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FELLER PROCESSES ON NONLOCALLY COMPACT SPACES

BY TOMASZ SZAREK1

University of Silesia

We consider Feller processes on a complete separable metric space X

satisfying the ergodic condition of the form

lim sup
n→∞

(
1

n

n∑
i=1

P i(x,O)

)
> 0 for some x ∈ X,

where O is an arbitrary open neighborhood of some point z ∈ X and P is a
transition function. It is shown that e-chains which satisfy the above condition
admit an invariant probability measure. Some results on the stability of such
processes are also presented.

1. Introduction. The theory of Feller processes is still being developed [3, 4,
11, 12, 17, 20, 22, 23], although these processes were the subject of several papers
over thirty years ago (see [8–10, 21, 24, 26, 27]). In most of the literature, the
state space is assumed compact, or at least locally compact, so that existence of an
invariant measure is almost immediate. In the nonlocally compact case, this may
be proved, in turn, if a strong form of Harris recurrence on some compact set holds
(see [23]). However, this condition is rather hard to verify. It is easier to obtain
ergodicity on some open sets which, unfortunately, are not precompact. Similar
difficulties occur when we attempt to state the Doeblin condition (see [23]).

It seems that the nonlocally compact case has not yet been completely analyzed.
In this note, we contribute to this effort. The work was motivated by the need
to investigate the limit behavior of discrete Markov chains generated by iterated
function systems [1, 6, 17, 19, 28] and stochastic differential equations on Hilbert
spaces (see [5]). The utility of our method in proving the existence of an invariant
measure for stochastic partial differential equations with an impulsive noise will
be shown in [18].

Let (X,ρ) be a complete and separable metric space and let � = (�n)n≥1 be a
discrete-time Markov chain on X. By B(X), we denote the space of all Borel sets.
Let P(x,A) be a transition function defined for x ∈ X and A ∈ B(X). Feller’s
property means that the function x → P(x,U) is lower semicontinuous for all
open sets U . Alternatively, we can say that

C(X) � f (·) → Pf (·) =
∫
X

f (y)P (·, dy) ∈ C(X),
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where C(X) denotes the space of all bounded continuous functions on X.
We are interested in the existence of an invariant probability measure for �.

A measure µ is called invariant if

µ(A) = µP(A) =
∫
X

P (x,A)µ(dx)

for A ∈ B(X).
Let µ be an arbitrary Borel measure. We define the support of the measure µ by

setting

suppµ = {
x ∈ X :µ

(
B(x, ε)

)
> 0 for every ε > 0

}
.

In order to establish the existence of an invariant measure and stability, we in-
troduce the following condition:

(E) There exists z ∈ X such that for every open set O containing z,

lim sup
n→∞

(
1

n

n∑
i=1

P i(x,O)

)
> 0 for some x ∈ X.(1.1)

2. Existence of invariant measures.

PROPOSITION 2.1. Let P :X × B(X) → [0,1] be a transition function for a
discrete-time Markov chain � and assume that condition (E) holds for some z ∈ X.
If {P nf :n ∈ N} is equicontinuous in z for every Lipschitz continuous function f ,
then � admits an invariant probability measure.

PROOF. To finish the proof, it suffices to show that for every ε > 0, there exists
a compact set K ⊂ X such that

lim inf
n→∞ P n(z,Kε) ≥ 1 − ε,(2.1)

where Kε = {x ∈ X : infy∈K ρ(x, y) < ε}. This, in conjunction with Theorem 2.2
in [7], tells us that the measures {P n(z, ·) :n ∈ N} are tight. Therefore, the Cesaro
averages are weakly precompact by the Prokhorov theorem (see [7]). Note that any
weak limit of the Cesaro averages is invariant.

