin(ρα,θ (t)).(30)

A combination of the above result with Theorem 4.2 leads to another represen-
tation for the c.d.f. of the mean P̃α,0(f ) of an α-stable subordinator. First, note
that, for any α ∈ (0,1), one has

ρα,α(t) = arc tan
(

ζα(t)

γα(t)

)
+ πI�α(t) = arc sin

(
ζα(t)sign(γα(t))√

ζ 2
α (t) + γ 2

α (t)

)
+ πI�α(t),

where sign(a) = 1 if a > 0 and sign(a) = −1 if a < 0. At this point, from (30),
one has

�α,α(t) = sign(γα(t))

π
√

ζ 2
α (t) + γ 2

α (t)

ζα(t)|γα(t)|
γα(t)

√
ζ 2
α (t) + γ 2

α (t)
= ζα(t)

π [ζ 2
α (t) + γ 2

α (t)] .

If, as in the statement of Theorem 4.2, one has that 
 is Lipschitz of order 1 at any
y ∈ �α,η, an alternative representation for the distribution function of a normalized
α-stable random mean displayed in (26), that is,

Qα,0((−∞, x]) = 1

απ
arc sin

(
π�α,α(x)

√
ζ 2
α (x) + γ 2

α (x)
)
,(31)

holds true.

REMARK 5.1. As pointed out at the end of Section 3, if α ∈ (0,1/2],
then ρα,θ (t) = (θ/α) arc tan(ζα(t)/γα(t)). Hence, if one resorts to the expres-
sion for the c.d.f. of P̃α,0(f ) as provided in (31) it can be noted that ρα,θ (t) =
θπQα,0((−∞, t]) and this yields a representation equivalent to the one displayed
in (30), that is,

�α,θ (t) = sin(θπQα,0((−∞, t]))
π [ζ 2

α (t) + γ 2
α (t)]θ/(2α)

.(32)

A further evaluation of �α,θ can be deduced by resorting to the correspondence
between PD(α, θ) means and Dirichlet means, as stated in Theorem 2.1. Indeed,
one can prove the following useful identities.

THEOREM 5.2. Let Rα(t) = ∫
R+\{t} log |t − y|Q

α,0(dy). Then, for all θ > 0,
the following results hold:
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(i) �α,θ (t) = π−1 sin(πθQ
α,0((−∞, t]))e−θRα(t);

(ii) for any t ∈ {x :Q
α,0((−∞, x]) > 0} and α ∈ (0,1),

e−Rα(t) =
[

�α,α(t)π

sin(παQ
α,0(t))

]1/α

= [ζ 2
α(t) + γ 2

α (t)]−1/2α
.

The expression of �α,θ , as determined in Theorem 5.1, Remark 5.1 or Theo-
rem 5.2(i), is useful when one aims to evaluate the density function of P̃α,θ (f )

corresponding to the case θ > 1. When θ < 1, one must resort to the expression
given in (21) and then the evaluation of �̃α,θ+1 is necessary. The following theo-
rem deals with this issue.

THEOREM 5.3. For any (α, θ) ∈ (0,1)×R
+ and t ∈ �α,η, the following iden-

tity holds true:

�̃α,θ+1(t) = γα−1(t) sin(ρα,θ (t)) − ζα−1(t) cos(ρα,θ (t))

π [ζ 2
α (t) + γ 2

α (t)](θ+α)/(2α)
.(33)

We now proceed to provide a simple illustration of the above results by means
of an example. More detailed discussion about the determination of the probability
distribution of Mα,θ (η) is developed in the following section.

EXAMPLE 5.1 [First expressions for P̃α,θ (C)]. It is interesting to compare the
general case of P̃α,θ (C) with that of Lamperti’s result in Example 4.1. Here, using
the specifications in that example, it follows that

�α,θ (t) = sin( θ
α

arc tan(
p̄ sin(απ)tα

p̄ cos(απ)tα+p(1−t)α
) + θ

α
πI�α(t))

π{p̄2t2α + p2(1 − t)2α + 2p̄p cos(απ)tα(1 − t)α}θ/(2α)
,(34)

where �α = ∅ if α ∈ (0,1/2], whereas �α = (0, vα

1+vα
) with vα = (−p/

(p̄ cos(απ)))1/α if α ∈ (1/2,1). From (34), one can recover the expression for
the c.d.f. of P̃α,θ (C) by resorting to (24) if the parameter θ > 1. When θ < 1,
expressions for �̃α,θ+1 can also be calculated explicitly, leading to formulae for
the density. In general, it is evident that such results are not as amenable as the
case P̃α,0(C), although they still lead to interesting insights. We will see that a
case-by-case analysis can lead to more explicit expressions. We also develop other
techniques in the forthcoming sections.

5.2. The probability distribution of M−κ,mκ(η). In this section, we establish
the law of the mean functional of a random probability measure with distribution
�

(−κ,mκ)
(·|H) which, according to (1), is given by

M−κ,mκ(η) =
m∑

i=1

f (Zi)
Gi

G̃
=

m∑
i=1

Yi

Gi

G̃
,
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where the Yi ’s are i.i.d. with common probability distribution η. One reason to
study these functionals is that for the choice of κ = θ/m, one has that M−θ/m,θ (η)

converges in distribution to M0,θ (η) as m → ∞. This fact may be found in, for

example, [20]. It is easy to see that, conditionally on (Y1, . . . , Ym), M−κ,mκ(η)
d=

M0,mκ(ηm), where

ηm(·) = 1

m

m∑
i=1

δYi
(·)(35)

is the empirical distribution. Thus, descriptions of the conditional distribution of
M−κ,mκ(η), given (Yi)i≥1, follow from (8), (9) and (10) for appropriate ranges of
the parameter θ = mκ , with η replaced by ηm. The Cauchy–Stieltjes transform of
M−κ,mκ(η) of order mκ is

E

[
1

(z + M−κ,mκ(η))mκ

]
=

[∫ ∞
0

(z + y)−κη(dy)

]m

, | arg(z)| < π.

