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EXTREMAL BEHAVIOR OF STOCHASTIC INTEGRALS DRIVEN
BY REGULARLY VARYING LÉVY PROCESSES

BY HENRIK HULT1 AND FILIP LINDSKOG

Brown University and KTH Stockholm

We study the extremal behavior of a stochastic integral driven by a mul-
tivariate Lévy process that is regularly varying with index α > 0. For pre-
dictable integrands with a finite (α + δ)-moment, for some δ > 0, we show
that the extremal behavior of the stochastic integral is due to one big jump of
the driving Lévy process and we determine its limit measure associated with
regular variation on the space of càdlàg functions.

1. Introduction. Stochastic integrals driven by Lévy processes constitute a
broad and popular class of semimartingales used as the driving noise in a wide
variety of probabilistic models, for instance, the evolution of assets prices in math-
ematical finance. The extremal behavior of these processes is of importance when
computing failure probabilities in various systems, for example, the probability
that a functional of the sample path of the process exceeds some high threshold.
In the presence of heavy tails of the underlying noise process such failures are of-
ten most likely due to one or a few unlikely events, such as large discontinuities
(jumps) of the driving noise process. In the presence of Pareto-like tails of the un-
derlying distributions regular variation on the space of càdlàg functions provides
a useful framework to describe the extremal behavior of stochastic processes and
approximate failure probabilities. In this paper we study the extremal behavior of
stochastic integrals with respect to regularly varying Lévy processes. A first step
toward studying the extremes of these processes was communicated to the authors
by D. Applebaum [2].

The notion of regular variation is fundamental in various fields of applied prob-
ability. It serves as domain of attraction condition for partial sums of i.i.d. random
vectors [28] or for componentwise maxima of i.i.d. random vectors [26], and it
occurs in a natural way for the finite dimensional distributions of the stationary so-
lution to stochastic recurrence equations [16, 22], including ARCH and GARCH
processes; see [5], compare Section 8.4 in [14]. Let us consider an Rd -valued
vector X. We call it regularly varying if there exists a sequence (an) of positive

numbers such that an ↑ ∞ and a nonzero Radon measure µ on the σ -field B(R
d

0 )
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of the Borel sets of R
d

0 = R
d\{0} (with R = [−∞,∞]) such that

µ(R
d\Rd) = 0 and nP(a−1

n X ∈ ·) v→ µ(·),(1.1)

where
v→ denotes vague convergence on B(R

d

0 ). We write X ∈ RV((an),µ,R
d

0 ).
For details on the concept of vague convergence, we refer to [10], [21] and [26].
It can be shown that (1.1) necessarily implies that µ(uA) = u−αµ(A) for some
α > 0, all u > 0 and all Borel sets A bounded away from 0. Therefore, we also
refer to regular variation with index α in this context.

Definition (1.1) of regular variation has the advantage that it can be extended
to random elements X with values in a separable Banach space [3] or certain lin-
ear metric spaces. We will use a formulation introduced in [11]. There the authors
used regular variation of stochastic processes in the space of continuous functions
and in the Skorokhod space D[0,1] in connection with max-stable distributions
to extend many of the important results in classical extreme value theory to an
infinite-dimensional setting. See also [15] for related results. This construction
was taken up in [17], where regular variation of stochastic processes with values
in the space D = D([0,1],Rd) of Rd -valued càdlàg functions on [0,1], equipped
with the J1-topology (see [6]), was considered. There regular variation of càdlàg
processes was characterized in terms of regular variation of their finite dimensional
distributions in the sense of (1.1) and a relative compactness condition in the spirit
of weak convergence of stochastic processes [6]. Then an application of the con-
tinuous mapping theorem yields the tail behavior of interesting functionals.

In this paper we study the extremal behavior of a stochastic integral (Y · X)

given by

(Y · X)t =
∫ t

0
Ys dXs =

(∫ t

0
Y (1)

s dX(1)
s , . . . ,

∫ t

0
Y (d)

s dX(d)
s

)
,(1.2)

t ∈ [0,1], where X = (X
(1)
t , . . . ,X

(d)
t )t∈[0,1] is a d-dimensional Lévy process,

which is regularly varying with index α > 0. The stochastic process Y =
(Y

(1)
t , . . . , Y

(d)
t )t∈[0,1] is predictable càglàd and satisfies the moment condition

E(supt∈[0,1] |Yt |α+δ) < ∞ for some δ > 0, where | · | denotes the Euclidean norm
on Rd .

It is known (see, e.g., [17]) that the extremal behavior of a multivariate regularly
varying Lévy process is due to one large jump. Therefore, it is natural to guess that
the extremal behavior of the stochastic integral (1.2) is due to one large jump of
the underlying Lévy process. This is indeed the case. We begin by showing that
(see Theorem 3.3), for each ε > 0 (with |x|∞ = supt∈[0,1] |xt |),

lim
u→∞ P

(
d◦(u−1X, u−1�Xτ 1[τ,1]

)
> ε | |X|∞ > u

) = 0,

(1.3)
lim

u→∞ P
(
d◦(u−1X, u−1�Xτ 1[τ,1]

)
> ε | |�Xτ | > u

) = 0,
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where d◦ is the J1-metric on the space of càdlàg functions, τ denotes the time
of the jump of X with largest norm, and �Xτ = Xτ − Xτ−. The interpretation of
(1.3) is that when X is extreme (i.e., when |X|∞ > u and u is large) its sample
path is well approximated (in an asymptotic sense) by a step function with one
step. The second part of (1.3) implies that there is no other contribution to the
extremal behavior of X.

By the Lévy–Itô decomposition (e.g., [29], page 120), X can be decomposed
into a sum of two independent processes

X = X̃ + J,(1.4)

where J is a compound Poisson process with points (Zk, τk) and |Zk| ≥ 1, that is,

Jt =
Nt∑

k=1

Zk,

where (Nt), given by Nt = sup{k : τk ≤ t}, is a Poisson process. With this repre-
sentation one can show that X is large, because one of the Zk’s is large whereas
X̃ has light tails and does not have any influence on the extremal behavior of X.
Furthermore, the stochastic integral may be written as

(Y · X)t = (Y · X̃)t +
Nt∑

k=1

Yτk
Zk.

Throughout the paper xy denotes componentwise multiplication, that is, xy =
(x(1)y(1), . . . , x(d)y(d)). If Y is predictable and E(|Y|α+δ∞ ) < ∞ for some δ > 0,
then it seems plausible, in the light of a classical result by Breiman [9] for the
tail behavior of products of independent random variables, that (Y · X) is well ap-
proximated by Yτ Zk∗1[τ,1] = Yτ�Xτ 1[τ,1] given that |(Y · X)|∞ is large. Here k∗
denotes the index of the large jump, τk∗ = τ . Indeed, Theorem 3.4 shows that

lim
u→∞ P

(
d◦(u−1(Y · X), u−1Yτ�Xτ 1[τ,1]

)
> ε | |(Y · X)|∞ > u

) = 0,

lim
u→∞ P

(
d◦(u−1(Y · X), u−1Yτ�Xτ 1[τ,1]

)
> ε | |Yτ�Xτ | > u

) = 0.

Moreover, the process (Y · X) is regularly varying on the space of càdlàg functions
(see Section 2 for details). That is, there exist a limit measure m∗ and a sequence
(an) of positive numbers such that an ↑ ∞ and for all sets B ∈ B(D) bounded
away from 0 with m∗(∂B) = 0, we have

nP
(
a−1
n (Y · X) ∈ B

) → m∗(B).

We compute the limit measure m∗ as

m∗(B) = E
(
µ

{
x ∈ R

d

0 : YV x1[V,1] ∈ B
})

,

where µ is the regular variation limit measure (on R
d

0 ) of the jumps Zk of the Lévy
process and V is uniformly distributed on [0,1) and independent of the process Y.
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As a simple illustration, we consider a univariate Lévy process (Xt)t∈[0,1] with
P(X1 > u) = u−αL(u) for some slowly varying function L. If (Yt )t∈[0,1] is a non-
negative process that satisfies the relevant conditions, then a straightforward appli-
cation of Theorem 3.4 and the Continuous Mapping Theorem yields

P
(∫ t

0
Yv dXv > u

)
∼ P

(
sup

s∈[0,t]

∫ s

0
Yv dXv > u

)

∼ E
(∫ t

0
Yα

v dv

)
u−αL(u),

where f (u) ∼ g(u) means that limu→∞ f (u)/g(u) = 1.
Stochastic integrals of the type (1.2) are encountered in many applications, in

particular, in mathematical finance. Empirical evidence of regularly varying dis-
tributions in finance is recorded, for instance, in [1, 14] and [23]. In a financial
context the process Y may be interpreted as a volatility process and the integral
(1.2) the evolution of the log prices of d assets.

The paper is organized as follows. In Section 2 we recall the concept of reg-
ular variation for stochastic processes with càdlàg sample paths (regular varia-
tion on D). Section 3 contains the main results, which include an extension of
Breiman’s theorem to independent càdlàg processes, a result on approximating
the trajectories of regularly varying processes, and the main theorem of this paper
concerning the extremal behavior of stochastic integrals. The remaining Sections
4 and 5 contain the proofs and some auxiliary results.

2. Regular variation and Lévy processes. Let us recall the notion of regu-
lar variation for stochastic processes with sample paths in D = D([0,1],Rd); the
space of functions x : [0,1] → Rd that are right continuous with left limits. This
space is equipped with the so-called J1-metric (referred to as d◦ in [6]) that makes
it complete and separable.

