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WEAK CONVERGENCE OF MEASURE-VALUED PROCESSES AND
r-POINT FUNCTIONS

BY MARK HOLMES1 AND EDWIN PERKINS2

Technische Universiteit Eindhoven and University of British Columbia

We prove a sufficient set of conditions for a sequence of finite measures
on the space of cadlag measure-valued paths to converge to the canonical
measure of super-Brownian motion in the sense of convergence of finite-
dimensional distributions. The conditions are convergence of the Fourier
transform of the r-point functions and perhaps convergence of the “survival
probabilities.” These conditions have recently been shown to hold for a vari-
ety of statistical mechanical models, including critical oriented percolation,
the critical contact process and lattice trees at criticality, all above their re-
spective critical dimensions.

1. Motivation. In the last few years, a number of rescaled models from in-
teracting particle systems and statistical physics have been shown to converge to
the canonical measure of super-Brownian motion. The models include critical ori-
ented percolation above four dimensions [6], critical contact processes above four
dimensions [5] and critical lattice trees above eight dimensions [7], all for suffi-
ciently spread-out kernels. In each of these cases, what is actually proved is con-
vergence of the Fourier transforms of the moment measures (or r-point functions).
Our modest objective here is to translate this result into the more conventional
probabilistic language of weak convergence of stochastic processes. To those well
versed in weak convergence arguments, we fear this may be one of the proverbial
much-needed gaps in the literature, but to others who have complained to us, it is
an irritant that should be spelled out once and for all.

The limiting measure is a sigma-finite measure (not a probability) on the space
of continuous measure-valued paths, which presents some additional minor wor-
ries. The full convergence on path space remains open in all of the above settings
due to the absence of any tightness result on path space. Even the natural state-
ment of convergence of finite-dimensional distributions requires convergence of
the survival probabilities (see Proposition 2.4 below), a result which was only re-
cently discovered for critical oriented percolation [3, 4] and which is currently
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being pursued in the other contexts mentioned above. So, in the end, we thought
that someone should advertise this state of affairs and we have acquiesced in the
writing of this note. If you are reading this in a journal, at least one editor and/or
referee has agreed with us.

2. Introduction. Consider a discrete-time, critical nearest-neighbor branch-
ing random walk on Z

d , starting with a single particle at the origin. That is, at
time n ∈ Z+, each individual gives birth to a random number of offspring, each of
which immediately takes a step to a randomly chosen nearest neighbor of its par-
ent. Assume that each parent dies immediately after giving birth, that the offspring
distribution has mean one and finite variance γ > 0, and that each of the offspring
laws and random walk steps are independently chosen.

Extend the branching random walk to all times t ≥ 0 by making it a right-
continuous step function. Let Mt = {x(α)

t :α ∈ It } denote the set of locations of
particles in Z

d which are alive at time t . We have suppressed the details of the
labeling system (see, e.g., Section II.3 in [8]), but as multiple occupancies are
allowed, some labeling scheme is needed here.

In order to describe the scaling limit, we represent the model as a cadlag
measure-valued process by setting

Xn
t = C1

n

∑
α∈Int

δ
x

(α)
nt /(C2

√
n)

,

where C1 = γ −1/2 and C2 = d−1/2. If E and M are separable metric spaces, then
MF (E) denotes the space of finite Borel measures on E with the topology of
weak convergence and D(M) denotes the space of cadlag M-valued paths with
the Skorokhod topology. With probability 1, Xn

t is a finite measure for all n ∈ Z+
and t ≥ 0, so that {Xn

t }t≥0 ∈ D ≡ D(MF (Rd)).
The extinction time S :D → [0,∞] is defined by

S(X) ≡ inf{s > 0 :Xs = 0M},
where 0M is the zero measure on R

d and inf ∅ = ∞. Next, we define a sequence
of measures µn ∈ MF (D) by

µn(•) ≡ C3nP({Xn
t }t≥0 ∈ •),(1)

where C3 = 1 for this branching random walk model.
Let Mσ(D) denote the σ -finite measures on D which assign finite mass to

{S > ε} for all ε > 0, with the topology of weak convergence defined as follows.