Now, set

ωm(t) := e−R(t) = ∏
i∈At,m

|t − yi |−1,

where At,m = {i :yi �= t} ∩ {1, . . . ,m} and suppose that cmκ(t) := ∫
(0,∞) |t −

y|−mκη(dy) < ∞ for almost every t with respect to the Lebesgue measure so that
one can define pmκ(t) = ∫ t

0 (t − y)−mκη(dy)/cmκ(t) and

hm,mκ(t) := [cmκ(t)]m
m∑

j=1

sin(πjκ)

(
m

j

)
[pmκ(t)]j [1 − pmκ(t)]m−j .

This leads to the following interesting result.

PROPOSITION 5.1. If Eη[·] denotes the expected value taken with respect to
η, then:

(i) Eη[ωmκ
m (t) sin(πmκηm(t))] = hm,mκ(t);

(ii) when mκ = 1, the density of M−1/m,1(η) is given by hm,1(x)/π ;
(iii) for κ = θ/m < 1, the c.d.f. of M−θ/m,θ (η) is

Q−θ/m,θ ((−∞, x]) = 1

π

∫ x

0
(x − t)θ−1hm,θ (t) dt.

Furthermore, this c.d.f. converges to (10), as m → ∞, for all θ > 0.
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6. Distributional recursions. In this section, we describe mixture represen-
tations which are deducible from the posterior distribution of PD(α, θ) laws and
existing results for the Dirichlet process. These represent aids in obtaining tractable
forms of the distributions of various models Mα,θ (η). In particular, we will use this
to obtain a nice solution for all PD(α,1 − α) models. Before stating the result, let
us mention in advance that Ba,b stands for a beta-distributed random variable with
parameters a, b > 0.

THEOREM 6.1. Let the random variables W , Mα,θ+α(η) and Bθ+α,1−α be
mutually independent and such that W has distribution η.

(i) Then, for 0 ≤ α < 1 and θ > −α,

Mα,θ (η)
d= Bθ+α,1−αMα,θ+α(η) + (1 − Bθ+α,1−α)W.

Note that when θ > 0 and α = 0, this equates with the mixture representation for
Dirichlet process mean functionals.

(ii) Moreover, for any θ > 0 and α ∈ (0,1), one has

Mα,θ (η)
d= Bθ,1Mα,θ (η) + (1 − Bθ,1)Mα,0(η).

An immediate consequence of this result is that if one has a tractable descrip-
tion of the distribution of Mα,θ+α(η), then one can easily obtain a description of
the distribution of Mα,θ (η). Moreover, from Theorem 6(i), one can deduce repre-
sentations of P̃α,θ (f ) for negative values of θ , once an expression of Mα,θ+α(η) is
available.

REMARK 6.1. Recall that P̃1/2,0(C) for p = 1/2 has the arcsine distribution
Beta(1/2,1/2). Applying the mixture representation in statement (ii) of Theo-
rem 6.1, one can see, via properties of Beta random variables, that P̃1/2,θ (C) is
Beta(θ + 1/2, θ + 1/2). This corresponds to a result of ([7]) for M0,θ (η), where η

is the arcsine law, although a connection to occupation time formula was not made
there.

6.1. Results for PD(α,1) and PD(α,1 − α). We are now in a position to dis-
cuss some of the easiest (and also more important) cases. First, we deal with a
PD(α,1) mean functional, Mα,1(η), and use it in order to determine, via a mix-
ture representation, the probability distribution of Mα,1−α(η).

We have already mentioned that when θ = 1, the inversion formula simplifies
and the density function of M1,α(η) reduces to qα,1 = �α,1, as given in (30). For
the range 0 < α ≤ 1/2, this further reduces to

qα,1(y) = �α,1(y) = sin(1/α arc sin(π�α,α(t)
√

ζ 2
α (y) + γ 2

α (y)))

π [ζ 2
α (y) + γ 2

α (y)]1/(2α)
.(36)



FUNCTIONALS OF POISSON–DIRICHLET PROCESSES 537

If α = 1/n, with n = 2,3, . . . , one can then use the multiple angle formula

sin(nx) =
n∑

k=0

(
n

k

)
[cos(x)]k[sin(x)]n−k sin

(
π

2
[n − k]

)
,

in order to simplify the expression of qα,1. These remarks can be summarized as
follows.

THEOREM 6.2. A density function of Mα,1(η), for all 0 < α < 1, coincides
with

q
α,1(y) = �α,1(y) = sin(1/α arc tan ζα(y)/γα(y) + π/αI�α(y))

π [ζ 2
α (y) + γ 2

α (y)]1/2α

for any y ∈ �α,η. When α = 1/n, with n = 2,3, . . . , then a density function for
M1/n,1(η) coincides with

q1/n,1(y) = πn−1�n
1/n,1/n(y)

n∑
k=0

(
n

k

)(
γ1/n(y)

ζ1/n(y)

)k

sin
(

π

2
[n − k]

)
.

