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ON TIME-INHOMOGENEOUS CONTROLLED DIFFUSION
PROCESSES IN DOMAINS

BY HONGJIE DONG AND N. V. KRYLOV1

Institute for Advanced Study and University of Minnesota

Time-inhomogeneous controlled diffusion processes in both cylindrical
and noncylindrical domains are considered. Bellman’s principle and its ap-
plications to proving the continuity of value functions are investigated.

The first part of this article is devoted to quite an old subject in the theory of
controlled diffusion processes, namely deriving Bellman’s principle (also called
the principle of optimality) for processes controlled up to the first exit time from
bounded domains. This principle plays a major role in many aspects of the theory
of controlled diffusion processes. The necessity of proving it and deriving from it
some continuity properties of value functions came to light while investigating the
rate of convergence of finite-difference approximations for Bellman’s equations.
In this connection, we point out that our main results are Theorems 2.10, 2.13 and
2.17 in the second part of the paper. Theorem 2.17 is one of the main ingredients in
[3], where we proved a sharp result that the rate of convergence of finite-difference
approximations for Bellman’s equations in bounded domains is not less than h1/2,
with h being the mesh size. Theorem 2.17 is similar to Theorem 2.1 of [8] and
is nontrivial even if we consider a single diffusion process without any control.
In that case, it yields the rate of convergence h1/2 without much work (see, e.g.,
Corollary 1.10 of [8]).

Our main results depend heavily on the validity of Bellman’s principle. Bell-
man’s principle has been derived in different settings in many papers and books.
We refer the reader to [1, 2, 4–6, 10] and the references therein. Probably the ar-
ticle closest to the subject of the present one is [6], where Bellman’s principle is
derived under very general conditions allowing unbounded domains and the coef-
ficients of the controlled processes, but only for the problem of optimal stopping
of controlled processes. Later on, these results were used to obtain sharp results
concerning when the value functions for time-homogeneous processes satisfy the
corresponding Bellman’s equations. Another result, which is also very close to the
results presented in the first part of this paper, is Theorem 2.1 in Chapter V of [4].
However, there are gaps in the original proof of the theorem (the corrected version
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is to appear in the forthcoming second edition of [4]) and the conditions under
which it is stated are somewhat different from those we require for some applica-
tions we wish to consider. It is worth noting that in [4], the controlled process is
considered up to the first exit time from the closure of a domain, so that if we have
two domains with the same closure, the corresponding value functions will coin-
cide. In contrast, we consider exit times from a domain as is usually done in the
theory of Markov processes. One of major technical differences between these two
settings is that our exit times are lower semicontinuous and the exit times from [4]
are upper semicontinuous.

The approach in [4] originated from [11], where the reader can also find many
useful results concerning the continuity of value functions.

In Section 1 we prove Bellman’s principle in a setting more general than that
of Theorem 2.1 in Chapter V of [4] (see Remark 1.14). Several examples show
that under the assumptions in Section 1, value functions can be discontinuous even
inside the domains. With additional assumptions, in Section 2, we prove the Lip-
schitz continuity of value functions in space variables and Hölder-1/2 continuity
in the time variable, which is one of the main motivations of this paper. In Re-
mark 2.14, we also present our understanding as to how the statement of Theo-
rem 2.1 in Chapter V of [4] regarding the continuity of value functions can be
corrected. Finally, we derive in Corollaries 1.3 and 2.12 an inequality which we
use to prove Theorem 2.17. As we have mentioned above, the last theorem plays
a major role in investigating the rate of convergence of numerical approximations
for Bellman’s equations in domains.

1. Bellman’s principle. Let A be a separable metric space and let A(n) be
fixed subsets of A, n = 1,2, . . . , such that A = ⋃

n A(n), A(n) ⊂ A(n + 1).
Let (�,F ,P ) be a complete probability space and {Ft ; t ≥ 0} an increasing
filtration of σ -algebras Ft ⊂ F which are complete with respect to F , P . Let
(wt ,Ft ; t ≥ 0) be a d1-dimensional Wiener process on (�,F ,P ).

Suppose that the following have been defined for α ∈ A and (t, x) ∈ R × R
d :

a d × d1 matrix σα(t, x), a d-dimensional vector bα(t, x) and real numbers
cα(t, x), f α(t, x) and g(t, x). We assume that for every n ≥ 1, on A(n) × R

d+1,
the functions σ, b, c and f are Borel, bounded, continuous in (α, x) and continu-
ous in x uniformly with respect to α for each t ∈ R. Moreover, for every n ≥ 1,
on A(n) × R

d+1, let σ and b satisfy a Lipschitz condition in x with constant not
depending on (α, t) and let g be lower semicontinuous and bounded in R

d+1.
By A(n), we denote the set of all functions αr(ω) on � × [0,∞) which are

Fr -adapted and measurable in (ω, r) with values in A(n). Let A = ⋃
n A(n) and

let M be the set of all bounded stopping times (relative to {Fr}).
For α ∈ A and (t, x) ∈ R

d+1, we consider the Itô equation

xs = x +
∫ s

0
σαr (t + r, xr) dwr +

∫ s

0
bαr (t + r, xr) dr.(1.1)
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The solution of this equation is known to exist and to be unique. We denote this
solution by xα,t,x

s , following the abbreviated notation adopted in [5].
For any s ≥ 0, we set

ϕs = ϕα,t,x
s =

∫ s

0
cαr (t + r, xα,t,x

r ) dr.

Let Q be a bounded domain in R
d+1 = R × R

d and let τ = τα,t,x be the first exit
time of (t + s, xα,t,x

s ) from Q:

τα,t,x = inf{s ≥ 0 : (t + s, xα,t,x
s ) /∈ Q}.

Observe that since Q is bounded, τα,t,x is a bounded stopping time.
Define the parabolic boundary ∂ ′Q of Q as the set of all points (t, x) on ∂Q for

each of which there exists a curve (s, ys), t − ε ≤ s ≤ t , such that ε > 0, (t, yt ) =
(t, x), ys is a continuous function and (s, ys) ∈ Q, t − ε ≤ s < t . Obviously, if
(t, x) ∈ Q, then at s = τα,t,x , the point (t + s, xα,t,x

s ) lies on ∂ ′Q.
Set

vα(t, x) = Eα
t,x

[∫ τ

0
f αs (t + s, xs)e

−ϕs ds + g(t + τ, xτ )e
−ϕτ

]
,

v = sup
α∈A

vα,

where we use common abbreviated notation, according to which we put the in-
dices α, t , x beside the expectation sign instead of explicitly exhibiting them in-
side the expectation sign for every object that can carry all or part of them. For
instance,

Eα
t,xg(t + τ, xτ )e

−ϕτ = Eg(t + τα,t,x, x
α,t,x
τα,t,x ) exp(−ϕ

α,t,x
τα,t,x ).