DEFINITION 2.1 (Weak convergence). Let {νn :n ∈ N ∪ {∞}} ⊂ Mσ(D). We
write νn

w	⇒ ν∞ if for every ε > 0,

νε
n(•) ≡ νn(•, S > ε)

w	⇒ ν∞(•, S > ε) ≡ νε∞(•) as n → ∞,

where the convergence is in MF (D).
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It is a standard result in the superprocess literature (see, e.g., [8], Theo-
rem II.7.3) that there exists N0 ∈ Mσ(D), supported by the continuous paths in
D which remain at 0M after time S, and called the canonical measure of super-
Brownian motion (CSBM), such that µn

w	⇒ N0. In [8], one is working with
branching Brownian motion instead of branching random walk but it is trivial to
modify the arguments. We have chosen our constants Ci so that the branching and
diffusion parameters of our limiting super-Brownian motion are both equal to one.
Much is known about N0, for example, as in Theorem II.7.2(iii) of [8], we have
for every b > 0 that

N0
(
Xb(1) ∈ A \ {0}) =

(
2

b

)2 ∫
A

e−(2/b)x dx.(2)

Let l ≥ 1 and �t = {t1, . . . , tl} ∈ [0,∞)l . We use π�t :D → MF (Rd)l to denote
the projection map satisfying π�t (X) = (Xt1, . . . ,Xtl ). The finite-dimensional dis-
tributions of ν ∈ Mσ(D) are the measures νεπ−1

�t ∈ MF (MF (Rd)l) given by

νεπ−1
�t (H) ≡ νε({X :π�t (X) ∈ H }), H ∈ B(MF (Rd)l).

DEFINITION 2.2 (Convergence of f.d.d.). Let {νn :n ∈ N ∪ {∞}} ⊂ Mσ(D).

We write νn
f .d.d.	⇒ ν∞ if for every ε > 0, m ∈ N and �t ∈ [0,∞)m,

νε
nπ

−1
�t

w	⇒ νε∞π−1
�t as n → ∞,

where the convergence is in MF (MF (Rd)m).

If ν∞ is supported by continuous paths in D, it is easy to see that weak conver-
gence to ν∞ (Definition 2.1) implies convergence of the finite-dimensional distri-
butions to ν∞ (Definition 2.2). An additional tightness condition is needed for the
converse.

We now work in a more abstract setting than the branching random walk de-
scribed above, in which {µn} is any sequence of finite measures on D. For k ∈ R

d ,
let φk(x) = eik·x and write Eµn[Y ] for

∫
Y dµn and Xt(φ) for

∫
φ(x)Xt(dx), re-

spectively. Consider the following convergence condition on the moment measures
of µn:

Eµn

[
r−1∏
i=1

Xti (φki
)

]
→ EN0

[
r−1∏
i=1

Xti (φki
)

]
(3)

for r ≥ 2, �t ∈ [0,∞)r−1, �k ∈ R
d(r−1).

An explicit formula for the right-hand side of (3) can be found in Section 1.2.3
of [6].

Of course, (3) does hold for the µn defined in (1) for branching random walk,
but our interest in this condition arises from a number of models in which Mt
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is the (finite) set of occupied sites in Z
d at time t . Examples include the critical

contact process, critical oriented percolation or critically weighted lattice trees, all
with the natural definitions of “occupied site.” For r ≥ 2 and �t ∈ [0,∞)r−1, the
r-point functions for this model are B�t (�x) = P(xi ∈ Mti , i = 1, . . . , r − 1), while
the r̂-point functions are the Fourier transforms of these quantities,

B̂�t (�k) = ∑
�x

ei�k·�xB�t (�x), �k ∈ R
d(r−1),

which are defined whenever B�t (�x) is summable in �x. Define Xn
t ∈ MF (Rd) by

Xn
t ≡ C1

n

∑
x:C2

√
nx∈Mnt

δx

and assume that µn given by (1) defines a finite measure on D. An easy calculation
then shows that

Cr−1
1 C3

nr−2 B̂n�t
( �k

C2
√

n

)
= Eµn

[
r−1∏
i=1

Xti (φki
)

]

whenever Bn�t (�x) is summable. Therefore, the asymptotic formulae for the r̂-point
functions for sufficiently spread-out critical rescaled oriented percolation (d > 4),
critical rescaled lattice trees (d > 8), and critical rescaled contact processes (d > 4)
derived in [6, 7] and work in progress in [5], respectively, immediately imply (3)
in each of these cases. Moreover, in each of these models, it is known that µn is a
finite measure supported by D, as is required above.