Setting n = 2 in the last formula yields a simple form for a density function of
M1/2,1(η), expressible as

q1/2,1(y) = 2

π

γ1/2(y)ζ1/2(y)

[ζ 2
1/2(y) + γ 2

1/2(y)]2
= 2

π

�η,1/2(y)�+
η,1/2(y)

[ζ 2
1/2(y) + γ 2

1/2(y)]2
.

Now, the density of PD(α,1 −α) mean functionals can be deduced from PD(α,1)

models via the mixture representation given in Theorem 6.1.

THEOREM 6.3. A density function of the random mean Mα,1−α(η) is obtained
via the distributional identity

Mα,1−α(η)
d= B1,1−αMα,1(η) + (1 − B1,1−α)W,

where B1,1−α , Mα,1(η) and W are independent. Here, W is a random variable
with distribution η. In particular, the density of Mα,1−α(η) takes the form

(1 − α)

∫ ∞
0

∫ 1

0
�α,1

(
x − wb

1 − b

)
(1 − b)−1b−α db η(dw),

where �α,1(t) = 0 for any t < 0.

EXAMPLE 6.1 (A distribution relevant to phylogenetic models). Recall from
the Introduction that the random variable P̃α,1−α(C), when E[P̃α,1−α(C)] = 1/2,

is equivalent in distribution to the random variable appearing in [16]. It is known
that when α = 1/2, the distribution is uniform, according to the well-known Lévy
result; see [28]. Here, we obtain a quite tractable representation of the laws for all
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values of α and with E[P̃α,1−α(C)] = p = 1 − p̄, for any p ∈ (0,1). To this end,
we first obtain the distribution of P̃α,1(C). This can be easily obtained by setting
θ = 1 in (34), which yields the density function

fα,1,p(x) = sin( 1
α

arc tan(
p̄ sin(απ)tα

p̄ cos(απ)tα+p(1−t)α
) + π

α
I�α(t))

π{p̄2t2α + p2(1 − t)2α + 2p̄p cos(απ)tα(1 − t)α}1/(2α)
,

where �α = ∅ if α ∈ (0,1/2], whereas �α = (0, vα

1+vα
) with vα = (−p/

(p̄ cos(απ)))1/α when α ∈ (1/2,1). Since a density function fα,1,p of P̃α,1(C)

is available, one can evaluate the probability distribution of P̃α,1−α(C) via the
mixture representation stated in Theorem 6.1. It suffices to set η = bp , where
bp(x) = px(1 − p)1−x

I{0,1}(x) is the probability mass functions of a Bernoulli
random variable with parameter p. Hence, one has P̃α,1(C) = Mα,1(bp) and
1 − Mα,1(bp) = 1 − P̃α,1(C) = Mα,1(bp̄).

COROLLARY 6.1. Let W denote a Bernoulli random variable with parameter
p and let W be independent of B1,1−α and Mα,1(bp). Then, conditionally on the

event W = 1, one has Mα,1−α(bp)
d= 1 − B1,1−αMα,1(bp̄). On the other hand,

given W = 0, one has Mα,1−α(bp)
d= B1,1−αMα,1(bp). Equivalently, a density

function of Mα,1−α(bp) is obtained via the distributional relationship

fα,1−α,p(t) = (1 − α)

∫ 1

0

[
p̄fα,1,p

(
t

u

)
+ pfα,1,p̄

(
1 − t

u

)]
u−1(1 − u)−α du.

6.2. The case of PD(α,α). The important case of PD(α,α) is, in general,
more challenging than the case of PD(α,1 − α). Of course, these two agree in the
case of α = 1/2 corresponding to quantities related to Brownian bridges. Tech-
nically, one can apply the formula based on �̃α,α+1, but this does not always
yield very nice expressions. Alternatively, in the special case where 1 − α = 2α,
that is α = 1/3, one might think of using mixture representation results such as
those given in Theorems 6.1 and 6.2. According to the latter, one can determine
Mα,1−α(η) and then, by resorting to the former (with θ = α), one obtains Mα,α(η).
For example, one can use the Dirichlet process mixture representation to obtain the
probability distribution of M2/3,2/3(η) from the distribution of M 2

3 , 1
3
(η). Addition-

ally, when α > 1/2, one may use the density representation of Mα,2α(η) based on
�α,2α , coupled with the mixture representation. Let us investigate these cases by
considering specific examples.

EXAMPLE 6.2 [Probability distribution of P̃α,α(C)]. First, note that, having
set p = 1 − p̄ = η(C) ∈ (0,1), the quantity �α,α has been described in (29). The
expressions for �̃α,α+1 are the same for any α ∈ (0,1) since sin(2 arc tan(

ζα(t)
γα(t)

)) =
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sin(2 arc tan(
ζα(t)
γα(t)

) + 2πI�α(t)). Hence, for any α ∈ (0,1) and t ∈ (0,1), one has

�̃α,α+1(t) = 2γα(t)γα−1(t)ζα(t) − ζα−1(t)γ
2
α (t) + ζα−1(t)ζ

2
α (t)

π [γ 2
α (t) + ζ 2

α (t)]2 ,(37)

with γα(t) = p(1 − t)α + p̄ cos(απ)tα and ζα(t) = p̄ sin(απ)tα . These findings,
with some simple algebra, lead to the following corollary.

