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CONCENTRATION INEQUALITIES AND ASYMPTOTIC RESULTS
FOR RATIO TYPE EMPIRICAL PROCESSES
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Let F be a class of measurable functions on a measurable space (S,S)

with values in [0,1] and let

Pn = n−1
n∑

i=1

δXi

be the empirical measure based on an i.i.d. sample (X1, . . . ,Xn) from a prob-
ability distribution P on (S,S). We study the behavior of suprema of the
following type:

sup
rn<σP f≤δn

|Pnf − Pf |
φ(σP f )

,

where σP f ≥ Var1/2
P f and φ is a continuous, strictly increasing function

with φ(0) = 0. Using Talagrand’s concentration inequality for empirical
processes, we establish concentration inequalities for such suprema and use
them to derive several results about their asymptotic behavior, expressing
the conditions in terms of expectations of localized suprema of empirical
processes. We also prove new bounds for expected values of sup-norms of
empirical processes in terms of the largest σP f and the L2(P ) norm of the
envelope of the function class, which are especially suited for estimating lo-
calized suprema. With this technique, we extend to function classes most of
the known results on ratio type suprema of empirical processes, including
some of Alexander’s results for VC classes of sets. We also consider applica-
tions of these results to several important problems in nonparametric statistics
and in learning theory (including general excess risk bounds in empirical risk
minimization and their versions for L2-regression and classification and ratio
type bounds for margin distributions in classification).

1. Introduction. Let F be a class of measurable functions defined on a mea-
surable space (S,S) and taking values in [0,1], let X,X1, . . . ,Xn, . . . , be a se-
quence of independent identically distributed S-valued random variables with
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probability law P and let

Pn = n−1
n∑

i=1

δXi

be the empirical measure based on the sequence Xi , that, as usual, we consider as
a process on F . Here is some notation that will be used throughout:

σP f ≥Var1/2
P f, σP := sup

f∈F
σP f

(usually σP f will either be the standard deviation of f or
√

Pf ). Given a continu-
ous, strictly increasing function φ with φ(0)= 0, we are interested in the behavior
of suprema of the following type:

sup
rn<σP f≤δn

|Pnf − Pf |
φ(σP f )

for some sequences rn, δn. In particular, for given rn and δn, we would like to
determine a normalizing sequence βn such that

1

βn

sup
rn<σP f≤δn

|Pnf − Pf |
φ(σP f )

remains bounded or converges to a constant in probability or almost surely. We are
also interested in conditions under which the sequence of stochastic processes

n1/2|Pnf − Pf |
φ(σP f )

I (σP f ≥ rn), f ∈F ,

converges in distribution to a Gaussian process indexed by f ∈ F . Such stochas-
tic processes are often called normalized or ratio type empirical processes and the
distributional convergence results are weighted central limit theorems for empiri-
cal processes. The study of these processes has a long history that goes back to the
1970s and 1980s when the classical case of F := {I(−∞,t] : t ∈ R} was explored
in great detail and definitive answers to most of the questions about the classical
ratio type empirical processes were given; see, for example, [48]. In the late 1980s,
Alexander, in a series of papers [1–3], extended this theory to ratio type empiri-
cal processes indexed by VC classes of sets C (i.e., for F := {IC :C ∈ C}). He
discovered that in this case the crucial role is played by the following functional
characteristic of the class:

gC(δ) := P(
⋃

C∈C,P (C)≤δ C)

δ
∨ 1,

which he called the capacity function of C. This function is involved in rather sharp
and subtle exponential inequalities for empirical processes indexed by VC classes
proved by Alexander. The behavior of the capacity function as δ → 0 happened
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to be closely related to the asymptotic behavior of ratio type suprema of empirical
processes. In recent years, there has been a great deal of work on the development
of ratio type inequalities, primarily, in more specialized contexts of nonparametric
statistics (see [31, 46]) and learning theory (see [6, 5, 7, 9, 11, 26–28, 33, 37–39],
etc.). These inequalities have become one of the important ingredients in determin-
ing asymptotically sharp convergence rates in regression, classification and other
nonparametric problems and they proved to be crucial in bounding the generaliza-
tion error of learning algorithms based on empirical risk minimization.

In this paper, building upon our earlier work with Jon Wellner [22], we are
trying to develop further a general methodology for proving exponential bounds
and exploring asymptotics of ratio type empirical processes. This methodology
is based on the deservedly famous Talagrand’s concentration inequality [43] and
on the simple idea of splitting the class F into slices consisting of functions for
which the values of φ(σP f ) are roughly the same. The empirical process on each
slice is compared with its expectation using Talagrand’s inequality and then all the
pieces are put together using the union bound. This simple approach, called the
method of slicing or peeling, proved to be rather successful in statistical applica-
tions (as in [9] or [31]) and it also allows us to obtain a number of sharp results
on asymptotics of ratio type suprema (including weighted CLTs), essentially as a
straightforward corollary of Talagrand’s inequality. The conditions of these limit
theorems are expressed in terms of expected values of localized suprema of empir-
ical processes (suprema over the slices). To translate these conditions into a more
convenient language for special function classes F one has to develop bounds on
expected localized suprema. We prove such bounds (both upper and lower) under
some conditions on random entropies of the class. Unlike most previously known
bounds, the new bounds involve the L2 norm of the measurable envelope of the
class F , which in applications to ratio limit theorems become the envelopes of
the slices. These localized envelopes play about the same role in our theory as
Alexander’s capacity function plays for classes of sets (and, moreover, in the case
when F is a class of indicators of sets the conditions on localized envelopes can be
reformulated as conditions on the capacity function). We are trying to explore in
this paper both the power and the limitations of the approach based on slicing and
on Talagrand’s inequality, and to this end we provide some examples showing in
which cases the conditions we obtain are sharp. Our main goal is to provide a link
(that seemed to be missing) between the results for classical empirical processes of
the 1970s and 1980s extended by Alexander to VC classes of sets and more recent
results on ratios developed primarily in learning theory and based on Talagrand’s
concentration inequality. At the moment, our method allows us to generalize a
number of Alexander’s theorems to classes of functions, but some other theorems
and exponential inequalities seem to be beyond the reach of our approach. On
the other hand, most of his specific corollaries for classical empirical processes
in Rd can be obtained by a slight modification of our method, consisting in further
decomposing each slice corresponding to a small variance into a relatively small
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number of subclasses with envelopes which are considerably smaller than that of
the full slice. A bit surprisingly, the classical case of classes of sets of small en-
tropy (which are needed to study the standard empirical processes) are harder to
handle using Talagrand’s inequality and general expectation bounds than the much
more massive function classes commonly used in learning theory and nonpara-
metric statistics. In part, this is related to the fact that the Poisson tail parts of the
exponential inequalities play a more important role in this case, leading to more
complicated asymptotic properties.

Finally, we provide several applications of ratio type empirical processes. First
of all, we derive in a much shorter way recent results of the second named au-
thor [25] on empirical margin distributions motivated by the needs of learning the-
ory, specifically, the analysis of large margin classifiers. Second, we give general
ratio type bounds on excess risk and derive from them upper bounds on excess risk
in abstract empirical risk minimization problems and in a more specialized context
of regression and classification. In particular, this allows us to prove in a very easy
way recent results of Tsybakov [44] on fast convergence rates in classification and,
also for classification, to refine recent bounds of Massart and Nedelec [34], using
a version of Alexander’s capacity function.

The article is organized as follows. Section 2 contains the general exponential
bounds for ratio empirical processes. Section 3 is devoted to moment bounds for
empirical processes whose metric entropy with respect to the empirical L2 dis-
tance is bounded by a regularly varying function independently of Pn; this in-
cludes, among others, VC-subgraph and VC-major classes. The reader interested
in applications of the foregoing to ratios of margin distributions and to empirical
risk minimization, may go directly from Section 3 to Sections 6 and 7, where we
deal with these subjects. Sections 4 and 5 are devoted to rates (a.s. and in pr.), lo-
cal and global moduli and limit theorems (including the central limit theorem) for
ratio empirical processes.

2. Concentration inequalities for normalized empirical processes. In this
section we derive the basic inequalities for ratio empirical processes. They are
based on Talagrand’s fundamental 1996 inequality, which will be formulated be-
low. In what follows, (S,S) is a measurable space, P is a probability measure
on it, Xi are the coordinates SN �→ S, εi are independent Rademacher variables
independent of the variables Xi (defined on, e.g., ([0,1], λ) and taking as � the
product probability space ([0,1] × SN, λ× P N := Pr)), F is a countable or suit-
ably measurable (see, e.g., Dudley [17], Chapter 5) class of measurable func-
tions on S and F is a measurable envelope of F , that is, for all f ∈ F , x ∈ S,
|f (x)| ≤ F(x). For each n, Pn is the empirical measure n−1 ∑n

i=1 δXi
. As usual,

we will also write ‖ψ(f )‖F for supf∈F |ψ(f )|.
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TALAGRAND’S INEQUALITY. For any measurable, uniformly bounded class
of functions F ,

Pr

{∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

f (Xi)

∥∥∥∥∥
F

−E

∥∥∥∥∥
n∑

i=1

f (Xi)

∥∥∥∥∥
F

∣∣∣∣∣≥ t

}

(2.1)

≤K exp
{
− 1

K

t

U
log

(
1+ tU

V

)}
,

valid for all t > 0, and where K is a universal constant, U is a uniform bound for
the functions in F and V is any number satisfying V ≥E supf∈F

∑n
i=1 f 2(Xi).

The inequality holds also for {Xi} that are not necessarily identically distrib-
uted. The quantity V is of course bounded by n‖F‖2

2 if F is a measurable en-
velope for the class F , a trivial bound that, however, can sometimes be used.
A more interesting bound that follows from randomization together with a con-
traction principle for Rademacher processes is the following, given by Talagrand
([42], Corollary 3.4):

E

∥∥∥∥∥
n∑

i=1

f 2(Xi)

∥∥∥∥∥
F

≤ nσ 2 + 8UE

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

,(2.2)

where σ 2 = supf∈F Ef 2(X1) (see also [29]). Typically, Talagrand’s inequality is
used in combination with this bound for V .

In the sequel, throughout, we may drop the subindex P in such notation as σP f

if no confusion arises, particularly in proofs. Given 0 < r ≤ 1 and r < δ ≤ 1, we
set

F (r) := {f ∈F :σP (f )≤ r} and F (r, s] :=F (s) \F (r);
for 1 < q ≤ 2 and r < s ≤ rql for some l ∈N, we let

ρj := rqj , j = 0, . . . , l,

and

ψn,q(u) :=E‖Pn − P‖F (ρj−1,ρj ], u ∈ (ρj−1, ρj ], j = 1, . . . , l.

Of course, given δ and r we take l to be the smallest integer larger than or equal to
logq(δ/r). Given a continuous, strictly increasing function φ such that φ(0)= 0,
we also define

φq(u)= φ(ρj ), u ∈ (ρj−1, ρj ], j = 1, . . . , l,

and

βn,q,φ(r, s] := sup
u∈(r,s]

ψn,q(u)

φq(u)
,
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and sometimes we may use instead the nondiscretized version, namely

β̃n,q,φ(r, s] := sup
u∈(r,s]

E‖Pn − P‖F (uq−1,u]
φ(u)

.

Some of the subindices of β may be dropped in proofs. We also set

Vn,q(ρj )= Vn(ρj ) := 1

n
E

∥∥∥∥∥
n∑

i=1

(
f (Xi)− Pf

)2

∥∥∥∥∥
F (ρj−1,ρj ]

,

and note that, by (2.2) and the comment before it, if Fj is a measurable envelope
for F (ρj−1, ρj ], then

q−2ρ2
j ≤ Vn(ρj )≤ (PF 2

j )∧ [ρ2
j + 16ψn(ρj )],(2.3)

where for the lower bound we assume that σP f = Var1/2
P f . Finally, we let γ be

the inverse function of γ−1(x) := x log(1+ x), 0≤ x ≤ 1. Note that

γ (x)≤




2x

log(1+ x)
, for x ≥ 0,

2x

logx
, for x ≥ 2,

2
√

x, for 0≤ x ≤ 2.

Denote

En,q,φ :=E sup
f∈F

r<σP f≤δ

|Pnf − Pf |
φq(σP f )

and

τn,q,φ := τn,q,φ(s1, . . . , sl)

:= max
j : sj>2nV n,q (ρj )

2sj

nφ(ρj ) log(sj /(nV n,q(ρj )))

∨ max
j : sj≤2nV n,q (ρj )

2

√√√√sjV n,q(ρj )

nφ2(ρj )

for any V n,q(ρj )≥ Vn,q(ρj ).
The following immediate application of Talagrand’s inequality holds the key to

the ratio limit theorems to be obtained below. It shows that the supremum

sup
f∈F

r<σP f≤δ

|Pnf − Pf |
φq(σP f )

concentrates with high probability around both βn,q,φ and En,q,φ with the same
magnitude of the deviations (of the order τn,q,φ). In particular, it also means that
βn,q,φ and En,q,φ are within ∼ τn,q,φ of each other.
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THEOREM 2.1. With the above definitions, there exist universal constants
K,C ∈ (0,∞) such that for any sequence sj of positive numbers

Pr
{∣∣∣∣ sup

f∈F
r<σP f≤δ

|Pnf − Pf |
φq(σP f )

− βn,q,φ

∣∣∣∣≥ τn,q,φ(s1, . . . , sl)

}

(2.4a)

≤K

l∑
j=1

e−sj /K

and

Pr
{∣∣∣∣ sup

f∈F
r<σP f≤δ

|Pnf − Pf |
φq(σP f )

−En,q,φ

∣∣∣∣≥ Cτn,q,φ(s1, . . . , sl)

}

(2.4b)

≤K

l∑
j=1

e−sj /K.

PROOF. Set Fj := F (ρj−1, ρj ]. Then, we can rewrite Talagrand’s inequality
as

Pr
{∣∣‖Pn − P‖Fj

−E‖Pn − P‖Fj

∣∣≥ V n(ρj )γ

(
sj

nV n(ρj )

)}
(2.5)

≤Ke−sj /K,

j = 1, . . . , l. Hence, with probability at least 1−∑l
j=1 e−sj /K ,

∣∣∣∣ sup
f∈F

r<σP f≤δ

|Pnf − Pf |
φq(σP f )

− βn,q,φ

∣∣∣∣≤ max
1≤j≤l

∣∣∣∣‖Pn − P‖Fj

φ(ρj )
− ψn,q(ρj )

φ(ρj )

∣∣∣∣

≤ max
1≤j≤l

V n(ρj )γ (sj /(nV n(ρj )))

φ(ρj )
.

Now, (2.4a) follows from the bounds for the function γ , namely, if sj > 2nV n(ρj )

we use γ (x)≤ 2x
logx

to get

V n(ρj ) γ (sj /(nV n(ρj )))

φ(ρj )
≤ 2sj

nφ(ρj ) log(sj /(nV n(ρj )))

and otherwise we use γ (x)≤ 2
√

x to get

V n(ρj ) γ (sj /(nV n(ρj )))

φ(ρj )
≤ 2

√√√√sjV n(ρj )

nφ2(ρj )
.
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Next, we will show that

Pr
{∣∣∣∣ sup

f∈F
r<σP f≤δ

|Pnf − Pf |
φq(σP f )

− βn,q,φ

∣∣∣∣≥ 2sτn,q,φ

}
≤ C({sj }) exp{−s/K},(2.6)

where

C({sj }) :=K

l∑
j=1

e−sj /K,

which is supposed to be smaller than 1 (otherwise, the inequalities of the theorem
are trivial). Integration of (2.6) immediately implies that, for some C > 0,

E

∣∣∣∣ sup
f∈F

r<σP f≤δ

|Pnf − Pf |
φq(σP f )

− βn,q,φ

∣∣∣∣≤ Cτn,q,φ

and, as a consequence,

βn,q,φ ≤En,q,φ ≤ βn,q,φ +Cτn,q,φ.

The last bound shows that in (2.4a) βn,q,φ can be replaced by En,q,φ if we multiply
τn,q,φ by a constant, which proves (2.4b).

To prove (2.6), we again use (2.5) with sj replaced by sj + s. It is enough to
assume that s, sj ≥ 2. The right-hand side of (2.5) becomes K exp{−(s + sj )/K}.
If sj > 2nV n(ρj ) (and sj + s is even larger), we argue as in the proof of (2.4a) to
get

V n(ρj )γ

(
sj + s

nV n(ρj )

)
≤ 2(sj + s)

nφ(ρj ) log((sj + s)/(nV n(ρj )))

≤ s
2sj

nφ(ρj ) log(sj /(nV n(ρj )))
≤ sτn,q,φ

(using s, sj ≥ 2). On the other hand, if sj ≤ 2nV n(ρj ), we use subadditivity of γ ,

γ (x + y)≤ γ (x)+ γ (y),

which follows from the inequality

γ−1(x + y)≥ γ−1(x)+ γ−1(y)

that is easy to prove directly. This gives

V n(ρj )γ

(
sj + s

nV n(ρj )

)
≤ V n(ρj )γ

(
sj

nV n(ρj )

)
+ V n(ρj )γ

(
s

nV n(ρj )

)
.