It is worth noting that τα,t,x = 0 if (t, x) /∈ Q. Therefore, v = g in Qc.
The above assumptions and notation will apply throughout the paper. Additional

assumptions will be introduced for each particular result.
Observe that since Q is bounded, v ≥ −N , where N is a constant, and the case

v ≡ ∞ in Q is not excluded.
The following version of Bellman’s principle is the first main result of this sec-

tion.

THEOREM 1.1. Assume that g ≡ 0 and that there is an α ∈ A such that f α ≥ 0
on Q. Then:

(i) the function v is Borel measurable, nonnegative and, moreover, it is lower
continuous in Q, that is,

v(t, x) = lim inf
(s,y)→(t,x)

v(s, y) ∀ (t, x) ∈ Q;
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(ii) we have

v(t, x) = sup
α∈A

Eα
t,x

[∫ γ

0
f αs (t + s, xs)e

−ϕs ds + v(t + γ, xγ )e−ϕγ

]
(1.2)

whenever (t, x) ∈ Q̄ and for any α ∈ A, we are given a stopping time γ α ≤ τα,t,x

[in (1.2) the superscript α of γ α is dropped in accordance with the above stipula-
tion].

PROOF. For any γ ∈ M, we set

vα,γ (t, x) = Eα
t,x

∫ γ

0
f αs (t + s, xs)e

−ϕs ds,

w(t, x) = sup
α∈A

sup
γ∈M

vα,γ∧τ (t, x).

It is known from [6] (see Theorems 1.1, 2.4 and Lemma 2.2 therein) that under
the conditions of the theorem, w ≥ 0, the function w is Borel, it is also lower
continuous in Q, we have

w(t, x) = v(t, x)(1.3)

on Q̄ and the process

ρs = ρα,t,x
s = w(t + s ∧ τ, xs∧τ )e

−ϕs∧τ +
∫ s∧τ

0
f αr (t + r, xr)e

−ϕr dr

is a supermartingale on [0,∞) for any α ∈ A. Therefore, we have

v(t, x) = Eα
t,xρ0 ≥ Eα

t,xργ ≥ Eα
t,xρτ .(1.4)

After taking supremum over α ∈ A in (1.4), we obtain

v(t, x) = sup
α∈A

Eα
t,xρ0 ≥ sup

α∈A

Eα
t,xργ ≥ sup

α∈A

Eα
t,xρτ .(1.5)

Since the rightmost term in (1.5) equals v(t, x) by definition, all the inequalities
in (1.5) are equalities. To complete the proof of (1.2), it only remains to observe
that its right-hand side equals supα Eα

t,xργ . �

REMARK 1.2. Since v = 0 on ∂Q (even in Qc) and v ≥ 0 in Q, the lower
continuity of v holds on Q̄, provided that ∂Q has no isolated points, because v is
continuous along ∂Q, being identically zero there.

Set

Dt = ∂

∂t
, Di = ∂

∂xi
, Dij = DiDj , a = (1/2)σσ ∗,

Lα = Lα(t, x) = (aα)ij (t, x)Dij + (bα)i(t, x)Di − cα(t, x).

As a corollary of Theorem 7.4 of [7] (or of the corresponding results in [5]) and
Theorem 1.1, we have the following result. We remind the reader that Lipschitz
continuous functions have bounded first-order generalized derivatives.
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COROLLARY 1.3. In addition to the assumptions of Theorem 1.1, suppose
that v is bounded in an open set Q′ ⊂ Q and that for any α ∈ A, the generalized
function ∑

i,j

Dij (a
α)ij(1.6)

is a locally integrable function on Q′. Then

Dtv + Lαv + f α ≤ 0(1.7)

in Q′ in the sense of generalized functions, that is, for any nonnegative χ ∈
C∞

0 (Q′), ∫
Q′

v(−Dt + Lα∗)χ dt dx +
∫
Q′

f αχ dt dx ≤ 0,

where

Lα∗ := (aα)ijDij − (bα)iDi + 2[Dj(a
α)ij ]Di + Dij (a

α)ij − Di(b
α)i − cα.

EXAMPLE 1.4. Generally, in the situation of Theorem 1.1, the function v need
not be continuous in Q, even if f is bounded. For instance, take d = 2 and consider
the following (uncontrolled deterministic) process in R

2 = {(x, y) :x, y ∈ R}:
dxt = dt, dyt = 0.(1.8)

Let c = 0, f = 1 and Q = (−1,4)×(B2 \B̄1), where Br is the open ball of radius r

centered at the origin. As is easily seen, v(0, x, y) is discontinuous along the lines
y = ±1, x ∈ [−√

3,0].

To obtain a generalization of Theorem 1.1 for g 
≡ 0, we need one more assump-
tion on Q.

ASSUMPTION 1.5. There exists a function ψ ∈ C(Q̄) such that the first deriv-
atives of ψ with respect to (t, x) and the second derivatives with respect to x are
continuous on Q̄, ψ vanishes on the parabolic boundary ∂ ′Q of Q and for some
α ∈ A,

Dtψ + Lαψ ≤ −1 in Q.(1.9)

THEOREM 1.6. Suppose that Assumption 1.5 is satisfied. Then assertions (i)
and (ii) of Theorem 1.1 hold true. In particular, if v is bounded in an open set
Q′ ⊂ Q and for any α ∈ A, the generalized function (1.6) is a locally integrable
function on Q′, then (1.7) holds in Q′ in the sense of generalized functions, as in
Corollary 1.3.
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PROOF. To exhibit the dependence of v and vα on g, write v = v[g] and vα[g].
Since g is bounded and lower semicontinuous, there exists a sequence of smooth
functions gn ↑ g. Also, notice that by the monotone convergence theorem,

vα[g] = sup
n

vα[gn],

implying that

v[g] = sup
α

sup
n

vα[gn] = sup
n

sup
α

vα[gn] = sup
n

v[gn].(1.10)

This shows how to obtain (1.2) for g from the same assertion for gn, so that in
the proof of (1.2), we may assume that g is a smooth function. Furthermore, since
τ = τα,t,x = 0 if (t, x) ∈ ∂Q, we may assume that (t, x) ∈ Q.