COROLLARY 6.2. The random probability P̃α,α(C) admits a density function
coinciding with

qα,α (y) = αp̄ sin(απ)

π

∫ y

0
[t (y − t)]α−1

× (
p2(1 − t)2α−1(1 + t)

+ 2pp̄tα+1(1 − t)α−1 cos(απ) − p̄2t2α)
(38)

× ([p2(1 − t)2α + p̄2t2α

+ 2pp̄tα(1 − t)α cos(απ)]2)−1
dt

for any y in (0,1).

It is now worth noting that the above formula, with α = p = 1/2, yields the
well-known result about the probability distribution of A = ∫ 1

0 I(0,+∞)(Ys) ds, in
the case where the Markov process Y = {Yt : t ∈ [0,1]} is a Brownian bridge. In-
deed, Lévy found that A is uniformly distributed on the interval (0,1); see [28].
In this case, �̃1/2,3/2(t) = 2π−1t−1/2 and the density function of P̃1/2,1/2(C) is
given by

q1/2,1/2(y) = 1

2π
2

∫ y

0
t−1/2(y − t)−1/2 dt = 1

for any y ∈ (0,1).

EXAMPLE 6.3 (Uniform parameter measure). Let us again consider the
case in which η(dx) = I(0,1)(dx). Recall that γα(t) = (tα+1 cos(απ) + (1 −
t)α+1)/(α + 1) and ζα(t) = tα+1 sin(απ)/(α + 1). These yield

�̃α,α+1(t) = (1 + α)2 sin(απ)

απ

× tα[(1 − t)2α+1(1 + t) − t2α+2 + 2 cos(απ)tα+2(1 − t)α]
[t2α+2 + (1 − t)2α+2 + 2 cos(απ)tα+1(1 − t)α+1]2 .
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The expression of the density qα,α somewhat simplifies when α = 1/2. Indeed, in
this case, one has

�̃1/2,3/2(t) = 9
√

t[(1 − t)2(1 + t) − t3]
2π [1 − 3t (1 − t)]2

for any t ∈ (0,1). In order to determine the probability density function q , compute

Ir,s(y) := 2

π

∫ y

0

(y − t)−1/2t r+1/2(1 − t)s

[1 − 3t (1 − t)]2 dt

= 2

π

∑
n≥0

(2)n3n

n!
∫ y

0
(y − t)−1/2t r+n+1/2(1 − t)n+s dt

= 2

π

∑
n≥0

(2)n3n

n!
n+s∑
k=0

(
n + s

k

)
(−1)k

∫ y

0
(y − t)−1/2t r+n+k+1/2 dt

= 2√
π

∑
n≥0

(2)n3n

n!
n+s∑
k=0

(
n + s

k

)
(−1)kyn+k+r+1 �(r + n + k + 3/2)

�(r + n + k + 2)
,

where (a)n = �(a + n)/�(a) for any a > 0 and n ≥ 0. Consequently,

q1/2,1/2(y) =
∫ y

0
(y − t)−1/2�̃1/2,3/2(t) dt = I0,2(y) + I1,2(y) − I1,0(y)

for any y in (0,1).
An alternative representation of this density can be achieved by resorting to

Theorem 6.1. Indeed, one has that M1/2,1/2(η)
d= B1,1/2M1/2,1(η)+ (1−B1,1/2)Y ,

where the density function of M1/2,1(η) is given by

q1/2,1(y) = �1/2,1(y) = 9

2π

y3/2(1 − y)3/2

{y3 + (1 − y)3}2 I(0,1)(y)

and Y is uniformly distributed over the interval (0,1). This then suggests that a
density of M1/2,1/2(η) can be represented as

q1/2,1/2(y) = 1

2

∫ x1

0
(x1 − x3)

−1/2
{∫ 1

x1

(x2 − x3)
−1/2q1/2,1(x2) dx2

}
dx3

+ 1

2

∫ 1

x1

(x3 − x1)
−1/2

{∫ x1

0
(x3 − x2)

−1/2q1/2,1(x2) dx2

}
dx3

= 9

2π

√
x1

∫ 1

x1

x2(1 − x2)
3/2

{x3
2 + (1 − x2)3}2 2F1

(
1

2
,1; 3

2
; x1

x2

)
dx2

+ 9

2π

√
1 − x1

∫ x1

0

x
3/2
2 (1 − x2)

{x3
2 + (1 − x2)3}2 2F1

(
1

2
,1; 3

2
; 1 − x1

1 − x2

)
dx2,

where 2F1 is the Gauss hypergeometric function.
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7. Perfect sampling Mα,θ (η). Our results thus far have provided quite a few
expressions for the densities and c.d.f.’s of Mα,θ (η) which are certainly interesting
from an analytic viewpoint. However, it is clear that if one were interested in draw-
ing random samples, it is not always obvious how to do so. The clear exception
for all η is the Mα,0(η) case, where one can apply straightforward rejection sam-
pling based on the explicit density in Theorem 4.1. Here, we show that this fact, in
conjunction with the correspondence to the Dirichlet process established in Theo-
rems 2.1 and 6.1, allows us to perfectly sample random variables Mα,θ (η) for all
0 < α < 1 and θ > 0. One simply needs to apply the perfect sampling procedure
for Dirichlet mean functionals devised by [15]; see also [23] for an application
of this idea to a class of non-Gaussian Ornstein–Uhlenbeck models arising in fi-
nancial econometrics. First, recall that Theorem 6.1 establishes the distributional
identity

Mα,θ (η)
d= M0,θ (Qα,0)

d= M0,θ (Qα,0)Bθ,1 + (1 − Bθ,1)Mα,0(η).