In what follows, we use DF to denote the set of discontinuities of a func-
tion F . A function Q :MF (Rd)m → R is called a multinomial if Q( �X) is a real
multinomial in {X1(1), . . . ,Xm(1)}. A function F :MF (Rd)m → C is said to be
bounded by a multinomial (|F | ≤ Q) if there exists a multinomial Q such that
|F( �X)| ≤ Q( �X) for every �X ∈ MF (Rd)m. The main results of this paper are the
following two propositions. By the above, the first result is applicable in each of
the three settings [5–7].

PROPOSITION 2.3. Let {µn}n≥1 be a sequence of finite measures on
D(MF (Rd)) such that (3) holds. Then for every s > 0, λ > 0, m ≥ 1, �t ∈ [0,∞)m

and every Borel measurable F :MF (Rd)m → C bounded by a multinomial and
such that N0π

−1
�t (DF ) = 0, we have

Eµn[Xs(1)F ( �X�t )] → EN0[Xs(1)F ( �X�t )](4)

and

Eµn

[
F( �X�t )I{Xs(1)>λ}

] → EN0

[
F( �X�t )I{Xs(1)>λ}

]
.(5)
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For critical oriented percolation above the critical spatial dimension of four (and
for sufficiently spread-out kernels), [3, 4] show that

µn(S > ε) → N0(S > ε) for every ε > 0.(6)

The corresponding results for critical lattice trees and critical contact processes are
conjectured to be true above the critical dimension; the latter is currently work in
progress (see [5] for the contact process). The next result allows us to strengthen
the conclusion of Proposition 2.3 under (6).

PROPOSITION 2.4. Let {µn}n≥0 be a sequence of finite measures on

D(MF (Rd)) such that (3) and (6) hold. Then µn
f .d.d.	⇒ N0.

In particular, the results of [3, 4, 6], together with Proposition 2.4, imply that
above the critical dimension and at the critical occupation probability, the scaling
limit (in the sense of finite-dimensional distributions) of sufficiently spread-out
oriented percolation is CSBM. Tightness, and hence a full statement of weak con-
vergence, remains an open problem.

The additional condition (6) is necessary (consider the test function 1) because
µn and N0 are unnormalized. In [1], a conditional limit theorem for rescaled lat-
tice trees above eight dimensions is proved in which the limit distribution (ISE)
is N0(

∫ ∞
0 Xs ds ∈ ·| ∫ ∞

0 Xs(1) ds = 1). The conditioning means that all of the in-
volved measures are probabilities and so (6) is not needed.

The following assumption will be in force throughout the rest of the paper.

ASSUMPTION 2.5. F denotes a class of C-valued bounded continuous func-
tions that is closed under conjugation, is convergence determining for MF (Rd)

and contains the constant function 1.

We show in Section 4 that both propositions are consequences of standard ex-
ponential moment bounds for N0 and the following theorem. By convention, an
empty product is defined to be 1.

THEOREM 2.6. Let µn,µ ∈ MF (D(MF (Rd))). Suppose that for every l ∈ Z+
and �t ∈ [0,∞)l , we have:

1. there exists a δ = δ(�t) > 0 such that for all θi < δ, Eµ[e
∑l

i=1 θiXti
(1)] < ∞;

2. for every φi ∈ F ,

Eµn

[
l∏

i=1

Xti (φi)

]
→ Eµ

[
l∏

i=1

Xti (φi)

]
< ∞.(7)

Then for every l ∈ N and every �t ∈ [0,∞)l , µnπ
−1
�t

w	⇒ µπ−1
�t .

Note that some of the ti ’s may be the same in (7).
The remainder of this paper is organized as follows. In Section 3, we prove

Theorem 2.6. In Section 4, we prove Propositions 2.3 and 2.4.
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3. Proof of Theorem 2.6. In this section, we prove Theorem 2.6 as a conse-
quence of Lemmas 3.2–3.7. Lemma 3.2 is standard and states that if a sequence of
finite measures is tight, then every subsequence has a further subsequence that con-
verges. Lemma 3.3 establishes tightness of the {µnπ

−1
�t :n ∈ N} for each fixed �t .