The first term is bounded (as in the first part of the proof of Theorem 2.1) by

2

√√√√sjV n(ρj )

nφ2(ρj )
≤ s

√√√√sjV n(ρj )

nφ2(ρj )
≤ 1

2
τn,q,φs.
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The second term is dominated either by

2

√√√√sV n(ρj )

nφ2(ρj )
≤ s

√√√√sjV n(ρj )

nφ2(ρj )
≤ 1

2
τn,q,φs

in the case when s ≤ 2nV n(ρj ), or otherwise [if s > 2nV n(ρj )] by

2s

nφ(ρj ) log(s/(nV n(ρj )))
≤ 2

log 2
s

1

nφ(ρj )

which can be further bounded by

2

log 2
s

√√√√sjV n(ρj )

nφ2(ρj )
≤ 3

2
τn,q,φs

[since we have

nV n(ρj )≥ sj /2≥ 1≥ 1/sj ].
The result now follows easily. �

We may want to normalize the empirical process Pnf −Pf by φ(σP f ) instead
of φq(σP f ); in this case we do not obtain a concentration inequality, but two very
similar deviation inequalities (one from above and one from below), particularly if
φ is regular enough. The above theorem gives the following:

COROLLARY 2.2. Assume that the continuous nondecreasing function φ sat-
isfies that the quantity cq,r,φ = supr≤x≤1 φ(qx)/φ(x) is finite for some 1 < q ≤ 2.
Then, with sj and K as in Theorem 2.1 and under the same assumptions, we have
both

Pr
{
c−1
q,r,φ × sup

f∈F
r<σP f≤δ

|Pnf − Pf |
φ(σP f )

≥ βn,q,φ + τn,q,φ

}
≤K

∑
j

e−sj /K

and

Pr
{

sup
f∈F

r<σP f≤δ

|Pnf − Pf |
φ(σP f )

≤ βn,q,φ − τn,q,φ

}
≤K

∑
j

e−sj /K.

A way to use these propositions is as follows: if we let

bn = βn,q,φ ∨ τq,n,φ,

where q , r , δ and {sj }may depend on n, and take sj = sj,n such that
∑ln

j=1 e−sj,n/K

tends to zero, then the sequence

1

bn

sup
f∈F

r<σP f≤δ

|Pnf − Pf |
φ(σP f )

, n ∈N,
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is stochastically bounded. The following lemma of Alexander [2] allows one to get
a.s. results.

LEMMA 2.3. With the same notation as above, let cn/n ↓, rn ↓,
√

nδn ↑ and
un ↓. Set

An = {√
n|Pnf − Pf | ≥ cnφ(σP f )+ un for some f ∈F with rn ≤ σP f ≤ δn

}
and

Aε
n =

{√
n|Pnf − Pf | ≥ (1− ε)

(
cnφ(σP f )+ un

)
for some f ∈F

with rn ≤ σP f ≤√
(1+ ε)δn

}
,

and assume

inf{cnφ(t)/t : n≥ 1, t ∈ [rn, δn]}> 0.

Then, if for some ε, θ > 0

Pr(Aε
n)=O

(
1/(logn)1+θ ),

we have

Pr(An i.o.)= 0.

Sometimes, ψn,q [and therefore also βn,q,φ and Vn,q(ρj )] is still too large be-
cause the envelope of Fj is too large. Then, one may further subdivide Fj into
Nj classes Fj,k with smaller envelopes and such that Nj is not too large (perhaps
of the order of logρ−1

j ). For instance, this happens with the d-dimensional distrib-
ution function as we see below. One may take Fj,k to be the intersection with Fj of
each of the components of an optimal covering of Fj by L2(P ) balls of radius τρj ,
0 < τ < 1, but other subdivisions are possible; in particular, Nj could be 1 for
some or all j . We can apply the same principle as in the proof of Theorem 2.1 and

get a bound that takes this into account, as follows. Let Fj =⋃Nj

k=1 Fj,k , let

ψn,q,j,k := E‖Pn − P‖Fj,k
,

βn,q,φ : =max
j,k

ψn,q,j,k

φ(ρj )
,

Vn,q,j,k := 1

n

∥∥∥∥∥
n∑

i=1

(
f (Xi)− Pf

)2

∥∥∥∥∥
Fj,k

,

τ n,q,φ := max
j,k:sj,k>2nV n,q,j,k

2sj,k

nφ(ρj ) log(sj,k/(nV n,q,j,k))

∨ max
j,k : sj,k≤2nV n,q,j,k

2

√√√√sj,kV n,q,j,k

nφ2(ρj )

and V n,q,j,k ≥ Vn,q,j,k . Then, we have the following.
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THEOREM 2.1′ . With the above definitions and letting sj,k be a double se-
quence of positive numbers, there exists a universal constant K ∈ (0,∞) such
that

Pr
{∣∣∣∣ sup

f∈F
r<σP f≤δ

|Pnf − Pf |
φq(σP f )

− βn,q,φ

∣∣∣∣≥ τn,q,φ

}
≤K

l∑
j=1

Nj∑
k=1

e−sj,k/K.(2.4′)

The analogues of inequality (2.4b) and of the one-sided inequalities of Corol-
lary 2.2 hold as well.

REMARK 2.4 (On the choice of sj ). In general, we must take

sj =K log
1

cj

with
∑l

j=1 cj small, as in this case,
∑l

j=1 e−sj /K =∑l
j=1 cj . If we take sj = s for

a number of j ’s more or less comparable to l, then a good choice is to take

s =K ′ log l

for some K ′ > K , so that

l∑
j=1

e−sj /K ≤ 1/lK
′/K−1,

which will tend to zero if l →∞ [so, if logqn
(δn/rn)→∞]. Another possible

choice is

sj = sqαj

for some α > 0, which gives
∞∑

j=1

e−sqαj /K = qα

qα − 1

∞∑
j=1

q−αj e−sqαj /K(
qαj − qα(j−1))

<
1

qα − 1

∫ ∞
1

e−sx/K dx(2.7)

=K
1

qα − 1

1

s
e−s/K,

and
∞∑

j=0

e−sqαj /K ≤
(

1+K
1

qα − 1

1

s

)
e−s/K

(2.7′)
< K

qα

qα − 1

1

s
e−s/Kqα

,
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bounds that can be made small by increasing s. Finally, another choice is

sj = sn +K log logq(qδ/ρj ),

as is easy to check. However, there does not seem to be a choice of sj that works
in all situations (see, e.g., the last part of Example 2.7 below for an unexpected
choice for sj ).

REMARK 2.5 (The role of the stratification F(r,δ] ⊆⋃l
i=1 F(ρi−1,ρi ]). Since on

each stratum Fj := F(ρi−1,ρi ] the function of f �→ φ(σP f ) is essentially constant
[assuming that φ(u)� φ(qu)], we have∥∥∥∥Pnf − Pf

φ(σP f )

∥∥∥∥
Fj

� 1

φ(ρj )
‖Pnf − Pf ‖Fj

,

which is why the terms in the bounds (2.4) do depend on the complexity of
these strata [measured by ψn,q(ρj ) and Vn(ρj ), which ultimately also depends
on ψn,q(ρj )], usually simpler than the complexity of F . Instead of stratify-
ing, we could simply apply Talagrand’s inequality to the class of functions
{φ(r)f/φ(σP f ) :f ∈ F , σP f ≥ r}. But these classes are more complicated
than F and so would be the parameters of the inequality. These parameters of-
ten depend on the L2 norm of the envelope of the corresponding classes, and there
may be a good advantage in using the local envelopes sup{|f (x)| :f ∈Fj }/φ(ρj )

rather than the global sup{|f (x)/φ(σP f )| :f ∈ F }. This advantage comes at a
cost, at least with regard to distributional or in probability results: whereas the se-
quence sj should be large enough so that the series

∑
e−sj /K converges and has a

small sum, we do not have to deal with this series if we apply Talagrand’s inequal-
ity to the whole class. In this last case s can be any number such that e−s is of the
desired size. However, if one wants to apply Alexander’s lemma, then s must be of
the order of log logn, which in general is comparable to log l, hence to sj if sj does
not depend on j . This cost is usually overwhelmed by the mentioned advantage,
and in the worst case, the number τn,q,φ in (2.4) is at most a factor of log l, or even√

log l, larger than it would be by direct application of Talagrand, and not larger at
all (except perhaps for a constant factor) if we want the probability bound to be of
the order of 1/(log l)1+θ .

REMARK 2.6. Another approach, used, for instance, by Massart [31] or
Bousquet [9], is based on stratification, but uses Talagrand’s inequality only once,
which is relevant to Remark 2.5, but which results in other losses when the class
of functions is relatively small. We briefly describe this approach. Suppose that for
all ρ > 0

E‖Pn − P‖F (ρ) ≤ ψ̃n(ρ),
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where ψ̃n is a function satisfying that for some λ ∈ (0,1) the function ρ �→ ψ̃n(ρ)

φλ(ρ)

is nonincreasing. Assume also that with the same λ

∑
j : ρj≥r

1

φ(ρj )1−λ
≤ cq,λ,φ

1

φ(r)1−λ

for some constant cq,λ,φ . Note that these conditions immediately imply that

∑
j : ρj≥r

ψ̃n(ρj )

φ(ρj )
= ∑

j : ρj≥r

ψ̃n(ρj )

φ(ρj )λφ(ρj )1−λ

≤ ψ̃n(r)

φ(r)λ

∑
j : ρj≥r

1

φ(ρj )1−λ

≤ cq,λ,φ

ψ̃n(r)

φ(r)
.

Consider now the class

G := ⋃
j : δ≥ρj≥r

φ(r)

φ(ρj )
Fj ,

which is also bounded by 1. We have

E‖Pn − P‖G ≤
∑

j : ρj≥r

φ(r)

φ(ρj )
E‖Pn − P‖Fj

≤ ∑
j : ρj≥r

φ(r)

φ(ρj )
ψ̃n(ρj )

≤ cq,λ,φψ̃n(r).

Using (2.2), this gives

Vn(G) := 1

n
E

∥∥∥∥∥
n∑

i=1

(
f (Xi)− Pf

)2

∥∥∥∥∥
G

≤ sup
j : ρj≥r

φ(rn)
2

φ(ρj )2 ρ2
j + 16E‖Pn − P‖G.

We will assume that either ρ �→ ρ
φ(ρ)

is nonincreasing (case 1), or it is nondecreas-
ing (case 2). In case 1,

Vn(G)≤ r2 + 16cq,λ,φψ̃n(r)=: V n(G).
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Applying Talagrand’s inequality to the class G the same way we did in the proof
of Theorem 2.1, we get that with probability at least 1−Ke−s/K∣∣∣∣ sup

f∈F
r<σP f≤δ

|Pnf − Pf |
φq(σP f )

−En,q,φ

∣∣∣∣

= 1

φ(r)

∣∣‖Pn − P‖G −E‖Pn − P‖G
∣∣

≤ I
(
s > 2nV n(G)

) 2s

nφ(r) log(s/(nV n(G)))

+ I
(
s ≤ 2nV n(G)

)
2

√
sV n(G)

nφ(r)2

(2.8)

= I

(
s

nr2 > 2
(

1+ 16cq,λ,φ

ψ̃n(r)

r2

))

× 2s

nφ(r) log(s/(nr2(1+ 16cq,λ,φψ̃n(r)/r2)))

+ I

(
s

nr2 ≤ 2
(

1+ 16cq,λ,φ

ψ̃n(r)

r2

))

× 2

√√√√ s

n

r2

φ(r)2

(
1+ 16cq,λ,φ

ψ̃n(r)

r2

)
.

Similarly, in case 2,

Vn(G)≤ cφφ(r)2 + 16cq,λ,φψ̃n(r)=: V n(G).

Again, by Talagrand’s inequality, with probability at least 1−Ke−s/K∣∣∣∣ sup
f∈F

r<σP f≤δ

|Pnf − Pf |
φq(σP f )

−En,q,φ

∣∣∣∣

≤ I
(
s > 2nV n(G)

) 2s

nφ(r) log(s/(nV n(G)))
+ I

(
s ≤ 2nV n(G)

)
2

√
sV n(G)

nφ(r)2

= I

(
s

nφ(r)2 > 2
(
cφ + 16cq,λ,φ

ψ̃n(r)

φ(r)2

))
(2.9)

× 2s

nφ(r) log(s/(nφ(r)2(cφ + 16cq,λ,φψ̃n(r)/φ(r)2)))

+ I

(
s

nφ(r)2 ≤ 2
(
cφ + 16cq,λ,φ

ψ̃n(r)

φ(r)2

))
2

√√√√ s

n

(
cφ + 16cq,λ,φ

ψ̃n(r)

φ(r)2

)
.
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Bartlett and Mendelson [7] used another approach that also allowed them to ap-
ply Talagrand’s inequality only once under an extra geometric assumption on the
class F (namely, that the class is star-shaped).

EXAMPLE 2.7. As an illustration of Theorem 2.1, we will recover known
results on the a.s. and the in probability behavior of

Tn := sup
1/n<t≤1/2

|Fn(t)− t |√
t

,

where Fn is the empirical distribution function corresponding to n independent
samples from the uniform distribution on [0,1]. In this case, F = {I[0,t] : 0 ≤ t ≤
1/2}, σP IC =

√
PC, φ(t)= t , r = rn = 1/

√
n, δ = 1/4, q is any number between

1 and 2, say 2, ln = (logn/4)/2 log 2, Fj = {I[0,t] : t ≤ ρ2
j }, we can take V n(ρj )=

2ρ2
j and

ψn(ρj )≤ 2

n
E sup

t≤ρ2
j

∣∣∣∣∣
n∑

i=1

εiI[0,t](Xi)

∣∣∣∣∣≤ 4

n
E

∣∣∣∣∣
n∑

i=1

εiI[0,ρ2
j ](Xi)

∣∣∣∣∣≤ 4ρj√
n

,

where the first inequality follows by symmetrization and the second by Lévy’s
inequality. So, the quantity τn,q,φ of Theorem 2.1 is

max
j : sj>4nρ2

j

2sj

nρj log(sj /(2nρ2
j ))
∨ 2 max

j : sj≤4nρ2
j

√
sj

n
.(2.10)

Then, if we take sj =K ′q log ln ≥K ′′ log logn with K ′′ > 4K , this bound is dom-
inated by

2K ′′ log logn√
n log log logn

and
ln∑

j=1

e−sj /2K � (logn)−(K ′′/2K−1),

which, by Lemma 2.3, give

lim sup
n→∞

√
n log log logn

log logn
Tn = C <∞ a.s.

(as βn ≤ 4/
√

n multiplied by the factor in front of Tn tends to zero). This is sharp:
Csáki [13] computed this constant, which is not zero. Suppose now we want to find
the order of magnitude of Tn in probability. Then we still take sj = K ′′ log logn

if K ′′ log logn ≤ 4nρ2
j and notice that the number of the remaining j ’s, such that

4nρ2
j ≤ K ′′ log logn is of the order of K ′′′ log log logn; this allows us to take a
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smaller sj for such j ’s, for instance, we can take sj = 2K log log logn and still
have

ln∑
j=1

e−sj /2K � K ′′′ log log logn

log logn
+ l−(K ′′/2K−1)

n → 0.

The bound (2.10) becomes of the order

log log logn√
n log log log logn

∨
√

log log logn

n
∨
√

log logn

n
=

√
log logn

n
.

This gives that the sequence√
n

log logn
Tn, n ∈N,

is stochastically bounded, a result that is also best possible since it follows
from [14] that it converges in probability to a positive constant. We should re-
mark that these results on the almost sure and the in probability size of Tn can also
be obtained by direct application of Talagrand’s inequality to the class of func-
tions {I[0,t]/

√
t : t ≤ 1/4}, although the estimation of expected values in this case is

more complicated. However, they do not follow from the method developed in Re-
mark 2.6. At any rate, this example illustrates the power of Theorems 2.1 and 2.1′
when good expectation bounds are available, and also how to choose sj . See Ex-
amples 4.9, 4.10 and 5.8 below for more on uniform empirical c.d.f.’s, in one or
more dimensions.

Typically one wishes to normalize the empirical process by
√

VarP f , which
corresponds to φ(x)= x, or by Pf , which corresponds to φ(x)= x2 and σP f =√

Pf (recall 0≤ f ≤ 1), or by a function of σP f of the form φ(x)= xL(x) with L

slowly varying at zero. Although other situations may be considered, we will only
specialize Theorem 2.1 to a small number of cases, including these. The main
job consists in choosing sj so that

∑
e−sj /K is small. The following proposition

recovers an inequality in [22].

PROPOSITION 2.8. With the notation of Theorem 2.1 for σP f = √Pf and
φ(t)= t2, we have that, for all s > 0,

Pr
{
q−1 sup

f∈F

r2<Pf≤δ

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣≥ βn,q,φ + 2
√

s

nr2 (1+ 16βn,q,φ)

∨ 2s

nr2 log((s/(nr2(1+ 16βn,q,φ)))∨ 2)

}
(2.11)

≤K2 1

q2 − 1

1

s
e−s/K
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and

Pr
{

sup
f∈F

r2<Pf≤δ

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣≤ βn,q,φ − 2
√

s

nr2 (1+ 16βn,q,φ)

∨ 2s

nr2 log((s/(nr2(1+ 16βn,q,φ)))∨ 2)

}
(2.12)

≤K2 1

q2 − 1

1

s
e−s/K.