Assume, contrary to our claim, that (2.1) does not hold for some ε > 0. By
Ulam’s lemma (see [2]), there exist a sequence of compact sets (Ki)i≥1 and a
sequence of integers (qi)i≥1 satisfying

P qi (z,Ki) > ε

and

min{ρ(x, y) :x ∈ Ki, y ∈ Kj } ≥ ε/3 for i, j ∈ N, i �= j.(2.2)
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We first show that for every open set O containing z and j ∈ N, there exist
y ∈ O and i ≥ j such that

P qi (y,K
ε/12
i ) < ε/2.

On the contrary, suppose that there exist an open set O ′ containing z and i0 ∈ N

such that

inf{P qi (y,K
ε/12
i ) :y ∈ O ′, i ≥ i0} ≥ ε/2.(2.3)

Let x ∈ X be such that condition (1.1) holds with O ′ in place of O . Let α > 0 be
such that

lim sup
n→∞

(
1

n

n∑
i=1

P i(x,O ′)
)

> α.

By (2.2), (2.3) and the Chapman–Kolmogorov equation, we obtain

lim sup
n→∞

1

n

n∑
i=1

P i

(
u1,

N⋃
j=i0

K
ε/12
j

)
> (N − i0)αε/2

for every N ≥ i0, which is impossible.
We will now define by induction a sequence of Lipschitz continuous func-

tions (f̃n)n≥1, a sequence of points (yn)n≥1, yn → z as n → ∞ and three increas-
ing sequences of integers (in)n≥1, (kn)n≥1, (mn)n≥1, in+1 > kn > in for n ∈ N,
such that

f̃n|Kin
= 1 and 0 ≤ f̃n ≤ 1

K
ε/12
in

,(2.4)

∣∣∣∣∣P mn

(
n∑

i=1

f̃i

)
(z) − P mn

(
n∑

i=1

f̃i

)
(yn)

∣∣∣∣∣ > ε/4(2.5)

and

P mn

(
u,

∞⋃
i=kn

K
ε/12
i

)
< ε/16 for u = z, yn, n ∈ N.(2.6)

Let n = 1. From what has already been proved, it follows that there exist y1 ∈
B(z,1) and i1 ∈ N such that

P qi1
(
y1,K

ε/12
i1

)
< ε/2.

Set m1 = qi1 and let k1 > i1 be such that

P m1

(
u,

∞⋃
i=k1

K
ε/12
i

)
< ε/16 for u = z, y1.
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Let f̃1 be an arbitrary Lipschitz continuous function satisfying

f̃1|Ki1
= 1 and 0 ≤ f̃1 ≤ 1

K
ε/12
i1

.(2.7)

Thus,

|P m1 f̃1(z) − P m1 f̃1(y1)| ≥ P m1
(
z,Ki1

) − P m1
(
y1,K

ε/12
i1

)
> ε/2.

If n ≥ 2 is fixed and f̃1, . . . , f̃n−1, y1, . . . , yn−1, i1, . . . , in−1, k1, . . . , kn−1,
m1, . . . ,mn−1 are given, we choose σ < n−1 such that∣∣∣∣∣P m

(
n−1∑
i=1

f̃i

)
(z) − P m

(
n−1∑
i=1

f̃i

)
(y)

∣∣∣∣∣ < ε/8(2.8)

for y ∈ B(z,σ ) and m ∈ N. Similarly to the first part, we may choose yn ∈ B(z,σ )

and in > kn−1 such that

P qin
(
yn,K

ε/12
in

)
< ε/2.

Set mn = qin and let f̃n be an arbitrary Lipschitz continuous function satisfying
condition (2.4). Let kn > in be such that

P mn

(
u,

∞⋃
i=kn

K
ε/12
i

)
< ε/16 for u = z, yn.

From this, (2.8) and the definition of f̃n, we have∣∣∣∣∣P mn

(
n∑

i=1

f̃i

)
(z) − P mn

(
n∑

i=1

f̃i

)
(yn)

∣∣∣∣∣
≥ |P mnf̃n(z) − P mnf̃n(yn)|

−
∣∣∣∣∣P mn

(
n−1∑
i=1

f̃i

)
(z) − P mn

(
n−1∑
i=1

f̃n

)
(yn)

∣∣∣∣∣
> ε/2 − ε/8 > ε/4.