Thus, every subsequence of the µnπ
−1
�t has a further subsequence that converges.

Lemma 3.4 states that any limit point of the {µnπ
−1
�t :n ∈ N} must have the same

moments (7) as µπ−1
�t . Lemma 3.5 extends equality of the moments on the right-

hand side of (7) for two measures µ,µ′ to all φi ≥ 0 bounded and continuous.
Lemmas 3.6 and 3.7 together imply that under condition 1 of Theorem 2.6, equal-
ity of the moments in Lemma 3.5 implies equality of the underlying finite mea-
sures on MF (Rd)m. Taken together, they show that since all subsequential limit
points have the same moments (7), the limit points all coincide and thus the whole
sequence converges to that limit point. Thus, Theorem 2.6 follows immediately
from the lemmas proved in this section.

Recall the notion of tightness for finite measures.

DEFINITION 3.1. A set of finite Borel measures F ⊂ MF (E) on a metric
space E is tight if supµ∈F µ(E) < ∞ and for every η > 0 there exists a compact
K ⊂ E such that supµ∈F µ(Kc) < η.

LEMMA 3.2. If F ⊂ MF (E) is tight, then every sequence in F has a subse-
quence which converges in MF (E) (weak convergence).

LEMMA 3.3. Let µn,µ ∈ MF (D). Suppose that Eµn[1] → Eµ[1] < ∞ and
that for every t ∈ [0,∞) and every φ ∈ F ,

Eµn[Xt(φ)] → Eµ[Xt(φ)] < ∞.(8)

Then for each m ∈ Z+ and every �t ∈ [0,∞)m, the set of measures {µnπ
−1
�t :n ∈ N}

is tight on MF (Rd)m.

PROOF. That supn µnπ
−1
�t (MF (Rd)m) < ∞ for every m, �t is trivial (as is the

m = 0 case) since Eµn[1] → Eµ[1] < ∞. It remains to prove the existence of the
appropriate compact set for m ≥ 1.

For m = 1, let ε > 0 and t ≥ 0. Define the mean measures νn, ν ∈ MF (Rd) by
νn(A) = Eµn[Xt(A)] and ν(A) = Eµ[Xt(A)]. Then (8) implies that νn → ν in
MF (Rd) and supn νn(R

d) ≡ L < ∞. Choose M such that L/M < ε/2. Then by
Markov’s inequality,

sup
n

µn

(
Xt(R

d) > M
) ≤ L

M
<

ε

2
.(9)
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Fix η > 0. There exists K−1 ⊂ R
d compact such that ν(Kc−1) < η/2. Further-

more, there exists K0 ⊂ R
d compact such that ν(Kc

0) ≤ ν(Kc−1) [e.g., the set

K0 = {x :d(x,K−1) ≤ 1}]. Since νn → ν in MF (Rd) and Kc
0 is closed, we have

lim sup
n

νn(K
c
0) ≤ ν(Kc

0) <
η

2
.

It follows easily that there exists a compact subset K of R
d such that

supn νn(K
c) < η. Another application of Markov’s inequality implies that

sup
n

µn

(
Xt(K

c) > η1/4) ≤ η−1/4 sup
n

Eµn[Xt(K
c)] < η3/4.

Choose η1/4 = 2−j . There then exists Kj ⊂ R
d compact such that

sup
n

µn

(
Xt(K

c
j ) >

1

2j

)
≤ 1

23j
.(10)

Choose N such that 81−N < ε/2 and let

K ≡ ⋂
j≥N

{
Y :Y(Kc

j ) ≤ 1

2j

}
∩ {Y :Y(Rd) ≤ M}.

Now, K is compact in MF (Rd) (see, e.g., the proof of Theorem II.4.1 in [8]) and

Kc = ⋃
j≥N

{
Y :Y(Kc

j ) >
1

2j

}
∪ {Y :Y(Rd) > M}.

Thus, (10) and (9) imply that

sup
n

µn(Xt ∈ Kc) ≤
∞∑

j=N

1

23j
+ ε

2
≤ 1

8N−1 + ε

2
< ε,(11)

which verifies that the µnπ
−1
t , n ≥ 1 are tight.