PROOF. Take V n(ρj ) = ρ2
j (1 + 16βn) [which is allowed by (2.3)] and sj =

sq2j in Corollary 2.2, and use (2.7) with α = 2 to compute the probability bound.
�

Especially important is the case φ(t)= t , that is, the normalization of the em-
pirical process at f by the standard deviation of f (X). The following proposition
is slightly sharper (up to constants) than a similar inequality in [22], and applies in
a larger range.

PROPOSITION 2.9. Let φ(t)= t . Set cq =max1≤j≤ln(log j)/qj and denote

Bn :=
10

√
s/q + 2cqK

√
s + 2K log logq(qδ/r)

nr log(((5s/q + 10cqK)/(17nr2))∨ 10)

∨ 2
√

17

√
s + 2K log logq(qδ/r)

n
.

(a) If βn = βn,q,φ ≤ r , then, for any positive number s,

Pr
{∣∣∣∣ sup

f∈F
r<σP f≤δ

|Pnf − Pf |
φq(σP f )

− βn

∣∣∣∣≥ Bn

}
≤ 2Ke−s(2.13)

with obvious changes in the constants if βn ≤ Cr for some C <∞.
(b) If βn > r , then, for any s > 0, t > 0,

Pr
{∣∣∣∣ sup

f∈F
r<σP f≤δ

|Pnf − Pf |
φq(σP f )

− βn

∣∣∣∣≥ 2t

nr log((t/(17nrβn))∨ 2)

∨ 2
√

17

√
tβn

nr
∨Bn

}
(2.14)

≤K2 1

q − 1

1

t
e−t/K + 2Ke−s,

with obvious changes in the constants if r < Cβn for some C <∞.
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PROOF. Assume first βn ≤ r . Since ψn(ρj )/ρj ≤ βn ≤ r ≤ ρj we can take
V n(ρj ) = 17ρ2

j . Now take sj = s + 2K log logq(ρj /rn) = s + 2K log j if this

quantity does not exceed 34nρ2
j and five times this quantity otherwise. Then, to

estimate

τn,q,t = max
j : sj>2nV n(ρj )

2sj

nρj log(sj /(nV n(ρj )))
∨ max

sj≤2nV n(ρj )
2

√√√√sjV n(ρj )

nρ2
j

,

note that if x ≥ e2, then x1/2/ logx is nondecreasing, so that

10s + 20K log j

nrqj log((5s + 10K log j)/(17nr2q2j ))

≤
√

10s/q + 20cqK
√

10s + 20K log logq(qδ/r)

nr log((5s/q + 10cqK)/(17nr2))
,

which gives

τn,q,t ≤ Bn.

Moreover, K
∑ln

j=1 e−sj /K ≤Ke−s ∑∞
j=1 1/j2 ≤ 2Ke−s .

Assume now r < βn. The j ’s for which ρj ≥ βn can be treated as in the
previous case (where all the ρj were larger than or equal to βn). If ρj < βn,
then Vn(ρj )/ρj ≤ ρj + 16βn ≤ 17βn and we take V n(ρj ) = 17ρjβn. Then, with
sj = tqj , the contribution of these j to τn,q,t is easily seen to be dominated by

2t

nr log((t/17nrβn)∨ 2)
∨ 2
√

17

√
tβn

nr
,

and, by (2.7), their contribution to the probability bound is dominated by
K2 q

q−1
1
t
e−t/qK . �

Comparing with inequality (2.8) in Remark 2.6, we see that the result in the
previous proposition is better if in (2.8) we take s of the order of log logq(qδ/r)

because φ̃n(r) > ψn(r), but smaller s’s are possible in (2.8), and these do better
than s + 2K log logq(qδ/r).

By (2.3), if ‖Fj‖2 is comparable to ρj , then we can take V n(ρj ) = cρ2
j �

Vn(ρj ) and obtain better inequalities than (2.13) and (2.14); this is the case in
Example 2.7 and, if one uses Theorem 2.1′, this is also the case for the c.d.f. in
several dimensions (as Alexander [2] observed and we see below). This applies
also to Proposition 2.8 and to the ones that follow.

REMARK 2.10. If in the previous proposition we assume

r ∨ βn ≥
√

s + 2K log logq(qδ/r)

34n
,(2.15)
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then the Poisson term of τn,q,t can be deleted from the bounds; under this condi-
tion, if βn ≤ r , then we see that sj ≤ 2nV n(ρj ) for all j . Under condition (2.15),
if r < βn, the same is true for ρj ≥ βn. Thus we obtain

Pr
{∣∣∣∣ sup

f∈F
r<σP f≤δ

|Pnf − Pf |
φq(σP f )

− βn,q,φ

∣∣∣∣
(2.16)

≥ 2
√

17

√
s + 2K log logq(qδ/r)

n

}
≤ 2Ke−s,

if βn ≤ r , and

Pr
{∣∣∣∣ sup

f∈F
r<σP f≤δ

|Pnf − Pf |
φq(σP f )

− βn,q,φ

∣∣∣∣≥ 2t

nrn log((t/(17nrβn))∨ 2)
∨ 2
√

17

√
tβn

nr

∨ 2
√

17

√
s + 2K log logq(qδ/r)

n

}
(2.17)

≤K2 1

q − 1

1

t
e−t/K + 2Ke−s

if r < βn.

PROPOSITION 2.11. Let φ(t)= tα for some α ∈ (1,2). Then, for any positive
number s,

Pr
{∣∣∣∣ sup

f∈F
r<σP f≤δ

|Pnf − Pf |
φq(σP f )

− βn

∣∣∣∣≥ 10s

nrα log((s/(17nrα(r2−α ∨ βn)))∨ 10)

∨ 2
√

17

√
s(r2−α ∨ βn)

nrα

}
(2.18)

≤K2 1

qτ − 1

1

s
e−s/K,

where τ = 2(α − 1).

PROOF. One proceeds as in the previous proof by considering the cases
ρ2−α

j ≥ βn and ρ2−α
j ≤ βn, which correspond to V n(ρj ) = 17ρ2

j and V n(ρj ) =
17ρα

j βn, respectively; in the first case one takes sj = sq2(α−1)j or five times this,

and in the second, sj = sqαj . �

The bounds for φ(t) = tα , 0 < α < 1, are similar to those for α = 1. We only
state them in a case analogous to Remark 2.10.
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PROPOSITION 2.12. Let φ(t)= tα , α ∈ (0,1), and assume

r ∨ β1/(2−α)
n ≥

√
s + 2K log logq(q2δ/r)

n
.(2.15′)

(a) If βn ≤ r2−α , then for all s > 0,

Pr
{∣∣∣∣ sup

f∈F
r<σP f≤δ

|Pnf − Pf |
φq(σP f )

− βn

∣∣∣∣
(2.19)

≥ 2
√

17

√
sδ2(1−α) + 2Kcq,α

n

}
≤ 2Ke−s,

where cq,α = sup0<u≤δq u2(1−α) log logq(q2δ/u).
(b) If βn > r2−α , s, t > 0 and

Bn := 2
√

17

√
sδ2(1−α) + 2Kcq,α

n
∨ 2t

nrα log((t/(17nrαβn))∨ 2)
∨ 2
√

17

√
tβn

nrα
,

then

Pr
{∣∣∣∣ sup

f∈F
r<σP f≤δ

|Pnf − Pf |
φq(σP f )

− βn

∣∣∣∣≥ Bn

}
≤K2 1

qα − 1

1

t
e−t/K + 2Ke−s .(2.20)

PROOF. Take V n(ρj )= 17ρα
j βn if ρ2−α

j ≤ βn and V n(ρj )= 17ρ2
j otherwise.

In the first case, set sj = sqαj and in the second sj = s + 2K log logq(q
2δ/ρj ) or

e2/α/2 times this. �

The case φ(t) = tαL(1/t) with L monotone and slowly varying at infinity is
also easy to handle, and we will when needed.

It should be noted that the bounds in the last three propositions are sharp only
to the extent that the estimate Vn(ρj ) ≤ ρ2

j + 16ψn(ρj ) is sharp. Sometimes the
class Fj can be further decomposed into a relatively small number of classes Fj,k

for which Vn,j,k ≤ cρ2
j , and then it is Theorem 2.1′ that gives inequalities leading

to sharp results.

3. Inequalities for expected values of suprema of empirical processes un-
der uniform, regularly varying (or slowly varying) entropy bounds. We need
good bounds for ψn(ρj ) in order to apply the inequalities in Section 2. In this
section we do this for a large collection of classes of functions that includes the
ubiquitous VC classes. In the theorems below, we assume that the functions in F



NORMALIZED EMPIRICAL PROCESSES 1163

take their values in [−1,1] and they are P -centered, and F ≤ 1 denotes a measur-
able envelope of F . For each n, we set

‖F‖2 := ‖F‖L2(P ), ‖F‖2,n := ‖F‖L2(Pn), n ∈N,

and let σ be a positive number such that

sup
f∈F

Pf 2 ≤ σ 2 ≤ ‖F‖2
2,(3.1)

unless we specify

σ 2 = sup
f∈F

Pf 2.(3.2)

We also let H : [0,∞) �→ [0,∞) be a regularly varying function of exponent 0≤
α < 2, strictly increasing for x ≥ 1/2 and such that H(x) = 0 for 0 ≤ x < 1/2.
Given such a function, we let the quantities CH , DH , AH satisfy

∞> CH ≥ sup
x≥1

∫∞
x u−2√H(u)du

x−1
√

H(x)
∨ 1,

∞> DH ≥
∫ ∞

1
u−2

√
H(u)du,

∞> AH ≥ sup
x≥2

log(DHx/(4CH

√
H(x) ))

x2 ∨ 1.

Finally, if (T , d) is a pseudometric space and ε > 0, then N(T ,d, ε) denotes the
ε covering number of (T , d) (the smallest number of open balls of radius at most
ε needed to cover T ) and D(T ,d, ε) denotes the ε packing number (the largest
possible number of elements in T separated from each other by at least a distance
of ε), and recall the elementary inequality

N(T ,d, ε)≤D(T ,d, ε)≤N(T ,d, ε/2)

for all ε > 0, that we will use without further mention.

THEOREM 3.1. If

logN
(
F ,L2(Pn), τ

)≤H

(‖F‖2,n

τ

)
(3.3)

for all τ > 0, n ∈N and ω ∈�, then there is a positive constant C(H) that depends
only on AH , CH and DH , such that

1

C(H)
E

∥∥∥∥∥
n∑

i=1

f (Xi)

∥∥∥∥∥
F

≤ [√
n‖F‖2

]∧ [(√
nσ

√
H

(
2‖F‖2

σ

))
(3.4)

∨H

(
2‖F‖2

σ
∧
√

n‖F‖2

1440CH

)
∨ 1

]
.
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The bound

1

C(H)
E

∥∥∥∥∥
n∑

i=1

f (Xi)

∥∥∥∥∥
F

≤
[√

nσ

√
H

(
2‖F‖2

σ

)]
∨
[
H

(
2‖F‖2

σ

)]
,(3.5)

which also holds in general, is useful when nσ 2 ≥ c > 0. Finally, for any c > 0, if

nσ 2 ≥ cH

(
2‖F‖2

σ

)
,(3.6)

then

E

∥∥∥∥∥
n∑

i=1

f (Xi)

∥∥∥∥∥
F

≤K(H,c)
√

nσ

√
H

(
2‖F‖2

σ

)
,(3.7)

for a constant K(H,c) that depends only on H and c.

PROOF. We delete the subscript F from norms when no confusion may arise.
By standard symmetrization, E‖∑n

i=1 f (Xi)‖ ≤ 2E‖∑n
i=1 εif (Xi)‖. Set

σ 2
n := ‖Pnf

2‖F .

The usual entropy bound for sub-Gaussian processes (for the constant, we com-
bine the last display on page 320 of [29] with Theorem 11.17 and first display on
page 322 of [29]) gives

E

∥∥∥∥∥ 1√
n

n∑
i=1

εif (Xi)

∥∥∥∥∥
≤ 60E

∫ 2σn

0

√
logN

(
F ,L2(Pn), τ

)
dτ

≤ 120E

∫ σn

0

√
H

(‖F‖2,n

τ

)
dτ(3.8)

≤ 120E

[∫ σn

0

√
H

(
2‖F‖2

τ

)
dτI (‖F‖2,n ≤ 2‖F‖2)

]

+ 120E

[∫ σn

0

√
H

(‖F‖2,n

τ

)
dτ I (‖F‖2,n > 2‖F‖2)

]
.

Now,
∫ σn

0

√
H(‖F‖2,n/τ ) dτ ≤ ‖F‖2,n

∫ 1
0
√

H(1/u)du ≤ DH‖F‖2,n, and there-
fore, Hölder’s inequality followed by Bernstein’s gives

E

[∫ σn

0

√
H

(‖F‖2,n

τ

)
dτI (‖F‖2,n > 2‖F‖2)

]
(3.9)

≤DH‖F‖2 exp
{
−9

8
n‖F‖2

2

}
≤ DH

2
√

n
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for the second summand in (3.8). To bound the first summand, note that by con-
cavity of

∫ x
0 h(t) dt when h↘, and by the properties of H , if ‖σn‖2 ≤ B ,

E

[∫ σn

0

√
H

(
2‖F‖2

τ

)
dτI (‖F‖2,n ≤ 2‖F‖2)

]

≤E

∫ σn∧2‖F‖2

0

√
H

(
2‖F‖2

τ

)
dτ

≤
∫ ‖σn‖2∧2‖F‖2

0

√
H

(
2‖F‖2

τ

)
dτ(3.10)

≤
∫ B∧2‖F‖2

0

√
H

(
2‖F‖2

τ

)
dτ

≤ CHB

√
H

(
2‖F‖2

B ∧ 2‖F‖2

)
.

Taking B = ‖F‖2 in (3.10), inequalities (3.8)–(3.10) give the bound E‖∑n
i=1 εi ×

f (Xi)‖ ≤ 60(DH + 2
√

H(2)CH )
√

n‖F‖2, hence the first term in the minimum
at the right-hand side of (3.4). This bound is accurate only if ‖F‖2 is comparable
to σ , and useful only if

√
n‖F‖2 is not too large. Otherwise, to get the remainder

of bound (3.4), we use (2.2) to the effect that

‖σn‖2
2 ≤ σ 2 +

(
8√
n
E

∥∥∥∥∥ 1√
n

n∑
i=1

εif (Xi)

∥∥∥∥∥
)
,

and take the right-hand side term of this inequality as B in (3.10). Inequality (3.10)
with this B then gives, using (3.1),

E

[∫ σn

0

√
H

(‖F‖2,n

τ

)
dτ I (‖F‖2,n > 2‖F‖2)

]

≤ CHσ

√
H

(
2‖F‖2

σ

)

+
√

8CH√
n

√√√√E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
×
(√

H

(
2‖F‖2

σ

)
∧
√√√√H

(
2‖F‖2√

(8/n)E‖∑n
i=1 εif (Xi)‖ ∧ 2‖F‖2

))
.
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Combining this inequality with inequalities (3.8) and (3.9), and setting
E :=E‖∑n

i=1 εif (Xi)‖, it follows that

either E ≤ 120DH or E ≤ 360CH

√
nσ

√
H

(
2‖F‖2

σ

)

or E ≤ 8 · 1202C2
H

[
H

(
2‖F‖2

σ

)
∧
(
H

(√
n‖F‖2√

2E

)
∨H(1)

)]
.

Now the result follows using elementary algebra, upon observing that if �(x) :=
x/H(1/

√
x ), 0 < x ≤ 1, then �−1(u)≤ u(H(1/

√
u)∨ 1), 0 < u≤ 1/H(1). �

It is easy to keep track of the constants in the previous proof, but not necessarily
useful.

Several remarks on the previous theorem are in order here.

(1) One may ask for similar inequalities for higher moments. In fact, Theo-
rem 3.1 together with Proposition 3.1 in [23], yields that there exists a constant
C(H) that depends on H only through AH , CH and DH , such that, under the
same assumptions as in Theorem 3.1, for all n ∈N and p ≥ 1,

E

∥∥∥∥∥
n∑

i=1

f (Xi)

∥∥∥∥∥
p

F

≤Cp(H)

[{(√
n σ

√
H

(
2‖F‖2

σ

))
∨H

(
2‖F‖2

σ
∧
√

n‖F‖2

1440CH

)}p

(3.11)

∨ pp/2(√n σ
)p ∨ pp

]
.

(2) In (3.3) we could replace H(‖F‖2,n/τ ) by slightly more complicated ex-
pressions and the proof of the theorem would still yield sensible bounds; for
instance, we show in Example 3.7 that for VC-major classes the right-hand
side of (3.3) is of the form H1(‖F‖2,n/τ )+H2(‖F‖2,n/τ ) log(A/‖F‖2,n), with
H1 and H2 regularly varying of exponent 1, and with the whole expression
monotone in ‖F‖2,n, and in this case the proof of Theorem 3.1 works with only
formal changes.