Next, let N be a positive real number to be chosen later. Owing to Itô’s formula
and the facts that (t + τ, xα,t,x

τ ) ∈ ∂ ′Q and ψ = 0 on ∂ ′Q, we have

vα(t, x) − g(t, x) + Nψ(t, x)

= Eα
t,x

[∫ τ

0
(f αs + Dtg + Lαsg(1.11)

− NDtψ − NLαsψ)(t + s, xs)e
−ϕs ds

]
.

Denote by f̄ α any continuous continuation of

Dtg + Lαg − NDtψ − NLαψ

outside Q̄. This is possible because by assumption, the derivatives of g and ψ

involved above are continuous in Q̄. Then vα − g + Nψ is simply vα constructed
from f α + f̄ α and g = 0.

If (1.2) holds with

v − g + Nψ, f αs + f̄ αs

in place of v,f αs , respectively, then by using Itô’s formula again, we obtain (1.2)
in its original form. This enables us to assume that g = 0. Due to (1.9), we can
choose N sufficiently large so that

f α + f̄ α = f α + Dtg + Lαg − NDtψ − NLαψ ≥ 0

in Q. Then (1.2) follows immediately from Theorem 1.1. This theorem also shows
that v is lower continuous in Q, at least for smooth g. Then (1.10) implies that v is
lower semicontinuous in Q in the general case. The fact that it is lower continuous
follows from (1.2), as in the proof of Theorem 2.4 of [6]. The theorem is thus
proved. �
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Next, we prove a similar result for processes in cylindrical domains. Let D be a
bounded domain in R

d and T ∈ (0,∞) a fixed number. Usually, one is interested
in processes (t + s, xα,t,x

s ) not until τα,t,x , but rather

(T − t) ∧ inf{s ≥ 0, xα,t,x
s /∈ D},(1.12)

which is the first exit time of (t + s, xα,t,x
s ) from (−∞, T ) × D. These two exit

times coincide if we take (0, T ) × D as Q and t > 0. However, if t = 0, then the
former exit time is zero, since the starting point is already outside (0, T ) × D.
Psychologically, the value t = 0 looks important and, therefore, in order to allow
the process (t + s, xα,t,x

s ) to start at points (0, x) and yet have nontrivial objects to
deal with, we set

Q = (−1, T ) × D.

We impose an assumption slightly different from Assumption 1.5:

ASSUMPTION 1.7. There exists a function ψ ∈ C(Q̄) such that the first deriv-
atives of ψ with respect to (t, x) and the second derivatives with respect to x are
continuous on Q̄, ψ > 0 in Q and ψ vanishes on (−1, T ) × ∂D. Condition (1.9)
is also satisfied for an α ∈ A.

Observe that in Assumption 1.7, we do not require ψ to vanish on the whole
parabolic boundary of Q. The reason is that if the derivatives of ψ are continuous
at points on {T } × ∂D and ψ = 0 on {T } × D and (0, T ) × ∂D, then the left-hand
side of (1.9) is zero on {T } × D and so this inequality cannot be satisfied.

REMARK 1.8. If in Assumption 1.7, inequality (1.9) holds only in (−1, T ) ×
(D \ D′), where D′ ⊂ D̄′ ⊂ D, then one can modify ψ in such a way that (1.9)
holds in Q for the modification. To see this, it suffices to observe that(

Dt + Lα(t, x)
)[

ψ(t, x)eλ(T −t)] = eλ(T −t)(Dt + Lα)ψ(t, x) − eλ(T −t)λψ(t, x)

and to choose λ large enough, which would work if ψ > 0 in [−1, T ] × D̄′.
It is also worth noting that Assumption 1.7 does not imply that ∂D is smooth.

For instance, if D ⊂ R
2 = {(x, y) :x, y ∈ R} near the origin is described by y >

2|x| and Lα ≡ �, then near the origin, one can take ψ = y2 − 4x2.

THEOREM 1.9. Suppose that Assumption 1.7 is satisfied. Then assertions (i)
and (ii) of Theorem 1.1 hold true. In particular, if v is bounded in an open set
Q′ ⊂ Q and for any α ∈ A, the generalized function (1.6) is a locally integrable
function on Q′, then (1.7) holds in Q′ in the sense of generalized functions, as in
Corollary 1.3.
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PROOF. As in the proof of Theorem 1.6, we reduce the general situation to
the case where g is smooth and then, using Itô’s formula, to the case g = 0. Let
η ∈ C∞(R) be a function satisfying

0 ≤ η ≤ 1 in R, η ≡ 1 in (−∞,−2], η ≡ 0 in [−1,+∞).

For any ε > 0 and α ∈ A, set

f α
ε (t, x) = f α(t, x)η

(
ε−1(t − T )

)
and on Q̄, define vα

ε and vε with f α
ε in place of f α . From the definition of v, it is

easy to see that vε → v uniformly on Q̄ as ε ↓ 0. Therefore, it suffices to prove the
theorem for functions f satisfying the additional assumption

f α ≡ 0 on [T − ε, T ] × D̄

for some ε > 0 and any α ∈ A.
Our goal is to apply Theorem 1.1. Denote

ψ̄ = (T − t)ψ/ε.

Obviously, ψ̄ > 0 in Q and it vanishes on ∂ ′Q. In (−1, T − ε) × D, we have

Dtψ̄ + Lαψ̄ ≤ ε−1(T − t)(Dtψ + Lαψ) ≤ −1.

Meanwhile, in [T − ε, T ) × D, we have

Dtψ̄ + Lαψ̄ ≤ 0.

Therefore, we can choose N sufficiently large such that in Q,

f α − NDtψ − NLαψ ≥ 0.

By using Theorem 1.1 and the argument in the proof of Theorem 1.6, we complete
the proof of the present theorem. �

REMARK 1.10. It is known (see, e.g., [5]) that the optimal stopping prob-
lem for controlled diffusion processes reduces to a problem without stopping, but
with the data cα, f α becoming unbounded in the variable α. Then the above re-
sults become applicable to the optimal stopping problem for controlled diffusion
processes. This shows the usefulness of allowing our data to be unbounded in α.