For m > 1 and �t ∈ [0,∞)m, we have from (11) that for each i ∈ {1, . . . ,m},
there exists Ki ⊂ MF (Rd) compact such that supn µnπ

−1
ti

(Kc
i ) < ε/m. Let K =

K1 × K2 × · · · × Km. Then K ⊂ MF (Rd)m is compact and

sup
n

µnπ
−1
�t (Kc) ≤ sup

n

m∑
i=1

µnπ
−1
ti

(Kc
i ) < ε,

which gives the result. �

LEMMA 3.4. Suppose that µn,µ ∈ MF (D) satisfy the second hypothesis of
Theorem 2.6. Fix l ≥ 0 and �t ∈ [0,∞)l . If, for a given subsequence µnk

, we have
µnk

π−1
�t

w	⇒ ν in MF (MF (Rd)l), then for each �m ∈ Z
l+ and φij ∈ F ,

Eν

[
l∏

i=1

mi∏
j=1

Yi(φij )

]
= Eµ

[
l∏

i=1

mi∏
j=1

Xti (φij )

]
.(12)
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PROOF. Assume first that ν(1) > 0. Since µnk
π−1

�t (1) → ν(1), by normaliza-

tion, we may assume that µnk
π−1

�t are probabilities on MF (Rd)l . Let �m and φij

be as in the lemma and set W = ∏l
i=1

∏mi

j=1 Xti (φij ) and W1 = ∏l
i=1

∏mi

j=1 Xti (1).
Condition 2 from Theorem 2.6 implies that

sup
k

µnk
(|W |2) ≤ C �φ sup

k

µnk
(W 2

1 ) < ∞

(recall that we can repeat ti ’s). The assumed weak convergence implies that
µnk

W−1 w	⇒ νW−1 as measures in MF (C). It follows from a standard result in
weak convergence (see, e.g., Proposition 2.3 in the Appendix of [2]) that the left-
hand side of (12) is equal to limk→∞ Eµnk

[W ]. The same is true of the right-hand

side by the second hypothesis in Theorem 2.6, where we use a base vector �t ′ with
appropriately repeated ti ’s.

If ν(1) = 0, then µnk
(D) → 0 and so if W is as above, we have∣∣∣∣∫ W dµnk

∣∣∣∣2 ≤ µnk
(D)

∫
|W |2 dµnk

→ 0,

where L2 boundedness of |W | follows as above. Therefore, the right-hand side
of (12) is 0 by hypothesis (as above) and thus equals the left-hand side. �

LEMMA 3.5. Suppose that l ≥ 0, �m ∈ Z
l+ and µ,µ′ ∈ MF (MF (Rd)l). If

Eµ

[
l∏

i=1

mi∏
j=1

Yi(φij )

]
= Eµ′

[
l∏

i=1

mi∏
j=1

Yi(φij )

]
(13)

holds (and both quantities are finite) for every φij ∈ F , then (13) holds for all
bounded, continuous φij ≥ 0.

PROOF. If l = 0 or
∑

mi = 0, then the conclusion is trivial, so we may assume
that l > 0 and

∑
mi > 0. Since 1 ∈ F , we have Eµ[∏l

i=1
∏mi

j=1 Yi(1)] < ∞. Let

φij ∈ F and ϕ((xij )) = ∏l
i=1

∏mi

j=1 φij (xij ). Applying Fubini’s Theorem to (13),
using the fact that the φij ∈ F are bounded, we have∫

· · ·
∫

ϕ((xij ))Eµ

[
l∏

i=1

mi∏
j=1

Yi(dxij )

]
(14)

=
∫

· · ·
∫

ϕ((xij ))Eµ′

[
l∏

i=1

mi∏
j=1

Yi(dxij )

]
.

We claim that for any r ≥ 1, the set of functions Fr ≡ {∏r
i=1 φi(xi) :φi ∈ F } is a

determining class for MF (Rdr). For real-valued functions, this is Proposition 3.4.6
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of [2]. The fact that F is closed under conjugation easily implies that it is a deter-
mining class for complex-valued measures. This allows us to apply the proof in [2]
to verify the claim.