(3) Note that it is the regular variation of H that allows us to replace the typical
entropy integrals by actual entropies in Theorem 3.1. This is significant because
it turns out that a partial Sudakov inequality for Rademacher processes due to
Talagrand ([29], page 114, Proposition 4.13) allows us to obtain a lower bound
for expectations that in some cases is of the same order as the upper bound (3.4).
Here is this inequality applied to classes of functions whose absolute values are
uniformly bounded by 1:
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LEMMA 3.2 (Talagrand). There exists a universal constant L such that

Eε

∥∥∥∥∥ 1√
n

n∑
i=1

εif (Xi)

∥∥∥∥∥≥ 1

L
δ

√
logN

(
F ,L2(Pn), δ

)
,(3.12)

whenever

Eε

∥∥∥∥∥ 1√
n

n∑
i=1

εif (Xi)

∥∥∥∥∥≤
√

nδ2

L
.(3.13)

We will apply this result with δ = σ/8. In what follows, the function H satisfies
the same conditions as in Theorem 3.1. Also, we set ‖F‖2,n := ‖F‖L2(Pn).

DEFINITION 3.3. A class of functions F that satisfies condition (3.3), that is,

logN
(
F ,L2(Pn), τ

)≤H

(‖F‖2,n

τ

)

for all τ > 0, n ∈N and ω ∈�, is full for H and P if there exists c > 0 such that

logN
(
F ,L2(P ), σ/2

)≥ cH

(‖F‖2

σ

)
.(3.14)

THEOREM 3.4. Let F satisfy condition (3.3). Assume

nσ 2 ≥ 2500∨ 16AH

9
, nσ 2 ≥ [(672L2)∨ 1]19202C2

HH

(
6‖F‖2

σ

)
,(3.15)

where L is the constant in Lemma 3.2. Then,

E

∥∥∥∥∥
n∑

i=1

f (Xi)

∥∥∥∥∥
F

≥
√

n σ

32L

√
logN

(
F ,L2(P ), σ/2

)
.(3.16)

In particular, if a class F satisfies the entropy bound (3.3) and is full, then, for
all n for which conditions (3.15) hold,

√
c

16L

√
n σ

√
H

(‖F‖2

σ

)
≤ E

∥∥∥∥∥
n∑

i=1

f (Xi)

∥∥∥∥∥
F

(3.17)

≤ 1920CH

√
n σ

√
H

(
2‖F‖2

σ

)
.

PROOF. By Talagrand’s lemma above,

Eε

∥∥∥∥∥ 1√
n

n∑
i=1

εif (Xi)

∥∥∥∥∥≥ 1

L

σ

8

√
logN

(
F ,L2(Pn), σ/8

)
,(3.18)
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whenever

Eε

∥∥∥∥∥ 1√
n

n∑
i=1

εif (Xi)

∥∥∥∥∥≤
√

nσ 2

64L
.(3.19)

Now we will lowerbound the right-hand side of (3.18) and upperbound the left-
hand side of (3.19) with large probability. We start with the right-hand side
of (3.18). Let D := D(F ,L2(P ), σ/2). By the law of large numbers applied to
D functions in F and to F , for all ε > 0 there exists n and ω such that

D
(
F ,L2(P ), σ/2

)≤D
(
F ,L2(Pn(ω)), (1− ε)σ/2

)
≤N

(
F ,L2(Pn(ω)), (1− ε)σ/4

)
and

‖F‖L2(Pn(ω)) ≤ (1+ ε)‖F‖2,

so that, taking, for example, ε = 1/5, we obtain by (3.3) that

D
(
F ,L2(P ), σ

)≤ eH(6‖F‖2/σ).(3.20)

Let f1, . . . , fD be a maximal set of F satisfying P(fi − fj )
2 ≥ σ 2/4 for all

1 ≤ i �= j ≤ D. By Bernstein’s inequality (e.g., in the form given in [8]), since
moreover P(fi − fj )

4 ≤ 4P(fi − fj )
2 ≤ 16σ 2,

Pr

{
max

1≤i �=j≤D

(
nP (fi − fj )

2 −
n∑

k=1

(fi − fj )
2(Xk)

)
> 8

3 t +
√

32tnσ 2

}
≤D2e−t .

Hence, taking t = δnσ 2 and using P(fi − fj )
2 ≥ σ 2/4 and (3.20),

Pr

{
min

1≤i �=j≤D

1

n

n∑
k=1

(fi−fj )
2(Xk)≤ σ 2

(
1

4
− 8δ

3
−√32δ

)}
≤ e2H(3‖F‖2/σ)e−δnσ 2

,

which for δ = 1/(32 · 83) gives

Pr
{

min
1≤i �=j≤D

Pn(fi − fj )
2 ≤ σ 2

16

}
≤ eH(6‖F‖2/σ)e−nσ 2/(32·83).

This implies that the event A1 on which

N
(
F ,L2(Pn), σ/8

)≥D
(
F ,L2(Pn), σ/4

)
≥D =D

(
F ,L2(P ), σ/2

)
(3.21)

≥N
(
F ,L2(P ), σ/2

)
has probability

Pr(A1)≥ 1− eH(6‖F‖2/σ)−nσ 2/(32·83).(3.22)
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Under the present hypotheses, (3.7) holds; actually, the proof of Theorem 3.1 gives,
before desymmetrizing, that

E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥≤ 960CH

√
n σ

√
H

(
2‖F‖2

σ

)
,

in particular giving the right-hand side inequality in (3.17). Therefore, using
(2.2) and (3.15), we have

E

∥∥∥∥∥
n∑

i=1

(
f 2(Xi)− Pf 2)∥∥∥∥∥≤ nσ 2 +E

∥∥∥∥∥
n∑

i=1

f 2(Xi)

∥∥∥∥∥
≤ 2nσ 2 + 8E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
≤ 2nσ 2 + 4× 1920CH

√
n σ

√
H

(
2‖F‖2

σ

)

≤ 6nσ 2.

Hence, Bousquet’s version of Talagrand’s inequality ([10], Theorem 7.3; see
also [32]) gives

Pr

{∥∥∥∥∥
n∑

i=1

(
f 2(Xi)− Pf 2)∥∥∥∥∥≥ 6nσ 2 +

√
26tnσ 2 + t/3

}
≤ e−t ,

which, taking t = 26nσ 2, becomes

Pr

{∥∥∥∥∥
n∑

i=1

(
f 2(Xi)− Pf 2)∥∥∥∥∥≥ 41nσ 2

}
≤ e−26nσ 2

.

[Here we could have used Talagrand’s inequality (2.1) instead of Bousquet’s, but
the resulting bound would have been less neat.] So, the event A2 where∥∥∥∥∥

n∑
i=1

f 2(Xi)

∥∥∥∥∥ < 42nσ 2(3.23)

has probability

Pr(A2) > 1− e−26nσ 2
.(3.24)

Also, by Bernstein’s inequality, as mentioned above, the event

A3 = {‖F‖2,n ≤ 2‖F‖2}(3.25)

has probability

Pr(A3)≥ 1− exp
{−9

4n‖F‖2
2
}
.(3.26)
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Now, on A2 ∩A3, the usual entropy bound and (3.15) give

Eε

∥∥∥∥∥ 1√
n

n∑
i=1

εif (Xi)

∥∥∥∥∥ ≤ 120
∫ σn

0

√
H

(‖F‖2,n

τ

)
dτ

≤ 120
∫ √

42σ

0

√
H

(
2‖F‖2

τ

)
dτ

≤ 60
√

42
∫ 2σ

0

√
H

(
2‖F‖2

τ

)
dτ(3.27)

≤ 120
√

42CHσ

√
H

(‖F‖2

σ

)

<

√
n σ 2

64L
.

It follows from (3.18)–(3.27) that

E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

≥
√

nσ

8L

√
logN

(
F ,L2(P ), σ/2

)
Pr(A1 ∩A2 ∩A3)(3.28)

and that

Pr(A1 ∩A2 ∩A3)≥ 1− eH(6‖F‖2/σ)−nσ 2/(32·83) − e−26nσ 2 − e−9nσ 2/4.

This last probability is larger than 1/2 by the inequalities in (3.15). So, integrat-
ing in (3.28) and desymmetrizing, we obtain inequality (3.16). The left-hand side
of (3.17) now follows from (3.16) and Definition 3.3, proving the theorem. �

Theorem 3.1 recovers and improves on inequalities that go back to
Talagrand [42] (see also follow-up work in [20, 21, 35] and, more recently, [22],
where only the first and last of these four references use the L2 norm of the en-
velope in their inequalities). Theorem 3.4 shows that, at least for large n, these
inequalities are sharp up to constants.

EXAMPLE 3.5. Suppose that F is VC-subgraph, that is,{{(x, t) : 0≤ t ≤ f (x)} :f ∈F
}∪ {{(x, t) : 0≥ t ≥ f (x)} :f ∈F

}
is a VC class of sets. Or, more generally, suppose F is VC type, that is, there exist
A≥ e and v ≥ 1 such that

N
(
F ,L2(Q), τ

)≤ (
A‖F‖L2(Q)

τ

)v

for all 0 < τ ≤ 2‖F‖L2(Q) and all probability measures Q, where F := sup{|f | :
f ∈ F }. In this case H(u)= v log(Au) is slowly varying (α = 0) and we can take
CH = 2, DH = 2A

√
v/e and AH =A.
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Since subsets of a VC-subgraph class are also VC-subgraph, this can be applied
to the class F (tq−1, t] = {f ∈F : tq−1 < σP f ≤ t} with its measurable envelope,
say, Ft . Define

gq(t)=
(

A‖Ft‖2

t

)v

, 0 < t ≤ 1,

where ‖F‖2 := ‖F‖L2(P ). Then the function loggq(t) plays the crucial role in the
expectation bound for the class F (tq−1, t] (which is needed in the inequalities of
Section 2 for ratio type suprema). In Sections 4 and 5 below, this function will be
involved in conditions for limit theorems about ratio type empirical processes on
VC-subgraph classes. It turns out that if F is a class of indicator functions (i.e.,
we are dealing with a VC class of sets) such that PC ≤ 1/2 for all IC ∈F , then

A−2(gq(t))2/v = Pr[⋃{C : IC ∈F , tq−1 < σP (IC)≤ t}]
t2

is comparable to (in fact, posssibly smaller than) Alexander’s [2] capacity func-
tion g(t2).

EXAMPLE 3.6. The scope of Theorem 3.1 is much larger than just VC classes.
For instance, let F = {fn := IA(n)/ log(n ∨ e), n ∈ N}, with A(n) ⊆ [0,1] inde-
pendent for Lebesgue measure and with Lebesgue measure equal to 1/2 (intro-
duced in [16], proof of Theorem 2.1), and let P be Lebesgue measure on [0,1].
Then, F := 1 and σ = 1/2. Also, considering the L2(Pn) balls centered on the first
m functions, with m of the order of e1/ε , it is easy to see that logN(F ,L2(Pn), ε)

is of the order of a constant times 1/ε, independently of n. Then, Theorem 3.1
gives that E‖∑n

i=1 f (Xi)‖ ≤ C
√

n for some fixed c <∞, and this is best possi-
ble up to constants since F is P -Donsker.

Other classes whose covering numbers are not polynomial include VC-major
and VC-hull (see [16] for definitions). We mention the definition of VC-major, that
we use below: F is VC-major if the collection of sets {{s ∈ S :
f (s) ≥ t} : t ∈ R, f ∈ F } is VC. The following bound on the entropy of such a
class is, most likely, new. Note that, as in the case of VC-subgraph classes, it also
involves the envelope of the class.

EXAMPLE 3.7. Suppose that F is a measurable VC-major class of P -cente-
red functions whose absolute values are bounded by 1. Our goal will be to show
that there exists A > 0 such that for all probability measures Q and all 0 < τ ≤
2‖F‖L2(Q)

logN
(
F ,L2(Q), τ

)≤ A‖F‖L2(Q)

τ
log

(
A‖F‖L2(Q)

τ

)
log

(
1

τ

)
.

To this end, take tj := (1+ τ)−j , j ≥ 0, and let m(τ) be the smallest j such that
tj ≤ τ‖F‖L2(Q). Clearly,

m(τ)� log(1/(τ‖F‖L2(Q)))

τ
.
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For f ∈F , define

fτ :=
m(τ)∑
j=1

tj I (tj < f ≤ tj−1).

If tj < f (x)≤ tj−1 for j ≤m(τ), then

0≤ f (x)− fτ (x)≤ tj−1 − tj = τ tj ≤ τf (x)≤ τF (x).

Hence, as soon as f (x) > τ‖F‖L2(Q)

0≤ f (x)− fτ (x)≤ τF (x),

otherwise

0≤ f (x)− fτ (x)≤ f (x)≤ τ‖F‖L2(Q).

This implies that

‖f − fτ‖2
L2(Q) ≤ τ 2‖F‖2

L2(Q) + τ 2‖F‖2
L2(Q) = 2τ 2‖F‖2

L2(Q).

Denote Fτ := {fτ :f ∈F }. Since

{(x, t) :fτ (x)≥ t} =
m(τ)⋃
j=1

{x :f (x)≥ tj−1} × (tj , tj−1]

and F is a VC-major class, the class Fτ is VC-subgraph with VC dimension
bounded by V m(τ) for some V > 0. Clearly, F is an envelope of Fτ (since
0≤ fτ ≤ f for all f ∈F ). Therefore (see, e.g., [47], Theorem 2.6.7), for τ > 0

N
(
Fτ ;L2(Q); τ‖F‖L2(Q)

)≤ (
A

τ

)V m(τ)

,

which implies

N
(
F ;L2(Q);3τ‖F‖L2(Q)

)≤ (
A

τ

)V m(τ)

.

Taking into account the bound on m(τ) and changing variables τ‖F‖L2(Q) �→ τ ,
the result follows. Note that the bound can be also written as

logN
(
F ,L2(Q), τ

)
≤ A‖F‖L2(Q)

τ

[
log2

(
A‖F‖L2(Q)

τ

)

+ log
(

A‖F‖L2(Q)

τ

)
log

(
1

A‖F‖L2(Q)

)]

:=H
(‖F‖L2(Q), τ

)
,
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which can be used in the proof of Theorem 3.1 (with some modifications), to give

E

∥∥∥∥∥
n∑

i=1

f (Xi)

∥∥∥∥∥
F

�
(√

n‖F‖L2(P )

(
1+

√
log

(
A‖F‖L2(P )

)−1 ))

∧ [(√
nσ

√
H
(‖F‖L2(P ), σ

) )∨H
(‖F‖L2(P ), σ

)∨√
logn

]
.

EXAMPLE 3.8. As a more specific example, consider the class F of nonde-
creasing functions from [0,1] into itself. Obviously, it is a VC-major class. Let P

be a nonatomic probability measure on [0,1] and let G be its distribution function.
Denote

Fδ := {f ∈F :σ 2
P f := Pf 2 ≤ δ2},

which, of course, is also a VC-major class. An easy computation shows that the
envelope of Fδ is

Fδ(x) := sup
f∈F ,Pf 2≤δ2

f (x)= δ√
P [x,1] ∨ 1

(if x is such that P [x,1] > δ2, then the supremum in the definition is attained at
the function fx such that fx(y) = 0 for y < x and fx(y) = δ√

P [x,1] for y ≥ x;
otherwise, the supremum is equal to 1). Let xδ be such that

P [xδ,1] = 1−G(xδ)= δ2.

Then

‖Fδ‖2
2 = PF 2

δ = δ2
∫ xδ

0

P(dx)

P [x,1] + δ2

= δ2
∫ xδ

0

dG(x)

1−G(x)
+ δ2 = δ2

∫ 1

δ2

dy

y
+ δ2 = δ2 log

e

δ2 .

Hence
‖Fδ‖2

δ
=

√
log

e

δ2 ,

and using this together with our bound on the entropy of VC-major classes in
Theorem 3.1 yields, by a simple computation,

E‖Pn − P‖Fδ � δ√
n
(log δ−1)3/4(log log δ−1)1/2

∨ 1

n
(log δ−1)3/2(log log δ−1)∨

√
logn

n
.

So, in spite of the fact that the entropy of the class of monotone functions is rel-
atively large, the supremum of the empirical process over the class Fδ of “small”
monotone functions is of about the same size as for VC-classes of sets due to the
small size of localized envelopes.
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4. Ratio limit theorems I: rates when φ(t) = tα . In this section we will
derive limit theorems a.s. and in probability for general ratio empirical processes,
as direct applications of the bounds in Section 2, and we will specialize these to
different types of classes of functions, particularly, VC classes, for which we will
use the results from Section 3.

4.1. The case φ(t)= t2. We begin with a law of large numbers already in [22],
Theorem 6. In this case we take σ 2

P f = Pf (recall that the class F consists of
functions taking values in [0,1]). We set

βn,q := βn,q,t2 = sup
1≤j≤ln

ψn(ρj )

ρ2
j

,

where ρj = qj rn, 1≤ j ≤ ln, with ln = log logq(δq/rn).