We now define f = ∑∞
i=1 f̃i . Without loss of generality we may assume that

all the functions f̃i have the same Lipschitz constant. By (2.2) and (2.4), f is a
Lipschitz continuous function and ‖f ‖∞ ≤ 1. Finally, by (2.5) and (2.6), we have

|P mnf (z) − P mnf (yn)| > ε/8 for n ∈ N

and since yn → z as n → ∞, this contradicts the assumption that {P nf :n ∈ N} is
equicontinuous in z. �

The Markov transition function P is called equicontinuous if for f ∈ Cb(X) the
sequence of functions {P nf :n ∈ N} is equicontinuous on compact sets. Recall
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that by Cb(X) we denote the space of all bounded continuous functions with a
bounded support.

A Markov chain which possesses an equicontinuous Markov transition function
will be called an e-chain.

REMARK. The concept of e-chains appears in [15, 16, 24, 26, 27]. It is, of
course, clear that the condition appearing in the definition of an e-chain is equiva-
lent to equicontinuity of {P nf :n ∈ N}, f ∈ Cb(X), in every point x ∈ X.

In Proposition 2.1, we assumed that equicontinuity holds for all Lipschitz con-
tinuous functions. We now introduce a condition which allows restriction to the
case of all Lipschitz continuous functions with a bounded support.

A continuous function V :X → [0,∞) is called a Lyapunov function if

lim
ρ(x,x0)→∞V (x) = ∞

for some x0 ∈ X.

THEOREM 2.2. Let � be an e-chain such that condition (E) holds, and let
P :X×B(X) → [0,1] be its transition function. If there exist a Lyapunov function
V :X → [0,∞) and λ < 1, b < ∞, R < ∞, x0 ∈ X such that

PV (x) ≤ λV (x) + b1B(x0,R)(x) for x ∈ X,(2.9)

then � admits at least one invariant probability measure.

PROOF. Observe that (2.9) implies that � is bounded in probability, that is,
for x ∈ X and ε > 0, there exists a bounded Borel set C ⊂ X such that P n(x,C) ≥
1 − ε for n ∈ N (see [17]). If we assume, contrary to our claim, that � does not
admit an invariant probability measure, the same conclusion as in the proof of
Proposition 2.1 can be drawn for some Lipschitz continuous function with bounded
support. �

As an illustration of the power of Proposition 2.1, we have the following exam-
ple:

EXAMPLE (Jump process). We consider a jump process connected with an
iterated function system. A similar process on R

n was considered in [25]. Let
(�,F ,Prob) be a probability space and let (τn)n≥0 be a sequence of random
variables τn :� → R+ with τ0 = 0 and such that 	τn = τn − τn−1, n ≥ 1,
are independent and have the same density γ e−γ t . Let (S(t))t≥0 be a continu-
ous semigroup on X. We have also given a sequence of continuous transforma-
tions wi :X → X, i = 1, . . . ,N , and a probabilistic vector (p1(x), . . . , pN(x)),
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pi(x) ≥ 0,
∑N

i=1 pi(x) = 1 for x ∈ X. The pair (w1, . . . ,wN ;p1, . . . , pN) is called
an iterated function system.

We now define the X-valued Markov chain � = (�n)n≥1 in the following
way. We choose x ∈ X and let ξ1 = S(τ1)(x). We randomly select from the
set {1, . . . ,N} an integer i1. The probability that i1 = k is equal to pk(ξ1). Set
�1 = wi1(ξ1).

Let �1, . . . ,�n−1, n ≥ 2, be given. Assuming that 	τn = τn − τn−1 is inde-
pendent of �1, . . . ,�n−1, we define ξn = S(	τn)(�n−1). Further, we randomly
choose in from the set {1, . . . ,N} in such a way that the probability of the event
{in = k} is equal to pk(ξn). Finally, we define �n = win(ξn).

