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We wish to characterize when a Lévy process X; crosses boundaries
like %, k > 0, in a one- or two-sided sense, for small times 7; thus, we in-
quire when limsup; o |X;|/t*, limsup; g X;/t* and/or liminf; o X;/t* are
almost surely (a.s.) finite or infinite. Necessary and sufficient conditions are
given for these possibilities for all values of « > 0. This completes and ex-
tends a line of research going back to Blumenthal and Getoor in the 1960s.
Often (for many values of k), when the lim sups are finite a.s., they are in fact
zero, but the lim sups may in some circumstances take finite, nonzero, values,
a.s. In general, the process crosses one- or two-sided boundaries in quite dif-
ferent ways, but surprisingly this is not so for the case x = 1/2, where a new
kind of analogue of an iterated logarithm law with a square root boundary is
derived. An integral test is given to distinguish the possibilities in that case.

1. Introduction. Let X = (X;,? > 0) be a Lévy process with characteristic
triplet (y, o, IT), where y € R, 62 >0, and the Lévy measure IT has f(x2 A
1)T1(dx) finite. See [1] and [15] for basic definitions and properties. Since we
will only be concerned with local behavior of X, as ¢ |, 0, we can ignore the “big
jumps” in X (those with modulus exceeding 1, say), and write its characteristic
exponent, W(0) = %log Eé?Xi 0 eR, as

(1.1) V() =iyh — 0292/2+/[ 1 1](eiex —1—i0x)I(dx).

The Lévy process is of bounded variation, for which we use the notation X € bv,

if and only if o?=0and f|x\§1 |x|TI(dx) < oo, and in that case, we denote by

d:=y —[ xI1(dx)
[-1,1]

its drift coefficient.
We will continue the work of Blumenthal and Getoor [3] and Pruitt [13], in a
sense, by investigating the possible limiting values taken by ¢t ~* X, as ¢t |, 0, where
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k > 0 is some parameter. Recall that Blumenthal and Getoor [3] introduced the
upper-index

ﬁ::inf{a>0:/ |x|°‘l'[(dx)<oo}e[0,2],
lx|=<1

which plays a critical role in this framework. Indeed, assuming for simplicity that
the Brownian coefficient o2 is zero, and further that the drift coefficient § is also 0
when X € bv, then with probability 1,

(12) limsuP@={0’ = p

1o ¥ 00, k>1/B.

See Sato ([15], Proposition 47.24, page 362) and also Pruitt [13]. Note that the
critical case when k¥ = 1/8 is not covered by (1.2).

One application of this kind of study is to get information on the rate of
growth of the process relative to power law functions, in both a one- and a two-
sided sense, at small times. More precisely, we are concerned with the values of
lim S |X(|/t* and of lim sup; o X;/t* (and the behavior of liminf, o X,/t“
can be deduced from the lim sup behavior by performing a sign reversal). For ex-
ample, when

according as {

: | X:l
(1.3) limsup — = o0 a.s.,
ot
then the regions {(¢, y) € [0,00) x R:|y| > at“} are entered infinitely often for
arbitrarily small ¢, a.s. (almost surely), for all a > 0. This can be thought of as
a kind of “regularity” of X for these regions, at 0. We will refer to this kind of
behavior as crossing a “two-sided” boundary. On the other hand, when

. Xi

(1.4) limsup — = o0 a.s.,
A

we have “one-sided” (up)crossings; and similarly for downcrossings, phrased in
terms of the liminf. In general, the process crosses one- or two-sided boundaries
in quite different ways, and, often (for many values of ), when the lim sups are
finite a.s., they are in fact zero, a.s., as we will show. But the lim sups may in some
circumstances take finite nonzero values, a.s. Our aim here is to give necessary
and sufficient conditions (NASC’s) which distinguish all these possibilities, for all
values of k¥ > 0.

Let us eliminate at the outset certain cases which are trivial or easily deduced
from known results. A result of Khintchine [10] (see Sato [15], Proposition 47.11,
page 358) is that, for any Lévy process X with Brownian coefficient o> > 0, we
have

: | X:|
(1.5) limsup ————==o0 a.s.

110 «/2tlog|logt]
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Thus we immediately see that (1.3) and (1.4) cannot hold for 0 < x < 1/2; we
always have lim; o X;/t* = 0 a.s. in these cases. Of course, this also agrees
with (1.2), since, always, § < 2. More precisely, recall the decomposition X; =
oB, + X t(o), where X© is a Lévy process with characteristics (y, 0, [T) and B is
an independent Brownian motion. Khintchine’s law of the iterated logarithm for B
and (1.5) applied for X give

.. X; . X,
(1.6) —liminf —————==limsup ————==0 a.s.
10 /2tlog|logt| 110 ~/2tlog|logt|

So the one- and two-sided lim sup behaviors of X are precisely determined when
02>0 [regardless of the behavior of I1(-)]. With these considerations, it is clear
that throughout, we can assume

(1.7) o2 =0.

Furthermore, we can restrict attention to the cases k > 1/2.
A result of Shtatland [16] and Rogozin [14] is that X ¢ bv if and only if

—liminf =* =limsup—t =00 a.s.,
0t 0
so (1.3) and (1.4) hold for all ¥ > 1, in this case (and similarly for the lim inf). On
the other hand, when X € bv, we have

lim— =$§ a.s.,

where § is the drift of X (cf. [1], page 84, or [15], page 65). Thus if § > 0,
(1.4) holds for all ¥ > 1, but for no x < 1, while if § < 0, (1.4) can hold for no
« > 0; while (1.3) holds in either case, with ¥ > 1, but for no « < 1. Thus, when
X € bv, we need only consider the case § = 0.

Finally, we can also rule out the compound Poisson case, because then X; =0
for all ¢ € (0, tp) for some (random) #y > 0, and neither (1.3) nor (1.4) can hold.

The main statements for two-sided (resp., one-sided) boundary crossing will be
given in Section 2 (resp., Section 3) and proved in Section 4 (resp., Section 5). We
use throughout similar notation to [5, 6] and [7]. In particular, we write I1* for the
Lévy measure of —X, then 1Y) for the restriction of IT to [0, o), IT1¢) for the
restriction of IT* to [0, 0o), and

T (x) = M((x, ).
(1.8) T (x) = M((—00, —x)),
o) =T w0 +T 7w, x>0,

for the tails of IT(-). Recall that we assume (1.7) and that the Lévy measure I1
is restricted to [—1, 1]. We will often make use of the Lévy—It6 decomposition,
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which can be written as

(1.9) Xi=yt+ xN(ds,dx), >0,
[0,1]1x[—1,1]

where N (dt,dx) is a Poisson random measure on R x [—1, 1] with intensity
dt T1(dx) and the Poissonian stochastic integral above is taken in the compensated
sense. See Theorem 41 on page 31 in [12] for details.

2. Two-sided case. In this section we study two-sided crossings of power law
boundaries at small times. We wish to find a necessary and sufficient condition
for (1.3) for each value of k > 1/2. This question is completely answered in the
next two theorems, where the first can be viewed as a reinforcement of (1.2).

THEOREM 2.1. Assume (1.7), and take k > 1/2. When X € bv, assume its
drift is zero.

W If
2.1 A TI(x*)dx < oo,

then we have

(2.2) lim— =0 a.s.
10 ¥
(ii) Conversely, if (2.1) fails, then
I | X —a()]
imsuyp ———— =00 a.s.,
110 1«

for any nonstochastic function a(t) : [0, 00) — R.
REMARK 1. Itis easy to check that (2.1) is equivalent to
f Ix|/“TT(dx) < 0.
[—1,1]

The latter holds for 0 < k¥ < 1/2 for any Lévy process, as a fundamental property
of the Lévy canonical measure ([1], page 13). Equation (2.2) always holds when
0 <« < 1/2, as mentioned in Section 1, but not necessarily when x = 1/2.

The case k = 1/2 which is excluded in Theorem 2.1 turns out to have in-
teresting and unexpected features. To put these in context, let us first review
some background. Khintchine [10] (see also [15], Proposition 47.12, page 358)
showed that, given any function /(¢), positive, continuous and nondecreasing in
a neighborhood of 0, and satisfying 4(t) = o({/tlog|log¢|) as t | O, there is a
Lévy process with o2 = 0 such that limsup, 101X¢|/h(t) = oo a.s. For example,
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we can take h(t) = /t(log| logtl)l/ 4 The corresponding Lévy process satisfies
limsup, o |X/;|/+/t = 0o a.s. Since (2.1) always holds when « = 1/2, we see that
the implication (2.1) = (2.2) is not in general true when « = 1/2.

On the other hand, when x = 1/2, Theorem 2.1 remains true, for example, when
X € bv, in the sense that both (2.1) and (2.2) then hold, as follows from the fact
that X; = O(¢t) a.s.ast | O.

Thus we can have limsup, | |X,|/+/t equal to 0 or oo a.s., and we are led to
ask for a NASC to decide between the alternatives. We give such a condition in
Theorem 2.2 and furthermore show that limsup, | |X;|/ J/t may take a positive
finite value, a.s. Remarkably, Theorem 2.2 simultaneously solves the one-sided
problem. These one-sided cases are further investigated in Section 3, where it will
be seen that, by contrast, the one- and two-sided situations are completely different
when « # 1/2.