In the following example we present a situation in which bα and f α are un-
bounded:

EXAMPLE 1.11. Consider the so-called singular stochastic control problem.
Let xα

t be a process in R
d defined by

xα
t = x + wt + αt ,(1.13)
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where wt is a d-dimensional Wiener process and α = αt is a d-dimensional control
process such that for any t ≥ 0, αt is Ft -measurable. Moreover, we will allow any
such continuous process for which

|α|t := Var[0,t]α

:= sup

{
n−1∑
i=1

∣∣αti+1 − αti

∣∣ :n = 1,2, . . . ,0 ≤ t1 < · · · < tn ≤ t

}

< ∞ ∀ t,

that is, we allow processes of locally bounded total variation. Fix a smooth
bounded domain D ⊂ R

d , a lower semicontinuous bounded function g = g(t, x)

on R × R
d and a bounded continuous function f on R

d .
Assume that for t ≤ T , we need to investigate

v(t, x) = sup
α

E

{
e−τ g(t + τ, xτ ) +

∫ τ

0
e−sf (xs) ds −

∫ τ

0
e−s d|α|s

}

where τ is the minimum of the first exit time of xt from D and T − t .
The fact that we restrict ourselves to continuous αt allows us to use smooth

approximations of α and to do this in such a way that the exit points for the orig-
inal process and its approximations are close. Obviously, one can approximate
process (1.13) by processes of the form

x
β
t = x + wt +

∫ t

0
βs ds,(1.14)

where β ∈ A = ⋃
n A(n) and A(n) is defined as the set of jointly measurable

Ft -adapted processes with values in A(n) = {β ∈ R
d : |β| ≤ n}. It is also clear

that

v(t, x) = sup
β∈A

Eβ
x

{
e−τ g(t + τ, xτ ) +

∫ τ

0
e−s(f (xs) − |βs |)ds

}
.

Observe that due to the boundedness and smoothness of D, there is a smooth
function ψ = ψ(x) such that �ψ = −2 in D and ψ = 0 on ∂D. It follows that As-
sumption 1.7 is satisfied with α = 0. Therefore, Bellman’s principle is applicable
in this situation.

From Theorem 1.9, one can extract more information. Indeed, we have

Dtv + (1/2)�v + βiDiv − v + f − |β| ≤ 0

in Q = (−1, T ) × D for any β ∈ R
d . By considering large |β| we see that in the

sense of generalized functions, we have ξ iDiv ≤ 1 in Q for any unit ξ ∈ R
d .

It is known that if the generalized gradient with respect to x of a function that is
measurable in (t, x) is bounded by 1, then the function itself coincides [(t, x)-a.e.]
with a function whose Lipschitz constant with respect to x is majorated by 1. It
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follows that in Q (a.e.), the function v coincides with a function v̄ that is Lipschitz
continuous in x with the Lipschitz constant bounded by 1.

We claim that v is itself Lipschitz continuous in x with the Lipschitz constant
bounded by 1. To show this, take an ε > 0 and define τα

ε as the first exit time of
(t,wt + αt) from Qε = (−ε, ε) × Bε . Also, take a random variable ξ which is
uniformly distributed on [0,1] and independent of the filtration {Ft }. Then for any
δ ≥ 0, δξ is a stopping time with respect to the filtration {Ft ∨σ(ξ)}. We also know
that changing the probability space and filtrations does not affect the value function
(see, e.g., [5, 6]). Set τα

εδ = τα
ε ∧ (δξ). If (t, x) is such that (t, x) + Qε ⊂ Q, then

τα
εδ ≤ τα,t,x for any control process α. For αt ≡ 0, by Theorem 1.9,

v(t, x) ≥ Rεδv(t, x) + Sεδv(t, x) + Pεδf (t, x),(1.15)

where

Rεδv(t, x) = E
{
e−δξ v(t + δξ, x + wδξ )Iδξ<τα

ε

}
,

Sεδv(t, x) = E
{
e−τα

ε v
(
t + τα

ε , x + wτα
ε

)
Iδξ≥τα

ε

}
,

Pεδf (t, x) = E

∫ τα
εδ

0
e−t f (x + wt) dt.

Obviously, as δ ↓ 0, Sεδv and Pεδf tend to zero uniformly with respect to (t, x).
Also, by the lower semicontinuity of v and Fatou’s lemma (|v| is bounded),

lim inf
δ↓0

Rεδv(t, x) ≥ v(t, x)P (0 < τα
ε ) = v(t, x),

which, along with (1.15), shows that Rεδv → v as δ ↓ 0 on the set of (t, x) such
that (t, x) + Qε ⊂ Q. We now observe the obvious fact that the distribution of
(δξ,wδξ ) has a density, so that in the definition of Rεδv, we can replace v with v̄,
which implies that

|Rεδv(t, x) − Rεδv(t, y)| ≤ |x − y|
for all ε > 0 and δ > 0. This and the above prove our claim.

Note that generally, since g is only assumed to be lower semicontinuous, it is
easy to see that v need not be continuous in D̄. Also, v need not be continuous in
t unless g is continuous in t .

EXAMPLE 1.12. In Example 1.11, the value function is most likely discontin-
uous because the data are unbounded. However, Assumption 1.7 does not guaran-
tee that v is continuous in Q∪ ∂ ′Q, even if everything is bounded and continuous.
To see that, return to Example 1.4, letting (1.8) describe the dynamics for some
control α ∈ A = {1,2} and the equation

dxt = dwt , dyt = dzt(1.16)
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describe the process response under the other control β , where (wt , zt ) is a two-
dimensional Wiener process. Also, let f α = f β = 1 and keep g = 0. Then, ob-
viously, v is greater than the function of the same name in Example 1.4. Also,
v(0, x, y) = 0 for (x, y) ∈ ∂B2 and, thus, v(0, x, y) is discontinuous at the points
(−√

3,±1). However, as is easily checked the function

ψ(t, x, y) = 2(2 − r)(r − 1), r =
√

x2 + y2,

satisfies Assumption 1.7 with α = β .

EXAMPLE 1.13. In Example 1.12, the function v is discontinuous only at
a few points on the boundary. One can modify this example in such a way that
Assumption 1.7 is still satisfied and the discontinuities occur inside Q. To show
that, replace (1.16) with

dxt = b(rt )xt dt, dyt = b(rt )yt dt,

where b(r) is a smooth function on [1,2], with b(r) = −1 for r ∈ [1,5/4] and
b(r) = 1 for r ∈ [7/4,2]. Then any smooth function ψ(t, x) such that ψ = r − 1
near ∂B1 and ψ = 2 − r near ∂B2 satisfies Assumption 1.7 near ∂B1 ∪ ∂B2. Ac-
cording to Remark 1.8, one can find a new function satisfying Assumption 1.7 as
it is stated.