We will assume that there exists r ∈ (0,1) such that

N∑
i=1

pi(x)ρ
(
wi(x),wi(y)

) ≤ rρ(x, y) for x, y ∈ X.(2.10)

Moreover, there exist a > 0 such that

N∑
i=1

|pi(x) − pi(y)| ≤ aρ(x, y) for x, y ∈ X(2.11)

and κ ≥ 0 such that

ρ
(
S(t)(x), S(t)(y)

) ≤ eκtρ(x, y) for x, y ∈ X and t ≥ 0.(2.12)

We will assume that a semigroup (S(t))t≥0 admits a global attractor. Recall that
a compact set K ⊂ X is called a global attractor if it is invariant and attracting for
(S(t))t≥0, that is, S(t)K = K for every t ≥ 0, and for every bounded ball B and
open set U , K ⊂ U , there exists t∗ > 0 such that S(t)B ⊂ U for t ≥ t∗.

PROPOSITION 2.3. Assume that conditions (2.10)–(2.12) hold and that

r + κ/γ < 1.(2.13)

If (S(t))t≥0 has a global attractor, then � admits an invariant probability measure.

PROOF. It is easily seen that � is a Markov chain. Analysis similar to that
in [14] (see also [13, 19]) shows that its transition function must be of the form

P(x,A) =
N∑

i=1

∫ ∞
0

γ e−γ tpi(S(t)(x))1A(wi(S(t)(x))) dt(2.14)

for x ∈ X and A ∈ B(X). Then

Pf (x) =
N∑

i=1

∫ ∞
0

γ e−γ tpi(S(t)(x))f (wi(S(t)(x))) dt

for every f ∈ C(X) and x ∈ X.
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Let L ≥ aγ (κ − γ (1 + r))−1 and let f be a Lipschitz continuous function with
the Lipschitz constant L. If ‖f ‖∞ ≤ 1, then ‖Pf ‖∞ ≤ 1 and

|Pf (x) − Pf (y)|

≤
N∑

i=1

∫ ∞
0

γ e−γ tpi(S(t)(x))|f (wi(S(t)(x))) − f (wi(S(t)(y)))|dt

+
N∑

i=1

∫ ∞
0

γ e−γ t |pi(S(t)(x)) − pi(S(t)(y))|dt

≤ Lr

(∫ ∞
0

γ e−γ t+κt dt

)
ρ(x, y) + a

(∫ ∞
0

γ e−γ t+κt dt

)
ρ(x, y)

≤ Lρ(x, y) for x, y ∈ X.

From this, and the fact that P is linear, it follows that {P nf :n ∈ N} is equicon-
tinuous in any x ∈ X for an arbitrary Lipschitz continuous function f . Let x0 ∈ X

and set V (x) = ρ(x, x0) for x ∈ X. An easy computation shows that

PV (x) ≤ rγ (γ − κ)−1V (x) + Nb̃ for x ∈ X,

where b̃ = supt≥0,1≤i≤N ρ(wi(S(t)(x0)), x0) < ∞, by the fact that (S(t))t≥0 has a
global attractor. Set λ0 = rγ (γ −κ)−1. By (2.13), we have λ0 < 1. Let λ ∈ (λ0,1).
Since V is a Lyapunov function, there exists R > 0 such that condition (2.9) holds
with b = Nb̃. Hence, � is bounded in probability (see [23]). Fix x ∈ X and let
C ⊂ X be a bounded Borel set such that P n(x,C) > 1/2. Let K ⊂ X be an attrac-
tor for (S(t))t≥0 and let K = ⋃N

i=1 wi(K). Since wi , i = 1, . . . ,N , are continuous,
the set K ⊂ X is compact. Further, from (2.14), and the fact that K was a global
attractor, it follows that for every open set U , K ⊂ U , there exists a positive con-
stant β such that

P(y,U) ≥ β for y ∈ C.