To state the theorem, we need the notation

(2.3) Vix)= / y2I1(dy), x> 0.
lyl=x
Since we assume X is not compound Poisson, we have V (x) > 0 for all x > 0.

THEOREM 2.2 (The case k = 1/2). Assume (1.7), and put
1 22
I(k):/ x_lexp<— )dx
0 2V (x)

A7 =inf{A > 0:1(X) < oo} € [0, 0]

and

(with the convention, throughout, that the inf of the empty set is +00). Then, a.s.,

X X X
(2.4) —liminf =% = limsup —= = limsup Xl =Aj.

NG 10 A1 10 N1

REMARK 2. (i) Equation (2.4) forms a nice counterpart to the iterated log
version in (1.5) and (1.6).

@ii) If (2.1) holds for some « > 1/2, then V(x) = o(x27 1%y as x 40,80 (M)
converges for all A > 0. Thus A7 = 0 and lim; o X;/+/t =0 a.s. in this case, ac-
cording to Theorem 2.2. Of course, this agrees with Theorem 2.1(i).

(iii) The convergence of flxlie_gleogllog |x||TT(dx) implies the conver-

gence of fol exp{—kz/ZV(x)}dx/x for all A > 0, as is easily checked; hence
we have lim;0|X;|/+/t = 0 as. for all such Lévy processes. A finite posi-
tive value, a.s., for limsup, o |X¢|/ V/t can occur only in a small class of Lévy
processes whose canonical measures have IT(dx) close to |x|~3 dx near 0. For
example, we can find a IT such that, for small x, V(x) = 1/log|logx|. Then
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TABLE 1
Value of « NASC for lim sup; o | X¢ |/t* = 00 a.s. (when 2= 0)
0<k < % never true
K= % A} = 0o (see Theorem 2.2)

%<K§1 folﬁ(x")dxzoo
Kk>1,Xe€bv,8§=0 Jo T(x*) dx = 00
k>1,X€ebv,§#0 always true

k>1,X¢bv always true

JoZexp{=22/2V (x)} dx/x = [, |logx|™**/%dx /x is finite for A > +/2 but in-
finite for A < +/2. Thus lim sup; o |X,|/+/T = +/2 a.s. for this process; in fact,
limsup, o X;/v/1 = V2 as., and liminf, ;o X, //T = —+/2 as.

(iv) Theorem 2.2 tells us that the only possible a.s. limit, as ¢ | 0, of X;//t
is 0, and that this occurs iff A7 =0, that is, iff /(1) < oo for all A > 0. Similarly,
the iterated log version in (1.6) gives that the only possible a.s. limit, as ¢ |, 0, of
X;/+/tlog]Tog1] is 0, and that this occurs iff > = 0. When « > 1/2, Theorem 2.1
gives that lim; o X;/t* =0 a.s. iff fol TI(x)dx < oo, provided, when « > 1, the
drift § = 0.

Another result that follows from our analysis is that it is possible to have
lim; o X, /t* = § a.s. for a constant § with 0 < |§] < 00, and k > 0, iff k =1,
X € b, § is the drift, and § # 0.

(v) It is immediate from Theorem 2.1 that centering has no effect in the two-
sided case, in the following sense. Assume (1.7), and, if X € bv, that it has drift
zero. If limsup, o | X;|/1* = 0o a.s., for some k > 1/2, then we have

X, —a)|
s

(2.5) limsup
tl0

a.s., for any nonstochastic function a(¢).

We can show that this also holds in the case k = 1/2; see Remark 5 following the
proof of Theorem 2.2.

Finally, in this section, Table 1 summarizes the conditions for (1.3).

3. One-sided case. We wish to test for the finiteness or otherwise of
limsup, o X;/1*, so we proceed by finding conditions for

. X:
(3.1) lim sup — = 400 a.s.
o 1€

In view of the discussion in Section 1, and the fact that the case x = 1/2 is
covered in Theorem 2.2, we have only two cases to consider:



166 J. BERTOIN, R. A. DONEY AND R. A. MALLER

(@) X¢bv, 12 <k <1;
(b) X € bv, withdrift § =0, k > 1.

We deal first with case (a). For this, we need to define, for 0 <y <1,

y rl
W(y):=/ / 1) (dz) dx,
0 Jx
and then, for A > 0,
1 Q=1 [k \k/(A=i)y g
3.2) JL) ::/ exp{—)L(iy ) }_y
0 W(y)

.
Also let A% :=inf{A > 0: J(X) < oo} € [0, o0].
The following theorem has two features which are surprising at first sight. The

first is that (3.1) can hold by virtue of o’ (-) being large compared to o (+), as
in part (ii); this is of course the effect of compensation. The second is that we can
have the lim sup taking a value in (0, 00), as in part (v). Both these features mimic
corresponding results as t — 00; see [7].

THEOREM 3.1. Assume (1.7) and keep 1/2 < k < 1. Then (3.1) holds if and

only if:
(i) Jo I 7 (x*)dx =00, or

(i) fi TP (%) dx < 0o = f T (x*) dux, and 1¥, = oc.

When gi)_and (ii) fail, we have in greater detail: suppose

(iii) [y M(x*)dx < o0, or

(iv) fol o (x)dx < oo = fol ﬁ(_)(x")dx and \% = 0.

Then

(+)

: Xy
(3.3) limsup — =0 a.s.
1o 1€
Alternatively, suppose
W AT @) dx <00 = [} T (x%) dx and 1% € (0, 00). Then
0 0 J » 00).

X
(3.4) lim sup —Kt =c a.s., for some c € (0, 00).
tl0

REMARK 3. (i) In the special case that TI' ' (x) ~ 1/(x'/¥L(x)) as x | O,
with L(x) slowly varying at 0, we have W (x) «~ cx>~1/% /L (x), and it follows that
the above results hold with J (1) replaced by

1
[ ety
0 Yy
So, if £x(y) denotes the kth iterated logarithm of 1/y, then taking L(y) equal
to (i) (£3(y) 177, (i) (€1(y)! % and (i) (£2(y))17*)¥, gives examples
having A% =00, A, =0 and 0 < 1} < oo, respectively, in the situation of Theo-
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rem 3.1.

(ii) Note that X ¢ bv when ]01 o™ (x)dx = oo or [01 ﬁ(_)(x")dx =00 in
Theorem 3.1, because T (x¥) < TI'")(x) when 0 < x < 1 and 0 < « < 1, so
[01 TI(x)dx = oo.

(iii) It may seem puzzling at first that a second moment-like function, V (.),
appears in Theorem 2.2, whereas W (-), a kind of integrated first moment func-
tion, appears in Theorem 3.1. Though closely related, in general, V(x) is not
asymptotically equivalent to W(x), as x — 0, and neither function is asymptot-
ically equivalent to yet another second moment-like function on [0, 00), U(x) :=
V(x) + x2TI(x). V(x) arises naturally in the proof of Theorem 2.2, which uses
a normal approximation to certain probabilities, whereas W (x) arises naturally in
the proof of Theorem 3.1, which uses Laplace transforms and works with spec-
trally one-sided Lévy processes. It is possible to reconcile the different expres-
sions; in fact, Theorem 2.2 remains true if V is replaced in the integral /(1) by U
or by W. Thus these three functions are equivalent in the context of Theorem 2.2

(but not in general). We explain this in a little more detail following the proof of
Theorem 3.1.

Next we turn to case (b). When X € bv we can define, for 0 <x < 1,
T =) Y =(-)
65 A= [ TP0dy ad Aw= [Ty,

THEOREM 3.2. Assume (1.7), suppose k > 1, X € bv, and its drift § = 0. If

o (dx) B
/«),1] x Ve A_(x)/x
then (3.1) holds. Conversely, if (3.6) fails, then limsup, | o X;/t* <0 a.s.

(3.6)

’

REMARK 4. (i) It is natural to inquire whether (3.6) can be simplified by con-
sidering separately integrals containing the components of the integrand in (3.6);
note that (3.6) is equivalent to

min(xl/", L)I'[(Jr)(dx) = 00.
A_(x)

This is not the case. For each « > 1, it is possible to find a Lévy process X € bv

with drift O for which (3.6) fails but

f xl/"l'l(+)(dx):oo=/ (x/A_(x)ITP) (dx).
0,1] (0,1]

0,1]

The idea is to construct a continuous increasing concave function which is linear
on a sequence of intervals tending to 0, which can serve as an A_(x), and which
oscillates around the function x — x!~1/¢_ We will omit the details of the con-
struction.
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(ii) It is possible to have limsup, o X;/1* <0 a.s., in the situation of Theo-
rem 3.2, when (3.6) fails; for example, when X is the negative of a subordina-
tor with zero drift. The value of the lim sup can then be determined by applying
Lemma 5.3 in Section 4.