However, it is not hard to see that the new value function v coincides with the
function from Example 1.4 on the set where t = 0, r ∈ [1,5/4], x < 0 and y ∈
[−1,0]. Since, on the other hand, v is not less than the function from Example 1.4,
v(0, x, y) is discontinuous on that part of the line (x,−1), x ≤ 0, which lies in
B5/4 \ B1.

REMARK 1.14. Theorem 2.1 in Chapter V of [4] concerning Bellman’s prin-
ciple requires the existence of a rather smooth function ḡ in Q̄ such that ḡ = g on
(−1, T ) × ∂D, ḡ ≥ g on {T } × D and in Q,

Dtḡ + sup
α∈A

[Lαḡ + f α] ≤ 0.(1.17)

This assumption is not satisfied in Examples 1.4 and 1.12 where g ≡ 0 because
otherwise, by Itô’s formula, we would have v ≤ ḡ in Q∪∂ ′Q and v(0, x, y) would
go to zero as (x, y) goes to ∂D.

2. Lipschitz continuity of v in x and Hölder continuity of v in t . In this
section, we show that under certain additional conditions, the function v defined
in Section 1 is Lipschitz continuous with respect to x and Hölder 1/2 continuous
in t . Both the case that Q is a general domain and the case that Q is a cylindrical
domain are treated.

For some applications (see, e.g., the proof of Theorem 2.17), it is also conve-
nient to investigate the dependence of v on parameters. Therefore, apart from our
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basic objects and assumptions introduced at the beginning of Section 1, we sup-
pose that for an ε0 ∈ [0,1] and each ε ∈ {0, ε0}, we are also given

σα(ε) = σα(t, x, ε), bα(ε) = bα(t, x, ε),
(2.1)

cα(ε) = cα(t, x, ε), f α(ε) = f α(t, x, ε), g(ε) = g(t, x, ε),

having the same meaning and satisfying the same assumptions as the original
σ, b, c, f . The solution of (1.1) corresponding to σα(ε), bα(ε) will be denoted by
xα,t,x
s (ε) and the functions vα , v constructed from the new objects by vα(t, x, ε)

and v(t, x, ε), respectively. We assume that for ε = 0, the functions in (2.1) coin-
cide with the original ones, so that in our notation,

vα(t, x) = vα(t, x,0), v(t, x) = v(t, x,0).

Naturally, the operator Lα constructed from σα(ε), bα(ε) and cα(ε) is denoted by
Lα(ε), and by τα,t,x(ε), we mean the first exit time of (t + s, xα,t,x

s (ε)), s ≥ 0,
from Q.

Let λ ∈ [0,∞),K,K1, T ∈ (0,∞) be constants. The names of the following
assumptions contain a parameter ε. This is done in order to provide flexibility for
using the assumptions in different settings.

ASSUMPTION 2.1 (ε). (i) We have Q ⊂ (−∞, T ) × R
d and in Q̄, we are

given a continuous function ψ such that ψ = 0 on the parabolic boundary ∂ ′Q of
Q.

(ii) The functions g(ε) and ψ , their first and second derivatives in x and first
derivatives in t are a continuous on Q̄.

(iii) For each α ∈ A on Q, we have

|f α(ε) + Dtg(ε) + Lα(ε)g(ε)| ≤ K1, cα(ε) ≥ λ.

ASSUMPTION 2.2 (ε). For any α ∈ A, it holds that

Dtψ + Lα(ε)ψ ≤ −1 in Q.

ASSUMPTION 2.3 (ε). (i) For ζ(ε) = σα(ε), bα(ε), α ∈ A and any (t, x),
(t, y) ∈ Q, we have

|ζ(t, x, ε) − ζ(t, y,0)| ≤ K(|x − y| + ε).

(ii) For ζ(ε) = ψ , cα(ε), g(ε), f α(ε), α ∈ A and any (t, x), (t, y) ∈ Q, we have

|ζ(t, x, ε) − ζ(t, y,0)| ≤ K1(|x − y| + ε),

where |σ | has the usual meaning (trace σσ ∗)1/2 for matrices σ .

We start by estimating the moments of the difference of solutions of (1.1) with
different initial values.
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THEOREM 2.4. Let Assumption 2.3(ε)(i) be satisfied for some ε ∈ {0, ε0}.
Take any p ≥ 0, (t, x), (t, y) ∈ Q, α ∈ A and a stopping time γ ≤ τα,t,x ∧τα,t,y(ε).
Then

E sup
s≤γ

e−Ms |xα,t,x
s − xα,t,y

s (ε)|p ≤ 3(|y − x|p + εp),(2.2)

where M = M(p,K) ≥ 0.

PROOF. First, we take p ≥ 2. For simplicity of notation, we drop the in-
dices α, t, x, y in what follows. For instance, we denote xr = xα,t,x

r . Also, set
yr = x

α,t,y
r (ε).

By using Itô’s formula, for s ∈ [0, γ ], we obtain

e−Ms(|xs − ys |p + εp)

= |x − y|p + εp + ms

− M

∫ s

0
(|xr − yr |p + εp)e−Mr dr

+ p

∫ s

0
|xr − yr |p−2(xr − yr)

∗(
b(t + r, xr) − b(t + r, yr , ε)

)
e−Mr dr

+ p(p − 2)

2

∫ s

0
|xr − yr |p−2|σ(t + r, xr) − σ(t + r, yr, ε)|2e−Mr dr,

where ms is a local martingale starting at zero. Due to Assumption 2.3(ε)(i), we
can choose M = M(p,K) ≥ 1 sufficiently large so that

e−Ms(|xs − ys |p + εp) ≤ |x − y|p + εp + ms.

Upon applying Lemma 7.3(i) of [9], we get

Ee−Mγ (|xγ − yγ |p + εp) ≤ |x − y|p + εp.

Since γ is any stopping time ≤ τα,t,x ∧ τα,t,y(ε), by Lemma 7.3(ii) of [9], we
conclude that

E sup
s≤γ

e−Mδs |xs − ys |pδ ≤ E sup
s≤γ

e−Mδs(|xs − ys |p + εp)δ

≤ 2 − δ

1 − δ
(|x − y|p + εp)δ

≤ 2 − δ

1 − δ
(|x − y|pδ + εpδ)

≤ 3(|x − y|pδ + εpδ)

for any δ ∈ (0,1/2). It only remains to observe that when p runs through [2,∞)

and δ through (0,1/2), the product pδ covers (0,∞). �

By using (1.11), we arrive at the following:
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LEMMA 2.5. Let Assumptions 2.1(ε) and 2.2(ε) be satisfied for some ε ∈
{0, ε0}. Then on Q ∪ ∂ ′Q, we have

|v(t, x, ε) − g(t, x, ε)| ≤ K1ψ(t, x).