We denote by SD the subspace {x ∈ D : |x|∞ = 1} (where |x|∞ = supt∈[0,1] |xt |)
equipped with the subspace topology. Define D0 = (0,∞] × SD, where (0,∞] is
equipped with the metric ρ(x, y) = |1/x − 1/y|, making it complete and sepa-
rable. Then the space D0, equipped with the metric max{ρ(x∗, y∗), d◦(̃x, ỹ)}, is
a complete separable metric space. For x = (x∗, x̃) ∈ D0, we write |x|∞ = x∗.
The topological spaces D\{0} (equipped with the subspace topology of D) and
(0,∞) × SD (equipped with the subspace topology of D0) are homeomorphic; the
mapping T given by T (x) = (|x|∞,x/|x|∞) is a homeomorphism. Hence,

B(D0) ∩ (
(0,∞) × SD

) = B
(
T (D\{0})),

that is, the Borel sets of B(D0) that are of interest to us can be identified with the
usual Borel sets on D (viewed in polar coordinates) that do not contain the zero
function. For notational convenience, we will throughout the paper identify D with
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the product space [0,∞) × SD so that expressions like D0\D (= {∞} × SD) make
sense.

Regular variation on D is naturally expressed in terms of so-called ŵ-
convergence of boundedly finite measures on D0. A boundedly finite measure
assigns finite measure to bounded sets. A sequence of boundedly finite measures
(mn)n∈N on a complete separable metric space E converges to m in the ŵ-topology,

mn
ŵ→ m, if mn(B) → m(B) for every bounded Borel set B with m(∂B) = 0. If the

state space E is locally compact, which D0 is not but R
d

0 (R = [−∞,∞]) is, then a
boundedly finite measure is called a Radon measure, and ŵ-convergence coincides

with vague convergence and we write mn
v→ m. Finally we note that if mn

ŵ→ m

and mn(E) → m(E) < ∞, then mn
w→ m with

w→ denoting weak convergence. For
details on ŵ-, vague- and weak convergence, we refer to [10], Appendix 2.

Recall the definition (1.1) of multivariate regular variation. For a stochastic
process with sample paths in D, regular variation can be formulated similarly. A
stochastic process X = (Xt )t∈[0,1] with sample paths in D is said to be regularly
varying if there exist a sequence (an), 0 < an ↑ ∞, and a nonzero boundedly finite
measure m on B(D0) with m(D0\D) = 0 such that, as n → ∞,

nP(a−1
n X ∈ ·) ŵ→ m(·) on B(D0).

We write X ∈ RV((an),m,D0). If ν is a measure satisfying, with (an) and m as

above, nν(an· )
ŵ→ m(·) on B(D0), then we write ν ∈ RV((an),m,D0) and simi-

larly for measures on Rd .

REMARK 2.1. (i) Theorem 10 in [17] gives necessary and sufficient condi-
tions for X ∈ RV((an),m,D0) in terms of multivariate regular variation for finite
dimensional distributions of X and a relative compactness condition.

(ii) If X ∈ RV((an),m,D0), then there exists α > 0 such that m(u·) = u−αm(·)
for every u > 0 (e.g., [19], Theorem 3.1). Therefore, we will also refer to regular
variation with index α > 0 or X ∈ RVα((an),m,D0).

For other equivalent formulations of regular variation on R
d

0 (most of which
can be modified into formulations of regular variation on D0), we refer to
[4, 5, 19, 26, 27]. For the classical theory of regularly varying functions, see [8].

The next theorem is an analogue of the Continuous Mapping Theorem for
weak convergence. Let Disc(h) denote the set of discontinuities of a mapping h

from a metric space E to a metric space E′. It is shown on page 225 in [6] that
Disc(h) ∈ B(E).

THEOREM 2.1. Let X = (Xt )t∈[0,1] be a stochastic process with sample
paths in D and let E′ be a complete separable metric space. Suppose that
X ∈ RV((an),m,D0) and that h : D0 → E′ is a measurable mapping satisfying
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m(Disc(h)) = 0 and h−1(B) is bounded in D0 for every bounded B ∈ B(E′). Then,
as n → ∞,

nP
(
h(a−1

n X) ∈ ·) ŵ→ m ◦ h−1(·) on B(E′).

See [17], Theorem 6, for a proof.

REMARK 2.2. The conclusion of the theorem holds for random vectors, that
is, if one considers X ∈ RV((an),m,R

d

0 ) and mappings h : R
d

0 → E′.

Given a regularly varying stochastic process X with limit measure m, the con-
tinuous mapping theorem allows us to derive the asymptotic behavior of mappings
h(X) of the sample paths, for instance, the componentwise supremum and average;(

sup
t∈[0,1]

∣∣X(1)
t

∣∣, . . . , sup
t∈[0,1]

∣∣X(d)
t

∣∣) and
(∫ 1

0
X(1)

s ds, . . . ,

∫ 1

0
X(d)

s ds

)
.

Thus, if we are interested in approximating the failure probability of a certain
regularly varying stochastic process X, expressed as the probability that h(X) is in
some set far away from the origin, then a natural approach is to first determine the
limit measure m of the processes and then apply the continuous mapping theorem.
This is the reason for our interest in finding the limit measure for various regularly
varying stochastic processes.

In the rest of this paper we will focus on the computation of the limit measure
of a stochastic integral with respect to a (multivariate) Lévy process. We first recall
some relevant results on regular variation of a Lévy process and, more generally,
of Markov processes with increments satisfying a condition of weak dependence
(see [17]).

We will frequently use the Lévy–Itô decomposition (e.g., [29], page 120) which
says that a Lévy process X on Rd with generating triplet (A,γ , ν) may be decom-
posed as

X = X̃ + J a.s.,(2.1)

where, for almost all ω ∈ �,

X̃t (ω) = lim
γ→0

∫
(0,t]×{γ≤|x|<1}

x
{
ξ
(
d(s,x),ω

) − dsν(dx)
} + γ t + Wt (ω),(2.2)

Jt (ω) =
∫
(0,t]×{|x|≥1}

xξ
(
d(s,x),ω

)
,(2.3)

ξ is a Poisson random measure with mean measure λ × ν [ξ ∼ PRM(λ × ν), λ

denoting Lebesgue measure], and W is a Gaussian process with stationary and
independent increments. The processes X̃ and J are independent.

For a Lévy process X regular variation on D is intimately connected to regular
variation of the Lévy measure ν of X1. This is summarized in the following lemma.
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LEMMA 2.1. Let X be a Lévy process with Lévy measure ν. The following
statements are equivalent:

(i) X1 ∈ RV((an),µ,R
d

0 ),

(ii) ν ∈ RV((an),µ,R
d

0 ),
(iii) X ∈ RV((an),m,D0) with mt = tµ for every t ∈ [0,1].

The proof of these statements follows by combining Proposition 3.1 in [18]
and Theorem 10 in [17]. In the univariate case (d = 1) a proof of the equivalence
(i) ⇔ (ii) was given in [13]. The limit measure m in (iii) is concentrated on the set
of step functions with one step; that is, m(Vc) = 0, where Vc is the complement
of

V = {
x ∈ D : x = z1[v,1], v ∈ [0,1), z ∈ Rd\{0}}(2.4)

(see [17], Theorem 15). Moreover, the measure m has the representation (see [20],
Remark 2.1)

m(B) =
∫
[0,1]

∫
R

d
0

1B

(
y1[t,1]

)
µ(dy) dt,(2.5)

where y1[t,1] is the element f ∈ D given by f (u) = 0 for u ∈ [0, t) and f (u) = y
for u ∈ [t,1].

3. Main results. We assume that all random elements are defined on a filtered
complete probability space (�,F , (Ft )t∈[0,1],P) satisfying the usual hypotheses
(see [25], page 3).

3.1. Regular variation for products of independent stochastic processes. Be-
fore we study the stochastic integral in more detail in Section 3.3, we first consider
a much simpler situation; products of independent stochastic processes. In this
section we will extend a well-known result by Breiman [9], Proposition 3, con-
cerning the tail behavior of products of independent random variables to stochastic
processes with sample paths in D. Breiman’s result (more precisely, a slight gener-
alization of this result) says that for independent nonnegative random variables Y

and X such that X is regularly varying with index α and E(Y α+δ) < ∞ for some
δ > 0, as x → ∞,

[P(X > x)]−1 P(YX > x) → E(Y α).

Since regular variation of X can be formulated in terms of vague convergence on
(0,∞], there exist a sequence (an), 0 < an ↑ ∞, and a nonzero Radon measure µ

on B((0,∞]) such that, as n → ∞,

nP(a−1
n X ∈ ·) v→ µ(·) on B

(
(0,∞]),
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and µ((u,∞]) = cu−α . Then Breiman’s result may be written as

nP(a−1
n YX ∈ ·) v→ E

(
µ{x ∈ (0,∞] :Yx ∈ ·})

(3.1)
= E(Y α)µ(·) on B

(
(0,∞]).

This result was extended to regularly varying random vectors in [5], Proposi-
tion A.1. Our version of Breiman’s result for stochastic processes is Theorem 3.1
below. Given an element y ∈ D, let φy : D → D be given by

φy(x) = yx = (
y(1)x(1), . . . , y(d)x(d)).(3.2)

Then φy is measurable and continuous at those x for which Disc(x)∩ Disc(y) = ∅

(see [30]).

THEOREM 3.1. Let X and Y be independent stochastic processes with sam-
ple paths in D. Suppose that X ∈ RVα((an),m,D0), that E(|Y|α+δ∞ ) < ∞ for
some δ > 0 and that mink=1,...,d |Y (k)|∞ > 0 a.s. If E(m(Disc(φY))) = 0, then,
as n → ∞,

nP(a−1
n YX ∈ ·) ŵ→ E(m ◦ φ−1

Y (·)) = E(m{x ∈ D0 : Yx ∈ ·}) on B(D0).

REMARK 3.1. (i) If the process Y has continuous sample paths a.s., then
E(m(Disc(φY))) = 0.

(ii) If X is a Lévy process, then E(m(Disc(φY))) = 0 for all càdlàg processes Y
(see Lemma 5.1).

(iii) If E(m ◦ φ−1
Y (·)) is a nonzero measure, then YX is regularly varying, that

is, YX ∈ RVα((an),E(m ◦ φ−1
Y (·)),D0).