(iii) For another equivalence, we note that (3.6) holds if and only if

1_
3.7) / AP +xV)di=c0  as.,
0

where X7 is a subordinator with drift 0 and Lévy measure IT1¢™). This can be
deduced from Erickson and Maller ([8], Theorem 1(i) and Example 1) observing
with the notation therein that

A@) =y + T )(1)—/ i )<y>dy=f0 T () dy,

X
since there is no drift. Thus the function A(x) in [8] is A_(x), in our notation.
This provides a connection between the almost sure divergence of the Lévy integral
in (3.7) and the upcrossing condition (3.1). Note that both (3.6) and (3.7) express in
some way the dominance of the small positive jumps over the small negative jumps
of X. Hence the phenomenon mentioned prior to the statement of Theorem 3.1—
that (3.1) can occur in some situations even when the negative jumps dominate the
positive, in a certain sense—does not occur in the situation of Theorem 3.2.

Table 2 summarizes the conditions for (3.1).
Our final theorem applies the foregoing results to give a criterion for

(3.8) lim X! +
. m-— = 0 a.s.
tl0 t¥

This is a stronger kind of divergence of the normed process to oo, for small times.
A straightforward analysis of cases, using our one- and two-sided results, shows
that (3.8) never occurs if 0 <k < 1,ifx > 1 and X ¢ bv,orif k > 1 and X € bv

TABLE 2
Value of « NASC for lim sup; 0 X /t* = o0 a.s. (When 2= 0)

0<k < % never true

K= %, X ¢ bv see Theorem 2.2

% <k <1, X¢bv see Theorem 3.1
%§K§1,Xebv never true
k>1,Xebv,§ <0 never true

k>1,Xebv,§=0 see Theorem 3.2
k>1,Xebv,§>0 always true

k>1,X¢bv always true
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with negative drift. If ¥ > 1 and X € bv with positive drift, (3.8) always occurs.
That leaves just one case to consider, in:

THEOREM 3.3. Assume (1.7), suppose k > 1, X € bv, and its drift § = 0.
Then (3.8) holds iff

A/

ld
(3.9) Kx(d):= —yexp{ }<oo foralld >0
0y

y
and
X
(3.10) f ( )l’[(_)(dx) < o0.
0.1\ A4 (x)
Concluding remarks. It is natural to ask: when is
. X: —al(t) .

(3.11)  limsup — <0 a.s., for some nonstochastic a(¢)?

110

Phrased in such a general way, the question is not interesting since we can always
make X; = o(a(t)) a.s. as t | 0 by choosing a(¢) large enough by comparison
with X; [e.g., a(¢) such that a(t)/+/t log|logt| — o0, as t | 0, will do, by (1.5)],
so the lim sup in (3.11) becomes negative. So we would need to restrict a(t) in
some way. Section 3 deals with the case a(¢#) = 0. Another choice is to take a(r)
as a natural centering function such as EX; or as a median of X;. However, in
our small time situation, E X, is essentially O or the drift of X, so we are led back
to the case a(t) = 0 again (and similarly for the median). Of course there may
be other interesting choices of a(¢) in some applications, and there is the wider
issue of replacing #“ by a more general norming function. Some of our results in
Sections 4 and 5 address the latter, but we will not pursue these points further here.

4. Proofs for Section 2.

4.1. Proof of Theorem2.1. The proof relies on a pair of technical results which
we will establish first. Recall the notation V (x) in (2.3).

PROPOSITION 4.1. Let b:Ry — [0, 00) be any nondecreasing function such
that

1 1
4.1 / TI(b(x))dx <oo and f V(b(x))b_z(x) dx < 00.
0 0
Then
“4.2) linzlﬁ)up D(%;)l(t)l < a.s.,
where

t
(4.3) a(t) = yt—/ ds/ xM(dx), t>0.
0 b(s)<|x|<1
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PROOF. Recall the Lévy-Itd decomposition (1.9). In this setting, it is conve-
nient to introduce

1
X,( ) :=/ 1{x)<b(s))Xx N (ds, dx)
[0,£]1%[0,1]
and

2
X,( ) =yt+ Lips)<jxj<1yXxN(ds, dx),
[0,£]1x[0,1]

where again the stochastic integrals are taken in the compensated sense. Plainly,
X=xD4x®,
The assumption fol TI(b(x))dx < oo implies that

N({(s,x):0<s <rand b(s) < |x] <1}) =0

whenever ¢ > 0 is sufficiently small a.s., and in this situation X® is just y¢ minus
the compensator, a.s., that is,

t
X =yt —/ ds/ xTI(dx) = a(t).
0 b(s)<|x|<1
On the one hand, XV is a square-integrable martingale with oblique bracket

t t
(xD) = / ds/ x*T(dx) = f V(b(s))ds <tV (b(1)).
0 |x|<b(s) 0
By Doob’s maximal inequality, we have for every t > 0

P< sup | XD| > b(2t)) <4tV (b(t))b ™2 (21).

0<s<t

On the other hand, the assumptions that b(¢) is nondecreasing and that fol dx x
V (b(x))b2(x) < 0o entail

Y 27V T)E IR < o

n=1

By the Borel-Cantelli lemma, we thus see that

1
Supofsfz—n |X§ )l
im <1 a.s.
n— 00 b(z—n-‘rl)

Then (4.2) follows with b(4¢) rather than b(¢) in the denominator by a standard
argument of monotonicity. As we can change variable to replace b(x) by b(x/4)
in (4.1), the factor of 4 is irrelevant and we get (4.2) as stated. [
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PROPOSITION 4.2. Suppose there are nonstochastic functions a:R; — R
and b: (0, 00) — (0, 00), with b measurable, such that

P( | X; —a(®)]

limsup—— < oo> > 0.
110 P b(t)

Then there is some finite constant C such that

4.4)

1
4.5) /(; TI(Ch(x))dx < 00.

PROOF. Symmetrize X by subtracting an independent equally distributed X’
to get Xt(s) = X; — X;, t > 0. Then (4.4) and Blumenthal’s 0-1 law imply there is
some finite constant C such that
XVl _ ¢

(4.6) lim su < — a.s.
no . b 2

Suppose now that (4.5) fails. Note that ﬁ(s)(-) = 2TI(-), where IT®) is the Lévy

measure of X, so that fol ﬁ(s) (Cb(x))dx = oo. Then from the Lévy—It6 decom-

position, we have that, for every ¢ > 0,
#re0.¢]:|AY]> b)) =00 as.,

where A = X% — X% But when |AY| > Cb(t), we have |X*| > Cb(1)/2 or
1X®| > Cb(t)/2, which contradicts (4.6). Thus (4.5) holds. [

Finally, we will need an easy deterministic bound.
LEMMA 4.1. Fix some k > 1/2, put b(t) = t*, and assume
4.7 / Ix| ¥ T (dx) < 0.
[x|<1

When « > 1, X € bv and we suppose further that the drift coefficient § =y —
flxlsl xI1(dx) is 0. Then, as t — 0,

at) =yt — /Ot ds /SK<|X|<1 xII(dx) = o(t").

PROOF. Suppose first k < 1. For every 0 < & < n < 1, we have

/ |<1|x|H(dx)§81_1/K/ Ix|'/“TT(dx) + x| T1(dx)
e<|x|<

lx|<n n<lx|=<1

=81_1/K0;7 +c(n) say,



172 J. BERTOIN, R. A. DONEY AND R. A. MALLER

where, by (4.7), lim;) 9 0, = 0. Since « < 1, it follows that
limsup |a(t)|t ™" < K_IO,],
t0
and as we can take n arbitrarily small, we conclude that a(t) = o(¢").
In the case ¥ > 1, X has bounded variation with zero drift coefficient. We may
rewrite a(t) in the form

at) = /Ot ds '/I‘X|SSle'I(dx).

The assumption (4.7) entails fl
thata(t) = o(t*). O

x|<e 1XITI(dx) = o(e'~1/%) and we again conclude

We now have all the ingredients to establish Theorem 2.1.

PROOF OF THEOREM 2.1. Keep « > 1/2 throughout.

(i) Suppose (2.1) holds, which is equivalent to (4.7). Writing |x|!/* =

|x| 1/k=2x2 we see from an integration by parts (Fubini’s theorem) that fol V(x)x
x!1/¥=3 dx < co. Note that the assumption that x = 1/2 is crucial in this step. The
change of variables x = y“ now gives that [01 V(y)y~% dy < 0o. We may thus
apply Proposition 4.1 and get that

X, —a(t
lim sup w <1
110 e
By Lemma 4.1, a(t) = o(t*) as t |, 0. We thus have shown that when (2.1) holds,
| X

limsup — <1 a.s.
110 «

a.s.

For every ¢ > 0, the time-changed process X; is a Lévy process with Lévy mea-
sure cI1, so we also have limsup, | | X¢[7" < 1 a.s. As we may take c as large as
we wish, we conclude that (2.2) holds.
(i) By Proposition 4.2, if
X, —a(t
P(lim sup X = a)] < oo) > 0,
10 «

then fol TI(Cx*) dx < oo for some finite constant C. By an obvious change of vari-
ables, this shows that (2.1) must hold. This completes the proof of Theorem 2.1.