THEOREM 4.1. Let 0 < δ ≤ 1 and rn↘ 0. Let 1 < qn ≤ 2 be a nonincreasing
sequence such that log(qn − 1)−1 = o(nr2

n). If nr2
n →∞, then the condition

βn,qn → 0(4.1)

is necessary and sufficient for

sup
f∈F

r2
n<Pf≤δ

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣→ 0(4.2)

in probability. Moreover, if 1≥ qn−1≥ (logn)−δ for some δ > 0, nr2
n/ log logn↗

∞ and βn,qn/
√

n↘ 0, then condition (4.1) is necessary and sufficient for the limit
in (4.2) to hold a.s.

PROOF. The “in probability” part of the theorem follows directly from Propo-
sition 2.8 with s = sn →∞ such that sn/(nr2

n)→ 0 and sn/ log(q2
n − 1)−1 →∞.

The “a.s.” part follows from Lemma 2.3 together with Proposition 2.8 with s =
sn = (2+ δ)Kqn log logn. �

The condition nr2
n →∞ is natural in this problem: it certainly is for F =

{I[0,t] : 0≤ t ≤ 1/2}, since
∑n

i=1 I[0,1/n](Xi)−1→d N−1, where N is Poisson 1.
For a specialization of Theorem 4.1 to VC type classes of functions, obtained by

replacing ψn(ρj ) in the definition of En,q by its estimate from Section 3, see The-
orem 10 in [22], which recovers classical results and compares to the sufficiency
part of Theorem 5.1 of [2] if we restrict to VC classes of sets.

Regarding rates, Proposition 2.8 also gives immediately the following:
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THEOREM 4.2. (a) For qn ∈ (1,2] nonincreasing, and with γn := nr2
n/

log(qn − 1)−1, the sequence(
1

βn,qn

∧
√

γn

1+ βn,qn

(4.3)

∧ γn log
(
γn

(
1+ βn,qn

)−1 ∨ 2
))

sup
f∈F

r2
n<Pf≤δ

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣, n ∈N,

is stochastically bounded.
(b) With qn as in part (a), if

sup
n

βn,qn <∞ and
√

γnβn,qn →∞,(4.4)

then

lim
n

1

βn,qn

sup
f∈F

r2
n<Pf≤δ

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣= 1 in pr.(4.5)

Lemma 2.3 and Proposition 2.8 also give almost sure counterparts of Theo-
rem 4.2, that we leave to the reader.

Here is an example showing that normings other than βn := βn,qn do occur
in (4.3).

EXAMPLE 4.3. Our object here is to exhibit an example of a class of functions
that satisfies

nr2
n →∞ and

√
nrnβn→ 0(4.6)

for which the sequence

1

βn

sup
f∈F (rn,δ]

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣, n ∈N,(4.7)

is not stochastically bounded, but the sequence

√
γn sup

f∈F (rn,δ]

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣, n ∈N,(4.8)

is. Let εk,j be independent random variables with

Pr{εk,j = 1} = 1

j2 = 1− Pr{εk,j = 0}, j, k ∈N,

and

Xk =
(

εk,j

(log j)2 :k = 1,2, . . .

)
,
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where logx := log(x ∨ e) [and below, log logx = log log(x ∨ ee)]. The variables
Xk are i.i.d. co-valued r.v.’s.

Let

F = {fj (x)= xj : j ∈N},
where xj is the j th coordinate of x ∈ co, so that Pfj = (j log j)−2 and

(Pn − P)(fj )= 1

n(log j)2

n∑
k=1

(εk,j − j−2)

and

Pnfj

Pfj

− 1= j2

n

n∑
k=1

(εk,j − j−2).

Set

rn = logn√
n

, δ = 1
2 .

CLAIM 1. There is a permissible qn such that

βn = βn,qn �
√

log logn

(logn)2 .

PROOF. We can take

βn := sup
u>rn

ψn,qn(u)

u2

� sup
u≥rn

E sup
f∈F

u2≤Pf <u2q2
n

|Pnf − Pf |
u2

where 2 > qn↘ 1 is such that

log
1

qn − 1
= o(nr2

n)= o((logn)2).

In fact we take

qn = 1+ (logn)2
√

n
.

In order to upperbound βn we note that the number of integers j such that u2 ≤
Pf < u2q2

n , that is, such that (uqn)
−1 < j log j ≤ u−1, u≥ rn, is dominated by

1

u
− 1

uqn

= qn − 1

uqn

≤ qn − 1

rnqn

≤ logn
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because if F(x)= x logx, x > 1, then (F−1)′(y) < 1. Moreover, the smallest j in
this range, call it j (u), satisfies

j (u)≥ 1

uqn log(uqn)−1 and j (rn)≥ 1

rnqn log(rnqn)−1 ≥
√

n

2(logn)2 .

Bernstein’s inequality and Lemma 2.2.10 in [47] (a convexity argument due to
Pisier) then give that, for some universal constant K ,

βn ≤ sup
u>rn

E

(
sup
f∈F

u2≤Pf <u2q2
n

|Pnf − Pf |
u2

)

≤ sup
u>rn

K

nu2(log(1/(uqn log(uqn)−1)))2

×
[

1

3
log(1+ logn)

+√nuqn log(uqn)
−1

√
log(1+ logn)

]
.

Since this bound is the sup of a decreasing function of u, we have

βn ≤ 5K

nr2
n(logn)2

[
1

3
log(1+ logn)+ (logn)2

√
log(1+ logn)

]

≤ 6K
√

log logn

(logn)2 ,

at least for all n large enough. Claim 1 is proved. �

It follows from Claim 1 that:

(i) βn→ 0, and

(ii)
√

nrnβn ≤ 6K
√

log logn
logn

→ 0,

in particular, (4.6) holds. From (i) and Theorem 4.1, we know that

sup
Pf≥r2

n

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣→ 0 in pr.;

in fact, from Theorem 4.2,

(logn)1/2 sup
Pf≥r2

n

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣, n ∈N,

is stochastically bounded [note that
√

γn =√nrn/
√

log(qn − 1)−1 is of the order

of (logn)1/2], so that (4.8) holds. Next we are going to show the following:
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CLAIM 2. For any λn→∞, the sequence

λn(logn)3/2 sup
Pf >r2

n

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣, n ∈N,

converges to infinity in probability, hence so does the sequence

1

βn

sup
Pf >r2

n

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣, n ∈N,

by (ii) above, βn = o(
√

log logn/(logn)2).

PROOF. Since j ≤√n/(logn)2 implies Pfj > r2
n , it follows that

sup
Pf >r2

n

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣ ≥ max
j≤√n/(logn)2

j2

n

∣∣∣∣∣
n∑

k=1

(εk,j − j−2)

∣∣∣∣∣
(4.9)

>
1

4(logn)4 max√
n/2(logn)2<j≤√n/(logn)2

∣∣∣∣∣
n∑

k=1

(εk,j − j−2)

∣∣∣∣∣.
Now we estimate this supremum. First we note that, by direct computation (or,
e.g., by Hoffmann–Jørgensen’s inequality), if ξ is Bin(n,p) and np(1− p) > 1,
then there is a universal constant c <∞ such that E|ξ − np|3 ≤ c(np)3/2, which,
by Berry–Esséen, implies

∣∣Pr
{
ξ − np ≤ t

√
np(1− p)

}− Pr{g ≤ t}∣∣≤ C√
n

(4.10)

for another universal constant C, where g is standard normal. Hence, for any A=
An > 0,

Pr

{
max√

n/2(logn)2<j≤√n/(logn)2

∣∣∣∣∣
n∑

k=1

(εk,j − j−2)

∣∣∣∣∣ > A

}

= 1−∏
j

(
1− Pr

{∣∣∣∣∣
n∑

k=1

(εk,j − j−2)

∣∣∣∣∣ > A

})
(4.11)

≥ 1−∏
j

(
1− Pr

{
|g|> A

√
nj−1

√
1− j−2

}
+ 2C√

n

)
,

where the product is over the set of j ’s such that
√

n/2(logn)2 < j ≤√n/(logn)2.
Now,

A
√

nj−1
√

1− j−2
≤ 2A

(logn)2
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and, by well-known Gaussian computations, for 2A > (logn)2,

Pr
{
|g|> A

(logn)2

}
=

√
2

π

∫
2A/(logn)2

e−u2/2 du≥ e−4A2/(logn)4
.

Hence, taking

4A2

(logn)4 :=
1

3
logn,

we get

Pr
{
|g|> A

(logn)2

}
− C√

n
≥ 1

n1/3 −
2C√

n
= 2cn(logn)2

√
n

,

with cn → ∞ [cn is of the order of n1/6/2(logn)2]. Replacing this estimate
into (4.11), gives

Pr

{
max√

n/2(logn)2<j≤√n/(logn)2

∣∣∣∣∣
n∑

k=1

(εk,j − j−2)

∣∣∣∣∣ > 1

2
√

3
(logn)5/2

}

≥ 1−
(

1− 2cn(logn)2
√

n

)√n/(2(logn)2)

≥ 1− e−cn → 1.

Hence, by (4.9),

Pr
{
(logn)3/2 sup

Pf >r2
n

∣∣∣∣Pnf

Pf
− 1

∣∣∣∣ > 1

8
√

3

}
→ 1,

proving Claim 2. �

4.2. The case φ(t)= t . Here is a result on convergence in probability and sto-
chastic boundedness of the “normalized” empirical process. It expands Theorem 1
in [22].

THEOREM 4.4. Let φ(t)= t , δ ≤ 1, rn↘ 0 and, for 1 < q ≤ 2, let βn,q denote
βn,q,t . Set

ξn := sup
rn<σP f≤δ

f∈F

|Pnf − Pf |
σP f

.

Then the following statements hold:

(a) If for all q ∈ (1, α) for some α > 1,
√

log log 1/rn
n

∨ 1
nrn
= o(βn,q), then

ξn

Eξn
→ 1 in pr.; also, there are sequences qn↘ 1 such that ξn

βn,qn
→ 1 in pr.
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(b) If for some q > 1,
√

log log 1/rn
n

∨ 1
nrn
= O(βn,q), then the sequences

ξn

Eξn
and ξn

βn,q
are stochastically bounded.

(c) If for some q > 1,
√

log log 1/rn
n

= O(βn,q) and nrnβn,q → 0, then the se-
quence [nrn log(1/(nrnβn,q))]ξn is stochastically bounded.

(d) Let 1
βn,q

√
log log 1/rn

n
→∞ and 1

nrn
=O(βn,q) for some q > 1; if, moreover,

rn ≥
√

log logn
n

, then
√

n
log logqn

1/rn
ξn is stochastically bounded, and otherwise,

(√
n

log logqn
1/rn

∧ nrn log((nr2
n)−1 ∨ 2)√

log logqn
1/rn

)
ξn

is.
(e) Let 1

βn,q

√
log log 1/rn

n
→ ∞ and nrnβn,q → 0 for some q > 1. Then, if

rn ≥ βn,q , (√
n

log log 1/rn
∧ nrn log((nr2

n)−1 ∨ 2)√
log log 1/rn

)
ξn

is stochastically bounded, and otherwise,(
nrn log

(
1/(nrnβn,q)

)∧
√

n

log log 1/rn
∧ nrn log((nr2

n)−1 ∨ 2)√
log log 1/rn

)
ξn

is.

PROOF. (a) In this case condition (2.15) is satisfied and we can apply in-
equalities (2.16) and (2.17) with s = sn →∞ so that s = O(log log(1/rn)) and
t = tn→∞ so that tn = o(nrnβn,q); then the lower bounds τn,q,t for∣∣∣∣ sup

rn<σP f≤δ

f∈F

|Pnf − Pf |
φq(σP f )

− βn,q

∣∣∣∣
in these inequalities are o(βn,q). Now the result follows because t ≤ φq(t) ≤ qt

and βn,q ≤ En,q ≤ βn,q + Cτn,q [see the proof of Theorem 2.1 for this last in-
equality, which holds when the probability in (2.4a) is less than 1].

(b) Follows from similar considerations.
(c) In this case (2.15) is still satisfied (at least up to a multiplicative constant

whose only effect is in the multiplicative constants in the probability inequalites).
Then, since nβ2

n,q →∞, necessarily βn > rn from some n on, and inequality (2.17)
applies. Under the hypotheses of (c), we have (with� signifying “little o”)√

log logqn
(1/rn)

n
� βn�

√
βn

nrn
� 1

nrn log(nrnβn)−1

so that t times this last term is the dominant one in τn,q,t , inequality (2.17).
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(d) In the first case, βn,q �
√

n−1 log logn≤ rn and (2.16) applies. Otherwise
we must use (2.13) and (2.14); for (2.14), note that if βn,q > rn, then

1

nrn log(10∨ (nrnβn,q)−1)
�

√
βn,q

nrn
� βn,q �

√
log logn

n
.

(e) Follows using (2.13) and (2.14), from similar easy considerations. �

A similar result for the a.s. size of ξn can be obtained as well. One applies the
same principles but makes sure that Lemma 2.3 is satisfied. For instance, direct
application of Remark 2.10 and Lemma 2.3 gives that if

βn,q√
n
↘, n3/2rn↗ and

√
log log 1/rn ∨ log logn

n
∨ log logn

nrn
= o(βn,q)

for q ∈ (1, α), then

lim sup
n→∞

ξn

Eξn

≤ 1 a.s.

To show that this lim sup is actually equal to 1, apply Remark 2.10 for nk = ek and
Borel–Cantelli, as in the second part of the proof of Theorem 2 in [22].

EXAMPLE 4.5. We now modify Example 4.3 to show that the condition√
log logqn

1/rn

n
∨ 1

nrn
= o(βn,q)

from part (a) of Theorem 4.4 has some degree of sharpness (the problem with
absolute sharpness is that we are not using the exact value of βn,q to violate the
condition, but only an upper estimate), so that our example will satisfy

nrnβn,q ≤K <∞,

but it might well be that actually nrnβn,q → 0, which might be too strong a viola-
tion of the condition.

We consider

ξn = sup
rn<σP f≤δ

|Pnf − Pf |
σP f

from Theorem 4.4 with, for example, δ = 1/8, and (see also Section 2)

β̃n = sup
u∈(rn,δ]

1

u
E

(
sup

u/qn<σP f≤u

|Pnf − Pf |
)
,

with qn↘ 1 and rn↘ 0. Take εk,j and F as in Example 4.3, and Xk = (
εk,j

log j
: j =

2, . . . ) ∈ c0. Since VarP (fj )= 1
j2(log j)2 − 1

j4(log j)2 is of the order of 1/(j log j)2
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for large j and β̃−1
n �√

n, taking σ 2
P (f )= 1/(j log j)2 will be equivalent to tak-

ing σ 2
P (f )=VarP (f ). Now define

rn = 1√
n log logn

, qn = 1+ rn logn.

If, for u ∈ (rn, s] we set

Ju = {j :u/qn < σP (fj )≤ u}
= {j :u/qn < 1/(j log j)≤ u},

we have

j (u) :=min{j : j ∈ Ju} ≥ 1

u logu−1

and

Card(Ju)≤ qn

u
− 1

u
≤ qn − 1

rn
≤ logn.

Using Bernstein and Lemma 2.2.10 in [47], as in Example 4.3, we obtain

1

u
E

(
sup

u/qn<σP f≤u

|Pnf − Pf |
)

≤ K

nu log(1/(u logu−1))

[
1

3
log logn+√nu logu−1

√
log logn

]
.

Taking the sup over u ∈ (rn, δ) we obtain that

β̃n ≤K

√
log logn

n

for some other K and for all n large enough. So, as mentioned, we have

nrnβ̃n ≤K.

Now we show that ξn/β̃n →∞ in probability (actually faster than any rate An

such that An√
logn/ log logn

→ 0). First we observe that

2K
ξn

β̃n

≥ 1

logn
sup

(1/2)
√

n log logn/ logn≤j≤√n log logn/ logn

∣∣∣∣∣
n∑

k=1

(εk,j − j−2)

∣∣∣∣∣,
and then we easily check, proceeding as in the previous example, that

Pr
{

2K
ξn

β̃n

>
1

4

√
logn

log logn

}
→ 1

as n→∞.
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Next, we will consider the case of VC classes of functions, for which we will
obtain a result that, although it falls short of recovering the full strength of The-
orem 3.1 in [2] when restricted to classes of sets, still gives best possible results
up to constants in the classical situation of the uniform empirical c.d.f. in several
dimensions, indicators of intervals for the uniform, and half-spaces for the normal
(Corollaries 3.5, 3.7 and 3.9 there).

We refer to Example 3.5 for the definition of VC-subgraph classes of func-
tions and recall that, by a result of [40], reproduced in [15], if F is a bounded
VC-subgraph, there exist A≥ e and v ≥ 1 such that, for every subclass G⊆ F , if
G is a measurable envelope for G, then

N
(
G,L2(Q), τ

)≤ (
A‖G‖L2(Q)

τ

)v

for all probability measures Q and 0 < τ ≤ 2‖G‖L2(Q). Hence, by Theorem 3.1
there exists a constant 1 ≤K1 <∞ such that if F is such a class and, moreover,
it is suitably measurable and consists of functions taking values in [0,1], then for
all G⊆F ,

E

∥∥∥∥∥
n∑

i=1

(
f (Xi)− Pf

)∥∥∥∥∥
G

≤K1

[√
n‖G‖2 ∧

(√
nσG

√
log

A‖G‖2

σG
(4.12)

∨ log
(

A‖G‖2

σG
∧√n‖G‖2

)
∨ 1

)]
.