(iv) If X is a Lévy process, then, by (2.5),

E
(
m ◦ φ−1

Y ({z ∈ D0 : |z|∞ ≥ 1})) = E
(
µ

{
x ∈ R

d

0 :
∣∣Yx1[V,1]

∣∣∞ ≥ 1
})

,

where V is uniformly distributed on [0,1) and independent of Y. Set

Aε,δ =
{
ω ∈ � : min

k=1,...,d
sup

t∈[0,1−δ]
∣∣Y (k)

t (ω)
∣∣ > ε

}
.

By assumption and since Y has right-continuous sample paths, there exist
δ ∈ (0,1) and ε, η > 0 such that P(Aε,δ) > η. Hence,

E
(
µ

{
x ∈ R

d

0 :
∣∣Yx1[V,1]

∣∣∞ ≥ 1
})

≥ E
(
µ

{
x ∈ R

d

0 :
∣∣Yx1[V,1]

∣∣∞ ≥ 1
};Aε,δ,V ≤ δ

)
> µ

{
x ∈ R

d

0 : max
k=1,...,d

∣∣x(k)
∣∣ > 1/ε

}
ηδ > 0.

Hence, E(m ◦ φ−1
Y (·)) is a nonzero measure for every Y satisfying the conditions

of the theorem.
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REMARK 3.2. It was shown by Embrechts and Goldie [12], corollary to The-
orem 3, that for nonnegative random variables X and Y with X regularly varying
with index α and P(Y > x) = o(P(X > x)) as x → ∞, it holds that YX is reg-
ularly varying with index α. However, for independent random vectors X and Y,
regular variation of X and P(|Y| > x) = o(P(|X| > x)) as x → ∞ is not sufficient
for regular variation of YX. Therefore, it is, in general, not possible to replace the
moment condition in Theorem 3.1 by P(|Y|∞ > x) = o(P(|X|∞ > x)) as x → ∞.

3.2. Approximating the extreme sample paths of regularly varying stochastic
processes. As explained in Section 2, the limit measure associated with regular
variation of a stochastic process in D characterizes its extremal behavior. More-
over, the continuous mapping theorem can be applied to derive the tail behavior
of functionals of its sample paths. However, these results concern only the distri-
butional aspects of the extremal behavior. In some cases we would like stronger
results on approximating the extremal behavior of a stochastic process. We take
the following approach. Consider two stochastic processes X and Y with sample
paths in D. If, given that Y is extreme (i.e., |Y|∞ > u for u large), the distance
between the rescaled processes u−1X and u−1Y is small with high probability,
then the extreme sample path behavior of Y may be approximated by that of X. To
conclude that there is no other contribution to the extreme sample paths of Y we
also need that the distance between u−1X and u−1Y is small when |X|∞ > u for
large u. We say that the extreme sample paths of Y can be approximated by those
of X and vice versa if, for every ε > 0,

lim
u→∞ P

(
d◦(u−1X, u−1Y) > ε | |Y|∞ > u

) = 0,

(3.3)
lim

u→∞ P
(
d◦(u−1X, u−1Y) > ε | |X|∞ > u

) = 0.

We typically look for a simple process X (e.g., a step function) such that (3.3)
holds.

Theorem 3.2 below says that if (3.3) holds and X is regularly varying, then Y is
regularly varying with the same limit measure. It is similar in spirit to the following
well-known result for weak convergence: If (E, ρ) is a metric space and (Xn,Yn)

are random elements of E × E, then Xn
d→ X and ρ(Xn,Yn)

d→ 0 imply Yn
d→ X

(see, e.g., [7], Theorem 3.1).

THEOREM 3.2. Let X and Y be stochastic processes with sample paths in D.
If X ∈ RV((an),m,D0) and (3.3) holds, then Y ∈ RV((an),m,D0).

Next we consider a regularly varying Lévy process X ∈ RV((an),m,D0). Let
V ⊂ D be the family of step functions in D with one step in (2.4). As already
mentioned, the limit measure m puts all its mass on this set. The next theorem is a
slightly stronger version of this result: it describes, in the sense of (3.3), the sample
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paths of X given that |X|∞ > u for u large. First we need some notation. Define
τ : D → [0,1] as the time of the jump with largest norm of an element x ∈ D. If
there are several jumps of equal size, we let τ(x) denote the first of them. More
precisely,

τ(x) = lim
ε↓0

inf
{
t ∈ (0,1) : |�xt | = sup{|�xs | : s ∈ (0,1), |�xs | > ε}}.(3.4)

If the set in (3.4) is empty, then we put τ(x) = 1. The next result says that Lévy
process X ∈ RV((an),m,D0) is asymptotically close to the step function given by
�Xτ(X)1[τ(X),1] in the sense of (3.3).

THEOREM 3.3. Let X ∈ RV((an),m,D0) be a Lévy process. Then, for every
ε > 0,

lim
u→∞ P

(
d◦(u−1X, u−1�X1[τ(X),1]

)
> ε | |X|∞ > u

) = 0,

(3.5)
lim

u→∞ P
(
d◦(u−1X, u−1�Xτ(X)1[τ(X),1]

)
> ε | ∣∣�Xτ(X)

∣∣ > u
) = 0

and �X1[τ(X),1] ∈ RV((an),m,D0).

REMARK 3.3. If X and Y satisfy the hypotheses of Theorem 3.1, then one
can also show that

lim
u→∞ P

(
d◦(u−1YX, u−1Y�Xτ 1[τ,1]

)
> ε | |YX|∞ > u

) = 0,

lim
u→∞ P

(
d◦(u−1YX, u−1Y�Xτ 1[τ,1]

)
> ε | ∣∣Y�Xτ 1[τ,1]

∣∣∞ > u
) = 0,

with τ = τ(X).

3.3. Extremal behavior of stochastic integrals. The main result in this paper
concerns the extremal behavior of a stochastic integral (Y · X) given by

(Y · X)t =
(∫ t

0
Y (1)

s dX(1)
s , . . . ,

∫ t

0
Y (d)

s dX(d)
s

)
, t ∈ [0,1],

where X ∈ RVα((an),m,D0) is a regularly varying Lévy process and Y is
an Rd -valued predictable càglàd process that satisfies the moment condition
E(|Y|α+δ∞ ) < ∞, for some δ > 0. We refer to [25] for an account on stochastic
integration. The intuitive idea is the following. Given that |X|∞ is large, Theo-
rem 3.3 states that X and �Xτ 1[τ,1] are asymptotically close, that is,

X ≈ �Xτ 1[τ,1],
where τ = τ(X) is the time of the jump with largest norm. This suggests that, given
that |(Y · X)|∞ is large, we can replace X by �Xτ 1[τ,1] in the stochastic integral
and thereby justify the following approximation, in the sense of (3.3):

(Y · X) ≈ Yτ�Xτ 1[τ,1].
We have the following result:
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THEOREM 3.4. Let X be a Lévy process satisfying X1 ∈ RVα((an),µ,R
d

0 )

and let Y be a predictable càglàd process satisfying E(|Y|α+δ∞ ) < ∞ for some
δ > 0 and mink=1,...,d |Y (k)|∞ > 0 a.s. Then, for every ε > 0,

lim
u→∞ P

(
d◦(u−1(Y · X), u−1Yτ�Xτ 1[τ,1]

)
> ε | |(Y · X)|∞ > u

) = 0,(3.6)

lim
u→∞ P

(
d◦(u−1(Y · X), u−1Yτ�Xτ 1[τ,1]

)
> ε | |Yτ�Xτ | > u

) = 0,(3.7)

where τ = τ(X). Moreover, (Y · X),Yτ�Xτ 1[τ,1] ∈ RVα((an),m
∗,D0) with

m∗(B) = E
(
µ

{
x ∈ R

d

0 : YV x1[V,1] ∈ B
})

,

where V is uniformly distributed on [0,1) and independent of Y.

The idea behind the proof is the following. Using the Lévy–Itô decomposi-
tion (2.1), we can write (Y · X) = (Y · J) + (Y · X̃). Using the fact that X̃ has finite
moments of all orders, we find that the extremal behavior will be determined by
that of

(Y · J)t =
Nt∑

k=1

Yτk
Zk,

where (Zk) is an i.i.d. sequence with Zk ∈ RV((an),µ,R
d

0 ) and independent of
the Poisson process (Nt). Since Y is predictable and τk is a stopping time, Yτk

and
Zk are independent. Because of the moment condition, the multivariate version of
Breiman’s result gives the tail behavior of the product Yτk

Zk . Moreover, since the
Zk’s are i.i.d. and (Nt ) is a Poisson process, we expect that asymptotically only one
of the Zk’s will be large and, hence, that one term Yτk

Zk will dominate the sum of
the rest, that is, the extremal behavior of (Y · J) is determined by Yτk∗ Zk∗ , where
k∗ is the index of the Zk’s with largest norm. The main difficulty comes from the
fact that the terms Yτk

Zk may be dependent. Note that since we only require that Y
is predictable, Yτk

may depend on the variables τ1, . . . , τk−1 and Z1, . . . ,Zk−1, as
well as on (Ys; s < τk). To overcome this difficulty, we need a number of technical
lemmas presented in Section 5. The limit measure for the stochastic integral (Y ·J)

is computed in Proposition 5.1.
Let us now consider a couple of simple univariate examples that illustrate some

of the applications of Theorem 3.4.

EXAMPLE 3.1. Let X be a Lévy process with X1 ∈ RVα((an),µ,R0) and
with µ((u,∞)) = cu−α for some c > 0. Let Y satisfy the conditions of Theo-
rem 3.4. If Yt > 0 for all t , we may think of Y as a volatility process and (Y · X)t
as the logarithm of an asset price at time t . Then (Y · X) ∈ RVα((an),m

∗,D0),
where m∗ is given by

m∗(B) = E
(
µ

{
x ∈ R0 :xYV 1[V,1] ∈ B

})
,
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and V is uniformly distributed on [0,1) and independent of Y . In particular, ap-
plying the continuous mapping theorem with the functional πt : D → R given by
πt(z) = zt , we obtain, for each u > 0,

nP
(
a−1
n (Y · X)t > u

) = nP
(
a−1
n (Y · X) ∈ π−1

t

(
(u,∞)

))
→ E

(
µ

{
x ∈ R0 :YV x1[V,1] ∈ π−1

t

(
(u,∞)

)})
= E

(
µ{x ∈ R0 :YV x > u}1[0,t](V )

)
= E

(
Yα

V 1[0,t](V )
)
µ

(
(u,∞)

)
= c

∫ t

0
E(Y α

s ) dsu−α.