O

REMARK 5. It can be shown that if, for nonstochastic functions a(t), b(t) > 0,
with b(¢) nondecreasing,

X, —a(t
4.8) limsup 12— 4O _

<C<o a.s.,
10 b(@)
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then (X; — tv(b(t))/b(t) £ 0, where v(x) :=y — fx<|y|§1yl'l(dy) for x > 0.

Since (X; —a(t))/b(t) is also stochastically bounded, under (4.8), we deduce that
la(t) —tv(b(t))] = O(b(t)) ast | 0, when (4.8) holds. But from flx\sl x2T(dx) <
00, we see that v(x) = o(x~") as x | 0. So if (4.8) holds with b(r) = /7, then
a(t) = O(J/1), and so limsup|X;|/+/t < co a.s. We conclude that if, in Theo-
rem 2.2, A} = oo, then (2.5) holds with k =1/2.

4.2. Proof of Theorem 2.2. We now turn our attention to Theorem 2.2 and
develop some notation and material in this direction. Write, for » > 0,

(4.9) X, ="+ 2z,
with
Yt(b) ::/ 1y j<nxN(ds,dx),
[0,£]x[—1,1]

(4.10)

b
Zt( ) =yt 4+ 1< xpxN(ds,dx),
[0,¢/]x[~1,1]

where N (ds, dx) is a Poisson random measure on [0, 0o) x [—1, 1] with intensity
dsT1(dx), and the stochastic integrals are taken in the compensated sense.

LEMMA 4.2 (No assumptions on X). Forevery0 <r <1 and e > 0, we have

e n/2
ZP( sup |z )|>sr”/2><oo,
n=1 O<t=<r"

and as a consequence,

Iim r—
n—oo

"2 sup |Z,(rn/2){:0 a.s.

O<t=rt

PROOF. Introduce, for every integer n, the set
Ap =10, x (=1, =" U ("2, 1),

and note that

P( sup |Z,(rn/2)| > er”/z)

o<t<rn

< P( sup |Z,(rn/2)| > er™? N(Ap) = O)

O<t=<r"

+ P(N(A,) > 0).
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We have

o0

> P(N(Ay) > 0) Z (r"/%)

n=1 n=1

<a-n7'Y [ TR
n=1 i

l_
=a-n" [T dx.

and this last integral is finite (always).
On the other hand, on the event N(A,) =0, we have

z" =t<y—/ xl'I(dx)), O<t=r"
2 <|x|<1

Again as a result of the convergence of fl X<l x2T1(dx), the argument in Lemma 4.1
shows that the supremum over 0 <t <r" of the absolute value of the right-hand
side is o(r™/?), and the convergence of the series follows. The second statement
then follows from the Borel-Cantelli lemma. [

In view of Lemma 4.2 we can concentrate on Y,(ﬁ) in (4.9). We next prove:

LEMMA 4.3. Let Y be a Lévy process of the form Y; = fé [rzNy(ds, dz),
where Ny (ds, dz) is a Poisson measure with intensity ds [y (dz), the integral be-

ing taken in the compensated sense. Assume Y satisfies mq < 00, where my :=
fxe]R |x|kl_[y(dx), k=2,3,....

(1) Then
lim L E1Y,* = m.
t10 1
(i) For any x > 0, t > 0, we have the nonuniform bound

Amj

(411) |P(Y,>x«/tm2)—f(x)|§m

where A is an absolute constant and
. 00
F(x)= / e 2 dy /2w = Lerfe(x/v/2)
X
is the tail of the standard normal distribution function.

PROOF. (i) By expanding the Lévy—Khintchine formula and using m4 < 00
we can calculate F Y,4 =tmy + 3t2m%. So by Chebyshev’s inequality for second
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and fourth moments, for x > 0, r > 0,

1 mo m4—|—3tm2
ZPYi] > x) = Fljocesn) + =),

‘We can also calculate

;ElY;| :;/ x“P(Y:| > x)dx.
0

By Bertoin ([1], Example 1, page 39), P(|Y;| > x)/t — Ty (x), as t | 0, for each
x > 0. The result (i) follows by dominated convergence.

(i) Write ¥; = >, Y(i,t), for n =1,2,..., where Y(i,t) := Y(it/n) —
Y((@ — 1)t/n) are i.i.d., each with the distribution of Y (¢#/n). According to a
nonuniform Berry—Esseen bound (Theorem 14, page 125 of [11]), for each n =
1,2,..., (4.11) holds with the right-hand side replaced by

AE|Y (t/n)? _AE|)Y@/n)P/@/n)
Vaema /2403 i1 403

By part (i) this tends as n — oo to the right-hand side of (4.11). O

We now establish a result which plays a key role in the proof of Theorem 2.2.

PROPOSITION 4.3. In the notation (4.10), we have, for A > 0,0 <r < 1,

Z P(Yr(:"/z) > kr"/Z) < 00
n>0

(4.12)

—A2 )dx
< OQ.

2V(x)

= [ Wies(

X

PROOF. For every fixed t > 0, Y, S(‘/;) is the compensated sum of jumps of X
smaller in magnitude than /7, up to time s. It is a centered Lévy process with
canonical measure 1., . »TI1(dx), x € R. Applying Lemma 4.3, we get my =

V(4/t) and m3 = f|)’|§\/; |y|3H(dy) = p(+/1), say. Then we get, for x > 0,

IP(YYD > x\/1V (V1) = F(x)| < A
tV3(/ (1 +x)3

Replacing x by 1/,/V(+/1), a > 0, we have

P 5 o/E) = F V()| < 80 = %
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and we claim that }_ &(r") < oo. In fact, for some ¢ > 0,
o PO

1 3
= M
2o g’"/zg/ﬂf‘“”%wwz T

n=0

0
- Z (Z r—n/Z) /r(j+1)/2<|y|§rj/2 yPTIdy)
0 .
=¢ Z ri fr<j+l>/2<|y|5,//2 yPTIdy)

o0
2
<c I1 d
- 12:;).[(1+1)/2<|y|§r]/2y ( y)

= c/ y2l'I(dy) < 00.
lyl<1

The result (4.12) follows, since the monotonicity of F shows that the convergence
of Y =1 F(A/VV (r/?)) is equivalent to that of

[ Fonve S [ Fenviva L,

and it is well known that F (x) « (Zn)_l/zx_le_" 2asx > o00. O
We can now establish Theorem 2.2.

PROOF OF THEOREM 2.2. Recall the definition of /(-) in the statement of
Theorem 2.2. We will first show that for every given A > 0

X
(4.13) I(M) <oco = limsup—L<i  as.
110 t
To see this, observe that when 7 (1) < oo, the integral in (4.12) converges, hence so

does the series. Use the maximal inequality in Theorem 12, page 50 of Petrov [11],
to get, fort > 0,b >0, x > 0,

P( sup Ys(b)>x)= lim P( max Y(/k>x>

O<s<t k—o00 1<j<[kt]
= lim P A, k, b
Jm, (ls?fﬁﬂz k1)
(4.14)
[ke)
<11msup2P<Z AGi k,b) > x —,/2ktV(b)/k>
k— 00 i=1

=2P(Y? > x — V2tV (b)),
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where we note that (A(i, k, b) := Y,.(/b,g — Y((,'b_)l)/k)izl are i.i.d., each with expec-
tation 0 and variance equal to V (b)/k. Given & > 0, replace ¢ by r", b by r"/?,
and x by Ar"/? 4+ /2r"V (r*/2), which is not larger than (A + &)r"/2, once n is
large enough, in (4.14). The convergence of the series in (4.12) then gives

Z P( sup YS(,n/z) > A+ s)r"/z) <00 for all € > 0.

<rph
n>0 O<s<r

Hence by the Borel-Cantelli lemma

(r"/?)
SUPo<; <r" Yt

<A a.s.
/2

(4.15) lim sup

n—o0
Using (4.9), together with Lemma 4.2 and (4.15), gives
. Sup0<,<rn X;
limsup ———=—— <A a.s.
n— olép I’n/2 -
By an argument of monotonicity, this yields
X, A

limsup — < — a.s.

tl0 \/Z \/7

Then let 7 1 1 to get limsup, X/t <has.
For a reverse inequality, we show that for every A > 0,

Xy
(4.16) I(A)=00 =— limsup—=>2A a.s.
t0 «/;

To see this, suppose that I (L) = oo for a given A > 0. Then the integral in (4.12)
diverges when A is replaced by A — ¢ for an arbitrarily small ¢ > 0, because V (x) >
eexp(—e/2V(x))/2, for e > 0, x > 0. Hence, keeping in mind (4.9), Lemma 4.2
and Proposition 4.3, we deduce

4.17) Y P(Xpn > 21" =00

n>0
for all A" < A. For a given ¢ > 0, define for every integer n > 0 the events
An = {Xr”/(l—r) — Xr"“/(l—r) > k’r"ﬂ},
Bn = {}Xr’1+1/(1—r)| < 81"”/2}.