In particular this applies to the classes F (tq−1, t] = {f ∈ F : tq−1 < σP f ≤ t}.
Letting Ft denote a measurable envelope of F (tq−1, t], we define (as in Exam-
ple 3.5)

gq(t)=
(

A‖Ft‖2

t

)v

, 0 < t ≤ 1,(4.13)

where ‖F‖2 := ‖F‖L2(P ).

Assume that σP (f ) [which is always ≥ Var1/2
P (f )] satisfies the following con-

dition:

∀f ∈F ‖f ‖2 ≤CσP (f )

with some constant C > 0.
Recall that, given f−, f+ ∈ L2(P ), the set

[f−, f+] := {f ∈L2(P ) :f− ≤ f ≤ f+}
is called an L2(P )-bracket of size (or of order) δ > 0 iff ‖f+−f−‖2 ≤ δ. It will be
said that F satisfies the local bracketing condition iff there exists a constant K > 0
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such that for all f ∈ F and 0 < δ ≤ σP (f )/K there exists an L2(P )-bracket
[f−, f+] of size Kδ such that

{g ∈F :‖g− f ‖2 ≤ δ} ⊂ [f−, f+]
[in other words, L2(P ) balls of radius δ are to be covered by L2(P )-brackets of
size Kδ].

Given 0 < r < δ < 1 and 0 < q ≤ 2, with ρj = rqj , j = 0,1, . . . , l =
logq(δq/r), we also define

w =w(r)= max
0≤j≤l

(
log logq(δq/ρj )

)∨ (loggq(ρj )).(4.14)

In the following theorem, we go as far as we can toward extending
Alexander’s [2] Theorem 3.1 to classes of functions.

THEOREM 4.6. Let 1 < q ≤ 2 and rn→ 0. Let F be a VC-subgraph class sat-
isfying the local bracketing condition. Then the following hold with wn :=w(rn).

(a) If lim infn nr2
n/wn > 0 (infinity not excluded ), then the sequence√

n

wn

sup
f∈F

rn<σP f≤δ

|Pnf − Pf |
σP f

is stochastically bounded.
(b) If limn nr2

n/wn = 0 and log wn

nr2
n
=O(eτ ′wn) for some τ ′ > 0, then

nrn log(wn/nr2
n)

wn

sup
f∈F

rn<σP f≤δ

|Pnf − Pf |
σP f

is stochastically bounded.
(c) These statements with stochastic boundedness replaced by lim sup finite

a.s. (in fact a constant) also hold with wn changed to wn = wn ∨ (log logn)

in assumptions and conclusions, under the extra hypothesis that wn/n2 ↓ and
wn

n3/2rn log(wn/(nr2
n)∨2)

↓.

To prove the theorem, we start by adapting Theorem 2.1′ to this situation, using
the bound from Section 3. Let us set up the simplifying notation

Fj :=F (ρj−1, ρj ]
and denote as Fj a measurable envelope of Fj .

LEMMA 4.7. Let F be a (measurable) VC-subgraph class of functions taking
values in [0,1], and let A, v, K1, 0 < r < δ, 0 < q ≤ 2, ρj , Fj , l, gq and w be

as above. Assume further that for each j for which nρ2
j < w, Fj =⋃Nj

k=1 Fj,k and
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Fj,k has an envelope Fj,k satisfying ‖Fj,k‖2 ≤K2ρj for some K2 ≥ 1 [i.e., Fj de-
composes into Nj L2(P )-brackets of size of the order of ρj ]. Then, for s ≤ 2K2

2w,

Pr
{

sup
f∈F

r<σP f≤δ

|Pnf − Pf |
σP f

≥ qe2sI (nr2 < w)

nr(1∨ log(e2s/(K2
2nr2)))

+ 2q(17K1 +K1K2 +K2
2 )

√
2w

n

}
(4.15)

≤Kw exp
(−34K1w

K

)

+K

(
max

j : nρ2
j <w

Nj

)(
1+ 1

2
logq

w

nr2

)
I (nr2 < w) exp

(−s

K

)
.

PROOF. We will apply Theorem 2.1′. Set J = {1, . . . , l}, J1 = {j ∈ J :
nρ2

j < w} and J2 = J \ J1. For j ∈ J1, we define

ψn,j,k = 1

n
E

∥∥∥∥∥
n∑

i=1

(
f (Xi)− Pf

)∥∥∥∥∥
Fj,k

and

Vn,j,k = 1

n
E

∥∥∥∥∥
n∑

i=1

(
f (Xi)− Pf

)2

∥∥∥∥∥
Fj,k

which we upperbound by (4.12) and (2.3) as

ψn,j,k ≤ 1√
n
K1‖Fj,k‖2 ≤K1K2

ρj√
n

and

Vn,j,k ≤ ‖Fj,k‖2
2 ≤K2

2ρ2
j := V n,j,k.

For j ∈ J2, by (4.12),

ψn(ρj )

ρj

≤K1

(√
w

n
∨ w

nρj

)
≤K1

√
w

n

(note that w ≥ 1) and, by (2.3),

Vn(ρj )≤ ρ2
j + 16ψn(ρj )≤ 17K1ρ

2
j := V n(ρj ).

Then,

βn,q,t = max
(j,k) : j∈J1

k≤Nj

ψn,j,k

ρj

∨max
j∈J2

ψn(ρj )

ρj

≤K1K2

√
w

n
.
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Now, for j ∈ J2 we take

sj = 34K1w ≤ 2nV n(ρj )

so that the contribution of J2 to τn,q,t in (2.4′) is just 34K1
√

2w/n and the
contribution to the probability bound, K/e(34K1/K−1)w . For j ∈ J1, we take
sj,k = s ≤ 2K2

2w if w ≤ nr2 and sj,k = e2s otherwise. Then the contribution of
{(j, k) : j ∈ J1} to τn,q,t is

e2sI (w > nr2)

nr log(e2s/(K2
2nr2))

+K2

√
2s

n
,

on account of the fact that
√

x/ logx is increasing for x > e2, whereas the contri-
bution to the probability bound is dominated by

K

(
max
j∈J1

Nj

)
(CardJ1)e

−s/(2K) ≤ 2K

(
max
j∈J1

Nj

)(
1+ logq

w

nr2

)
e−s/K.

Collecting bounds, the lemma follows. �

In the previous proof, we could take s = e2K2w which dominates e2nV n,j,k for
j ∈ J1, and obtain

Pr
{

sup
f∈F

r<σP f≤δ

|Pnf − Pf |
σP f

≥ 2qe2K2
2wI (nr2 < w)

nr log(e2w/(nr2))
+ qK1(34+K2)

√
2w

n

}

≤Kw exp(−34K1w)(4.15′)

+ 2K

(
max

j : nρ2
j <w

Nj

)(
1+ logq

w

nr2

)
I (nr2 < w) exp(−e2K2w/K),

but in situations when Nj is small (e.g., a constant, as in the case of the uniform
empirical c.d.f. in R) we should take s of a smaller order.

Note that replacing w by cw, 0 < c < ∞, in the hypothesis of the previous
lemma yields the same conclusion up to constants.

Theorem 4.6 follows at once from (4.15′):

PROOF OF THEOREM 4.6. First, for any slice Fj , we construct a partition
{Fj,k : 1≤ k ≤Nj }, as needed in Lemma 4.7. To this end, consider a minimal cov-
ering of Fj with L2(P )-balls of radius ρj/(Kq) and define Fj,k as the intersection
of Fj with the kth ball in the partition (if it is empty, discard it). By the bound on
the covering numbers of subclasses of a VC-subgraph class, the number Nj will
be upperbounded by (Kq)vgq(ρj ), which is in turn upperbounded by ceτw(ρj ) for
some c, τ > 0. By the local bracketing condition, for any k = 1, . . . ,Nj there ex-
ists an L2(P )-bracket [fj,k,−, fj,k,+] of size Kρj covering the class Fj,k . If we
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set Fj,k := fj,k,+, Fj,k becomes an envelope of Fj,k and for arbitrary f ∈Fj,k

‖Fj,k‖2 ≤ ‖fj,k,+ − fj,k,−‖2 + ‖fj,k,−‖2

≤Kρj + ‖f ‖2 ≤Kρj +CσP (f )≤ (K +C)ρj :=K2ρj .

Now we are in a position to apply directly inequality (4.15′) [together with
Lemma 2.3 for part (c)]: increase if necessary the constant K2 so that K2/K −
τ − τ ′ is positive for (a) and (b), and is larger than 1 for (c); for (c) we should also
increase K1 so that 34K1/K > 1. The a.s. limit is a constant by Borel–Cantelli.

�

REMARK 4.8. 1. Suppose that for all t the “slice” F (tq−1, t] is full for P and
H(u)= v logAu with σ = t (recall Definition 3.3 and Theorem 3.4). Then, in the
case (a) of Theorem 4.6 and under additional assumption

wn

log logq(1/rn)
→∞,

we have for some C > 0

Pr
{
C−1 ≤

√
n

wn

sup
f∈F

rn<σP f≤δ

|Pnf − Pf |
σP f

≤ C

}
→ 1 as n→∞.

For example, it is clear that the (VC) class C of all closed (or open) inter-
vals in [0,1] is full for the uniform distribution and so are any of the slices
{C ∈ C : tq−1 <

√
PC ≤ t}. Then, gq(t) � 1/t4. Take rn = √(logn)/n, which

yields wn =wn � logn, so that Theorem 4.6(b) and (c) give

lim sup
n→∞

√
n

logn
sup

C∈C : logn/n≤P(C)≤1/2

|Pn(C)− P(C)|√
P(C)

= L <∞ a.s.

Then, the class C being full, the above limit implies that L > 0, a result first ob-
tained by Shorack and Wellner [41] (L <∞), Yukich [49] (L > 0) and Alexander
([2], Corollary 3.9, equation (3.12)), where he also obtains it in several dimensions.
See also [30].

2. Note that the conclusions of Theorem 4.6 are also true if we only assume
(instead of the local bracketing condition) that F is as in Lemma 4.7, except that
now, the bracketing condition of this lemma holds for all ρj with Nj ≤ ceτw(ρj ) for
some c, τ > 0. In principle, the condition ‖Fj,k‖2 � ρj can be replaced by weaker
assumptions on the local envelopes Fj,k , which would give rise to different rates.

Alexander [2] does not have an equivalent of the local bracketing assumption in
his Theorem 3.1 for VC classes of sets. At this moment, we do not know whether
this assumption is needed because of our method (based on combining Talagrand’s
concentration inequalities and expectation bounds of Section 3), or if it is un-
avoidable in some form for function classes. However, this assumption holds in
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all classical examples of classes of sets to which Alexander’s Theorem 3.1 applies.
Suppose, for instance, that S = [0,1]d for some d ≥ 1 and P has a density that is
uniformly bounded and bounded away from 0 on S. For C ⊂ S closed and δ > 0,
let Cδ be the set of all points in S that are within a distance < δ from C and let C−δ

be the set of all points x such that the closed ball of radius δ around x is included
in C. Denote h the Hausdorff distance between closed subsets of S, that is,

h(C1,C2) := inf{δ > 0 :C1 ⊂ Cδ
2,C2 ⊂ Cδ

1}.
Let C be a VC class of closed convex subsets of S such that, for some K > 0 and
for all C0 ∈ C with P(C0) > 0,

K−1h(C,C0)≤ P(C�C0)≤Kh(C,C0), C ∈ C,

as soon as P(C�C0) < P (C0)/K . The upper bound of this inequality always
holds for convex sets (see [17], pages 269–270), but the lower bound is satisfied
only for special classes of sets (balls, rectangles, etc). Denote σP (IC) := √P(C).
Then the class F := {IC :C ∈ C} satisfies the local bracketing assumption. The
proof easily follows from several simple properties of convex sets described
on pages 269–270 of [17]. Indeed, if C0 ∈ C and 0 < δ <

√
P(C0)/K , then

P(C�C0) < δ2 < P(C0)/K implies that h(C,C0) ≤ KP(C�C0) < Kδ2. It fol-
lows that, for σ =Kδ2, C−σ

0 ⊂ C ⊂ Cσ
0 . Hence,

{
IC :

∥∥IC − IC0

∥∥
2 =

√
P(C�C0)≤ δ

}⊆ [
IC−σ

0
, ICσ

0

]
.

Since also with some constant K ′

P(Cσ
0 \C−σ

0 )≤K ′σ,

the above inclusion provides a bracket of the size needed in the local bracketing
condition. Quite similarly, one can check the condition for VC-subgraph classes
of concave (i.e., with a convex subgraph) functions on [0,1] as well as for some
other examples of function classes.

As an illustration, we apply Theorem 4.6 to the uniform empirical c.d.f. in Rd

([2], Corollary 3.5).

EXAMPLE 4.9 (The finite-dimensional uniform empirical c.d.f. ). Let P be
Lebesgue measure on [0,1]d , d ≥ 1, denote by xi the coordinates of points x ∈Rd ,
let F = {I[0,x] : 0 ≤ xi ≤ 1,

∏d
i=1 xi ≤ 1/2} and take σP (I[0,x]) := (

∏d
i=1 xi)1/2.

Then F is VC of index v = d + 1 ([17], Corollary 4.5.11) so that (4.12) holds
with this v, and some A. It is also easy to see that ‖Fj‖2

2 = P {x1 · · ·xd ≤ ρ2
j } �

2d−1ρ2
j (logρ−1

j )d−1/(d − 1)!, so that g(ρj )� (logρ−1
j )(d

2−1)/2. The local brack-
eting condition holds by the argument given before the example for convex sets in
general. So, we can apply Theorem 4.6 with wn � log log r−1

n and wn � log logn,
assuming, for (c), that log log r−1

n is not larger than a constant times log logn for
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all large n. The conclusion is: suppose rn→ 0 and log log r−1
n / log logn→ c ≥ 0;

then,

lim inf
n

nr2
n

log logn
> 0 �⇒ lim sup

n

√
n

log logn

× sup
r2
n<

∏d
i=1 xi≤1/4

|Fn(x)− F(x)|√∏d
i=1 xi

<∞ a.s.

and, assuming log logn/(n3/2rn log(log logn/(nr2
n))) ↓,

lim
n

nr2
n

log logn
= 0 �⇒ lim sup

n

nrn log(log logn/(nr2
n))

log logn

× sup
r2
n<

∏d
i=1 xi≤1/4

|Fn(x)− F(x)|√∏d
i=1 xi

<∞ a.s.

In particular, this last limit allows us to recover the tightness part of a limit theorem
of [19], as follows. For dimension d ≥ 2 and ε > 0, take rn =

√
ε

n(logn)d−1 . Then,

the last inequality gives

lim sup
n

√
n

(logn)(d−1)/2 sup
ε(n(logn)d−1)−1<

∏d
i=1 xi≤1/4

|Fn(x)− F(x)|√∏d
i=1 xi

<∞ a.s.

A simple computation shows that if ξi are d independent random variables uniform
on [0,1], then

Pr

{
d∏

i=1

ξi ≤ ε

n(logn)d−1

}
� ε

(d − 1)! ,

which, by another simple computation, allows us to conclude from the previous
limit that the sequence

√
n

(logn)(d−1)/2 sup∏d
i=1 xi≤1/4

|Fn(x)− F(x)|√∏d
i=1 xi

is stochastically bounded.

EXAMPLE 4.10 (Example 2.7, revisited). Theorem 4.6 essentially does not
distinguish between stochastic and a.s. boundedness for the empirical c.d.f.
However, Lemma 4.7 does when d = 1. For d = 1 we can take s of the
order of log(wn/nr2

n) since Nj is constant (as we did in Example 2.7). If
rn � log log logn/

√
n log logn, then wn � log logn, and s/nrn is dominated by
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log logn

n
, so that Lemma 4.7 shows that the sequence

√
n

log logn
sup

r2
n<x≤1/2

|Fn(x)− x|√
x

is stochastically bounded. Then, since Pr{mini≤n Xi ≤ ε/n} ≤ ε, we get that, for
d = 1, the sequence √

n

log logn
sup

0<x≤1/2

|Fn(x)− x|√
x

is stochastically bounded. By the limiting result of Eicker [18] (see also [14, 24])
this rate is exact.

4.3. The cases φ(t)= tα , α �= 1,2. For α ∈ (1,2) direct application of Propo-
sition 2.11 gives the following analogue of Theorems 4.1 and 4.2:

THEOREM 4.11. Let α ∈ (1,2), 0 < δ ≤ 1 and rn ↓ 0, and set

ξn := sup
rn<σP f≤δ

f∈F

|Pnf − Pf |
(σP f )α

.

(a) If nrα
n → ∞, then the condition βn,q := βn,q,tα → 0 for some q > 1

is necessary and sufficient for ξn → 0 in probability (a.s., if we also have
nrα

n / log logn→∞).
(b) If supn βn,q <∞ and nrα

n βn,q →∞ for all q ∈ (1,1+ δ) for some δ > 0,
then

ξn

Eξn

→ 1

in probability (and the convergence is a.s. if nrα
n βn,q/ log logn→∞).