EXAMPLE 3.2. Consider the previous example and the supremum-functional
ht : D → R given by ht (z) = sups∈[0,t] zs . We obtain, for each u > 0,

nP
(
a−1
n sup

s∈[0,t]
(Y · X)s > u

)
= nP

(
a−1
n (Y · X) ∈ h−1

t

(
(u,∞)

))
→ E

(
µ

{
x ∈ R0 :YV x1[V,1] ∈ h−1

t

(
(u,∞)

)})
= E

(
µ{x ∈ R0 :YV x > u}1[0,t](V )

)
= E

(
Yα

V 1[0,t](V )
)
µ

(
(u,∞)

)
= c

∫ t

0
E(Y α

s ) dsu−α.

As a consequence, we obtain that

lim
u→∞

[
P
(
(Y · X)t > u

)]−1
P
(

sup
s∈[0,t]

(Y · X)s > u

)
= 1.

This extends the tail-equivalence for heavy-tailed Lévy processes [13, 31] to sto-
chastic integrals driven by regularly varying Lévy processes. Note that a multivari-
ate version of this result is also at hand.

4. Proofs. This section contains the proofs of the main results. For auxiliary
results and technical lemmas, we refer to Section 5.

Throughout the rest of the paper we use the notation Bx,r for the open ball
in a metric space (E, ρ) with radius r , that is, Bx,r = {y ∈ E :ρ(y,x) < r}. The
complement of a set B ⊂ E is denoted by Bc. The space E will usually be D or
Rd .

REMARK 4.1. The Portmanteau theorem implies that X ∈ RV((an),m,D0) if
and only if lim supn→∞ nP(X ∈ anF ) ≤ m(F) and lim infn→∞ nP(X ∈ anG) ≥
m(G) for all closed F and open G in D bounded away from 0. If there exist



EXTREMAL BEHAVIOR OF STOCHASTIC INTEGRALS 321

arbitrary small numbers δ > 0 such that limn→∞ nP(|X|∞ ≥ anδ) = m(Bc
0,δ),

then it is straightforward to show that X ∈ RV((an),m,D0) if and only if
lim supn→∞ nP(X ∈ anF ) ≤ m(F) for all closed F in D bounded away from 0.

PROOF OF THEOREM 3.1. Take B ∈ B(D0) ∩ D, bounded away from 0,
that is, B ⊂ Bc

0,ε for some ε > 0, with E(m ◦ φ−1
Y (∂B)) = 0. By assumption,

E(m(Disc(φY))) = 0, and hence, there exists an �0 ∈ F with P(�0) = 1 such that
m(Disc(φY(ω)) = 0 and Y(ω) �= 0 for ω ∈ �0. Let dB denote the shortest distance
to the set B: dB = inf{|x|∞ : x ∈ B}. We have

nP(a−1
n YX ∈ B)

= nP
(
a−1
n Y1(0,M)(|Y|∞)X ∈ B

) + nP
(
a−1
n Y1[M,∞)(|Y|∞)X ∈ B

)
=

∫
{0<|y|∞<M}

nP(a−1
n yX ∈ B)︸ ︷︷ ︸
fn(y)

P(Y ∈ dy)

+ nP
(
a−1
n Y1[M,∞)(|Y|∞)X ∈ B

)
.

Applying Theorem 2.1 yields limn→∞ fn(y) = m ◦ φ−1
y (B) for each y �= 0. We

want to show that

lim
n→∞

∫
{0<|y|∞<M}

fn(y)P(Y ∈ dy) = E
(
1(0,M)(|Y|∞)m ◦ φ−1

Y (B)
)
,(4.1)

lim sup
n→∞

nP
(
a−1
n Y1[M,∞)(|Y|∞)X ∈ B

) ≤ C(M), lim
M→∞C(M) = 0,(4.2)

from which the conclusion follows by letting M → ∞. To show (4.1), we use
Pratt’s theorem ([24], Theorem 1). For 0 < |y|∞ < M ,

fn(y) ≤ nP(a−1
n |X|∞ > dB/M) = Gn,

where limn→∞ Gn = G = m(Bc
0,dB/M) < ∞. Clearly, as n → ∞,∫

{0<|y|∞<M}
Gn P(Y ∈ dy) = P(|Y|∞ < M)Gn → P(|Y|∞ < M)G.

Hence, Pratt’s theorem can be applied from which follows that (4.1) holds. It re-
mains to show (4.2). Applying Breiman’s result (3.1) yields

lim sup
n→∞

nP
(
a−1
n Y1[M,∞)(|Y|∞)X ∈ B

)
≤ lim sup

n→∞
nP

(|Y|∞1[M,∞)(|Y|∞)|X|∞ > andB

)
= E

(|Y|α∞1[M,∞)(|Y|∞)
)
m

(
Bc

0,dB

)
.
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Since E(|Y|α∞) < ∞, it follows that limM→∞ E(|Y|α∞1(M,∞)(|Y|∞)) = 0. This
proves (4.2). Thus, we have shown that

lim sup
n→∞

nP(a−1
n YX ∈ B) ≤ E

(
1[0,M)(|Y|∞)m ◦ φ−1

Y (B)
)

+ E
(|Y|α∞1[M,∞)(|Y|∞)

)
m

(
Bc

0,dB

)
,

lim inf
n→∞ nP(a−1

n YX ∈ B) ≥ E
(
1[0,M)(|Y|∞)m ◦ φ−1

Y (B)
)
.

Letting M → ∞ now yields

lim
n→∞nP(a−1

n YX ∈ B) = E
(
m ◦ φ−1

Y (B)
)
.

Since m(D0\D) = 0 and B ∈ B(D0) ∩ D with E(m ◦ φ−1
Y (∂B)) = 0 was arbitrary,

the conclusion follows. �

PROOF OF THEOREM 3.2. Take ε > 0 and a closed set F ∈ B(D) with
d◦(0,F ) = infz∈F d◦(0, z) > ε. Define Fε = {x ∈ D :d◦(x,F ) ≤ ε}. Then F,Fε ∈
B(D0) and both F and Fε are closed and bounded in D0. Take δ > ε. Notice that

P
(
d◦(a−1

n X, a−1
n Y) ≤ ε | |Y|∞ > anδ

) = P(d◦(a−1
n X, a−1

n Y) ≤ ε, |Y|∞ > anδ)

P(|Y|∞ > anδ)

≤ P(|X|∞ > an(δ − ε))

P(|Y|∞ > anδ)
.

Hence, the first part of (3.3) yields

lim sup
n→∞

nP(|Y|∞ > anδ) ≤ lim sup
n→∞

nP(|X|∞ > an(δ − ε))

P(d◦(a−1
n X, a−1

n Y) ≤ ε | |Y|∞ > anδ)

= (δ − ε)−αm(Bc
0,1) ∈ (0,∞).

Similarly, switching from Y to X in the second to last expression above and apply-
ing the second part of (3.3) we obtain

lim inf
n→∞ nP(|Y|∞ > anδ) ≥ (δ + ε)−αm(Bc

0,1).

Since ε may be chosen arbitrarily small we conclude that

lim
n→∞nP(|Y|∞ ≥ anδ) = lim

n→∞nP(|Y|∞ > anδ) = δ−αm(Bc
0,1).

Moreover, we observe that for δ ∈ (ε, d◦(0,F ))

nP(a−1
n Y ∈ F) ≤ nP

(
a−1
n Y ∈ F,d◦(a−1

n X, a−1
n Y) ≥ ε

) + nP(a−1
n X ∈ Fε)

≤ nP(|Y|∞ > anδ)P
(
d◦(a−1

n X, a−1
n Y) ≥ ε | |Y|∞ > anδ

)
+ nP(a−1

n X ∈ Fε).
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Since Fε is closed the hypotheses and the Portmanteau theorem imply that

lim sup
n→∞

nP(a−1
n Y ∈ F) ≤ lim sup

n→∞
nP(a−1

n X ∈ Fε) ≤ m(Fε).

Since F is closed, Fε ↓ F as ε ↓ 0. Hence, lim supn→∞ nP(a−1
n Y ∈ F) ≤ m(F)

and the conclusion follows from the Portmanteau theorem and Remark 4.1. �

PROOF OF THEOREM 3.3. For γ > 0, we say that an element x ∈ D has
γ -oscillation p times in [0,1] if there exist 0 ≤ t0 < t1 < · · · < tp ≤ 1 such that
|xti − xti−1 | > γ for each i = 1, . . . , p. We write

B(p,γ, [0,1]) = {x ∈ D : x has γ -oscillation p times in [0,1]}.
We start with the first claim. Take ε > 0 and set τ = τ(X). Since

P
(
d◦(a−1

n X, a−1
n �Xτ 1[τ,1]

)
> ε | |X|∞ > an

)
= nP(d◦(a−1

n X, a−1
n �Xτ 1[τ,1]) > ε, |X|∞ > an)

nP(|X|∞ > an)
,

it is sufficient to show that the numerator tends to zero as n → ∞. Moreover, we
can, without loss of generality, take ε ≤ 1. We have that

nP
(
d◦(a−1

n X, a−1
n �Xτ 1[τ,1]

)
> ε, |a−1

n X|∞ > 1
)

= nP
(
d◦(a−1

n X, a−1
n �Xτ 1[τ,1]

)
> ε, |X|∞ > an, a

−1
n X /∈ B(2, ε/4, [0,1]))

+ nP
(
d◦(a−1

n X, a−1
n �Xτ 1[τ,1]

)
> ε, |X|∞ > an, a

−1
n X ∈ B(2, ε/4, [0,1]))

= pn + qn.