Then the {A,},>0 are independent, and each B, is independent of the collection
{An, Au—1, ..., Ao}. Further, }_, .o P(A,;) = 0o by (4.17), so P(A,i.0.) =1.1Tt

can be deduced easily from [1], Proposition 2(i), page 16, that X,//t £ 0, as
t | 0, since (1.7) is enforced. Thus P(B,) — 1 as n — oo, and then, by the
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Feller—Chung lemma ([4], page 69) and Kolmogorov’s 0—1 law, we can deduce
that P(A, N B, i.0.) = 1. This implies P(X,n/(1—r) > (A" — &)r"/?i.0.) = 1, thus

X
limsup —= > (M — &)/ 1—r a.s.,
110 \/;

in which we can let ' 1 A, ¢ | 0 and r | O to get (4.16). Together with (4.13)
and (4.16), this gives the statements in Theorem 2.2 [replace X by —X to deduce

the liminf statements from the lim sup, noting that this leaves V() unchanged].
O

5. Proofs for Section 3.

5.1. Proof of Theorem 3.1. 'We start with some notation and technical results.
Recall we assume (1.7).
Take 0 < k¥ < 1 and suppose first

1
(5.1) /0 T (%) dx = 0.

Define, forO < x < 1,
| Ry — =+
pew = [ YAy = [ TG ay.
K Jx x1/k

Since T (x) > 0 for all small x, p,(x) is strictly decreasing in a neighborhood
of 0, thus x~!/ p, (x) is also strictly decreasing in a neighborhood of 0, and tends
to oo as x | 0. Also define

x _ X
U =2 [ STV 0dy =T w0+ [ y2nay).
Differentiation shows that x ~2U (x) is strictly decreasing in a neighborhood of 0.

Next, given o € (0, k), define, for ¢ > 0,
c(t) =inf{x > 0: pe()x ™V + x 72U (x) <a/t).
Then 0 < ¢(t) < oo for t > 0, c(¢) is strictly increasing, lim, o c(t) =0, and

toe(c®) | tU4(c®) _
cl/k(t) c2(t)
Since lim, o o, (1) = 0o, we have lim, o c(z)/1* = oo.
We now point out that, when 1/2 < x < 1, (5.1) can be reinforced as follows.

(5.2)

LEMMA 5.1. Keep 1/2 <k < 1. Then (5.1) implies that

1
/O T () dr = .



SMALL-TIME BEHAVIOR OF LEVY PROCESSES 179

PROOF. We will first establish

1 [1(dx) _
©-3) /o e pe () + 220, (x)

Suppose (5.3) fails. Since
1
x Ve pe(x) + x 72U (x)

is nondecreasing (in fact, strictly increasing in a neighborhood of 0) with f(0) =0,
for every € > 0 there is an n > 0 such that, forall 0 < x < n,

fx) =

=(+)

o= [ ron@) = fo @ -1 m),
giving
FOMP W <e+ FOT P =e+o(l)  asx 0.
Letting ¢ | 0 shows that

ﬁ(Jr) (x) ) 0

e pe () +x 20 () )

It can be proved as in Lemma 4 of [6] that this implies

x_l/"pK(X)) x_l/"px(X)>
At —1>0

x"2U,4 (x) x72U4 (x)

(A detailed proof can be obtained from the third author.) Then, since (5.3) has been
assumed not to hold,

12 x V¥ T (dx) 12 x2(dx)

(5.4) lim FEOTI P () = E%(

(5.5) lim(

=0 or liminf(
x]0

x]0

Recalling that T (1) = 0, we have

. 1 1
pe(x) = —x TP () +/ Y/ T(dy) Sf y ¥ TI(dy),
X X

so the first relation in (5.6) would imply the finiteness of

fol/zx“K(fx1 y”“mdy))ln(dx);

but this is infinite by (5.1) and the Abel-Dini theorem: see, for example, [17],
page 404. Thus the first relation in (5.6) is impossible. In a similar way, the second
relation in (5.6) can be shown to be impossible. Thus (5.3) is proved.

Then note that the inverse function ¢~ of ¢ exists and satisfies, by (5.2),

o
x7 Ve pe(x) + x 72U (x)

c(x)=
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Thus, by (5.3),
! W
(5.7) / ¢ ()(dx) =00 = / T " (c(x))dx.
0 0
This proves our claim. [J
PROPOSITION 5.1. Forevery 1/2 <k < 1, (5.1) implies

. X
limsup — = o0 a.s.
t0 «

PROOF. The argument relies on the analysis of the completely asymmetric
case when the Lévy measure IT has supportin [0, 1] orin [—1, 0]. Since k < 1, we
can assume y = 0 without loss of generality, because of course yt = o(¢*). The
Lévy-Itd decomposition (1.9) then yields

(58) Xt == 5(\1‘ + )?t

with

(5.9) )?,:/ xN(ds,dx) and X, =/ xN(ds,dx),
[0,£]1x[0,1] [0,¢]1x[—1,0]

where, as usual, the Poissonian stochastic integrals are taken in the compensated
sense.
Choose o so small that

(1+x)a<1/2 and oz/(l/2—(1+/c)ot)2§1/2,

and then ¢ so small that c(e) < 1. Observe that, forevery 0 < ¢ < ¢,

(5.10) t / xT1(dx) = te@OTT P (1)) + ta(e(t))
{c(t)<x<1}
tU(c(1))
< T + 1A (c(1))

<a(l+x)c(),

where the last inequality stems from (5.2) and

1 1
=(+ - 1=+ _
A(x) :=/ iy )(y)dy=/ YT (py dy < x5 o (x)
X X
(since ¥ < 1), so
() _ kipe(e®) _
oty T @ T
We next deduce from Lemma 5.1 that for every ¢ > 0, the Poisson random

measure N has infinitely many atoms in the domain {(¢,x):0 <f < e and x >
c(1)}, a.s. Introduce

te :=sup{t <e: N({r} x (c(t), 1]) =1},

[by (5.2)].



SMALL-TIME BEHAVIOR OF LEVY PROCESSES 181

the largest instant less than ¢ of such an atom. Our goal is to check that

(5.11) P(X,_ > —c(ts)/2) > 1/33

for every ¢ > 0 sufficiently small, so that P(X;, > c(t;)/2) > 1/33. Since t“ =
o(c(t)), it follows that for every a > 0

PEt<e:X;>at")>1/33,

and hence limsup, ; X;/t* = oo with probability at least 1/33. The proof is then
completed by an appeal to Blumenthal’s 0—1 law.

In order to establish (5.11), we will work henceforth conditionally on #.; re-
call from the Markov property of Poisson random measures that the restriction
of N(dt,dx) to [0, ;) x [—1, 1] is still a Poisson random measure with intensity
dt T1(dx).

Recalling (5.10) and discarding the jumps A of X such that Ay > c(t,) for
0 <s < t, in the stochastic integral (5.9), we obtain the inequality

(5.12) Xim =V, —a(l+K)cts) + X,

where 17,8_ is given by the (compensated) Poissonian integral

Y, _ =

le

/ xN(ds,dx).
[0,2e) x[0,c ()]

We chose (1 4+ «)a < 1/2, so by Chebyshev’s inequality we have
P(Vi— <a(l+i0)c(te) — c(te)/2) < P(1V, -1 > (1/2 = a(1+1))c(te)
B EIY,-I°
T (12 —a(l 1)) (te)
_ e Jio<x et ¥°T1(dx)
T (172 = a(l + k)22 (te)
U (c(te))

= (1/2 = a(l +«))>c2(t)
o

<
T (1/2—a(l+x)?*

where the last inequality derives from (5.2). By choice of «, the final expression
does not exceed 1/2. We conclude that

(5.13) P(Vi,— —a(l +K)c(te) = —c(te)/2) = 1/2.

We will also use the fact that X is a mean-zero Lévy process which is spectrally
negative (i.e., with no positive jumps), so

liminf P(X,; > 0) > 1/16;
tl0
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see [9], Volume 2, Lemma IV.3.1, page 470. Furthermore, as X is independent of
Y;._, we conclude from (5.12) and (5.13) that (5.11) holds provided that ¢ has been
chosen small enough. [

Now suppose (5.1) fails. The remaining results in Theorem 3.1 require the case
k> 1/2 of:

PROPOSITION 5.2. Assume that Y is a spectrally negative Lévy process, has
zero mean, and is not of bounded variation. Define, for y > 0, . > 0,

-
Wy (y) = /()y/- Zl'lg/_)(dz)dx

and

‘ 1 y@e=D/k\k/1=6)) gy,
(5.14) Jy(A) = | expl—-A|l——— -,
0 Wy (y) y

where l'[g,_) is the canonical measure of —Y , assumed carried on (0, 1], and let
Ay =inf{A > 0: Jy (1) < oo}. Then with probability 1, for 1/2 <k < 1,

Y =00, = 0Q,
lim sup L1 e€(0,00), according as 1y { € (0, 00),
1o "l =0, =0.

The proof of Proposition 5.2 requires several intermediate steps. Take Y as de-
scribed; then it has characteristic exponent

Wy () = f (e — 146017 (dx).
0,1]
So we can work with the Laplace exponent

(5.15) Yy (6) = Wy (—i6) = /(0 1](e—ex — 14600 (dx),
such that Ee?Tt = eV7©) ¢ > 0,0 > 0.