(c) For any q > 1, the sequence
(

1

βn,q

∧ nrα
n log

((
nrα

n (r2−α
n ∧ βn,q)−1)∨ 2

)∧
√

nrα
n

r2−α
n ∨ βn,q

)
ξn

is stochastically bounded.

For VC classes of functions, adapting the proofs of Lemma 4.7 and Theorem 4.6
to the case of α ∈ (1,2] only gives the obvious: for instance, that if in Theorem 4.6
we replace σP f by (σP f )α in the displays, then multiplying by rα−1

n the cor-
responding expressions produces sequences that are stochastically bounded [or
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a.s. bounded in part (c)]. This observation applies, for instance, to give the tight-
ness part of the remaining cases in [19], namely, that, just as in Example 4.9, for
1/2≤ ν ≤ 1 (the case ν = 1/2 is covered by that example), the sequence

n1−ν

(logn)ν(d−1)
sup∏d

i=1 xi≤1/4

|Fn(x)− F(x)|√∏d
i=1 xi

is stochastically bounded, where we assume d ≥ 2. Extensions of Example 4.10 to
powers of x different from 1/2 are equally easy to get in the case d = 1 (they are
omitted).

For α ∈ (0,1), we make the rates explicit only under condition (2.15′) and the
result is a direct consequence of Proposition 2.12.

THEOREM 4.12. Let α ∈ (0,1), 0 < δ ≤ 1 and rn ↓ 0, set

ξn := sup
rn<σP f≤δ

f∈F

|Pnf − Pf |
(σP f )α

,

and assume

r ∨ β1/(2−α)
n,q ≥

√
3K log logq(q

2δ/r)

n

for all q ∈ (1, τ ), for some τ > 1. Then:

(a) if nrα
n →∞, then the condition βn,q → 0 for some q > 1 is necessary and

sufficient for ξn→ 0 in pr.;
(b) if

√
nβn,q → 0 for q ∈ (1, τ ), then ξn/Eξn → 1 in pr., and there are se-

quences qn↘ 1 for which ξn/βn,qn → 1 in pr.;
(c) if βn,q ≤ C(n−1/2 ∧ r2−α

n ) for some C <∞ and q > 1, then the sequence√
nξn is stochastically bounded, and

(d) if, for some 0 < C <∞ and q > 1, r2−α
n ≤ Cβn,q ≤ n−1/2, then the se-

quence (√
n∧ nrα

n log
(
(nrα

n βn,q)∨ 2
)∧√

nrα
n β−1

n,q

)
ξn

is stochastically bounded.

For VC classes of functions, one obtains analogues of Lemma 4.7 and Theo-
rem 4.6 for α ∈ (0,1) as follows: under the hypotheses of Lemma 4.7, the bound
in (4.15) holds for the probability

Pr
{

sup
f∈F

r<σP f≤δ

|Pnf − Pf |
(σP f )α

≥ C(K1,K2, q,α)

×
[

sI (nr2 < w)

nrα(1∨ log(s/(nr2)))
+ δ1−α

√
w

n

]}
.
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And under the hypotheses of Theorem 4.6, except that we replace 1/2≥ δ > rn by
1/2≥ δn > rn, we have:

(a) if lim infn n(rα
n δ1−α

n )2/wn > 0 (infinity not excluded), then the sequence

1

δ1−α
n

√
n

wn

sup
f∈F

rn<σP f≤δ

|Pnf − Pf |
(σP f )α

is stochastically bounded;
(b) if limn n(rα

n δ1−α
n )2/wn = 0 and log wn

nr2
n
=O(eτ ′wn) for some τ ′ > 0, then

nrn log(wn/nrα
n )

wn

sup
f∈F

rn<σP f≤δ

|Pnf − Pf |
(σP f )α

is stochastically bounded;
(c) the corresponding statements for asymptotic a.s. boundedness under

monotonicity conditions analogous to those in Theorem 4.6(c).

5. Ratio limit theorems II: asymptotic continuity moduli and weighted cen-
tral limit theorems. These two types of limit theorems usually involve functions
of the form φ(t)= tL(1/t) where L is nondecreasing and slowly varying at infin-
ity.

5.1. Local and global moduli. Local asymptotic moduli in probability for gen-
eral classes of functions were already treated in [22], Theorems 4, 5 and 9. Here
we will only derive an a.s. general result which is the companion to Theorem 4 in
the just mentioned reference. As usual, F is a measurable class of functions taking
values on [0,1].

Following Alexander [2], a local asymptotic modulus of the empirical process
over F at 0 is an increasing function ω for which there exist rn < δn < 1 both
nonincreasing, with

√
nδn nondecreasing such that

lim sup
n

sup
rn<σP f≤δn

f∈F

|νn(f )|
ω(σP f )

<∞ a.s.,(5.1)

where

νn(f ) := √n(Pnf − Pf )

is the empirical process indexed by F .
Although the results below are under our general assumption that the functions

in the class F take values in [0,1], in the case when σP (f ) := √VarP (f ) and
hence σP (f +c)= σP (f ), σP (cf )= |c|σP (f ) for any constant c, a simple rescal-
ing allows one to deal also with arbitrary uniformly bounded classes of functions.
This is of importance in the case of global moduli. A global asymptotic modulus
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of the empirical process over F is any local modulus for F ′ = {f − g :f,g ∈ F }
at 0, with δn�

√
n−1 logn.

THEOREM 5.1. Let q > 1, rn < δn < 1 both nonincreasing, with
√

nδn non-
decreasing, and let ω be a bounded nondecreasing function on [0,1] such that

ω(t)≥√nψn,q(t), t ∈ [rn, δn],
for all n, and satisfying that ω(u)/u ↓,

sup
n

δn

√
log logn∨ log logq(δnq2/rn)

ω(δn)
<∞,

sup
n

log logn∨ log logq(δnq
2/rn)√

nω(rn)
<∞

and that these two sequences decrease when divided by n. Then, the limit (5.1)
holds.

PROOF. We apply Theorem 2.1 and Lemma 2.3. Let K , which we can assume
to be larger than 1, be as in (2.4a). We take [see (2.3)]

V n,q(ρj )= L
(
ρ2

j + 16ω(ρj )/
√

n
)≥ L

(
ρ2

j + 16ψn,q(ρj )
)
,

for j = 1, . . . , �n, where �n is the smallest integer j such that ρj = rnq
j ≥ δn, and

where L is the largest of K and the second supremum above. Then, if we take
sj = 2K(log logn+ log logq(δnq

2/ρj )), we have sj ≤ 2nV n,q(ρj ), and inequal-
ity (2.4a) directly gives

Pr
{
q−1 sup

f∈F
rn<σP f≤δn

νn(f )

ω(σP f )
≥ 1+ 2 max

j

√√√√sjV n,q(ρj )

ω2(ρj )

}
≤ K

(logn)2 .

Now the theorem follows from Lemma 2.3 and the hypotheses on ω. �

Let Fq,u = sup{|f | :f ∈ F , u/q < σP f ≤ u}, 1 < q ≤ 2, 0 < u < 1, be the
local envelopes for F , and define gq(r) as any nonincreasing function satis-
fying q‖Fq,r‖L2(P )/r ≤ gq(r) ≤ q/r . By proceeding as in Theorem 9 in [22],
Theorem 5.1 gives that, for any bounded VC class of functions, the function
ω1(t)= t

√
log log(1/t)+ loggq(t) is a local asymptotic modulus at 0 and that the

function ω0(t)= t
√

log(1/t) is a global modulus, thus generalizing Theorem 4.1
of [2] to classes of functions (and demonstrating the same difference between lo-
cal and global continuity moduli as in the classical cases of Brownian motion,
Brownian bridge and univariate empirical process). For the global modulus, one
takes gq(u)= q/u.
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5.2. Central limit theorems. We consider here weighted CLTs for empirical
processes in the spirit of Alexander [3]. Let ψ be a strictly increasing continuous
function such that

ψ(0)= 0 and lim
t→0

ψ(t)

t
=∞.(5.2)

We call such a function a weight. We will find conditions on ψ and a decreasing
sequence rn so that, for a P -Donsker class of uniformly bounded functions F , we
have

νn(f )

ψ(σP f )
I (σpf > rn)

L→ GP (f )

ψ(σP f )

in �∞(F \F0) and the limiting process GP /ψ ◦σP is sample continuous on F \F0
for the pseudo distance dP (f, g) = σP (f − g), where F0 := {f ∈ F :σP f = 0}.
(For definitions of P -Donsker or CLT(P ) classes, pre-Gaussian classes, and others
associated to uniform central limit theorems, see, e.g., [17] or [47].)

We need to comment on condition (5.2). For classes of sets, this condition is
necessary for GP /ψ ◦ σP to be a.s. in �∞ (Lemma 5.1 in [4]) but this is not so
for classes of functions: just consider F = {αf : 0 < α ≤ 1} for some bounded
function f . Then, GP (αf )/σP (αf ) does not depend on α and the sample paths
are just constants. However, if the class F is sufficiently rich, then (5.2) is also
necessary; for instance, assume that F is convex and symmetric (i.e., fi ∈ F and∑

finite |λi | ≤ 1 implies
∑

λifi ∈ F ), and that the subspace of L2(�) generated
by the process GP (f ), f ∈ F , is infinite dimensional (if it were finite dimen-
sional, we would be in the case of the finite-dimensional central limit theorem).
Then, by Gram–Schmidt orthogonalization, there exists an infinite sequence of
functions fi in F such that σP (fi) �= 0 and EGP (fi)GP (fj ) = 0 if i �= j . But
then GP (fi)/σP (fi) are i.i.d. N(0,1) and their sup is infinite with probability 1.
We are thus justified in assuming condition (1) for our weights.

Another useful remark is the following:

LEMMA 5.2. Assuming (5.2) and F P -pre-Gaussian, if GP /ψ ◦ σP is dP

sample continuous on F \ F0 (meaning that it has a version with bounded and
dP -uniformly continuous sample paths), then

lim
f∈F \F0,σP f→0

Gp(f )

ψ(σP f )
= 0 a.s.

PROOF. If σP (f ), f ∈F \F0, is bounded away from zero, then there is noth-
ing to prove. Otherwise, let fn ∈ F be such that σP fn → 0. Then, the sequence
GP (fn)/ψ(σP fn) is a.s. Cauchy by hypothesis, and since E(

GP (fn)
ψ(σP fn)

)2 → 0
by (5.2), it also converges to zero in probability. Hence, this sequence converges
to zero a.s. �
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The following proposition, which is analogous to Theorem 4.2 in [4], will allow
use of the inequality in Theorem 2.1. From now on we will assume without loss of
generality that F0 is empty and that the functions in F take values in [0,1].

LEMMA 5.3. Let F be a measurable class of functions, let ψ be a weight
function as defined above and let rn→ 0, rn > 0. Then,

νn(f )

ψ(σP f )
I (σpf > rn)

L→ GP (f )

ψ(σP f )

in �∞(F ) and the limiting process GP /ψ ◦ σP is dP sample continuous on F if
and only if both

F≥r := {f ∈F :σP (f )≥ r} is P -Donsker

and

lim
δ→0

lim sup
n

Pr
{

sup
f∈F

rn<σP f≤δ

|νn(f )|
ψ(σP f )

> ε

}
= 0.(5.3)

PROOF. If the weighted processes converge in law and the limit is dP sample
continuous, then, by the continuous mapping theorem, F≥r is P -Donsker. Also,
by the portmanteau lemma,

lim sup
n

Pr
{

sup
f∈F

rn<σP f≤δ

|νn(f )|
ψ(σP f )

≥ ε

}
≤ Pr

{
sup

f∈F ,σP f≤δ

|GP (f )|
ψ(σP f )

≥ ε

}
,

which, by Lemma 5.2, tends to zero as δ → 0. The direct part follows as in [3].
�

THEOREM 5.4. Let rn → 0, 0 < rn < 1/2, and let ψ be a weight function
such that sup0<x≤1/2 ψ(2x)/ψ(x)= C <∞. Assume

lim
δ→0

lim sup
n

sup
r∈(rn,δ]

r
√

log logqn
1/r

ψ(r)
= 0(5.4)

and

log logqn
1/rn

ψ(rn)
√

n
→ 0 as n→∞,(5.5)

where 2 ≥ qn ↘ 1 or qn ≡ c. Then, the conditions F≥r ∈ CLT(P ) for all r > 0
and

lim
δ→0

lim sup
n

sup
r∈(rn,δ]

√
nψn,qn(r)

ψ(r)
= 0(5.6)
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are necessary and sufficient for the process GP (f )
ψ(σP f )

, f ∈ F , to be dP sample con-
tinuous and for

n1/2(Pn − P)(f )

ψ(σP (f ))
I
(
σP (f ) > rn

) L→ GP (f )

ψ(σP (f ))
in �∞(F ).(5.7)

PROOF. By Lemma 5.3, the proof is basically the same as that of Theorem 5.1.
Define

ε(n, δ)= log logqn
1/rn

ψ(rn)
√

n
∨ sup

r∈(rn,δqn)

√
nψn,qn(r)

ψ(r)

which, by (5.5) and (5.6), satisfies limδ→0 lim supn ε(n, δ)= 0, and then,

V n,qn(ρj )=K
[
ρ2

j + 16ε(n, δ)ψ(ρj )/
√

n
]

≥K
[
ρ2

j + 16ψn,qn(ρj )
]
,

where K ≥ 1 comes from (2.4a), and where, as usual, ρj = rnq
j
n so that it de-

pends on n even if we do not show it. Note that V n,qn(ρj ) is admissible in The-
orem 2.1 by (2.3). Now set sj = 2K[t (n, δ)+ log logqn

(δq2/ρj )], with t (n, δ)=
min[log logqn

r−1
n , infrn≤r≤δqn ψ(r)/r], which satisfies

lim
δ→0

lim inf
n

t (n, δ)=∞,(5.8)

because rn → 0 and ψ is a weight function. Note also that, by the hypotheses,
sn,j ≤ 2nV n,qn(ρj ) for all 1 ≤ j ≤ �n(δ), where �n(δ) is the smallest integer j

such that rnq
j ≥ δ. Therefore, Theorem 2.1 or Corollary 2.2 gives

Pr
{
C−1 sup

f∈F
rn<σP f≤δ

|νn(f )|
ψ(σP f )

≥ sup
j

√
nψn,qn(ρj )

ψ(ρj )

+ 2 max
j

√√√√sjV n,qn(ρj )

ψ2(ρj )

}
≤Ke−2t (n,δ).

Now, condition (5.6) implies that limδ→0 lim supn supj

√
nψn,qn(ρj )

ψ(ρj )
= 0 and more-

over, since

1

2K2

sjV n,qn(ρj )

ψ2(ρj )
≤ ρj

ψ(ρj )
+ 32ε(n, δ) log logqn

r−1
n√

nψ(rn)

+ ρ2
j log logqn

(δq2/ρj )

ψ2(ρj )
,
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equations (5.4) and (5.5) imply

lim
δ→0

lim sup
n

max
j

√√√√sjV n,qn(ρj )

ψ2(ρj )
= 0.(5.9)

Therefore, (5.3) holds, and by Lemma 5.3, so does (5.7). Conversely, if (5.6) does

not hold, while we still have (5.8) and (5.9), the term lim supn supj

√
nψn,qn (ρj )

ψ(ρj )

stays bounded away from zero for a sequence δk → 0, and this implies, by the
second inequality in Corollary 2.2, that (5.3) does not hold, and therefore, by
Lemma 5.3, neither does (5.7). �

In order to apply the above theorem, one needs to have reasonable estimates
of ψn,q(r), and it is here where the results in Section 3 may become useful.

In the case of the classical VC-subgraph classes (the uniform empirical distri-
bution function, indicators of intervals for the uniform law on the unit cube, or
half-spaces for the normal), the above theorem does not give best possible results,
just as in the case of φ(x)= x in Section 4.2 [see (4.6)–(4.8)]. As in that section,
we will prove a theorem that handles these cases, but we will only apply it to the
multidimensional empirical c.d.f.

For a VC-subgraph class F , or more generally for a VC type class [i.e., one
such that for any G ⊆ F and any probability measure Q, N(G,L2(Q), τ ) ≤
(A‖G‖L2(Q)/τ )v for some A ≥ e, v ≥ 1 and all 0 < τ ≤ 2‖G‖L2(Q)], and given
0 < r < δ < 1 and 1 < q ≤ 2, let gq(t) and w be as defined in (4.13) and (4.14).

THEOREM 5.5. Let F be a VC-subgraph class satisfying the local bracketing
condition and let rn→ 0, q ∈ (1,2]. Let

φ(t)= tL(1/t), 0≤ t ≤ 1,(5.10)

with L(u)↗∞ as u↗∞ and uτL(1/u) nondecreasing for some 0 < τ < 1.
Assume F≥r ∈ CLT(P ) for all r > 0. Then, the conditions

lim
u→0

√
loggq(u)

L(1/u)
= 0 and lim

n→∞
wn√

nrnL(1/rn) log(wn/nr2
n)
= 0,(5.12)

where wn = w(rn), imply that the Gaussian process GP (f )/φ(σP f ), f ∈ F , is
sample continuous and

νn(f )

φ(σP f )
I (σP f > rn)

L→ GP (f )

φ(σP f )
in �∞(F ).