Note that

qn ≤ nP
(
a−1
n X ∈ B(2, ε/4, [0,1])) → 0,

by Lemma 21 in [17]. Note also that if x ∈ D, x0 = 0 and x ∈ Bc
0,1 ∩ B(2, ε/4,

[0,1])c, then there exists t0 ∈ (0,1) such that

x /∈ B
(
1, ε/4, [0, t0)

)
,

∣∣�xt0

∣∣ > ε/2 and x /∈ B(1, ε/4, [t0,1]).
It follows that t0 = τ(x), d◦(x,�xt01[t0,1]) < ε, and hence, that

pn ≤ nP
(
d◦(a−1

n X, a−1
n �Xτ 1[τ,1]

)
> ε,d◦(a−1

n X, a−1
n �Xτ 1[τ,1]

)
< ε

) = 0.

This completes the proof of the first claim. For the second claim, take w.l.g. ε ∈
(0,1) and note that, as n → ∞,

nP
(
d◦(a−1

n X, a−1
n �Xτ 1[τ,1]

)
> ε,

∣∣�Xτ 1[τ,1]
∣∣∞ > an

)
≤ nP

(
a−1
n X ∈ B(2, ε/2, [0,1])) → 0.
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By Lemma 2.1, X ∈ RV((an),m,D0) implies X1 ∈ RV((an),m1,R
d

0 ) and

lim
n→∞nP(a−1

n X1 ∈ Bc
0,1) = lim

n→∞nν(anB
c
0,1) = m(Bc

0,1) > 0,

where ν denotes the Lévy measure of X1. Hence, as n → ∞,

nP
(∣∣�Xτ 1[τ,1]

∣∣∞ > an

) = nP
(
ξ([0,1] × anB

c
0,1) > 0

)
= n

(
1 − e

−ν(anBc
0,1)

)
∼ nν(anB

c
0,1) → m(Bc

0,1) > 0.

It follows that limn→∞ P(d◦(a−1
n X, a−1

n �Xτ 1[τ,1]) > ε | |�Xτ 1[τ,1]|∞ > an) = 0,
and the conclusion follows from Theorem 3.2. �

PROOF OF THEOREM 3.4. As usual we set τ = τ(X). The outline of the proof
is as follows:

(i) Show that

lim
n→∞nP

(
d◦(a−1

n (Y · X), a−1
n Yτ�Xτ 1[τ,1]

)
> ε, |(Y · X)|∞ > an

) = 0.

(ii) Show that, for each δ > 0, limn→∞ nP(|(Y · X)|∞ > anδ) = m∗(Bc
0,δ).

From (i) and (ii) we conclude that (3.6) holds.
(iii) Show that Yτ�Xτ 1[τ,1] ∈ RV((an),m

∗,D0).

Then (3.7) holds because for each ε > 0

1 ≥ lim
n→∞ P

(
d◦(a−1

n (Y · X), a−1
n Yτ�Xτ 1[τ,1]

) ≤ ε | |Yτ�Xτ | > an

)
= lim

n→∞
P(d◦(a−1

n (Y · X), a−1
n Yτ�Xτ 1[τ,1]) ≤ ε, |Yτ�Xτ | > an)

P(|Yτ�Xτ | > an)

≥ lim
n→∞

P(d◦(a−1
n (Y · X), a−1

n Yτ�Xτ 1[τ,1]) ≤ ε, |(Y · X)|∞ > an(1 + ε))

P(|(Y · X)|∞ > an(1 + ε))

× P(|(Y · X)|∞ > an(1 + ε))

P(|Yτ�Xτ | > an)

= (1 + ε)−α.

Finally, Theorem 3.2 gives the conclusion.
(i) Take ε > 0; w.l.g., we can take ε ≤ 1. Then, writing X = X̃ + J, we have{

d◦(a−1
n (Y · X), a−1

n Yτ�Xτ 1[τ,1]
)
> ε, |(Y · X)|∞ > an

}
⊂ {

d◦(a−1
n (Y · X), a−1

n Yτ�Xτ 1[τ,1]
)
> ε, |(Y · X)|∞ > an,

|(Y · X̃)|∞ > anε/2
}

∪ {
d◦(a−1

n (Y · X), a−1
n Yτ�Xτ 1[τ,1]

)
> ε, |(Y · X)|∞ > an,
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|(Y · X̃)|∞ ≤ anε/2
}

= An ∪ Bn.

We will show that limn→∞ nP(An) = 0 and limn→∞ nP(Bn) = 0. Note that
An ⊂ {|(Y · X̃)|∞ > anε/2}. By a standard regular variation argument, X1 ∈
RVα((an),µ,R

d

0 ) implies that the sequence (an) is regularly varying with in-
dex 1/α. By construction, X̃ is a Lévy process with bounded jumps, so Lemma 5.5
gives

lim
n→∞nP(An) ≤ lim

n→∞nP
(|(Y · X̃)|∞ > anε/2

) = 0.(4.3)

Next we consider limn→∞ nP(Bn). First we note that for any ε ∈ (0,1) and x,y ∈
D, |x + y|∞ > 1 and |y|∞ ≤ ε/2 implies |x|∞ > 1/2. Hence,

Bn ⊂ {
d◦(a−1

n (Y · J), a−1
n Yτ�Xτ 1[τ,1]

)
> ε/2, |(Y · X)|∞ > an,

|(Y · X̃)|∞ ≤ anε/2
}

⊂ {
d◦(a−1

n (Y · J), a−1
n Yτ�Xτ 1[τ,1]

)
> ε/2, |(Y · J)|∞ > an/2

} = Cn.

Let ((τk,Zk))k≥1 be the points of the PRM ξ(· ∩ {[0,1] × Bc
0,1}) [see (2.3)] and

note that (Zk) is an i.i.d. sequence with Z1 ∈ RV((an),m1,R
d

0 ). We have

(Y · J)t =
Nt∑

k=1

Yτk
Zk,

where Nt = ξ((0, t] × Bc
0,1). Note that (Nt) and (Zk) are independent and, since

Y is predictable, for every k, Yτk
and Zk are independent. For β ∈ (1/2,1), let

Jn =
N1∑
k=1

Zk1
(a

β
n ,∞)

(|Zk|)1[τk,1],

that is, Jn consists of the jumps with norm larger than a
β
n . Then

Cn ⊂ {
d◦(a−1

n (Y · J), a−1
n Yτ�Xτ 1[τ,1]

)
> ε/2,

∣∣(Y · (J − Jn)
)∣∣∞ > an/4

}
∪ {

d◦(a−1
n (Y · J), a−1

n Yτ�Xτ 1[τ,1]
)
> ε/2, |(Y · Jn)|∞ > an/4

}
⊂ {∣∣(Y · (J − Jn)

)∣∣∞ > an/4
}

∪ {
d◦(a−1

n (Y · J), a−1
n Yτ�Xτ 1[τ,1]

)
> ε/2, |(Y · Jn)|∞ > an/4

}︸ ︷︷ ︸
Dn

.

Introduce Mn = ∑N1
k=1 1

(a
β
n ,∞)

(|Zk|), the number of jumps with norm larger

than a
β
n , and note that on {Mn = 1}, we have �Xτ 1[τ,1] = Jn. Hence,

Dn ⊂ {
d◦(a−1

n (Y · J), a−1
n (Y · Jn)

)
> ε/2,Mn = 1

} ∪ {Mn ≥ 2}
⊂ {∣∣(Y · (J − Jn)

)∣∣∞ > anε/2
} ∪ {Mn ≥ 2}.
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Putting everything together, we see that, with δ < min(ε/2,1/4), the set Bn satis-
fies

nP(Bn) ≤ 2nP
(∣∣(Y · (J − Jn)

)∣∣∞ > anδ
) + nP(Mn ≥ 2)

≤ 2nP

(
N1∑
k=0

∣∣Yτk

∣∣|Zk|1[0,a
β
n ](|Zk|) > anδ

)
+ nP(Mn ≥ 2).

The first term converges to zero by Lemma 5.3 and Remark 5.1 and for the second
term, we apply Lemma 5.4. This proves limn→∞ nP(Bn) = 0 and, hence, we have
shown (i).

(ii) Take δ > 0 and note that m∗(∂Bc
0,δ) = 0. Using (4.3) and applying Proposi-

tion 5.1 we find that for each ε ∈ (0, δ)

lim inf
n→∞ nP

(|(Y · X)|∞ > anδ
)

= lim inf
n→∞ nP

(|(Y · X)|∞ > anδ, |(Y · X̃)|∞ > anε
)

+ lim inf
n→∞ nP

(|(Y · X)|∞ > anδ, |(Y · X̃)|∞ ≤ anε
)

≥ lim inf
n→∞ nP

(|(Y · J)|∞ > an(δ + ε), |(Y · X̃)|∞ ≤ anε
)

= lim inf
n→∞ nP

(|(Y · J)|∞ > an(δ + ε)
)

= m∗(Bc
0,δ+ε).

Similarly,

lim sup
n→∞

nP
(|(Y · X)|∞ > anδ

)
= lim sup

n→∞
nP

(|(Y · X)|∞ > anδ, |(Y · X̃)|∞ > anε
)

+ lim sup
n→∞

nP
(|(Y · X)|∞ > anδ, |(Y · X̃)|∞ ≤ anε

)
≤ lim sup

n→∞
nP

(|(Y · J)|∞ > an(δ − ε)
)

= m∗(Bc
0,δ−ε).