THEOREM 2.6. Let Assumptions 2.1(0) and 2.2(0) be satisfied. Take some
ε ∈ {0, ε0} and suppose that Assumptions 2.1(ε), 2.2(ε) and 2.3(ε) are satisfied.
Then there are constants N depending only on K,K1, d1, d and M depending
only on K such that for any (t, x), (t, y) ∈ Q ∪ ∂ ′Q, we have

|v(t, x) − v(t, y, ε)| ≤ Ne(T −t)(M−λ)+(|x − y| + ε).(2.3)

PROOF. Due to Lemma 2.5, we may concentrate on points inside Q. Fix
(t, x), (t, y) ∈ Q and for any α ∈ A and s ≥ 0, set

yα,t,x
s = xα,t,y

s (ε), ϕ̄α,t,x
s =

∫ s

0
cαr (t + r, yα,t,x

r , ε) dr.

This notation will allow us to use our convention regarding indices with which we
provide the expectation sign.

By using Theorem 1.6 with

γ α = τα,t,x ∧ τα,t,y(ε),

we get

|v(t, x) − v(t, y, ε)| ≤ I1 + I2,(2.4)

where

I1 = sup
α∈A

Eα
t,x

∫ γ

0
|f αs (t + s, xs)e

−ϕs − f αs (t + s, ys, ε)e
−ϕ̄s |ds,

I2 = sup
α∈A

Eα
t,x |v(t + γ, xγ )e−ϕγ − v(t + γ, yγ , ε)e−ϕ̄γ |.

By using the inequality |ea − eb| ≤ ea∨b|a − b| and Assumption 2.3, we obtain

|f αs (t + s, xs)e
−ϕs − f αs (t + s, ys, ε)e

−ϕ̄s |
≤ Ne−λs

[
|xs − ys | + ε +

∫ s

0
(|xr − yr | + ε) dr

]

≤ Ne(µ−λ)s

[
e−µs(|xs − ys | + ε) +

∫ s

0
e−µr(|xr − yr | + ε) dr

]

≤ Ne(µ−λ)s(1 + s) sup
s≤γ

e−µs(|xs − ys | + ε)

≤ Ne(µ+1−λ)s sup
s≤γ

e−µs(|xs − ys | + ε),
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where µ is any constant ≥ 0. Upon applying Theorem 2.4, we get

I1 ≤ N sup
α∈A

Eα
t,x sup

s≤γ
e−Ms(|xs − ys | + ε)

∫ γ

0
e(M+1−λ)s ds

(2.5)
≤ N(|x − y| + ε)e(M+2−λ)+(T −t).

To estimate I2, we observe that either (t + γ, xγ ) or (t + γ, yγ ) is on ∂ ′Q. Due
to Lemma 2.5, in the first case, we have

|v(t + γ, xγ )e−ϕγ − v(t + γ, yγ , ε)e−ϕ̄γ |
= |g(t + γ, xγ )e−ϕγ − v(t + γ, yγ , ε)e−ϕ̄γ |
≤ |g(t + γ, xγ )e−ϕγ − g(t + γ, yγ , ε)e−ϕ̄γ | + N |ψ(t + γ, yγ )|e−γ λ

(2.6)
≤ Ne(M+1−λ)γ sup

s≤γ
e−Ms(|xs − ys | + ε)

+ N |ψ(t + γ, xγ ) − ψ(t + γ, yγ )|e−γ λ

≤ Ne(M+1−λ)γ sup
s≤γ

e−Ms(|xs − ys | + ε).

A similar argument is valid in the second case. Thus, by Theorem 2.4, for any
α ∈ A, we have

Eα
t,x |v(t + γ, xγ )e−ϕγ − v(t + γ, yγ , ε)e−ϕ̄γ |

(2.7)
≤ N(|x − y| + ε)e(M+1−λ)+(T −t).

After combining (2.4), (2.5) and (2.7), we obtain (2.3) with M + 2 in place
of M . �

THEOREM 2.7. Under Assumptions 2.1(0), 2.2(0) and 2.3(0) also suppose
that for any α ∈ A in Q,

|σα| + |bα| ≤ K1.(2.8)

Then there are constants N = N(K,K1, d, d1) and M = M(K) such that for any
(t, x), (s, x) ∈ Q ∪ ∂ ′Q such that |s − t | ≤ 1, we have

|v(s, x) − v(t, x)| ≤ |g(s, x) − g(t, x)| + K1|ψ(s, x) − ψ(t, x)|(2.9)

+ N |s − t |1/2e(T −t)(M−λ)+ .

In particular, if g and ψ are Hölder-1/2 continuous in Q ∪ ∂ ′Q with respect to t ,
then so is v.

PROOF. Observe that if both points (s, x) and (t, x) are on ∂ ′Q, then the left-
hand side of (2.9) is less than the first term on the right and so there is nothing to
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prove. However, if one of them is in Q, then x can be slightly moved in such a
way that they both fall into Q and by Theorem 2.6, this leads to an insignificant
modification of the left-hand side of (2.9). We see that it suffices to concentrate on
(s, x), (t, x) ∈ Q.

Next, we assume that t ≤ s and set γ α,t,x = (s − t) ∧ τα,t,x . Note that by Bell-
man’s principle and Itô’s formula (as usual, we drop indices α, t, x from objects
behind the expectation sign),

(v − g + K1ψ)(t, x)

= sup
α∈A

Eα
t,x

[
(v − g + K1ψ)(t + γ, xγ )e−ϕγ

+
∫ γ

0

(
f̄ αr + K1(Dt + Lαr )ψ

)
(t + r, xr)e

−ϕr dr

]
,

where

f̄ α = f α + (Dt + Lα)g, |f̄ α| ≤ K1, f̄ α + K1(Dt + Lα)ψ ≤ 0.

Since v − g + K1ψ = 0 on ∂ ′Q,

Eα
t,x(v − g + K1ψ)(t + γ, xγ )e−ϕγ = Eα

t,x(v − g + K1ψ)(s, xs−t )e
−ϕs−t Iγ=s−t ,

so that by Theorem 2.6,

Eα
t,x(v − g + K1ψ)(t + γ, xγ )e−ϕγ

≤ Eα
t,x

[
(v − g + K1ψ)(s, x) + Ne(T −t)(M−λ)+|x − xs−t |]e−ϕs−t Iγ=s−t .