Together with the Chapman–Kolmogorov equation, this gives

lim inf
n→∞

(
1

n

n∑
i=1

P i(x,O)

)
> β/2.

Since K is compact, we see that there exists z ∈ K such that condition (1.1) holds
for every open neighborhood U of z. Thus, � has an invariant measure by Propo-
sition 2.1. �

3. Stability results.

THEOREM 3.1. Let � be an e-chain. Let P :X × B(X) → [0,1] be its tran-
sition function and assume that there exists z ∈ X such that for every open set O
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containing z,

lim inf
n→∞ P n(x,O) > 0 for x ∈ X.(3.1)

Let

Z =
∞⋃

n=1

suppP n(z, ·).

If there exist a Lyapunov function V :X → [0,∞) and λ < 1, b < ∞, R < ∞,
x0 ∈ X such that (2.9) holds, then � admits a unique invariant probability measure
µ∗ supported on Z. Moreover,

µP n w→ µ∗ as n → ∞
for every probability measure µ such that suppµ ⊂ Z.

PROOF. Since (3.1) implies (1.1), from Theorem 2.2 it follows that � has
an invariant probability measure, say µ∗. It may be obtained (see [7, 30]) as any
weak limit of the Cesaro averages of (P n(z, ·))n≥1. Therefore, we may assume
that suppµ∗ ⊂ Z.

Let us denote by 	(x1, x2;f ; ε) for x1, x2 ∈ X, f ∈ Cb(X), ε > 0 the set of
all α ∈ (0,1] such that there exist probability measures µ1,µ2 and an integer m

satisfying

P m(xi, ·) ≥ αµi(·) for i = 1,2(3.2)

and ∣∣∣∣
∫
X

f (y)µ1P
n(dy) −

∫
X

f (y)µ2P
n(dy)

∣∣∣∣ ≤ ε for n ∈ N.(3.3)

We claim that sup	(x1, x2;f ; ε) = 1 for x1, x2 ∈ Z, f ∈ Cb(X) and ε > 0.
Fix x1, x2 ∈ Z, f ∈ Cb(X) and ε > 0. By the Chapman–Kolmogorov equation, we
easily obtain that

lim inf
n→∞ P n(x,Oi) > 0 for x ∈ X,

where Oi is an arbitrary open set containing xi , i = 1,2. Now, from the proof of
Proposition 2.1, it follows that the families {P n(xi, ·) :n ∈ N}, i = 1,2, are weakly
precompact (see also Theorem 2.2 in [7]). Let σ > 0 be such that

|P nf (z) − P nf (y)| ≤ ε for y ∈ B(z,σ ) and n ∈ N.(3.4)

By (3.1) there exist m ∈ N and α̃ > 0 such that

P m(
xi,B(z, σ )

) ≥ α̃ for i = 1,2.

Define

µ̃i(·) = P m(xi,B(z, σ ) ∩ ·)
P m(xi,B(z, σ ))

for i = 1,2,(3.5)
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and observe that condition (3.2) is satisfied with µ̃i in place of µi and α̃ in place
of α. Moreover, from (3.4), it follows that (3.3) holds with µ̃i in place of µi .
Hence, 	(x1, x2;f ; ε) �= ∅. Set α0 = sup	(x1, x2;f ; ε). Suppose, contrary to
our claim, that α0 < 1. Let (αn)n≥1 be such that αn → α0 as n → ∞ and αn ∈
	(x1, x2;f ; ε) for n ∈ N. Let µn

i , i = 1,2, and mn satisfy (3.2) with αn in place
of α. Since {P n(xi, ·) :n ∈ N}, i = 1,2, are tight, {P mn(xi, ·) − αnµ

n
i :n ∈ N},

i = 1,2, are weakly precompact. Therefore, without loss of generality, we may
assume that (P mn(xi, ·) − αnµ

n
i )n≥1, i = 1,2, converge to some measures µ̃1, µ̃2,

respectively. Choose y1 ∈ supp µ̃1 and y2 ∈ supp µ̃2. From (3.1), it follows that
there exist m ∈ N and γ > 0 such that

P m(
yi,B(z, σ )

) ≥ γ for i = 1,2.