Recognizing this, we now recount the basic elements of the perfect sampling algo-
rithm of [15], tailored to the present situation. First, note that perfect sampling can
be achieved if 0 ≤ a ≤ Mα,θ (η) ≤ b < ∞ almost surely. Furthermore, note that this
is true if and only if the support of Q

α,0 is [a, b] or, equivalently, Mα,0(η) ∈ [a, b].
Now, as explained in [15], following the procedure of [39], one can design an up-
per and lower dominating chain starting at some time −N in the past up to time
0. The upper chain, say uMα,θ (η), is started at uMα,θ,−N(η) = b and the lower
chain, lMα,θ (η), is started at lMα,θ,−N(η) = a. One runs the Markov chains for
each n based on the equations

uMα,θ,n+1(η) = Bn,θXn + (1 − Bn,θ )uMα,θ,n(η)

and

lMα,θ,n+1(η) = Bn,θXn + (1 − Bn,θ )lMα,θ,n(η),

where the chains are coupled using the same random independent pairs (Bn,θ ,Xn),
where for each n, Bn,θ has a Beta(1, θ) distribution and Xn has distribution Fα,η.

That is, Xn
d= Mα,0(η). The chains are said to coalesce when D = |uMα,θ,n(η) −

lMα,θ,n(η)| < ε for some small ε. Notice, importantly, that this method only re-
quires the ability to sample Mα,0(η), which is provided by Theorem 4.1, and an
independent Beta random variable.

APPENDIX A: PROOF OF THEOREM 3.1

A.1. An inversion formula for the Cauchy–Stieltjes transform. In order to
determine the density function, qα,θ , of the random mean P̃α,θ (f ), one can invert
the transform Sθ [z; P̃α,θ (f )]. Indeed, since qα,θ is a density function, with respect
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to the Lebesgue measure, on R
+, one has

∫ c
0 y−ρqα,θ (y) dy < ∞ for some ρ > 0

for any c > 0. The inversion formula provided in [42] can be applied to obtain

qα,θ (y) = − yθ

2π i

∫
W

(1 + w)θ−1S′
θ [yw; P̃α,θ (f )]dw.(39)

In the previous formula, W is a contour in the complex plane starting at w = −1,
encircling (in the counterclockwise sense) the origin and ending at w = −1, while
S′

θ [yw; P̃α,θ (f )] = d
dz

Sθ [z; P̃α,θ (f )]|z=yw . If θ > 1, one can integrate by parts,
thus obtaining

qα,θ (y) = θ − 1

2π i
yθ−1

∫
W

(1 + w)θ−2Sθ [yw; P̃α,θ (f )]dw;(40)

see (18) and (19) in [42].

A.2. Proof of Theorem 3.1. In order to obtain (19) from the above represen-
tation (39), first note that the complex integral can be rewritten as follows. Set,
for any y in the convex hull of the support of H ◦ f −1, �y ⊂ C to be the path
starting at w = −y, encircling the origin and ending at w = −y. Hence, a change
of variable in (39) yields

qα,θ (y) = − 1

2π i

∫
�y

(y + w)θ−1S′
θ [w; P̃α,θ (f )]dw.

For simplicity, introduce the function w 
→ h(w) = (y + w)θ−1S′
θ [w; P̃α,θ (f )]

and note that S′
θ [w; P̃α,θ (f )] = Sθ+1[w; P̃α,θ (f )], as described in (16). By virtue

of Cauchy’s theorem, one has
∫
�y

h(w)dw =
∫ −y−iε

−y+i0
h(w)dw +

∫ 0

−y
h(x − iε) dx

+ iε
∫ π/2

−π/2
eish(εeis) ds +

∫ −y

0
h(x + iε) dx +

∫ −y+i0

−y+iε
h(w)dw.

A few straightforward simplifications lead to∫
�y

h(w)dw =
∫ y

0
[h(−x − iε) − h(−x + iε)]dx

+ iε
∫ π/2

−π/2
eish(εeis) ds +

∫ −y−iε

−y+i0
h(w)dw(41)

+
∫ −y+i0

−y+iε
h(w)dw.

In order to determine the behavior, as ε ↓ 0, of the last two summands in (41), let
us show that the function s 
→ h(−y + is) is integrable in a neighborhood of the
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origin. Indeed, one has

|h(−y + is)| = |s|θ−1

∣∣ ∫
X
(−y + is + f (x))α−1H(dx)

∣∣∣∣{∫
X
(−y + is + f (x))αH(dx)}θ/α+1

∣∣ .
As for the numerator, one has

∣∣ ∫
X
(−y + is + f (x))α−1H(dx)

∣∣ ≤ ∫
R+ | − y +

x + is|α−1η(dx) ≤ ∫
R+ |x − y|α−1η(dx) and this is finite for any y in �α,η. On

the other hand, if one sets g1(x, y; s) := |x − y + is|α cos(α arg(x − y + is)) and
g2(x, y; s) := |x −y + is|α sin(α arg(x −y + is)), the denominator would coincide
with

∣∣∣∣
{∫

R+
(x − y − is)αη(dx)

}θ/α+1∣∣∣∣
=

∣∣∣∣ exp
{
(θα−1 + 1) log

(∫
R+

[g1(x, y; s) + ig2(x, y; s)]η(dx)

)}∣∣∣∣

=
{(∫

R+
g1(x, y; s)η(dx)

)2

+
(∫

R+
g2(x, y; s)η(dx)

)2}θ(2α)−1+2−1

≥
(∫

R+
g2(x, y; s)η(dx)

)θα−1+1

.