Furthermore, well-known estimates of stochastic integrals, combined with the as-
sumption that σ and b are bounded and that s − t ≤ √

s − t , imply that

Eα
t,x |x − xs−t | ≤ N

√
s − t .

Next, according to Lemma 2.5, we have (v − g + K1ψ)(s, x) ≥ 0. It follows
that

(v − g + K1ψ)(t, x) ≤ (v − g + K1ψ)(s, x) + Ne(T −t)(M−λ)+√
s − t,

v(t, x) − v(s, x) ≤ |g(t, x) − g(s, x)|
+ K1|ψ(t, x) − ψ(s, x)| + Ne(T −t)(M−λ)+√

s − t .

That

v(t, x) − v(s, x) ≥ −|g(t, x) − g(s, x)|
− K1|ψ(t, x) − ψ(s, x)| − Ne(T −t)(M−λ)+√

s − t

is proved similarly by considering v − g − K1ψ and noting that this function is
negative on Q. The theorem is thus proved. �
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Next, we consider the case where

Q = (−1, T ) × D

is a cylindrical domain in R
d+1 under weaker assumptions on the boundary data.

Let D be a bounded domain and let ψ(t, x), g1(ε) = g1(t, x, ε) and g2(ε) =
g2(x, ε) be functions on Q̄.

ASSUMPTION 2.8 (ε). (i) The functions g1(ε) and ψ , their first derivatives
with respect to (t, x) and their second derivatives with respect to x are continuous
on Q̄, ψ > 0 in Q and ψ vanishes on (−1, T ) × ∂D.

(ii) We have

g(ε) = g1(ε) on (−1, T ) × ∂D,

g(ε) = g2(ε), |g2(ε)| ≤ K1, |g2(ε) − g1(ε)| ≤ K1ψ on {T } × D̄.

(iii) For each α ∈ A on Q, we have

|f α(ε) + Dtg1(ε) + Lα(ε)g1(ε)| ≤ K1, cα(ε) ≥ λ.

Observe that

∂ ′Q = (
(−1, T ) × ∂D

) ∪ ({T } × D̄).

Itô’s formula immediately yields the following:

LEMMA 2.9. Let Assumptions 2.8(ε) and 2.2(ε) be satisfied for some ε ∈
{0, ε0}. Then on Q ∪ ∂ ′Q, we have

|v(ε) − g1(ε)| ≤ K1ψ.(2.10)

The following theorem can be proven in almost the same way as Theorem 2.6.
By “the assertion of Theorem 2.6” in Theorem 2.10 we mean that which follows
“Then” in the statement of Theorem 2.6. Theorem 2.13 should be read similarly.

THEOREM 2.10. Let Assumptions 2.8(0) and 2.2(0) be satisfied. Take some
ε ∈ {0, ε0} and suppose that Assumptions 2.8(ε), 2.2(ε) and 2.3(ε) are satisfied if
in Assumption 2.3(ε), we replace g with g1, g2. Then the assertion of Theorem 2.6
again holds true.

Indeed, we can reproduce the proof of Theorem 2.6 except that we use The-
orem 1.9 in place of Theorem 1.6 and while estimating I2 instead of (2.6), we
write

|v(t + γ, xγ )e−ϕγ − v(t + γ, yγ , ε)e−ϕ̄γ |
= · · · Iγ<T −t + · · · Iγ=T −t

= |g1(t + γ, xγ )e−ϕγ − v(t + γ, yγ , ε)e−ϕ̄γ |Iγ<T −t

+ |g2(xT −t )e
−ϕT −t − g2(yT −t , ε)e

−ϕ̄T −t |Iγ=T −t ,
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where as before, the first term on the right is less than the last term in (2.6) and the
second is majorated by Iγ=T −t times

K1(|xT −t − yT −t | + ε)e−λ(T −t) + K2
1e−λ(T −t)

∫ T −t

0
(|xr − yr | + ε) dr.

REMARK 2.11. In Theorem 2.10, we required ψ to satisfy Assumption 2.2
in Q. As in Remark 1.8, one may show that we actually need this assumption only
near (−1, T ) × ∂D.

Using Theorem 7.4 of [7] (or the corresponding results in [5]) and the above
results immediately yield the following:

COROLLARY 2.12. Suppose that the assumptions of Theorem 2.10 or Theo-
rem 2.6 are satisfied with ε = 0. Then for any α ∈ A, (1.7) holds true in Q in the
sense of generalized functions, that is, for any nonnegative χ ∈ C∞

0 (Q),∫
Q

v(−Dt − cα)χ dt dx

+
∫
Q

[
χ(bα)iDiv + χf α − (

χDi(a
α)ij + (aα)ijDiχ

)
Djv

]
dt dx ≤ 0.

Our next result concerns the Hölder continuity of v in t .

THEOREM 2.13. Under Assumptions 2.8(0), 2.2(0) and 2.3(0), suppose
that (2.8) holds for any α ∈ A in Q. Then the assertions of Theorem 2.7 are valid
with g1 in place of g in (2.9) and v is Hölder-1/2 continuous in Q ∪ ∂ ′Q with
respect to t .

The proof of this theorem follows that of Theorem 2.7 almost word for word;
of course, we replace g with g1 in that proof.

In the following remark, we state an analog of one of the assertions of Theo-
rem 2.1 in Chapter V of [4]. As everywhere in the article, we remain within the
framework introduced in Section 1.

REMARK 2.14. Let Q = (−1, T ) × D and let ψ be a function on Q̄ which
is continuous along with its first derivatives with respect to (t, x) and the second
derivatives with respect to x. Also, let Assumption 2.2(0) be satisfied, let ψ > 0 in
Q and let ψ = 0 on (−1, T ) × ∂D. Assume that A = A(1) and g is continuous. It
then turns out that v is continuous in Q̄ \ ({−1} × D̄).

Indeed, the fact that A = A(1) guarantees the validity of (2.8) and Assump-
tion 2.3(0)(i). Furthermore, having in mind approximations using mollifiers, we
may assume that c and f are Lipschitz continuous in x uniformly with respect to
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other variables and that g is infinitely differentiable (see more about this in [5]).
Then it only remains to observe that v is continuous in Q̄ \ ({−1} × D̄) by The-
orems 2.10 and 2.13 [of course, in these theorems, we take g1(ε) = g(ε) = g and
g2(ε) = g(T , ·)].