By Feller’s property, there exists r > 0 such that

P m(
y,B(z, σ )

) ≥ γ /2 for y ∈ B(yi, r), i = 1,2.

Set

s0 = min
{
µ̃1

(
B(y1, r)

)
, µ̃2

(
B(y2, r)

)}
and observe that s0 > 0. By the Alexandrov theorem (see [2]), we may choose
k ∈ N such that

P mk
(
xi,B(yi, r)

) − αkµ
k
i

(
B(yi, r)

)
> s0/2 for i = 1,2.

Let k ∈ N be such that

αk + s0γ /4 > α0.(3.6)

Then, by the Chapman–Kolmogorov equation [see also (3.5)], we obtain that there
exist probability measures µ̂i with supp µ̂i ⊂ B(z,σ ), i = 1,2, such that

P mk+m(xi, ·) − αkµ
k
i P

m ≥ s0γ µ̂i/4.

Set

µi = (αk + s0γ /4)−1(αkµ
k
i P

m + s0γ µ̂i/4) for i = 1,2.

Since supp µ̂i ⊂ B(z,σ ) for i = 1,2, from (3.4) it follows that µi , i = 1,2, sat-
isfy (3.3). Finally, observe that µi , i = 1,2, satisfy condition (3.2) with mk + m

in place of m and α = αk + s0γ /4. Hence, αk + s0γ /4 ∈ 	(x1, x2;f ; ε), which
contradicts the definition of α0, by (3.6).

We have proved that

lim
n→∞

∣∣∣∣
∫
X

f (y)µ1P
n(dy) −

∫
X

f (y)µ2P
n(dy)

∣∣∣∣ = 0

for all point measures µ1,µ2 supported on Z and for every f ∈ Cb(X). Since lin-
ear combinations of point measures are dense in the space of all measures equipped
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with the weak topology, the above convergence holds for all probability measures
µ1,µ2 supported on Z and for every f ∈ Cb(X). Since � is bounded in proba-
bility, the above convergence is also satisfied for every f ∈ C(X). From this, it
follows that µ∗ is a unique invariant measure supported on Z and that

µP n w→ µ∗ as n → ∞
for every probability measure µ such that suppµ ⊂ Z, completing the proof. �

A point x ∈ X is called reachable if for every open set O containing x,

∞∑
n=1

P n(y,O) > 0 for every y ∈ X.

The chain � is called open set irreducible if every point is reachable.
As a consequence of Theorem 3.1 and the above definition, we obtain the fol-

lowing theorem:

THEOREM 3.2. Let � be an open set irreducible e-chain. Let P :X ×
B(X) → [0,1] be its transition function and assume that there exists z ∈ X such
that for every open set O containing z, condition (3.1) holds. If there exist a Lya-
punov function V :X → [0,∞) and λ < 1, b < ∞, R < ∞, x0 ∈ X such that
(2.9) holds, then � admits a unique invariant probability measure µ∗. Moreover,

µP n w→ µ∗ as n → ∞
for every probability measure µ.