We now confine ourselves to the case where s is in (0, ξ) for some positive
ξ . The same reasoning can be applied in the opposite case when s ∈ (−ξ,0).
Since arg(x − y + is) = arc tan(s/(x − y)) + πI(0,y)(x), this quantity is a value
in (π/2, π) and, hence, sin(α arg(x − y + is)) > 0. Consequently, if we set
wα = α[πI(0,2/3](α) + (π/2)I(2/3,1)(α)], the denominator is bounded below by

{∫
R+

|x − y|α sin
(
α arc tan

s

x − y
+ απI(0,y)(x)

)
η(dx)

}θα−1+1

≥
{

sin(wα)

∫
(0,y]

|x − y|αη(dx)

}θα−1+1

and the latter must be greater than some positive constant, say Ky , for any y in
�α,η. Finally, we have |h(−y + is)| ≤ K ′

ys
θ−1 for any s in (0, ξ). This implies

that, when we let ε ↓ 0, the last two terms in the right-hand side of (41) tend to
zero. As far as the second summand in (41) is concerned, one can also show that it
tends to zero since

lim
ε↓0

εα
∫ π/2

−π/2
eis(y + εeis)θ−1ε1−αSθ+1[εeis; P̃α,θ (f )]ds = 0.(42)

In order to show this, observe that, for any real number s such that |s| ≤ π/2,
one has |(y + εe−is)|θ−1 = {y2 + ε2 + 2yε cos(s)}(θ−1)/2 ≤ yθ−1, when θ < 1.
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Moreover, one can determine a bound for

ε1−α|Sθ+1[εeis; P̃α,θ (f )]| = ε1−α | ∫
R+[εeis + x]α−1η(dx)|

|{∫
R+[εeis + x]αη(dx)}θ/α+1| .(43)

As for the numerator in (43), define gε(x, s) := x2 + ε2 + 2xε cos(s) and
note that | ∫

R+[εeis + x]α−1η(dx)| ≤ ∫
R+[gε(x, s)](α−1)/2 ≤ εα−1 since α < 1

and, as before, |s| < π/2. On the other hand, if we further set dε(x, s) :=
arc tan(ε sin(s)/[x + ε cos(s)]), then∣∣∣∣

∫
R+

[εeis + x]αη(dx)

∣∣∣∣ ≥
∫

R+
[gε(x, s)]α/2 cos(αdε(x, s))η(dx).

For any s ∈ (−π
2 , π

2 ) and x ≥ 0, it can be seen that cos(αdε(x, s)) ≥ cos(απ/2)

and gε(x, s) ≥ x2. These, in turn, yield the following lower bound for the denom-
inator in (43):
∣∣∣∣
{∫

R+
[εeis + x]αη(dx)

}θ/α+1∣∣∣∣ ≥
{

cos
(

απ

2

)∫
R+

xαη(dx)

}θ/α+1

= Kα,θ > 0.

Hence, the expression in (43) is, for any ε > 0 and (x, s) ∈ R
+ × (−π

2 , π
2 ),

bounded by some constant depending only on α and θ . This implies (42) and then∫
�y

h(w)dw = lim
ε↓0

∫ y

0
[h(−x − iε) − h(−x + iε)]dx.

In order to interchange the limit with the integral, we now show that for any y, there
exists By ⊂ (0, y), with λ(Bc

y) = 0, such that for any x ∈ By , one has |h(−x −
iε)| ≤ h̄(x) and h̄ is integrable on (0, y). The same argument can be applied to
|h(−x + iε)|. If we set

γε,α(x) :=
∫

R+
[(t − x)2 + ε2]α/2 cos

(
α arc tan

ε

t − x
+ απI(0,x)(t)

)
η(dt),(44)

ζε,α(x) :=
∫

R+
[(t − x)2 + ε2]α/2 sin

(
α arc tan

ε

t − x
+ απI(0,x)(t)

)
η (dt),(45)

then

|h(−x − iε)| = |y − x − iε|θ−1 [γ 2
ε,α−1(x) + ζ 2

ε,α−1(x)]1/2

[γ 2
ε,α(x) + ζ 2

ε,α(x)](θ+2α)/(2α)
.