Then (ii) follows by letting ε → 0.
(iii) Take closed B ∈ B(D0) bounded away from 0 and set dB = inf{|x|∞ :

x ∈ B}. We will show that

lim sup
n→∞

nP
(
a−1
n Yτ�Xτ 1[τ,1] ∈ B

) ≤ m∗(B)(4.4)

and for each δ > 0

lim
n→∞nP

(|Yτ�Xτ | > anδ
) = m∗(Bc

0,δ).(4.5)
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Then, (iii) follows from the Portmanteau theorem.
For an element z ∈ D, we denote by S(z) = �zτ(z)1[τ(z),1] the step function with

one step at τ(z). Note that S(X) equals either S(J) (if |�Xτ | ≥ 1) or S(X̃), so{
Yτ�Xτ 1[τ,1] ∈ anB

} = {(
Y · S(J)

) ∈ anB
} ∪ {(

Y · S(X̃)
) ∈ anB

}
.

Since the jumps of X̃ are bounded by 1 and the sequence (an) is regularly varying
with index 1/α, we have

nP
((

Y · S(X̃)
) ∈ anB

) ≤ nP(|Y|∞ > andB) ≤ n(andB)−α−δ E(|Y|α+δ∞ ) → 0.

For the term involving S(J), we write{(
Y · S(J)

) ∈ anB
} = {(

Y · S(Jn)
) ∈ anB

} ∪ {(
Y · S(J − Jn)

) ∈ anB
}
.

By Lemma 5.3 and Remark 5.1,

nP
((

Y · S(J − Jn)
) ∈ anB

) ≤ nP

(
N1∑
k=1

∣∣Yτk

∣∣|Zk|1[1,a
β
n ](|Zk|) > andB

)
→ 0.

Moreover,

nP
((

Y · S(Jn)
) ∈ anB

) = nP
((

Y · S(Jn)
) ∈ anB,Mn = 1

)
(4.6)

+ nP
((

Y · S(Jn)
) ∈ anB,Mn ≥ 2

)
.(4.7)

The term in (4.7) is less than or equal to nP(Mn ≥ 2), which converges to 0 by
Lemma 5.4. On {Mn = 1} we have S(Jn) = Jn so the term (4.6) satisfies

lim sup
n→∞

nP
((

Y · S(Jn)
) ∈ anB,Mn = 1

)
= lim sup

n→∞
nP

(
(Y · Jn) ∈ anB,Mn = 1

)
≤ m∗(B),

by following the lines of the proof of Proposition 5.1. This proves (4.4). The proof
of (4.5) is similar;

nP(|Yτ�Xτ | > anδ) ∼ nP
(|(Y · Jn)|∞ > anδ,Mn = 1

) → m∗(Bc
0,δ)

as n → ∞. This completes the proof. �

5. Auxiliary results.

LEMMA 5.1. Let X and Y be stochastic processes with sample paths
in D, with X being a Lévy process satisfying X ∈ RV((an),m,D0). Then
E(m(Disc(φY))) = 0.
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PROOF. For B ∈ B(R
d

0 ) ∩ Rd and T ∈ B([0,1)), denote

AB,T = {
x = y1[v,1] : y ∈ B,v ∈ T

}
.

By the representation (2.5) of m, we have m(AB,T ) = µ(B)λ(T ), where µ is the
limit measure of X1 and λ denotes the Lebesgue measure on [0,1). Recall the
notation V ⊂ D from (2.4) for the support of m, which is the set of step functions
with one step. Take an arbitrary ω ∈ � and let DY(ω) be the discontinuity points
of Y(ω). Then

Disc
(
φY(ω)

) ∩ V = ⋃
ε∈(0,∞)∩Q

ABc
0,ε,DY(ω)

.

Since Y(ω) ∈ D, it follows that DY(ω) is at most countable and λ(DY(ω)) = 0.
Hence,

m
(
Disc

(
φY(ω)

)) = m
(
Disc

(
φY(ω)

) ∩ V
)

≤ ∑
ε∈(0,∞)∩Q

m
(
ABc

0,ε,DY(ω)

) = 0.

Since ω ∈ � was arbitrary, we see that E(m(Disc(φY))) = 0. �

LEMMA 5.2. Let (Zk) be an i.i.d. sequence of nonnegative random vari-
ables, let N be an N-valued random variable and let (Yk) be a sequence of non-
negative random variables. Suppose further that (Fk) is a filtration such that Yk is
Fk-measurable, Zk is Fk+1-measurable and independent of Fk and N . Then, for
each x > 0,

P

(
N∑

k=1

YkZk > x

)
≤ 2 P

(
N

N∨
k=1

YkZ̃k > x

)
,(5.1)

where (Z̃k)
d= (Zk) (possibly on an extended probability space) and (Z̃k) is inde-

pendent of (Yk) and N .

PROOF. Let F ′
k = σ(Fk, Z̃1, . . . , Z̃k−1). By the assumptions, we have

P(YkZk ∈ ·|F ′
k ,N = m) = P(YkZ̃k ∈ ·|F ′

k ,N = m).(5.2)

Conditioning on N , we write

P

(
N∑

k=1

YkZk > x

)
=

∞∑
m=1

P

(
m∑

k=1

YkZk > x
∣∣∣N = m

)
P(N = m)

≤
∞∑

m=1

P

(
m∨

k=1

YkZk >
x

m

∣∣∣N = m

)
P(N = m).
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Let τ = min{k :YkZ̃k > x
m

} and note that {τ ≥ k} = {τ ≤ k−1}c is F ′
k -measurable.

Moreover,

P

(
m∨

k=1

YkZk >
x

m

∣∣∣N = m

)

≤ P

(
m∨

k=1

YkZk >
x

m
, τ ≤ m

∣∣∣N = m

)
+ P

(
m∨

k=1

YkZk >
x

m
, τ ≥ m

∣∣∣N = m

)

≤ P(τ ≤ m|N = m) +
m∑

k=1

P
(
τ ≥ k,YkZk >

x

m

∣∣∣N = m

)
.

Using (5.2), the last expression equals

P(τ ≤ m|N = m) +
m∑

k=1

P
(
τ ≥ k,YkZ̃k >

x

m

∣∣∣N = m

)

= P(τ ≤ m|N = m) +
m∑

k=1

P(τ = k|N = m)

= 2 P(τ ≤ m|N = m)

= 2 P

(
m∨

k=1

YkZ̃k >
x

m

∣∣∣N = m

)
.

Summing up over m, we arrive at (5.1), which proves the lemma. �

LEMMA 5.3. Assume the hypotheses of Lemma 5.2. Suppose further that
Z1 ∈ RVα((an),µ, (0,∞]) for some α > 0 and that E(Nα+γ ∑N

k=1 Y
α+γ
k ) < ∞

for some γ > 0. Then, for every β ∈ (0,1),

lim
n→∞nP

(
N∑

k=1

YkZk1[0,an
β ](Zk) > anx

)
= 0, x > 0.

REMARK 5.1. Assume the hypotheses of Theorem 3.4, let N be the number of
jumps of X of norm greater than one and let τ1, . . . , τN be the times of these jumps.
Moreover, let Yk = |Yτk

|, γ = δ/2, p = (α + δ)/(α + δ/2) and q = (1 − 1/p)−1.
Then, Lemma 5.3 applies. Indeed, using Hölder’s inequality, we find that

E

(
Nα+γ

N∑
k=1

Y
α+γ
k

)
≤ E

(
Nα+γ+1

N∨
k=1

Y
α+γ
k

)

≤ E
(
Nq(α+γ+1))1/q

E
(|Y|p(α+γ )∞

)1/p

= E
(
Nq(α+γ+1))1/q

E(|Y|α+δ∞ )1/p < ∞.
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PROOF OF LEMMA 5.3. By Lemma 5.2,

nP

(
N∑

k=1

YkZk1[0,a
β
n ](Zk) > anx

)

≤ 2nP

(
N

N∨
k=1

YkZ̃k1[0,a
β
n ](Z̃k) > anx

)
.

Conditioning on N , we get

2nP

(
N

N∨
k=1

YkZ̃k1[0,a
β
n ](Z̃k) > anx

)

= 2n

∞∑
m=1

P

(
m

m∨
k=1

YkZ̃k1[0,a
β
n ](Z̃k) > anx

∣∣∣N = m

)
P(N = m)

= 2n

∞∑
m=1

P

(
m⋃

k=1

{
YkZ̃k1[0,a

β
n ](Z̃k) >

anx

m

∣∣∣N = m

})
P(N = m)

≤ 2n

∞∑
m=1

m∑
k=1

P
(
YkZ̃k1[0,a

β
n ](Z̃k) >

anx

m

∣∣∣N = m

)
P(N = m).

Denote the distribution of Z̃k by F . By conditioning on Z̃k and then using
Markov’s inequality, the last expression equals

2n

∞∑
m=1

m∑
k=1

∫ a
β
n

0
P
(
Yk >

anx

mz

∣∣∣N = m

)
F(dz)P(N = m)

≤ 2n

∞∑
m=1

m∑
k=1

∫ a
β
n

0

(
anx

mz

)−(α+γ )

E(Y
α+γ
k | N = m)F(dz)P(N = m)

= 2n(anx)−(α+γ )

×
∫ a

β
n

0
zα+γ F (dz)

∞∑
m=1

m∑
k=1

mα+γ E(Y
α+γ
k | N = m)P(N = m)

= 2n(anx)−(α+γ )
∫ a

β
n

0
zα+γ F (dz)E

(
Nα+γ

N∑
k=1

Y
α+γ
k

)

≤ Cna−(α+γ )
n

∫ a
β
n

0
zα+γ F (dz).
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Finally, using that F(z) = z−αL(z) for some slowly varying function L, integra-
tion by parts and the Karamata theorem, this last expression equals

Cna−(α+γ )
n

(∫ a
β
n

0
(α + γ )zγ−1L(z)dz − aβ(α+γ )

n a−βα
n L(aβ

n )

)
∼ Cna−(α+γ )

n

(
α + γ

γ
aβγ
n L(aβ

n ) − aβγ
n L(aβ

n )

)
= C

α

γ
na−(α+γ (1−β))

n L(aβ
n ) → 0,

as n → ∞. Here cn ∼ dn means that cn/dn → 1 as n → ∞. In the last step we
used that (an) is regularly varying with index 1/α. This completes the proof. �

LEMMA 5.4. Let (Zk) be an i.i.d. sequence of nonnegative random variables
with Z1 ∈ RVα((an),µ, (0,∞]) and let N be a Po(λ)-distributed random vari-
able independent of (Zk). Let β ∈ (1/2,1) and Mn = ∑N

k=1 1
(a

β
n ,∞)

(Zk). Then
limn→∞ nP(Mn ≥ 2) = 0.