PROOF. It suffices to note that

∞⋃
n=1

suppP n(z, ·) = X.
�

THEOREM 3.3. Let � be an e-chain. Let P :X × B(X) → [0,1] be its tran-
sition function and assume that there exists z ∈ X such that for every open set O

containing z, there exists α > 0 satisfying

lim inf
n→∞ P n(x,O) ≥ α for x ∈ X.(3.7)

If there exist a Lyapunov function V :X → [0,∞) and λ < 1, b < ∞, R < ∞,
x0 ∈ X such that (2.9) holds, then � admits a unique invariant probability mea-
sure µ∗. Moreover,

µP n w→ µ∗ as n → ∞(3.8)

for every probability measure µ.
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PROOF. The existence of an invariant measure µ∗ follows from Theorem 2.2.
Fix ε > 0, x1, x2 ∈ X and f ∈ Cb(X). By equicontinuity of {P nf :n ∈ N} in z ∈ X,
we choose r > 0 such that

|P nf (z) − P nf (x)| < ε/4 for x ∈ B(z, r) and n ∈ N.(3.9)

Let α > 0 be such that (3.7) holds with O = B(z, r). Then, by Fatou’s lemma, we
have

lim inf
n→∞ µP n(O) ≥ α(3.10)

for every probability measure µ. Let k ∈ N be such that 4(1 − α/2)k‖f ‖∞ ≤ ε.
Further, from the Lasota–Yorke theorem (see Theorem 4.1 in [19]) and (3.10), it
follows that there exist integers n1, . . . , nk and probability measures νi

1, . . . , ν
i
k,µ

i
k

such that suppνi
j ⊂ O , j = 1, . . . , k, and

P n1+···+nk (xi, ·) = α

2
νi

1P
n2+···+nk + α

2

(
1 − α

2

)
νi

2P
n3+···+nk

+ · · · + α

2

(
1 − α

2

)k−1

νi
k +

(
1 − α

2

)k

µi
k for i = 1,2.

Then, by the Markov property, we obtain

P n(xi, ·) = α

2
νi

1P
n−n1 + α

2

(
1 − α

2

)
νi

2P
n−n1−n2

+ · · · + α

2

(
1 − α

2

)k−1

νi
kP

n−n1−···−nk +
(

1 − α

2

)k

µi
kP

n−n1−···−nk

for i = 1,2 and n ≥ n1 + · · · + nk . From (3.9), we have∣∣∣∣
∫
X

f (y)ν1
j P n(dy) −

∫
X

f (y)ν2
j P n(dy)

∣∣∣∣
=

∣∣∣∣
∫
X

P nf (y)ν1
j (dy) −

∫
X

P nf (y)ν2
j (dy)

∣∣∣∣ ≤ ε/2

for j = 1, . . . , k. By the definition of k, we then obtain

|P nf (x1) − P nf (x2)|
=

∣∣∣∣
∫
X

f (y)P n(x1, dy) −
∫
X

f (y)P n(x2, dy)

∣∣∣∣
< ε/2 + 2‖f ‖∞(1 − α/2)k = ε.

Since ε > 0 and f ∈ Cb(X) were arbitrary, and since linear combinations of point
measures are dense in the space of all measures equipped with the weak topology,
we have

lim
n→∞

∣∣∣∣
∫
X

f (y)µ1P
n(dy) −

∫
X

f (y)µ2P
n(dy)

∣∣∣∣ = 0
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for all probability measures µ1,µ2 and for arbitrary f ∈ Cb(X). Since � is
bounded in probability, the above condition is also satisfied for every f ∈ C(X).
On the other hand, from the above condition, it follows that µ∗ is a unique invariant
measure and

µP n w→ µ∗ as n → ∞
for every probability measure µ, completing the proof. �

As an immediate consequence of this theorem, we obtain the following result,
due to Stettner (see [29]):

COROLLARY 3.4. Assume that:

(S1) for every ε > 0 and every compact set K ⊂ X, there exists a compact set
W ⊂ X such that

inf
x∈K

P n(x,W) ≥ 1 − ε for n ∈ N;
(S2) for every f ∈ Cb(X), the functions {P nf :n = 1,2, . . .} are equicontinuous

on compact subsets of X;
(S3) for every open set O ⊂ X and every x ∈ X,

P(x,O) > 0;
(S4) there exist η > 0 and a compact set L ⊂ X such that for every compact set

W ⊂ X,

inf
x∈W

P n(x,L) ≥ η for some n ∈ N.