Let T = (T3, t > 0) denote the first-passage process of Y'; this is a subordinator
whose Laplace exponent @ is the inverse function to ¥y ([1], page 189), and since
Y (T;) =t we see that the alternatives in Proposition 5.2 can be deduced immedi-
ately from

. Y| o NV 0,
limsup — 1 €(0,00), 4= liminf—-{ € (0, 0),
10 t« =0, tl0 tl/x — 00

The subordinator 7 must have zero drift since if lim; o 7; /1 := ¢ > 0 a.s., then
supgs<7, ¥s =1 (see [1], page 191) would give limsuptw Y/t <1/c <0 as.,
thus Y € bv, which is not the case. We can assume 7" has no jumps bigger than 1,
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and further exclude the trivial case when 7 is compound Poisson. So the main part
of the proof of Proposition 5.2 is the following, which is a kind of analogue of
Theorem 1 of Zhang [18].

LEMMA 5.2, Let T be any subordinator with zero drift whose Lévy measure
[1r is carried by (0, 1]£nd has T17(04+) = oo, where I (x) = II7{(x, 00)} for
x> 0. Putmr(x) = [y 7 (y)dy and for d > 0 let

! /(r=1)

Let d% :=inf{d > 0: K7(d) < oo} € [0, o0]. Then, with probability 1:
K

} where y > 1.

(i) df = oo iff liminf, o 2 =0;
(i) df =0 iff lim, o 2t = oc;
(iii) d} € (0, 00) iffliminf; o 1 = c, for some ¢ € (0, 00).

Before beginning the proof of Lemma 5.2, we need some preliminary results.
To start with, we need the following lemma.

LEMMA 5.3. Let S = (8,1t > 0) be a subordinator, and let a and y be positive
constants. Suppose the series

(5.17) Y P(Sm <ar')
n>1
diverges for some r € (0, 1). Then
(5.18) liminf> < % 4.
W0 v T (1—=r)

Conversely, if the series in (5.17) converges for some r € (0, 1), then
S
liminf =~ > ar? a.s.
0 tY
PROOF. Suppose the series in (5.17) diverges for an r € (0, 1). Fix m > 1, and
for n > m define events
Ap={Sn <ar™,S. > ark? form <k <n}.
Then the {A,},~, are disjoint, and
P(A) = P(Spn <ar™, S — Sy > ar” form <k <n)
Srk_rn I"ky

>da
ik —rmy T =y

Srk_rn a )
> form <k<n|.
F—rmy " (=ry

=P(Sn < ar””)P( form <k < n)

> P(Spn < ar”y)P<
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Suppose now that liminf S;/¢¥ > a/(1 — r)¥ a.s. Then for some mo we will have
P(S;/t" >a/(1 —r)" forallt € (0,r")) > 1/2.

[If this were not the case, we would have P(B,) > 1/2 for all n > 1, where
B, denotes the event {3r € (0, r") with S;/t¥ < a/(1 — r)?}; this would imply
P(N),, Bn) > 1/2, a contradiction.] Thus for n > my we have

S k_n
P((rk ri—r’n)y > a _ar)y formg <k < n) >1/2.
Then
1= )7 P(An)
n>mo
> > P(Sp <ar")P Sk formo <k <n
- rk—rny T (1 —r)y 0=

1
=5 2 PSm=ar'),

n>mg

which is impossible since we assumed the series in (5.17) diverges. This gives
(5.18), and the converse follows easily from the Borel-Cantelli lemma and an ar-
gument of monotonicity. [

Applying Lemma 5.3 to T;, we see that the alternatives in (i)—(iii) of Lemma 5.2
hold iff for some r < 1, for all, none, or some but not all, a > 0,

(5.19) Y P(Tn <ar™) < oo.

n>1

The next step is to get bounds for the probability in (5.19). One way is easy.
Since T (0+4) = oo, IT7(x) is strictly positive, and thus m (x) is strictly increas-
ing, on a neighborhood of 0. We write /(-) for the inverse function to m7(-).

LEMMA 5.4. Let T be a subordinator with zero drift whose Lévy measure
[17 has support on [0, 1] and satisfies 17 (0+) = oo. Then there is an absolute
constant K such that, for any ¢ > 0 and y > 0,

ct¥
5.20 P(T, <ct) < S t>0.
( ) (Ty <c )_exp{ h(2ctV_1/K)} >

PROOF. We can write

1
()=~ log B~ :/ (1 —e ™ pdx),  »>0,
©.1]



SMALL-TIME BEHAVIOR OF LEVY PROCESSES 185

Markov’s inequality gives, for any A > 0, ¢ > 0,
P(T; <ct?) < ™ E(e )
=exp{—rt(A o) — et 1))
< exp{—rt(Kmr(1/1) —ct” 1)} for some K > 0,

where we have used [1], Proposition 1, page 74. Now choose A = 1/ h(2ct? ~!/K)
and we have (5.20). O

The corresponding lower bound is trickier:

LEMMA 5.5. Suppose that T is as in Lemma 5.2, and additionally satisfies
lim; o P(T; < Ct”) =0 for some C > 0 and y > 1. Then, for sufficiently small
t>0,

(5.21) P(T, <ct?) > S ex {—L}
‘ r= =P e |

where ¢ =bC, and b € (0, 00) is an absolute constant.

PROOF. Take y > 1 and assume lim, o P(7; < Ct¥) =0, where C > 0.
Write, for each fixed t > 0, T; = Tt(l) + Tt(z), where the distributions of the in-
dependent random variables Tt(l) and Tt(z) are specified by

(Y]
log Ee i = —t/ (1 — e ™7 (dx)
(O,h(CtV—1/4)]

and

(2)

log Ee i = —¢ (1 — eIz (dx).

/(h(CtV‘1/4), 1]
Observe that

ET :t/ xT7(dx) < tmp(h(Ct?~' /4)) = Ct” /4,
0,h(CtY—1/4)]

so that
P(T; > Ct”)y < P(T"Y > ) + P(T? £0)
ET)
< t
= Cr
<5/4— P(T” =0).

+1-P(1% =0)

Thus for all sufficiently small ¢, t < 19(C), say,

P(T® =0) <174+ P(T, <C1") <1/2,



186 J. BERTOIN, R. A. DONEY AND R. A. MALLER
because of our assumption that lim, o P(7; < Ct”) =0. Now
P(T? = 0) = exp(—t T (h(C1" ' /4))),
so we get, for t < 19(C),
log2 < ¢TI (h(CtY ™1 /4))
< e e )

_ Cr7/4A
~ h(Ctr—1/4)°

Thus, replacing ¢ by (C/4)"/=V¢, we have h(1?~1) < ar?, for all t < 1,(C) :=
10(C)(4/CH)V =D where a = (4/C)/ ¥~ /log2.

Now keep 0 < ¢ <11, and let ¢ > 0O satisfy 3acl/v=DA = 1/4, where A is
the constant in (4.11); thus, ¢ = C(log2)? ~!/((3A)Y ~147) = bC, say, where b is
an absolute constant. Write n = n(t) = h(ct? ! /4). Define processes (Y,(i)),zo,
i =1,2,3, such that (7});>0 and (Yt(l)),zo are independent, and (Yt(z))tzo and
(Y,(3)),Zo are independent, and are such that logE(e_”t(i)) = —t f(o,l](l —
eV (dx), i =1,2,3, where

1y’ (dx) = Tz ()8, (dx),
MY (dx) = Tz ()8, (dx) + 10,y TT7 (dx),
M5 (dx) = 14,17 (dx),
and §,(dx) is the point mass at 1. Then we have T; + Y,(l) 4 Y,(z) + Yt(3) , and
P(T,<ct”) = P(T, + Y <ct?)
= P(rY =0)P(r,? er”)
— e"ﬁg)(”)P(Y,(z) <ct?).

Since (T15) () = n~LenTIr(n) < n~'tmr(n) < ct” /(@h(ct?~1/4)), (5.21) will
follow when we show that liminf; o P(Y,(z) < ct?) > 1/4. By construction we
have

EY? = t(/(;nxnr(dx) + nﬁT(ﬂ))

ct”
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so if we put Z; = Y,(z) — ct¥ /4 and write tcrt2 =F th we can apply Chebyshev’s
inequality to get

tY 5
P(Y,(z) <ct’)> P(Z, < %) >

when tatz < 2% /9. To deal with the opposite case, tat2 > 2% /9, we use
the Normal approximation in Lemma 4.3. In the notation of that lemma, m3; =

[an |x|31'I§/2) (dx) and myp = 0,2, in the present situation. Since, then, m3 < naf,
and n = h(ct¥ ™' /4), we get, for t <1;(C)/(4/C)V/ V=D .= 1,(C),

— Ano?  3Ah(ct?~1/4)
sup|P(Z, < x+/to;) — 1+ F(x)| < L <
xeg ( t t) ( )| \/;O'; ct?

<3ac/=VA=1/4.

The last equality follows by our choice of ¢. Finally, taking x = ct? /(2+/t0,) gives
P(Z; <ct”/2) > 1/4, hence (5.21). [

We are now able to establish Lemma 5.2. Recall that /(+) is inverse to mr (-).