Therefore, the products of φij in (14) uniquely determine the measure ν on
R

d
∑

mi defined by ν(d �x) = Eµ[∏l
i=1

∏mi

j=1 Yi(dxij )]. Thus, (14) holds for all φij

bounded and continuous. Now, apply Fubini’s Theorem again to get (13) for all
φij bounded and continuous, as required. �

In the following lemma, Bb(R
d,R+) denotes the bounded, nonnegative, real-

valued functions on R
d , and D0

bp
denotes the bounded pointwise closure of

D0 ⊂ Bb(R
d,R+), that is, the smallest set containing D0 that is closed under

bounded pointwise convergence.

LEMMA 3.6. Suppose that µ,µ′ ∈ MF (MF (Rd)m) and assume that

D0 ⊂ Bb(R
d,R+) satisfies D0

bp = Bb(R
d,R+). If for all hj ∈ D0,

Eµ

[
e
−∑m

j=1 Yj (hj )] = Eµ′
[
e
−∑m

j=1 Yj (hj )]
,(15)

then µ = µ′.

PROOF. By dominated convergence, the identity (15) extends to all bounded,
nonnegative, Borel measurable hj . The result follows by using a standard
monotone class argument (e.g., see Theorem 4.3 in the Appendix of [2]) on

H ≡ {
 ∈ Bb(MF (Rd)m,R) :Eµ[
( �Y )] = Eµ′ [
( �Y)]}.(16) �

LEMMA 3.7. Let µ ∈ MF (MF (Rd)m). Suppose that there exists a δ > 0 such
that for all θi < δ,

Eµ

[
e

∑m
i=1 θiYi(1)] < ∞.(17)

Then for every bounded continuous 0 ≤ ψi , the quantity Eµ[e−∑m
i=1 Yi(ψi)] is

uniquely determined by the collection of mixed moments{
Eµ

[
m∏

i=1

Yi(hi)
ni

]
: 0 ≤ hi ≤ 1 is continuous, i = 1, . . . ,m

}
.

PROOF. Without loss of generality, we may assume that m > 0. Given
bounded continuous ψi ≥ 0, define hi = ψi/‖ψi‖∞ ∈ [0,1] (set hi = 0 if ψi ≡ 0).

For Re zi < δ, i = 1, . . . ,m, let

f (z1, . . . , zm) = Eµ

[
e�z· �Y(�h)].
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Use (17), the Taylor expansion for the exponential function and Fubini’s Theorem
to see that for ‖�z‖∞ < δ,

f (z1, . . . , zm) =
∞∑
l=0

1

l!Eµ

[ ∑
�n∈Z

m+ :
∑

ni=l

l!∏m
i=1 ni !

m∏
i=1

(ziYi(hi))
ni

]
.

Hence, the mixed moments of the form

Eµ

[
m∏

i=1

Yi(hi)
ni

]
, ni ∈ Z+,(18)

uniquely determine f (z) for ‖�z‖∞ < δ. A simple application of dominated con-
vergence and (17) allows us to take the differentiate through the expectation
and show that for fixed z1, . . . , zj−1, zj+1, . . . , zm satisfying Re zi < δ for i �= j ,
f (z) is analytic in Re zj < δ (and not just |zj | < δ). Now, use induction on
j ≤ m to see that moments of the form (18) uniquely determine f (z1, . . . , zm) for
Re z1, . . . ,Re zj−1 < δ, |zj | ∨ · · · ∨ |zm| < δ. Here, one uses the aforementioned
analyticity in Re zj < δ in the induction step. Apply this result at zi = −‖ψi‖∞ to
complete the proof. �

4. Applications of Theorem 2.6. In this section, we prove Propositions 2.3
and 2.4, which relate the asymptotic formulae for the r̂-point functions for various
spread-out models above their critical dimensions to the convergence to CSBM.
Recall that φk(x) = eik·x . In this section, we fix our convergence-determining class
of functions for MF (Rd) to be

F = {φk : k ∈ R
d},(19)

which clearly satisfies Assumption 2.5.
The following lemma will be used to verify the exponential moment hypothesis

of Theorem 2.6 for N0. The branching and diffusion parameters for N0 are taken
to be 1. The lemma is well known, but we include a proof for completeness.