Now, note that [γ 2
ε,α−1(x)+ ζ 2

ε,α−1(x)]1/2 ≤ K
∫
R+ |x − t |α−1η(dt), for some con-

stant K > 0. Furthermore, for any t ∈ [x,+∞), one has α arc tan(ε/(t − x)) ∈
(0, απ/2] and for any t ∈ (0, x) it follows that απ + α arc tan(ε/(t − x)) ∈
(απ/2, απ). Hence, if α ∈ (0,1/2], then γ 2

ε,α(x) ≥ M > 0 for any x. On the
other hand, if α ∈ (1/2,1), then sin(α arc tan ε/(t − x)) ≤ sin(arc tan ε/(t − x)) =
ε/

√
ε2 + (t − x)2 for any t ≥ x and
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ζε,α(x) =
∫
[x,+∞)

|t − x − iε|α sin
(
α arc tan

ε

t − x

)
η(dt)

−
∫
(0,x)

|t − x − iε|α sin
(
απ + α arc tan

ε

t − x

)
η(dt)

≤ ε

∫
[x,+∞)

[(t − x)2 + ε2](α−1)/2η(dt) − sin(cα)

∫
(0,x)

(x − t)αη (dt)

≤ εα − sin(cα)

∫
(0,x)

(x − t)αη(dt),

where cα = arg minαπ/2<c<απ sin(c). Since x ∈ Cη, there exists ε∗ > 0 such that,
for any ε ∈ (0, ε∗), one has ζε,α(x) ≤ Mα < 0. This implies that |h(−x − iε)| ≤
M ′[y2 + M ′′](θ−1)/2 ∫

R+ |x − t |α−1η(dt) for some suitable positive constants M ′
and M ′′. The proof is then complete if we can show that x 
→ ∫

R+ |x − t |α−1η (dt)

is integrable on (0, y). To this end, note that∫ y

0

∫
R+\{x}

|x − t |α−1η(dt) dx

=
∫
(0,y)

{∫ t

0
(t − x)α−1 dx +

∫ y

t
(x − t)α−1 dx

}
η (dt)

+
∫
(y,+∞)

∫ y

0
(t − x)α−1 dx η(dt)

and this turns out to be finite since f ∈ �α(H) yielding
∫

tαη (dt) < ∞.

APPENDIX B: PROOFS FOR SECTION 4

We now prove the main results stated in Section 4 concerning the determination
of the probability distribution of the mean of a normalized α-stable subordinator.

B.1. Proof of Theorem 4.1. The first thing to note is that

S1[z;Mα,0(η)] =
∫ [z + x]α−1η(dx)∫ [z + x]αη(dx)

(46)

for any z such that | arg(z)| < π . In order to evaluate the density qα,η, one can
invert (46) by means of the Perron–Stieltjes formula, which yields

qα,0(y) = 1

2π i
lim
ε↓0

{S1[−y − iε;Mα,0(η)] − S1[−y + iε;Mα,0(η)]}
and it can be seen that the above reduces to

qα,0(y) = 1

π
lim
ε↓0

Im{S1[−y − iε;Mα,0(η)]} = 1

π
lim
ε↓0

Im
γε,α−1(y) − iζε,α−1(y)

γε,α(y) − iζε,α(y)
.
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The assumptions
∫
R+ xαη(dx) < ∞ and y ∈ �α,η allow a straightforward applica-

tion of the dominated convergence theorem. This leads to limε↓0 γε,α(y) = γα(y)

and limε↓0 ζε,α(y) = ζα(y) for any y, while limε↓0 γε,α−1(y) = γα−1(y) and
limε↓0 ζε,α−1(y) = ζα−1(y) for any y ∈ �α,η. The result then easily follows.

B.2. Proof of Theorem 4.2. From Theorem 4.1, it is known that a density
function qα,0 for

∫
R+ xP̃α,0(dx) is of the form

qα,0(y) = �α,1(y) = γα−1(y)ζα(y) − γα(y)ζα−1(y)

π{γ 2
α (y) + ζ 2

α (y)}
for any y ∈ �α,η. Let us now compute the derivatives of γα and ζα . In order to do
so, note that

lim
h↓0

∫
(0,y+h)(y + h − x)αη(dx) − ∫

(0,y)(y − x)αη(dx)

h

= lim
h↓0

∫
(0,y)

(y + h − x)α − (y − x)α

h
η(dx)

− lim
h↓0

∫
[y,y+h)

(y + h − x)α

h
η(dx).

Since we are confining ourselves to evaluating the density on the set of points y in
�α,η, the probability measure η does not have a positive mass on such y’s. Hence,
for suitable positive constants cy and ky , one has

∫
[y,y+h)

(y + h − x)α

h
η(dx) = cyh

α−1{
(y + h) − 
(y)} ≤ kyh
α,

where the first equality follows from the mean value theorem for Riemann–
Stieltjes integrals and the inequality is a consequence of the fact that 
 is Lipschitz
of order 1 at y. On the other hand, {(y + h − x)α − (y − x)α}/h ≤ α(y − x)α−1

for any x ∈ (0, y) and for any h > 0. Since x 
→ (y − x)α−1 is integrable on
(0, y) for any y ∈ �α,η, one can apply the dominated convergence theorem to
obtain (d/dy)

∫
(0,y)(y − x)αη(dx) = α

∫
(0,y)(y − x)α−1η(dx). The same argu-

ment can be applied to prove that (d/dy)
∫
(y,+∞)(x−y)αη(dx) = −α

∫
(y,+∞)(x−

y)α−1η(dx). These imply that ζα−1(y) = −α−1ζ ′
α(y) and γα−1(y) = −α−1γ ′

α(y).
Consequently,

qα,0(y) = 1

απ

d

dy
arc tan

ζα(y)

γα(y)
,

from which one easily obtains the expression of the c.d.f. x 
→ ∫ x
0 qα,0(y) dy dis-

played in the statement of the theorem.
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APPENDIX C: PROOFS FOR SECTION 5

C.1. Proof of Theorem 5.1. From the definition of �α,θ and the representa-
tion of the generalized Stieltjes transform of Mα,θ (η), as given in [44] and [45], it
is apparent that

�α,θ (t) = 1

π
lim
ε↓0

ImSθ [−t − iε;Mα,θ (η)]

= 1

π
lim
ε↓0

Im
{∫

X

(−t − iε + x)αη(dx)

}−θ/α

,

where X ⊂ R
+. One has{∫

R

(−t − iε + x)αη(dx)

}−θ/α

= exp
{
− θ

α
log

(
γε,α(t) − iζε,α(t)

)}
.