PROOF OF LEMMA 5.2. (i) Suppose that K7(d) < oo for some d > 0 and
write x, = h(cr"¥~D), where ¢ > 0, y > 1and 0 < r < 1. Note that since h(x)/x
is increasing we have x, 1 < r¥~lx,. Also we have mr (x,) = Rm7(x,41) where
R=r'"Y > 1.Sofory € [xyt1, Xn),

mr YD mp )
Y Xn+1
RV Dy ()"
B Xn+1

(RC)WW?I)I"(”—H)V

h(crntbhy=Dy -

Thus

/"" dy { me(y)V/(V—l)}> { d(Rc)Wl)r(”“)V} Xn
—eXpy—d—mMmMmMmMmmm exXpy — (0]
Xn+41 y p Yy o p h(cr(n+1)(]/—1)) g

Xn+1

C/r(n-i-l))’ }

> (IOg R) CXP{_ h(zc/r(n-f-l)(y_l)/K)

where K is the constant in Lemma 5.4 and we have chosen

K\
c:(—) RV and ¢ =Kc/2.
2d
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Then K7(d) < oo gives Y {° P(Tr» < c'r"V) < oo, and so liminf, o T; /1Y >
c'r* > 0 as., by Lemma 5.3. Thus we see that liminf, o 7; /¥ = 0 a.s. implies
that K7(d) = oo for every d > 0, hence d = oo.

Conversely, assume that liminf; o 7;/t¥ > C > 0 a.s. Then by Lemma 5.3,
Y P(Tn < (1 —r)YCr'") < oo for some 0 <r < 1. Then P(Tn < (1 —
r)Y Cr"7) — 0, Lemma 5.5 applies, and we have

s crY
Xl:eXp{_—h(cr”(V—l)M) } <00,

where ¢ = (1 — r)YbC, b > 0. Putting x,, = h(cr™” Y /4) (similar to but not the
same x,, as in the previous paragraph), and ¢/ = 47/=D /cl/(r=D 'we see that

0 / y/(y—1)
(5.22) Zexp{—cmT(xn)
1

Xn
We have mr(x,—1) = Rm7(x,) where R = r1=Y > 1. Take L > R and let k,, =
min(k > 1 ‘xp—1L7% < x,), s0 x,_1 L% < x,,. Then for any d >0

Xn_1 y/(y—1)
/ exp{—d—mT(y) }y_ldy
Xn y

<o

kn

et Lymro)] -
SZ/ A exp{—me(y)l/(y D—}y U dy
1 Jxp_ L7 y
i=1
kn anlLl_i m o L_i
SZ/ | eXP{—me(xn)l/(Vl)T(”—l_i)}yldy
Xp_1 L™ xl’l—lL

i=1

00 Li =
SIOgLZexp —me(xn)l/(V—l)M}

i=1 Xn—1
ad Li—l
SlOgLZexp _me(xn)l/(y—l)M}
i=1 Xn—1
. (=1
=logL ) exp —dLi_lR_V/()/—l)mT(xn—l)V/y }
Xn—1

i=1
Choose d = ¢’LRY/0=1 = 4R)Y/=DL/((1 — r)7bC)/ D 10 write this last
sum as » ; a,fl , where a,, = exp(—c/mT(xn_l)y/(y_l)/xn_l). It is then easy to see
that for all large enough 7, the nth term in the sum is bounded above by a constant

multiple of a,. It follows from (5.22) that ), a, < 0o, hence K7(d) < oo, and
part (i) follows.

(ii) If K7(d) < oo for all d > 0, then, because ¢’ — 0o as d — 0 at the end of
the proof of the forward part of part (i), we have liminf; o 7; /¥ = oo a.s., that is,
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lim; o T; /t¥ = oo a.s. Conversely, if this holds, then because d — 0 as C — oo at
the end of the proof of the converse part of part (i), we have K1 (d) < oo for all
d>0.

(iii) Since we know from Kolmogorov’s 0-1 law that liminf, o 7; /" is a.s.
constant, part (iii) follows from parts (i) and (ii).

This completes the proof of Lemma 5.2. [

PROOF OF PROPOSITION 5.2. To finish the proof of Proposition 5.2, we need
only show that Jy(A) = oo (< o0) for all A > 0 is equivalent to K7(d) = o0
(< o0) for all d > 0, respectively, where K7(d) is evaluated for the first-passage
process T of Y, and y = 1/«. We have from (5.15), after integrating by parts,

1
wy(e):/O (e — 146017 (dx)

1
— 9/ (1—e ™, (x) dx,
0

and differentiating (5.15) gives
1

v (0) = /0 x(1—e ™7 (dx).
So we see that 6~ 'y (9) and ¥y (0) are Laplace exponents of driftless subordina-
tors, and using the estimate in [1], page 74, twice, we get

Yy (0) < 0°Wy(1/6) and 1y (0) < OWy(1/6),

where Wy (x) = [ Ay(y)dy and Ay (x) := [' TI}(y)dy, for x > 0. [Recall the
definition of Wy just prior to (5.14), and use “<” to mean that the ratio of the quan-
tities on each side of the symbol is bounded above and below by finite positive con-

stants for all values of the argument.] However, putting Uy (x) = fg 22ﬁ§/_) (2)dz,
for x > 0, we see that

Wy<x)=/0’“fylzn<y—>(dz)dy: LUy () + Wy (x)
and
Wy (x) = Uy (x) + xAy (x);
thus
Wy (x) < Wy (x) = Uy (x) + x Ay (x) < 2Wy (x).
Hence we have

(5.23) 02 Wy (1/6) = vy () = 0y} (0).
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We deduce that Jy (1) = oo (< o0o) for all A > 0 is equivalent to fy (A) =00 (< )
for all A > 0, respectively, where

- 1 d
Ty = / exp{—xy‘““‘“)x/fy(1/y>—"/<1—“>}7y

0
o0 _ _ . dy
= | exp{=ay Oy () 070)

But we know that @, the exponent of the first-passage process 7', is the inverse of
Yy, so making the obvious change of variable gives

~ 00 o) /(e (@) dz
Jy()\.):/ exp{—MD(z)l/(1 g —x/ K)}L.
Yy (1) D(z)

From (5.23) we deduce that z®'(z)/®(z) < 1 for all z > 0, so Jy(A) = 00 (< 00)
for all A > 0 is equivalent to Jy (A) = oo (< 0o) for all A > 0, respectively, where
dz
Z 9
dz
=

-~ [e.e]
Jy(A) =/1 exp|—A®(g) /(10 =/(1-0))

1
= /() CXp{—)\,CI)(Z_I)I/(I—K)ZK/(I—K)}

Since ®(z~!) is bounded above and below by multiples of z 'm7r(z) ([1],
page 74), our claim is established. [J

We are now able to complete the proof of Theorem 3.1.

PROOF OF THEOREM 3.1. The implications (i) = (3.1) and (iii) = (3.3)
stem from Proposition 5.1 and Theorem 2.1, respectively. So we can focus on the
situation when

1 1
f o (x*)Ydx < oo = / ﬁ(_)(x") dx.
0 0

Recall the decomposition (5.8) where X ; has canonical measure I1") (dx). Thus
from Theorem 2.1, X, is o(t¥) a.s. as ¢ 4 0. Further, X is spectrally negative with
mean zero. When (i), (iv) or (v) holds, X ¢ bv [see Remark 3(ii)]. The implica-
tions (ii)) = (3.1), (iv) = (3.3) and (v) = (3.4) now follow from Proposition 5.2
applied to X. O

REMARK 6. Concerning Remark 3(iii): perusal of the proof of Theorem 2.2
shows that we can add to X a compound Poisson process with masses f4 (), say, at
+./t, provided 3,,- | /Tn f+ (1) converges, and the proof remains valid. The effect
of this is essentially only to change the kind of truncation that is being applied,
without changing the value of the lim sup, and in the final result this shows up
only in an alteration to V (x). Choosing f(¢) appropriately, the new V () becomes
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U(-) or W(-), which are thus equivalent in the context of Theorem 2.2. Note that
we allow x = 1/2 in Proposition 5.2. We will omit further details, but the above
shows there is no contradiction with Theorem 2.2.

5.2. Proof of Theorem 3.2. Theorem 3.2 follows by taking a(x) = x*, x > 1,
in Propositions 5.3 and 5.4 below, which are a kind of generalization of Theorem 9
in Chapter III of [1]. Recall the definition of A_(-) in (3.5).