LEMMA 4.1. For every b ≥ 0, the following hold:
1. for every λ > 0, N0(Xb(1) = λ) = 0;
2. for every l and �t ∈ [0,∞)l , there exists a δ = δ(�t, b) > 0 such that for θi < δ,

EN0

[
Xb(1)e

∑l
i=1 θiXti

(1)] < ∞;(20)

3. for every m and �t ∈ [0,∞)m and every ε > 0, there exists a δ = δ(�t, ε) > 0
such that for θi < δ,

EN0

[
e

∑m
i=1 θiXti

(1)I{S>ε}
]
< ∞.(21)
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PROOF. The first assertion is trivial by (2) and the fact that N0(X0(1) > 0) = 0.
As above, we may assume b > 0 in part 2. The fact that Xt = 0M for t ≥ S

N0-a.e. implies that for each η > 0,

Xb(1) ≤ I{S>b}Cηe
ηXb(1), N0-a.e.

Therefore, part 2 will follow from part 3 with ε = b = tl+1 and m = l + 1.
For the last claim of the lemma, we abuse our notation and let EX0 also denote

expectation for our standard super-Brownian motion starting at X0. Let Gt denote
the canonical filtration generated by the coordinates Xs of our super-Brownian
motion for s ≤ t . If H :MF (Rd) → [0,∞) is continuous, then for t ≥ s > 0,

EN0[H(Xt)|Gs] = EXs [H(Xt−s)], N0-a.e.(22)

This is easily derived, for example, from the convergence of branching random
walk to N0 mentioned in Section 2, the Markov property for branching random
walk and the analogous convergence result for super-Brownian motion (e.g., The-
orem II.5.2 of [8]).

We may assume, without loss of generality, that 0 < ε < ti < ti+1 for each i.
Observe from (22) that

EN0

[
e

∑m
i=1 θiXti

(1)I{S>ε}
]

= EN0

[
EXtm−1

[
e
θmXtm−tm−1 (1)]

e
∑m−1

i=1 θiXti
(1)I{S>ε}

]
(23)

≤ EN0

[
e

2θmXtm−1 (1)
e

∑m−1
i=1 θiXti

(1)I{S>ε}
]
,

where the inequality holds for θm sufficiently small depending on tm − tm−1, by
Lemma III.3.6 of [8]. The last line of (23) has no tm dependence and, proceeding
by induction, it is enough to show that for sufficiently small θ > 0,

EN0

[
eθXt1 (1)I{S>ε}

]
< ∞.(24)

For θ > 0 small enough [depending on (ε, t1)], as in (23), the left-hand side is

EN0

[
EN0

[
eθXt1 (1)|Gε

]
I{S>ε}

] ≤ EN0

[
e2θXε(1)I{S>ε}

]
≤ EN0

[
e2θXε(1)I{Xε(1)>0}

]
(25)

=
(

2

ε

)2 ∫ ∞
0

e2θxe−2x/ε dx,

where the last equality holds by (2). The last line of (25) is finite for sufficiently
small θ > 0 (depending on ε) and the result follows. �

PROOF OF PROPOSITION 2.3. Define µn,s,N0,s ∈ MF (D(MF (Rd))) by

µn,s(A) =
∫
A

Xs(1) dµn,

(26)
N0,s(A) =

∫
A

Xs(1) dN0.
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That these measures are finite follows from the fact that for s > 0,

µn,s(D) = Eµn[Xs(1)] → EN0[Xs(1)] < ∞.(27)

For all l ≥ 0 and �k ∈ R
dl ,

Eµn,s

[
l∏

i=1

Xti (φki
)

]
= Eµn

[
Xs(1)

l∏
i=1

Xti (φki
)

]

→ EN0

[
Xs(1)

l∏
i=1

Xti (φki
)

]
(28)

= EN0,s

[
l∏

i=1

Xti (φki
)

]
,

where, even in the l = 0 case, the presence of the factor Xs(1) ensures that the
convergence in (28) follows from (3).

By Lemma 4.1, we have that

EN0,s

[
e

∑m
i=1 θiXti

(1)] < ∞,(29)

for θi > 0 sufficiently small depending on �t and s. In view of (27), (28) and (29),
we may apply Theorem 2.6 to the measures µn,s,N0,s to obtain

µn,sπ
−1
�t

w	⇒ N0,sπ
−1
�t .