Note that our requirement that Assumption 2.2 be satisfied is, in fact, very sim-
ilar to condition (1.17) imposed in Theorem 2.1 in Chapter V of [4]. However, we
only need it for g ≡ 0, albeit with 1 in place of f α .

Before stating out last result, the obtaining of which largely motivated this arti-
cle, we take a δ ∈ (0,1], define B = {x ∈ R

d : |x| < 1}, � = (−1,0),

Â = A × � × B,

for β = (α, r, y) ∈ Â, set

(σβ, bβ, cβ, f β)(t, x) = (σα, bα, cα, f α)(t + δ2r, x + δy),

and introduce the following:

ASSUMPTION 2.15. (i) Assumptions 2.8(0), 2.2(0) and 2.3(0) hold if we
there replace A,σα, bα, cα, f α with Â, σβ, bβ, cβ, f β , respectively.

(ii) For each α ∈ A in (−2, T ) × R
d , the functions σα and bα are Lipschitz

continuous in x with constant K and Hölder-1/2 continuous in t with constant K ,
and the functions cα ≥ λ and f α are Lipschitz continuous in x with constant K1
and Hölder-1/2 continuous in t with constant K1. Condition (2.8) is also satisfied
in that domain.

(iii) The functions ψ and g1 are defined on H := [0, T ]×R
d and are Lipschitz

continuous in x with constant K1 and Hölder-1/2 continuous in t with constant K1.

REMARK 2.16. On account of Assumption 2.15(ii) and the boundedness
of the derivatives of ψ and g1 entering the operators Lα , obviously, Assump-
tion 2.15(i) is satisfied for sufficiently small δ and somewhat modified ψ and K1
if Assumptions 2.8(0), 2.2(0) and 2.3(0) hold in their original form.

Recall that until now, continuity in t has not been assumed for σ, b, c, f .

Introduce

H(δ) = [0, T − δ2] × R
d,

Dδ = {x ∈ D : dist(x, ∂D) > δ}, Q(δ) = (0, T − δ2) × Dδ.

For multi-indices γ = (γ1, . . . , γd), γi = 0,1, . . . , as usual, we set

Dγ
x = D

γ1
1 · · ·Dγd

d , |γ | = γ1 + · · · + γd.
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THEOREM 2.17. Extend v as g1 in H \ Q̄. Suppose that Q(δ) 
= ∅. Then
under Assumption 2.15, there exists an infinitely differentiable function uδ defined
on H(δ) such that for any α ∈ A,

Dtu
δ + Lαuδ + f α ≤ 0(2.11)

in Q(δ) and for any integers m ≥ 1, k, l ≥ 0 and multi-indices γ such that
2k + l = m and |γ | = l,

|Dk
t D

γ
x uδ(t, x)| ≤ Ne(T −t)(M−λ)+δ1−m,(2.12)

|uδ(t, x) − v(t, x)| ≤ Ne(T −t)(M−λ)+δ(2.13)

in H(δ), where N = N(K,K1, d, d1) and M = M(K).

PROOF. Let vδ be constructed from Â, σβ, bβ, cβ, f β, g in the same way as v

from A,σα, bα, cα, f α, g. Extend vδ as g1 in H \ Q̄. Note that by virtue of As-
sumption 2.15 and Theorem 2.10 (where we take ε = ε0 = δ), we have

|v(t, x) − vδ(t, x)| ≤ Ne(T −t)(M−λ)+δ(2.14)

in (−1, T ] × R
d . Furthermore, by Assumption 2.15 and Theorems 2.10 and 2.13,

|vδ(t, x) − vδ(s, y)| ≤ Ne(T −t)(M−λ)+(|t − s|1/2 + |x − y|)(2.15)

if (t, x), (s, y) ∈ (−1, T ] × R
d and |t − s| ≤ 1.

Take a nonnegative function ζ ∈ C∞
0 (Rd+1) with support in � × B and unit

integral. Our goal is to prove that

uδ(t, x) := δ−d−2
∫

Rd+1
vδ(s, y)ζ

(
δ−2(t − s), δ−1(x − y)

)
ds dy

is a function we need.
Inequality (2.12) follows from (2.15) and elementary properties of mollifiers

which also imply that

|uδ(t, x) − vδ(t, x)| ≤ Ne(T −t)(M−λ)+δ

in H(δ). By recalling (2.14), we see that it only remains to prove (2.11).
By Corollary 2.12, for any nonnegative χ ∈ C∞

0 (Q),∫
Q

vδ(t, x)
(−Dt − cα(t + δ2r, x + δy)

)
χ(t, x) dt dx

+
∫
Q

[
χ(t, x)

(
(bα)i(t + δ2r, x + δy)Div

δ(t, x)

+ f α(t + δ2r, x + δy)
)

− (
χ(t, x)Di(a

α)ij (t + δ2r, x + δy)

+ (aα)ij (t + δ2r, x + δy)Diχ(t, x)
)
Djv

δ(t, x)
]
dt dx ≤ 0.
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We here substitute χ(t + δ2r, x + δy) in place of χ(t, x) and change variables (t +
δ2r, x +δy) → (t, x) to find that for any fixed r ∈ (−1,0), |y| ≤ 1 and nonnegative
χ ∈ C∞

0 (Q(δ)),∫
Q(δ)

vδ(t − δ2r, x − δy)(−Dt − cα)χ(t, x) dt dx

+
∫
Q(δ)

[
χ(bα)i(t, x)Div

δ(t − δ2r, x − δy) + χf α(t, x)

(2.16)
− (

χDi(a
α)ij + (aα)ijDiχ

)
(t, x)

× Djv
δ(t − δ2r, x − δy)

]
dt dx ≤ 0.

After multiplying (2.16) by ζ(r, y), integrating with respect to (r, y) and using
Fubini’s theorem, we obtain∫

Q(δ)
uδ(−Dt − cα)χ dt dx

+
∫
Q(δ)

[
χ(bα)iDiu

δ + χf α − (
χDi(a

α)ij + (aα)ijDiχ
)
Dju

δ]dt dx(2.17)

≤ 0.

Since uδ is smooth and χ ∈ C∞
0 (Q(δ)) is an arbitrary nonnegative function, after

one more integration by parts, inequality (2.17) implies (2.11).
The theorem is thus proved. �
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