PROPOSITION 5.3. Assume X € bv and § = 0. Suppose a(x) is a positive
nonstochastic measurable function on [0,00) with a(x)/x nondecreasing and
a(0) =0. Let a* (x) be its inverse function. Suppose

1 I1(dx) _
(5.24) ,/o 1Ja<=(x)+A_(x)/x o

Then we have
. X
(5.25) limsup — = o0 a.s.
o a(r)

PROOF. Assume X and a as specified. Then the function a(x) is strictly in-
creasing, so a < (x) is well defined, positive, continuous and nondecreasing on
[0, 00), with @< (0) = 0 and a < (00) = 0o. Note that the function

1 A_(x) 1
a<(x) x  a<(x)
is continuous and nonincreasing, tends to oo as x — 0, and to 0 as x — 0o. Choose
a € (0, 1/2) arbitrarily small so that

20212 —a) 24 1) < 1,

')
+ /0 T (ry) dy

and define, for t > 0,

b(t):inf{x>0: ! A-() <E}_

a~(x) x Tt

Then 0 < b(r) < oo for t > 0, b(¢) is strictly increasing, lim, o () =0, and
t tA_(b(1))

a*<(b(1)) b(r)

Also b(t) > a(t/a), and the inverse function b* (x) exists and satisfies

(5.26)

o

(5.27) b = e A

Thus, by (5.24),

(5.28) /01 b ()T (dx) = 00 = /01 T b)) dx.
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Set
[T
U_(x):=2 A yIT' “(y)dy.

Then we have the upper-bounds

M by < A0 ;Ef)(”) <a

and
tU_(b(1)) - 2tA_(b(1)) -
Ay T b T
Since X € bv and 6§ =0 we can express X in terms of its positive and negative
jumps, A§+) =max(0, Ay) and Ag_) = AEH — Ay

(5.29) Xe= Y AP - 3 AP =xFP —x{7  say.

O<s<t O<s<t

20,

Recall that Agi) <1 a.s. We then have
P(X7) > b(1)/2)
= P< > (A Ab@)) > b(t)/2> + P(A) > b(r) for some s < 1)

O<s<t
< P( S (AL Ab@) — 1A (b)) > (1/2 - a)b(t)) 7 way).
O<s<t
Observe that the random variable ZO<S§,(A§-_) A b)) —tA_(b(t)) is centered

with variance at most tU_(b(¢)). Hence

-) _ _ tU_(b(1))
P(Ogs;t(As Ab(t)) —tA_(b(t)) > (1/2 a)b(t))f—(l/z_a)zbz(t),

so that, by the choice of «, we finally arrive at

(5.30) P(X7) > b@)2) < ( + 1>a <1/2.

2
(1/2 —a)?
By (5.28), P(XP) > b(t) i.0.) > P(A™ > b(¢) i.0.) = 1. Choose #, | 0 such

that P(X,(j) > b(t,) i.0.) = 1. Since the subordinators X and X are inde-
pendent, we have

P(X,, > b(t,)/21.0.)
> mlgmm P(Xt(:r) > b(t,), X,(n_) < b(t,)/2 for some n > m)

>1/2P(XY > bt,) 10.) by (5.30)]
=1/2.
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In the last inequality we used the Feller—Chung lemma ([4], page 69). Thus, by
Kolmogorov’s 0—1 law, limsup, o X /b(#) > 1/2, a.s. Now since a(x)/x is nonde-
creasing, we have fora < 1, b(¢t) /a(t) > a(t/a)/a(t) > 1/a, so lim sup; 1o Xi/a(t) >
2/w a.s. Letting « | 0 gives lim sup; 1o X,/a(t) =00 as., as claimed in (5.25). O

We now state a strong version of the converse of Proposition 5.3 which com-
pletes the proof of Theorem 3.2.

PROPOSITION 5.4. The notation and assumptions are the same as in Propo-
sition 5.3. If

1 I1(dx)
30 b e+ e <

then we have

X
(5.32) limsup—— <0  a.s.
1o a(t)

We will establish Proposition 5.4 using a coupling technique similar to that
in [2]. For this purpose, we first need a technical lemma, which is intuitively
obvious once the notation has been assimilated. Let ¥ be a Lévy process and
((t;, xi),1 € 1) acountable family in (0, co) x (0, 0co) such that the ¢;’s are pairwise
distinct. Let (Y?,i € I) be a family of i.i.d. copies of Y, and set for each i € I

pi ==inf{s >0: Ysi >xi}AnaT(x;),

where a(-) is as in the statement of Proposition 5.3. More generally, we could as
well take for p; any stopping time in the natural filtration of ¥/, depending possibly
on the family ((#;, x;),i € I).

Now assume that

(5.33) T;:= Zpi < 00 forallr >0 and Zpi =00 a.s.

i<t iel

Then T = (13, t > 0) is a right-continuous nondecreasing process and (5.33) en-
ables us to construct a process Y’ by pasting together the paths (Y},0 <s < p;) as
follows. If t = T,, for some u > 0, then we set

Y= Y ().
ti<u

Otherwise, there exists a unique # > 0 such that 7, <t < T,,, and thus a unique
index j € I for which T, — T, = pj, and we set

Y =3 Y)Yt - To).

ti<u
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LEMMA 5.6. Under the assumptions above, Y' is a version of Y ; in particular
its law does not depend on the family ((¢;, x;),i € I).

PROOF. The statement follows readily from the strong Markov property in the
case when the family (¢;,i € I) is discrete in [0, o). The general case is deduced
by approximation. [J

We will apply Lemma 5.6 in the following framework. Consider a subordina-
tor X(=) with no drift and Lévy measure T1(7); X~ will play the role of the
Lévy process Y above. Let also X (") be an independent subordinator with no drift
and Lévy measure 1Y), We write ((¢;, x;),i € I) for the family of the times and
sizes of the jumps of X*). By the Lévy-Itd decomposition, ((#;, x;),i € I) is the
family of the atoms of a Poisson random measure on Ry x R4 with intensity
dt @ I (dx).

Next, mark each jump of X*), say (#;, x;), using an independent copy X~
of X7 In other words, ((#;, x;, X(™1),i € I) is the family of atoms of a Poisson
random measure on R, x R x D with intensity dr ® TI™H) (dx) ® P(), where D
stands for the space of cadlag paths on [0, oo) and P(~) for the law of X (7). Finally,
define for every i € I,

pi = inf{s > 0: X7 > xi} Aa (xp).

LEMMA 5.7. In the notation above, the family ((¢;, p;),i € I) fulfills (5.33).
Further, the process

=) pi. t=0,
1<t

is a subordinator with no drift.

PROOF. Plainly,
Z 8. 01)
iel
is a Poisson random measure on R, x R with intensity dt ® u(dy), where

wu(dy) :=/

(0,00

NP @x)P ) (1, Aa™(x) e dy),
)

and 7, denotes the first-passage time of X (™ in [x, 00). So it suffices to check that
f((),oo)(l Ay)p(dy) < oo.

In this direction, recall (e.g., Proposition III.1 in [1]) that there is some absolute
constant ¢ such that

=) cx
EY(ty) < A0

Vx > 0.




SMALL-TIME BEHAVIOR OF LEVY PROCESSES 195

As a consequence, we have

| m@n=[ APE@OE (5 Aa @)
(0,00) (0,00)

) =) <
5/(0700)11 (dx)(E () Aa(x)

+) * <
< c/(‘opo) I1 (dx)(A_(x) Aa (x)).

Recall that we assume that IT1") has support in [0, 1]. It is readily checked that
convergence of the integral in (5.31) is equivalent to

+) * —
/(O,Oo) I1 (dx)(A_(x) Aa (x)) < 0.

Our claim is established. [

We can thus construct a process X', as in Lemma 5.6, by pasting together

the paths (X§_’i), 0 <s < p;). This enables us to complete the proof of Propo-
sition 5.4.

PROOF OF PROPOSITION 5.4. Since X~ is independent of (#;, x;), an ap-
plication of Lemma 5.6 shows that X’ is a subordinator which is independent
of X and has the same law as X (7). As a consequence, we may suppose that
the Lévy process X is given in the form X = X — X',

Set Y; := X, 4 a(t). For every jump (f;, x;) of X (+), we have by construction

Y(T;,) = Y(T;,-) = XD (pp) + a(Ty,— + pi) — a(Ty,-)
> X(*”')(p,-) +a(p;) [as a(x)/x increases]
> X; (by definition of p;).

By summation (recall that X ™) has no drift), we get that Y (T;) > X t(+) for all
t>0.

As T = (T;,t > 0) is a subordinator with no drift, we know from the result of
Shtatland [16] that T; = o(¢) as t — 0, a.s., thus with probability 1, we have for
every € >0

XM < X., +a(et) Vt > 0 sufficiently small.
Since a(x)/x increases, we deduce that for ¢ sufficiently small
(+)
X; - X" =X, -
a(t) = a(et)/e

which completes the proof. [J

9
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5.3. Proof of Theorem 3.3. Suppose (3.8) holds so that X; > 0 for all < some
(random) 9 > 0. Thus X is irregular for (—oo, 0) and (3.10) follows from [2].

Also X,(+) =D 0<s<t A§+) > X; a.s., so (3.8) holds with X; replaced by X,(+),
and since X ,(+) is a subordinator with zero drift we can apply Lemma 5.2 with
y =k to get (3.9).

Conversely, [2] has that (3.10) implies » _,, A = 0(X0<s<s A, as.,

as t | 0, so, for arbitrary & > 0, X; > (I — &)} g_5< AEH = (1 — 8)X,(+),
a.s., when ¢ < some (random) #y(¢) > 0. But (3.9) and Lemma 5.2 imply
lim; 0 Y g5<; A§+)/t" = 00 a.s., hence (3.8).
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