Thus, (4) holds for every bounded continuous F . The extension to bounded, Borel-
measurable F satisfying N0,sπ

−1
�t (DF ) = 0 is standard. For F as in the theorem

we may assume that F ≥ 0. The extension to F dominated by a multinomial Q is
obtained by an easy uniform integrability argument since limn→∞ Eµn,s [Q( �X�t )] =
EN0,s

[Q( �X�t )] .
To prove the second claim, we define

Gs ≡


0, if Xs(1) = 0,
I{Xs(1)>λ}

Xs(1)
, otherwise.

Then Gs is continuous, except when Xs(1) = λ, and is bounded above by 1
λ

. Thus,
Lemma 4.1 and (4) show that for F as in Proposition 2.3,

Eµn[Xs(1)GsF ( �X�t )] → EN0[Xs(1)GsF ( �X�t )],
that is,

Eµn

[
I{Xs(1)>λ}F( �X�t )

] → EN0

[
I{Xs(1)>λ}F( �X�t )

]
. �

PROOF OF PROPOSITION 2.4. We apply Theorem 2.6 to the finite measures
µε

n and N
ε
0 defined by

µε
n(•) = µn(•, S > ε), N

ε
0(•) = N0(•, S > ε).(30)
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Fix l ∈ Z+ and �t ∈ [0,∞)l . By Lemma 4.1, for δ(�t, ε) > 0 sufficiently small and
for θi < δ,

EN
ε
0

[
e

∑l
i=1 θiXti

(Rd )] < ∞,

so that the first condition of Theorem 2.6 is satisfied. The second condition is
trivially true if any ti = 0, so we assume that ti > 0 for each i.

Let η > 0. Fix l ∈ Z+, �k ∈ R
dl and write F( �X�t ( �φ)) ≡ ∏l

i=1 Xti (φki
). By hy-

pothesis [repeat ti’s in (3)], we have

Eµn[F 2( �X�t (�1))] → EN0[F 2( �X�t (�1))] < ∞,

so there exists C0(�t) such that supn Eµn[F 2( �X�t (�1))]1/2 ≤ C0. Choose λ0 =
λ0(η,C0, ε) sufficiently small so that

N0
(
Xε(1) ∈ (0, λ0]) <

(
η

6C0

)2

.(31)

By part 2 of Proposition 2.3 with F ≡ 1, we have

µn

(
Xε(1) > λ0

) → N0
(
Xε(1) > λ0

)
.

Combining this with (6) gives µn(Xε(1) ∈ (0, λ0]) → N0(Xε(1) ∈ (0, λ0]). It fol-
lows from (31) that there exists n0 such that for all n ≥ n0,

µn

(
Xε(1) ∈ (0, λ0]) <

(
η

3C0

)2

.

Using I{S>ε} = I{Xε(1)>λ0} + I{Xε(1)∈(0,λ0]}, N0-a.e., we have∣∣Eµn

[
F( �X�t ( �φ))I{S>ε}

] − EN0

[
F( �X�t ( �φ))I{S>ε}

]∣∣
≤ ∣∣Eµn

[
F( �X�t ( �φ))I{Xε(1)>λ0}

] − EN0

[
F( �X�t ( �φ))I{Xε(1)>λ0}

]∣∣
(32)

+ ∣∣Eµn

[
F( �X�t ( �φ))I{Xε(1)∈(0,λ0]}

]∣∣
+ ∣∣EN0

[
F( �X�t ( �φ))I{Xε(1)∈(0,λ0]}

]∣∣.
We bound the right-hand side of (32) as follows. By part 2 of Proposition 2.3,

the first absolute value is less than η/3 for n sufficiently large. On the second term,
we use the Cauchy–Schwarz inequality to obtain

Eµn

[|F( �X�t )|I{Xε(1)∈(0,λ0]}
] ≤ Eµn[F 2( �X�t (�1))]1/2µn

(
Xε(1) ∈ (0, λ0])1/2 ≤ C0η

3C0
.

The third term is handled similarly. Thus, for n sufficiently large,∣∣Eµε
n
[F( �X�t ( �φ))] − EN

ε
0

[
F( �X�t ( �φ))I{S>ε}

]∣∣ < η,

which proves the second condition of Theorem 2.6 for {µε
n}n≥0 and N

ε
0. The result

follows by Theorem 2.6. �
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