PROOF. The probability generating function of Mn is gn(t) = exp{λpn ×
(t − 1)}, where pn = P(Z1 > a

β
n ). Hence,

nP(Mn ≥ 2) = n
(
1 − gn(0) − g′

n(0)
) = n

(
1 − (1 + λpn) exp{−λpn})

∼ n
(
λ2p2

n/2 + o(p2
n)

)
,

as n → ∞. Since the sequence (a
β
n ) is regularly varying with index β/α, for some

slowly varying function L,

np2
n = n

(
n−βL(n)

)2 = n1−2βL2(n) → 0,

as n → ∞. �

LEMMA 5.5. Let α > 0 and let the sequence (an) be regularly varying at
infinity with index 1/α. Let X̃ be a Lévy process for which the Euclidean norm of
each jump is bounded by 1 and let Y be a predictable càglàd process satisfying
E(|Y|α+δ∞ ) < ∞ for some δ > 0. Then limn→∞ nP(|(Y · X̃)|∞ > an) = 0.

PROOF. Let µ = E(X̃1). Then Mt = X̃t − µt is a martingale and

nP
(
a−1
n |(Y · X̃)|∞ > ε

) ≤ nP(a−1
n |µ||Y|∞ > ε/2)

+ nP
(
a−1
n |(Y · M)|∞ > ε/2

)
.

Let r = α + δ/2 so that E(|Y|r∞) < ∞. By Markov’s inequality, we have, for any
ε > 0,

lim sup
n→∞

nP(a−1
n |µ||Y|∞ > ε/2) ≤ lim sup

n→∞
na−r

n (ε/2)−r |µ|r E(|Y|r∞) = 0
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and

nP
(
a−1
n |(Y · M)|∞ > ε/2

) ≤ na−r
n (ε/2)−r E

(|(Y · M)|r∞
)
.

We will consider two cases: α ≥ 1 and α < 1.
Assume first that α ≥ 1. Since r > α, the claim follows if E(|(Y · M)|r∞) < ∞.

The Burkholder–Davis–Gundy inequalities (e.g., [25], page 193) and Hölder’s in-
equality with p = (α + δ)/(α + δ/2) and q = (1 − 1/p)−1 give

E
(|(Y · M)|r∞

) ≤ Cr E
([∫ 1

0
Y2

s d[M,M]s
]r/2)

≤ Cr E(|Y|r∞[M,M]r/2
1 )

≤ Cr E(|Y|rp∞)1/p E([M,M]rq/2
1 )1/q .

The first factor is finite by assumption (since rp = α + δ) and, for some σ ≥ 0,

[M,M]t = σ 2t + ∑
0≤s≤t

(�X̃s)
2, t ∈ [0,1],

which is a Lévy process with bounded jumps. Hence, by Theorem 34, page 25,
in [25], [M,M]1 has finite moments of all orders.

Assume now that α < 1. Define the processes Zn and Z̃n by

Zn(s) = Ys1(an,∞)

(
sup

u∈[0,s]
|Yu|

)
, s ∈ [0,1],

Z̃n(s) = Ys1[0,an]
(

sup
u∈[0,s]

|Yu|
)
, s ∈ [0,1],

and note that Y = Zn + Z̃n so that (Y · M) = (Zn · M) + (Z̃n · M). Moreover,

nP
(
a−1
n |(Y · M)|∞ > ε/2

)
≤ nP

(
a−1
n |(Zn · M)|∞ > ε/4

) + nP
(
a−1
n |(Z̃n · M)|∞ > ε/4

)
≤ nP(|Y|∞ > an) + nP

(
a−1
n |(Z̃n · M)|∞ > ε/4

)
.

Markov’s inequality yields limn→∞ nP(|Y|∞ > an) = 0. The Burkholder–Davis–
Gundy and Hölder inequalities yield

E
(|(Z̃n · M)|2∞

) ≤ C2 E(|Z̃n|2p∞ )1/p E([M,M]2q/2)1/q = K E(|Z̃n|2p∞ )1/p,

for any p > 1, q = (1 − 1/p)−1, where K ∈ (0,∞) is a constant. If we put r =
α + δ/2 and p = (α + δ)/(α + δ/2), then we obtain

nP
(
a−1
n |(Z̃n · M)|∞ > ε/4

) ≤ na−r
n a−2+r

n (ε/4)−2 E
(|(Z̃n · M)|2∞

)
≤ K(ε/4)−2na−r

n E
(
a−p(2−r)
n |Z̃n|2p∞

)1/p
.
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Note that limn→∞ na−r
n = 0. For the expectation above, we have, with F denoting

the distribution function of |Y|∞,

E
(
a−p(2−r)
n |Z̃n|2p∞

) =
∫ an

0
xrp(x/an)

2p−rp dF (x)

≤
∫ an

0
xrp dF (x)

= E
(|Y|rp∞1[0,an](|Y|∞)

)
→ E(|Y|rp∞) < ∞.

The conclusion follows. �

PROPOSITION 5.1. Assume the hypotheses of Theorem 3.4 and let J be the
compound Poisson part as in (1.4). Then, (Y · J) ∈ RV((an),m

∗,D0), where

m∗(B) = E
(
µ{x ∈ R

d

0 : YV x1[V,1] ∈ B}),
where V is uniformly distributed on [0,1) and independent of Y.

PROOF. Take constants β ∈ (1/2,1) and C > 0 (we will eventually let
C → ∞). Put, as in the proof of Theorem 3.4,

Jn =
N1∑
k=1

Zk1
(a

β
n ,∞)

(|Zk|)1[τk,1] and Mn =
N1∑
k=1

1
(a

β
n ,∞)

(|Zk|).

With this notation, we may also write

Jn =
Mn∑
k=1

Z(n)
k 1[τ (n)

k ,1],

where Z(n)
k is the kth jump with norm larger than a

β
n , and τ

(n)
k is the time of

that jump. Take closed B ∈ B(D0) ∩ D bounded away from 0 and let dB =
inf{|x|∞ : x ∈ B}. For ε ∈ (0, dB), let Bε = {x ∈ D :d◦(x,B) ≤ ε}. Note that Bε

is closed. By the Portmanteau theorem and Remark 4.1 it is sufficient to prove that

lim sup
n→∞

nP
(
a−1
n (Y · J) ∈ B

) ≤ m∗(B)(5.3)

and for δ > 0,

lim
n→∞nP

(|(Y · J)|∞ ≥ anδ
) = m∗(Bc

0,δ).(5.4)

The outline of the proof of (5.3) is as follows:

(i) First we will show that

lim sup
n→∞

nP
(
a−1
n (Y · J) ∈ B

)
≤ lim

C→∞ lim sup
n→∞

nP
(
Y

τ
(n)
1

Z(n)
1 1[τ (n)

1 ,1] ∈ anBε,Mn = 1,
∣∣Y

τ
(n)
1

∣∣ ≤ C
)
.
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(ii) Then we will show that

lim sup
n→∞

nP
(
Y

τ
(n)
1

Z(n)
1 1[τ (n)

1 ,1] ∈ anBε,Mn = 1,
∣∣Y

τ
(n)
1

∣∣ ≤ C
)

≤
∫
B0,C×[0,1]

µ
{
x ∈ Rd : xy1[t,1] ∈ Bε

}
ρ

(
d(y, t)

)
,

where ρ(A × T ) = P((YV ,V ) ∈ A × T ) with V uniformly distributed on [0,1)

and independent of Y.

Finally, letting C → ∞ and then ε ↓ 0, the conclusion follows.
Let us first prove (i). We have,

{a−1
n (Y · J) ∈ B} = {

a−1
n (Y · J) ∈ B,

∣∣(Y · (J − Jn)
)∣∣∞ > anε

}
∪ {

a−1
n (Y · J) ∈ B,

∣∣(Y · (J − Jn)
)∣∣∞ ≤ anε

}
⊂ {∣∣(Y · (J − Jn)

)∣∣∞ > anε
} ∪ {(Y · Jn) ∈ anBε}.

By Lemma 5.3 and Remark 5.1, limn→∞ nP(|(Y · (J−Jn))|∞ > anε) = 0. For the
second term, we have

nP
(
(Y · Jn) ∈ anBε

) = nP
(
(Y · Jn) ∈ anBε,Mn = 1

)
(5.5)

+ nP
(
(Y · Jn) ∈ anBε,Mn ≥ 2

)
.(5.6)

By Lemma 5.4, the term (5.6) converges to zero as n → ∞. It remains to con-
sider (5.5). We have

nP
(
(Y · Jn) ∈ anBε,Mn = 1

)
= nP

(
Y

τ
(n)
1

Z(n)
1 1[τ (n)

1 ,1] ∈ anBε,Mn = 1,
∣∣Y

τ
(n)
1

∣∣ > C
)

(5.7)

+ nP
(
Y

τ
(n)
1

Z(n)
1 1[τ (n)

1 ,1] ∈ anBε,Mn = 1,
∣∣Y

τ
(n)
1

∣∣ ≤ C
)
.(5.8)

Since Y
τ

(n)
1

and Z(n)
1 are independent, we apply Lemma 5.2 to (5.7) and obtain

nP
(
Y

τ
(n)
1

Z(n)
1 1[τ (n)

1 ,1] ∈ anBε,Mn = 1,
∣∣Y

τ
(n)
1

∣∣ > C
)

≤ nP
(∣∣Y

τ
(n)
1

∣∣1(C,∞)

(∣∣Y
τ

(n)
1

∣∣)∣∣Z(n)
1

∣∣ > an(dB − ε)
)

(5.9)

≤ 2nP
(∣∣Y

τ
(n)
1

∣∣1(C,∞)

(∣∣Y
τ

(n)
1

∣∣)|Z̃|1
(a

β
n ,∞)

(|Z̃|) > an(dB − ε)
)
,

where Z̃ d= Z1 and is independent of Y and J. Hence, Breiman’s result (3.1) can
be applied to show that (5.9) satisfies

2nP
(∣∣Y

τ
(n)
1

∣∣1(C,∞)

(∣∣Y
τ

(n)
1

∣∣)|Z̃|1
(a

β
n ,∞)

(|Z̃|) > an(dB − ε)
)

≤ 2nP
(|Y|∞1(C,∞)(|Y|∞)|Z̃| > an(dB − ε)

)
→ 2 E

(|Y|α∞1(C,∞)(|Y|∞)
)
µ

(
Bc

0,dB−ε

)
.
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Finally, letting C → ∞, the last expression converges to 0. This completes the
proof of (i).