Let us first confine our attention to the case in which α is in the interval (0,1/2].
Since α arc tan( ε

x−t
) + απI(0,t)(x) ∈ (0, απ), for any t and x, one has ζε,α(t) > 0

and γε,α(t) > 0. Consequently,

exp
{
− θ

α
log

(
γε,α(t) − iζε,α(t)

)}

= {γ 2
ε,α(t) + ζ 2

ε,α(t)}−θ/(2α) exp
{

i
θ

α
arc tan

ζε,α(t)

γε,α(t)

}
.

Note that the absolute values of each of the two integrands defining γε,α and ζε,α

are bounded by |x − t |α + K , which is integrable with respect to η. We can then
apply a dominated convergence argument to obtain

lim
ε↓0

γε,α(t) = γα(t), lim
ε↓0

ζε,α(t) = ζα(t)

for any t > 0. This implies (30) after noting that, in this case, �α = ∅.
On the other hand, when α ∈ (1/2,1), one needs to consider the set �ε,α := {t ∈

R
+ :γε,α(t) > 0} and note that �c

ε,α ∩ (0, y) is nonempty for some values of y in
Cη. This yields a slightly different form for the arguments of the complex numbers
involved in the definition of �α,θ . One can easily mimic the line of reasoning
employed for the case α ∈ (0,1/2] so as to again obtain (30).

C.2. Proof of Theorem 5.2. Since Mα,θ (η)
d= M0,θ (Qα,0), it follows that the

distribution functions given in (10) and (24) are equal for all θ > 0. Statement
(i) then follows by the uniqueness properties of the integral representations. The
first identity in statement (ii) follows immediately by setting θ = α in statement
(i) which, noting that 0 < α < 1, uses the strict positivity sin(παQ

α,0(t)) for
Q

α,0(t) > 0. If one now exploits (i) with θ = α, it is possible to obtain

e−Rα(t) =
[

�α,α(t)π

sin(παQ
α,0(t))

]1/α

.
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We now set θ = α in (32) to obtain the second identity involved in (ii), thus com-
pleting the proof.

C.3. Proof of Theorem 5.3. By definition,

�α,θ+1(t) = 1

π
lim
ε↓0

{Sθ+1[−t − iε;Mα,θ (η)] − Sθ+1[−t + iε;Mα,θ (η)]},

which can be seen to imply

�α,θ+1(t) = 1

π
lim
ε↓0

Im

∫
R
(−t − iε + x)α−1η(dx)

{∫
R
(−t − iε + x)αη(dx)}(θ+α)/α

.

For any ε > 0, |(−t − iε + x)α| can be bounded by an integrable function with
respect to η, not depending on ε in a similar fashion as in the proof of Theorem 4.1.
On the other hand, |(−t − iε + x)α−1| ≤ |x − t |α−1 + K ′, for any ε > 0, x and t .
If we further set t ∈ �α,η, then x 
→ |x − t |α−1 is integrable with respect to η and
the dominated convergence theorem can be applied. The expression in (33) easily
follows.

C.4. Proof of Proposition 5.1. Statement (i) concerns the evaluation of
Eη[ωmκ

m (t) sin(πmκηm(t))]. Here, we use the fact that if cmκ(t) < ∞, there ex-
ists, by a change of measure, a density for each Yk which is proportional to
|t −y|−mκη(dy). It then follows that, with respect to this i.i.d. law for (Yk), mηm(t)

is a Binomial(mpmκ(t)) random variable and the result is proved. Statement (ii) is
derived from (8) using a conditioning argument. Similarly, statement (iii) follows
from (10), noting that the jumps of θηm are less than 1.

APPENDIX D: PROOF OF THEOREM 6.1

The proof follows as a direct consequence of the mixture representation of the
laws of the P̃α,θ random probability measures deduced from their posterior distri-
butions. Specifically, one can immediately deduce from [33], with n = 1, that,

P̃α,θ (·) d= Bθ+α,1−αP̃α,θ+α(·) + (1 − Bθ+α,1−α)δY (·),
yielding the stated result. Specifically, apply the above identity to P̃α,θ (g), where
g(x) = x. Naturally, this statement is an extension of the result deduced from Fer-
guson’s characterization of a posterior distribution of a Dirichlet process; see [10,
11], also related discussions about mixture representations derived from posterior
distributions in [21, 22]. As for the proof of (ii), this follows from the distribu-
tional identity stated in Theorem 2.1 and by setting Y = Mα,0(η) in (i). Indeed,

Mα,θ (η)
d= M0,θ (Qα,0)

d= Bθ,1M0,θ (Qα,0) + (1 − Bθ,1)Mα,0(η). The proof is com-
plete by again applying Theorem 2.1 to the first summand of the last sum in the
previous chain of identities.
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