Then there exists a unique invariant measure µ∗ for �, and P n(x, ·) con-
vereges weakly to µ∗.

4. A counterexample. In the last section, we shall define a discrete-time
Markov–Feller chain which satisfies condition (E) but which does not have an
invariant measure.

Let (�,F ,Prob) be a probability space and let N = N ∪ {∞}. Define x : N ×
N × N → l∞ by the following:

x(i, j, k) = (i,

j-times︷ ︸︸ ︷
0, . . . ,0,2−k, . . .).

It is easy to see that X = x(N × N × N) is a closed subset of l∞. Consider the
discrete-time Markov chain � = (�n)n≥1 defined by the formula

�n = x(ζn, ηn, ξn) for n ∈ N,
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where ζn, ηn :� → N and ξn :� → N are Markov chains satisfying

Prob(ζn+1 = i, ηn+1 = j, ξn+1 = k|ζn = i0, ηn = j0, ξn = k0)

=



p1(i0, k0) for i = 1, j = j0 + 1, k = 1;
p2(k0) for i = i0, j = j0 + 1, k = k0 + 1;
1 − p1(i0, k0) − p2(k0) for i = i0 + 1, j = j0 + 1, k = k0.

Moreover, we assume that p2(k) = k−4 for k ∈ N, p1(i, k) = 1 − p2(k) for k < i!
and p1(i, k) = p2(k) for k ≥ i!. Further, p1(i,∞) = p2(∞) = 0.

To show that � satisfies Feller’s property, fix f ∈ C(X) and x0 ∈ X. Let
xn → x0 as n → ∞. Without loss of generality we may assume that xn =
x(i, jn, kn), x0 = x(i,1,∞) and kn → ∞ as n → ∞. Then

Pf (xn) = p1(i, kn)f
(
x(1, jn + 1,1)

) + p2(kn)f
(
x(i, jn + 1, kn + 1)

)
+ (

1 − p1(i, kn) − p2(kn)
)
f

(
(i + 1, jn + 1, kn)

)
→

n→∞f
(
(i + 1,1,∞)

)
= Pf (x0).

Now let x = x(i0, j0, k0) be such that k0 �= ∞. We will show that there exists
ϑ > 0 such that

P n(x,U0) ≥ ϑ for n ∈ N,(4.1)

where U0 = {x(i, j, k) : i = k = 1, j ∈ N}. Since p2(k) = k−4 for k ∈ N, p1(i, k) =
1 − p2(k) for k < i! and p1(i, k) = p2(k) for k ≥ i!, we can easily check that

sup
n∈N

E[ξn|ζ0 = i0, η0 = j0, ξ0 = k0] < ∞.

Chebyshev’s inequality now shows that there exists M0 > i0 such that

inf
n∈N

Prob(ξn ≤ M0|ζ0 = i0, η0 = j0, ξ0 = k0) > 0.

From this, and the fact that p1(i, k) = 1 − p2(k) for i < k!, we obtain

γ = inf
n∈N

Prob(ζn ≤ M0!, ξn ≤ M0|ζ0 = i0, η0 = j0, ξ0 = k0) > 0.

By the Markov property, we have

P n(x,U0) ≥ γ · min
1≤i≤M0!,1≤k≤M0

p1(i, k) for n ∈ N,

which shows that condition (4.1) holds with

ϑ = γ · min
1≤i≤M0!,1≤k≤M0

p1(i, k).

Let z = (1,0, . . .). Fix an open set U such that z ∈ U . Let r > 0 be such that
B(z, r) ⊂ U . Choose k ∈ N such that x(1, j, k) ∈ B(z, r) for j ∈ N. Then, by the
Markov property, we obtain

P n+k(x,U) ≥ ϑp2(1) · · ·p2(k) for n ∈ N,
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which gives condition (E).
Finally, it is obvious that � does not admit an invariant measure since

limn→∞ ηn = ∞ almost surely. �
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