(ii) We now study (5.8). Set �(C) = {(y, t) ∈ Rd × [0,1) : |y| ≤ C}. Condition-
ing on (Y

τ
(n)
1

, τ
(n)
1 ), we get

nP
(
Y

τ
(n)
1

Z(n)
1 1[τ (n)

1 ,1] ∈ anBε,Mn = 1,
∣∣Y

τ
(n)
1

∣∣ ≤ C
)

=
∫
�(C)

nP
(
yZ(n)

1 1[t,1] ∈ anBε | Mn = 1
)

× P
((

Y
τ

(n)
1

, τ
(n)
1

) ∈ d(y, t),Mn = 1
)

=
∫
�(C)

nP
(
yZ(n)

1 1[t,1] ∈ anBε,Mn = 1
)︸ ︷︷ ︸

fn(y,t)

×
P
((

Y
τ

(n)
1

, τ
(n)
1

) ∈ d(y, t),Mn = 1
)

P(Mn = 1)︸ ︷︷ ︸
ρn(d(y,t))

.

For w ∈ D, we denote by ϕw : Rd → D the function given by ϕw(x) = xw. By
Theorem 4.2 in [30], multiplication ψ : D × D → D given by

ψ(w, z)t = wtzt = (
w

(1)
t z

(1)
t , . . . ,w

(d)
t z

(d)
t

)
, t ∈ [0,1],

is continuous at those (w, z) ∈ D×D for which Disc(w)∩Disc(z) = ∅. Moreover,
h : Rd → D given by h(x) = x1[0,1] is continuous and Disc(h(x)) = ∅ for every
x ∈ Rd . Hence, ϕw(·) = ψ(h(·),w) is continuous for every w ∈ D. We will show
the following:

(a) lim supn→∞ sup(y,t)∈�(C)(fn(y, t)−f (y, t)) ≤ 0, f (y, t) = µ◦ϕ−1
y1[t,1](Bε).

(b) ρn
w→ ρ, ρ(A × T ) = P((YV ,V ) ∈ A × T ), V uniformly distributed on

[0,1) and independent of Y.
(c) lim supn→∞

∫
�(C) f (y, t)ρn(d(y, t)) ≤ ∫

�(C) f (y, t)ρ(d(y, t)).

Using (a)–(c), it follows that

lim sup
n→∞

(∫
�(C)

fn(y, t)ρn(dy × dt) −
∫
�(C)

f (y, t)ρ
(
d(y, t)

))
≤ lim sup

n→∞
sup

(y,t)∈�(C)

(
fn(y, t) − f (y, t)

)
ρn(�(C))

+ lim sup
n→∞

∫
�(C)

f (y, t)
(
ρn

(
d(y, t)

) − ρ
(
d(y, t)

))
≤ 0.
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This proves (ii). We start by showing (a). Since Bε is closed, it follows, by conti-
nuity, that ϕ−1

y1[t,1](Bε) is closed. For large enough n, we have

fn(y, t) = nP
(
yZ(n)

1 1[t,1] ∈ anBε,Mn = 1
)

≤ nP
(
yZ11[t,1] ∈ anBε

)
= nP

(
a−1
n Z1 ∈ ϕ−1

y1[t,1](Bε)
)
.

Hence, by the continuous mapping theorem and the Portmanteau theorem,

lim sup
n→∞

fn(y, t) ≤ f (y, t).

Recall the uniformity of regular variation: if δ > 0 and the distribution F on Rd is

regularly varying, that is, F ∈ RV((an),µ,R
d

0 ), then, for each η > 0, there exists
N(η) such that, for n ≥ N(η) and each closed set B ⊂ Bc

0,δ , we have

nF(anB) ≤ µ(B) + η.

In our setting we have for each (y, t) with |y| ≤ C and t ∈ [0,1) that {z ∈
Rd : yz1[t,1] ∈ Bε} ⊂ {z ∈ Rd : |z| > (dB − ε)/C}. Hence, for each η > 0, there
exists N(η) such that, for n ≥ N(η)

nP
(
yZ11[t,1] ∈ anBε

) ≤ µ ◦ ϕ−1
y1[t,1](Bε) + η,

uniformly on �(C). That is,

lim sup
n→∞

sup
(y,t)∈�(C)

(
fn(y, t) − f (y, t)

) ≤ 0.

For (b), we have the following. Let A × T ∈ B(Rd × [0,1)) be a ρ-continuity set.
Conditioning on τ

(n)
1 and using that Y is predictable, we have

P
((

Y
τ

(n)
1

, τ
(n)
1

) ∈ A × T | Mn = 1
)

=
∫
T

P
(
Yt ∈ A | τ (n) = t,Mn = 1

)
dt

=
∫
T

P
(

Yt ∈ A | sup
s<t

|�Xs | ≤ aβ
n

)
dt.

Since limn→∞ P(Yt ∈ A | sups<t |�Xs | ≤ a
β
n ) = P(Yt ∈ A) for all but at most

countably many t ∈ [0,1), the dominated convergence theorem yields

lim
n→∞ P

((
Y

τ
(n)
1

, τ
(n)
1

) ∈ A × T | Mn = 1
) =

∫
T

P(Yt ∈ A)dt

= P
(
(YV ,V ) ∈ A × T

)
,

where V is uniformly distributed on [0,1) and independent of Y. This proves (b).
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Finally, we have to prove (c). Given x ∈ Rd , denote by ϕ̃x : Rd × [0,1) → D the
mapping ϕ̃x(y, t) = yx1[t,1]. For each x ∈ Rd , the mapping ϕ̃x is continuous. Let
(Un,Vn) and (U,V ) be random vectors with distribution ρn and ρ, respectively.
We have∫

�(C)
f (y, t)ρn

(
d(y, t)

)
= E

(
µ ◦ ϕ−1

Un1[Vn,1](Bε)1�(C)(Un,Vn)
)

=
∫
�

∫
Rd\{0}

1Bε

(
xUn(ω)1[Vn(ω),1]

)
1�(C)

(
Un(ω),Vn(ω)

)
µ(dx)P(dω)

=
∫

Rd\{0}
E

(
1Bε

(
xUn1[Vn,1]

)
1�(C)(Un,Vn)

)
µ(dx)

=
∫

Rd\{0}
P
(
xUn1[Vn,1] ∈ Bε, (Un,Vn) ∈ �(C)

)
µ(dx)

=
∫

Rd\{0}
P
(
(Un,Vn) ∈ ϕ̃−1

x (Bε) ∩ �(C)
)
µ(dx).

By (b), (Un,Vn)
d→ (U,V ). Moreover, since Bε is closed, it follows that ϕ̃−1

x (Bε)

is closed. Since �(C) is closed, also ϕ̃−1
x (Bε) ∩ �(C) is closed. Hence, by the

Portmanteau theorem,

lim sup
n→∞ P

(
(Un,Vn) ∈ ϕ̃−1

x (Bε) ∩ �(C)
) ≤ P

(
(U,V ) ∈ ϕ̃−1

x (Bε) ∩ �(C)
)
,

and we arrive at

lim sup
n→∞

∫
�(C)

f (y, t)ρn

(
d(y, t)

)
≤ lim sup

n→∞

∫
Rd\{0}

P
(
(Un,Vn) ∈ ϕ̃−1

x (Bε) ∩ �(C)
)
µ(dx)

≤
∫

Rd\{0}
lim sup
n→∞ P

(
(Un,Vn) ∈ ϕ̃−1

x (Bε) ∩ �(C)
)
µ(dx)

≤
∫

Rd\{0}
P
(
(U,V ) ∈ ϕ̃−1

x (Bε) ∩ �(C)
)
µ(dx)

=
∫
�(C)

f (y, t)ρ
(
d(y, t)

)
.

The interchange of the limit and the integral is allowed if there is a function g such
that P((Un,Vn) ∈ ϕ̃−1

x (Bε) ∩ �(C)) ≤ g(x) and
∫
Rd\{0} g(x)µ(dx) < ∞. We have

P
(
(Un,Vn) ∈ ϕ̃−1

x (Bε) ∩ �(C)
) ≤ P

(|xUn| > dB − ε, |Un| ≤ C
)

≤ P
(|Un| ∈ (

(dB − ε)/|x|,C])
≤ 1((dB−ε)/C,∞)(|x|)
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and µ{x ∈ Rd : |x| > (dB − ε)/C} < ∞. Hence, we may take g(x) =
1((dB−ε)/C,∞)(|x|). This concludes the proof of (c) and hence of (ii) and the proof
of (5.3) is complete. It remains to prove (5.4). From (5.3) we have the upper bound

lim sup
n→∞

nP
(|(Y · J)|∞ ≥ anδ

) ≤ m∗(Bc
0,δ).

The proof of the lower bound

lim inf
n→∞ nP

(|(Y · J)|∞ > anδ
) ≥ m∗(Bc

0,δ)

is similar, replacing lim sup by lim inf, replacing closed sets by open sets, changing
the direction of inequalities and using that m∗(∂Bc

0,δ) = 0. This completes the
proof. �
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