For the proof, we begin with the analogue of Lemma 4.7.
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LEMMA 5.6. Let F be a VC type class of functions satisfying the same hy-
potheses as in Lemma 4.7 (the bracketing properties). Let L,φ, τ be as in Theo-
rem 5.5 and set γ = 2/(1 − τ). Let 0 < r < δ < 1 and q ∈ (1,2]. Then, there is
C = C(K1,K2, q) such that, for all n ∈N,

Pr
{

sup
r<σP f≤δ

f∈F

νn(f )

φ(σP f )
≥ C

[
max√

w/n≤u<δq

u+
√

loggq(u)

L(1/u)

+ eγ wI (nr2 < w)√
nrL(1/r) log(eγ w/(nr2))

]}
(5.11)

≤Kwe−34K1w/K

+K

(
max

j : nρ2
j <w

Nj

)(
1+ 1

2
logq

w

nr2

)
I (nr2 < w)e−eγ K2

2 w/K,

with notation as in Lemma 4.7.

PROOF. We will apply Theorem 2.1′. As in Lemma 4.7, let J1 = {j :nρ2
j < w}

and J2 = J \ J1, where J = {1, . . . , �}. Then, on J1,

ψn,j,k ≤K1K2
ρj√
n
, V n,j,k =K2

2ρ2
j ,

and on J2, by (4.12),

ψn(ρj )≤K1

ρj

√
loggq(ρj )√

n
, V n(ρj )= 17K1ρ

2
j .

So,

√
nβn,q,φ =

√
n

[
max

(j,k) : j∈J1

ψn,j,k

ρjL(1/ρj )
∨max

j∈J2

ψn(ρj )

ρjL(1/ρj )

]

≤ K1K2

L(
√

n/w )
∨ max√

w/n≤ρj<δq

√
loggq(ρj )

L(1/ρj )

≤K1K2 max√
w/n≤u<δq

√
loggq(u)

L(1/u)

since loggq ≥ 1. For j ∈ J2, we take sj = 2nV n(ρj ) = 34K1nρ
2
j ≥ 34K1w, so

that the contribution of J2 to τn,j,φ is

2 max
j∈J2

√√√√ sjV n(ρj )

ρ2
j L2(1/ρj )

≤ 34
√

2K1 max√
w/n≤u<δq

u

L(1/u)
,
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whereas the contribution to the probability bound is

K(CardJ2)e
−34K1w/K ≤K log(δq/r)e−34K1w/K ≤Kwe−34K1w/K.

To keep things simple, on J1 we take

sj = eγ s := eγ K2
2w > eγ K2

2nρ2
j = eγ V n,j,k.

Then, the contribution of J1 to τn,j,φ is

max
j∈J1

eγ K2
2w√

nrqjL(1/rqj ) log(eγ w/(nr2q2j ))
≤ eγ K2

2wI (nr2 < w)√
nrL(1/r) log(eγ w/(nr2))

,

where the inequality holds because xτL(1/x) is increasing and u(1−τ)/2/ logu is
increasing for u > e2/(1−τ) = eγ . Finally, the contribution of J1 to the probability
bound is

K

(
max
j∈J1

Nj

)
(CardJ1)e

−eγ K2
2 w/K ≤K

(
max
j∈J1

Nj

)(
1+ 1

2
log

w

nr2

)
e−eγ K2

2 w/K.

Now the lemma follows from collecting the above bounds and plugging them into
inequality (2.4′), Theorem 2.1′. �

REMARK 5.7. The bound (5.11) can be slightly refined by taking sj = eγ s ≤
eγ K2

2w for j ∈ J1 such that s ≥K2
2nρ2

j and sj = 34K1ρ
2
j n for the remaining j ’s

in J1. Then, the contribution of J1 to τ becomes

eγ sI (K2
2nr2 < s)√

nrL(1/r)(1∨ log(eγ s/(K2
2nr2)))

+ 2K2

√
s

L(
√

n/w )
,

and the probability contribution is

K

(
max
j∈J1

Nj

)(
1+ 1

2
log

w

nr2

)
e−eγ s/K.

The resulting inequality is analogous to that of Lemma 4.7, whereas (5.11) is more
similar to (4.15′).

Theorem 5.5 is an immediate consequence of Lemmas 5.3 and 5.6.
The following example shows how this theorem recovers the (sufficiency part

of the) results in Example 2.9 of [3].

EXAMPLE 5.8 (The finite-dimensional uniform empirical c.d.f.). In the
case of F = {I[0,x] : 0 ≤ xi ≤ 1,

∏d
i=1 xi ≤ 1/2}, P being the uniform measure

on [0,1]d , as shown in Example 4.9, gq(ρj ) � (logρ−1
j )(d

2−1)/2 and the class

satisfies the local bracketing condition. As long as log log r−1
n is of the same

order as log logn, we have wn � log logn. Then, the first condition (5.12) re-
quires L(u)� (log logu)1/2 as u→∞. To illustrate, take L(u)= (log logu)α for
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α > 1/2. Then, the second condition (5.12) readily implies the CLT for any rn

satisfying rn � (log logn)1−α√
n log log logn

, which is best possible for d > 1 [3]. However, as in

the case of Theorem 4.6, this is not sharp for d = 1: in this case, since in Lemmas
4.7 and 5.6 Nj = constant, we can take a smaller s and still have the probability
bound that results from Remark 5.7 tend to zero, for instance, s = log(wn/nr2

n). It
is easy to see that if L(u)/ log logu→∞ as u→∞, then Remark 5.7 implies the
CLT for rn of a strictly smaller order than 1/

√
n (rn = log log logn/

√
n log logn ),

which by the same argument as in Example 4.10, implies that we can take rn = 0,
namely, one obtains the well-known Čibisov–O’Reilly CLT for the weighted uni-
form empirical c.d.f. in R [3, 12, 36].

So, Theorem 5.5, perhaps complemented by a modification along the lines of
Remark 5.7, does give results comparable to those in [3] for the classical classes
of sets and, moreover, it applies as well to classes of functions.

6. Applications I: ratios of margin distributions. The goal of this section
is to suggest a much easier approach to the proofs of some of the results of
Koltchinskii [25] on bounding margin distributions. The motivation and the ter-
minology come from learning theory: functions f below represent what is known
as “classification margins.” “Large margin algorithms” tend to output functions
(classifiers) f whose empirical distribution is shifted in the positive direction. The
question is whether the true distribution is also shifted in the same direction. Since
we are interested in the values of the margin for which these distribution functions
are small, it is natural to study their ratios. See [25] for a detailed discussion.

Let

Ff (δ) := P {f ≤ δ}, Fn,f (δ) := Pn{f ≤ δ}.
Suppose that F is a class of functions such that

∀ ε > 0 logN
(
F ;L2(Pn); ε)≤

(
D

ε

)α

with some constants D > 0 and α ∈ (0,2).
For two distribution functions F,G and interval (a, b), define

Ma,b(F ;G) := log inf{c > 1 :∀ t ∈ (a, b) :F(t)≤ cG(ct) and G(t)≤ cF (ct)}.
If F,G are distribution functions on the positive real line [i.e., F(0)=G(0)= 0],
then M(F ;G) :=M0,+∞(F,G) is a metric (a multiplicative version of Lévy dis-
tance). We want to study the closeness of Fn,f to Ff in distances of this type
uniformly in f ∈F . Unfortunately, the metric M itself cannot be used even in the
case of a single function f (the range of t’s in the definition has to be restricted).
However, define for λ > 0

δn(f ;λ) := inf
{
δ ≥ n−1 : δ2α/(2+α)Ff (δ)≥ λn−2/(2+α)}.
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THEOREM 6.1. If λn→∞ as n→∞ and

sup
f∈F

P {f ≥ t}→ 0 as t →∞,

then

sup
f∈F

Mδn(f ;λn),+∞(Fn,f ,Ff )→ 0 as n→∞ a.s.

PROOF. The proof is based on a couple of inequalities that follow from Propo-
sition 2.8 of Section 2. Namely, it will be shown that for all q > 1 with some con-
stant c > 0 depending only on D and q and with an absolute constant K > 0 we
have

Pr
{∃f ∈F : δn

(
f ;D2α/(2+α)σ−2)≤ δ and Ff (δ)≥ (1− cσ)−1Fn,f

(
(1+ σ)δ

)}
≤K

q2

q2 − 1

1

t
e−t/Kq2

and

Pr
{∃f ∈F : δn

(
f ;D2α/(2+α)σ−2)≤ δ and Fn,f (δ)≥ (1+ cσ)Ff

(
(1+ σ)δ

)}
≤K

q2

q2 − 1

1

t
e−t/Kq2

for all t > 0, σ ∈ (0,1] and

δ ≤ Dn1/2

t (2+α)/2α
=:An(t).

To this end, given δ > 0, define a function ϕ that is equal to 1 on (−∞, δ],
equal to 0 on [(1+σ)δ,+∞) and is linear in between. Clearly, ϕ is Lipschitz with
constant L= 1

σδ
. Denote

rn := 1

σ 2/(2+α)

Aα/(2+α)

n1/(2+α)
,

where A=DL.
Then Ff (δ) ≥ r2

n iff δ ≥ δn(f ;D2α/(2+α)σ−2) and, hence, for δ ≥ δn(f ;
D2α/(2+α)σ−2) we also have

P(ϕ ◦ f )2 ≥ Ff (δ)≥ r2
n.

Define

�n := sup
P(ϕ◦f )2≥r2

n

∣∣∣∣Pn(ϕ ◦ f )

P (ϕ ◦ f )
− 1

∣∣∣∣.
Then for δ ≥ δn(f ;D2α/(2+α)σ−2)

Ff (δ)≤ P(ϕ ◦ f )≤ (1−�n)
−1Pn(ϕ ◦ f )≤ (1−�n)

−1Fn,f

(
(1+ σ)δ

)
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and

Fn,f (δ)≤ Pn(ϕ ◦ f )≤ (1+�n)P (ϕ ◦ f )≤ (1+�n)Ff

(
(1+ σ)δ

)
.

To prove the inequalities it remains to obtain a bound for Pr{�n ≥ cσ }, which
is done using Proposition 2.8. First note that since ϕ is Lipschitz with constant L,
we have for the class ϕ ◦F := {ϕ ◦ f :f ∈F }

∀ ε > 0 logN
(
ϕ ◦F ;L2(Pn); ε)≤ logN

(
F ;L2(Pn); ε/L)

≤
(

DL

ε

)α

=
(

A

ε

)α

.

By Theorem 3.1,

E sup
P(ϕ◦f )2≤r2

|(Pn − P)(ϕ ◦ f )| ≤ C

[
Aα/2
√

n
r1−α/2 ∨ Aα

nrα

]
.

Under the assumption

r ≥ rn ≥ Aα/(2+α)

n1/(2+α)
,

the first term dominates, so we have

En := sup
r≥rn

1

r2 E sup
P(ϕ◦f )2≤r2

|(Pn − P)(ϕ ◦ f )| ≤ C
Aα/2
√

n
r−1−α/2
n = Cσ,

by the definition of rn. Using Proposition 2.8, we get

Pr
{
�n ≥ qCσ + 2q

√
t

nr2
n

(1+ 16Cσ)

∨ 2qt

nr2
n log(t/(nr2

n(1+ 16Cσ))∨ 2)

}
≤K

q2

q2 − 1

1

t
e−t/Kq2

.

Now if

δ ≤ Dn1/2

t (2+α)/2α

then, by a simple computation, t
nr2

n
≤ σ 2, so we easily get with some constant

c > 0 and for σ ∈ (0,1]

Pr{�n ≥ cσ } ≤K
q2

q2 − 1

1

t
e−t/Kq2

.

The inequalities now follow. We will use them for δj = q−j ∈ [n−1,An(t)] to
prove that on an event E with

Pr(E)≥K logq(nAn(t))
q2

q2 − 1

1

t
e−t/Kq2
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we have

∀ j ∀ δ ∈ (δj+1, δj ] Ff (δ)≤ Ff (δj )≤ (1− cσ)−1Fn,f

(
(1+ σ)δj

)
≤ (1− cσ)−1Fn,f

(
(1+ σ)qδ

)
and

∀ j ∀ δ ∈ (δj+1, δj ] Fn,f (δ)≤ Fn,f (δj )≤ (1+ cσ)Ff

(
(1+ σ)δj

)
≤ (1+ cσ)Ff

(
(1+ σ)qδ

)
,

which implies that on this event

sup
f∈F

Mδn(f ;D2α/(2+α)σ−2),An(t)(Fn,f ;Ff )≤ (σq + q − 1)∨ cσ

1− cσ
.

Choosing t = tn = 2Kq2 logn and using the Borel–Cantelli lemma we get

lim sup
n→∞

sup
f∈F

Mδn(f ;D2α/(2+α)σ−2),An(tn)(Fn,f ;Ff )≤ (σq+q−1)∨ cσ

1− cσ
a.s.,

and since σ > 0 and q > 1 are arbitrary and, under the condition λn →∞, for
large enough n,

δn(f ;λn)≥ δn

(
f ;D2α/(2+α)σ−2),

we get

sup
f∈F

Mδn(f ;λn),An(tn)(Fn,f ;Ff )→ 0 a.s.

It now follows from the definitions that to prove

sup
f∈F

Mδn(f ;λn),+∞(Fn,f ;Ff )→ 0 a.s.

it suffices to check that

sup
f∈F

MBn,+∞(Fn,f ;Ff )→ 0 a.s.

for any sequence Bn such that

An(tn)

Bn

→∞.

We have by conditions

τn := sup
f∈F

P {f ≥ Bn}→ 0

and it also follows from (3.1) in [25] that a.s.

ηn := sup
f∈F

Pn{f ≥ Bn}→ 0.



1204 E. GINÉ AND V. KOLTCHINSKII

For all f ∈F and all δ ≥ Bn, we have

Ff (δ)≥ 1− τn and Fn,f (δ)≥ 1− ηn.

Let c > 1. Then a.s. for all large enough n (such that τn ≤ 1 − c−1 and ηn ≤
1− c−1) for all f ∈F and all δ ≥ Bn

Ff (δ)≤ 1≤ cFn,f (δ) and Fn,f (δ)≤ 1≤ cFf (δ),

implying

sup
f∈F

MBn,+∞(Fn,f ;Ff )≤ log c ≤ c− 1,

and the result follows. �

7. Applications II: excess risk bounds in empirical risk minimization. In
this section, we discuss the problem of minimizing Pf over the class F that is in-
terpreted in learning theory as a risk minimization problem (e.g., in the regression
or classification setting). Since the distribution P is typically unknown, it has to
be replaced by empirical risk minimization

Pnf −→min, f ∈F .

For simplicity, assume that f̂n is a precise solution of the above problem, that is,
it is an empirical risk minimizer (the results can be easily modified if it is only an
approximate solution). Given f ∈F , let

EP (f ) := Pf − inf
g∈F

Pg.

This quantity is often called the excess risk of f . It is of interest to obtain bounds
on the excess risk EP (f̂n) of the empirical risk minimizer f̂n. It is also of interest
to have some control of the ratios EPn(f )

EP (f )
uniformly in F .

The bounds given below are modifications of recent results of Koltchinskii [26].
Let

F (δ) := {f ∈F :EP (f )≤ δ}
be the δ-minimal set of P . For

ρ2
P (f, g)≥ P(f − g)2 − (

P(f − g)
)2

,

define the diameter of the set F (δ)

D(δ) :=DP (δ) := sup
f,g∈F (δ)

ρP (f, g).

Also define

ψn(δ) :=E sup
f,g∈F (δ)

|(Pn − P)(f − g)|.
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Let

βn(r) := sup
ρ≥r

ψn(ρ)

ρ

and

�(r) := sup
ρ≥r

D2(ρ)

ρ
.

Finally, for s > 0, denote

γn(r, s) := βn(r)+ 2
√

s

nr

(
�(r)+ 16βn(r)

)

∨ 2s

nr log((s/(nr(�(r)+ 16βn(r))))∨ 2)
.

THEOREM 7.1. There exists a constant K > 0 such that for q > 1, s > 0 and
r > 0 satisfying the condition

qγn(r; s) < 1,

the following inequality holds:

Pr
{

sup
f∈F

EP (f )≥r

∣∣∣∣EPn(f )

EP (f )
− 1

∣∣∣∣≥ qγn(r, s)

}
≤K

q

q − 1

1

s
e−s/Kq.(7.1)

Moreover, let f̃n ∈F be a data-dependent function such that

EPn(f̃n)≤ (
1− qγn(r; s))r.

Then

Pr{EP (f̃n)≥ r} ≤K
q

q − 1

1

s
e−s/Kq.(7.2)

In particular, (7.2) holds for f̃n = f̂n.

PROOF. As before, denote

ρj := rqj , j = 1, . . . , l,

with l being the smallest natural number such that ρl ≥ 1. Let

Fj := {f − g :f,g ∈F (ρj )}.
The key ingredient of the proof is the following inequality:

Pr
{

max
1≤j≤l

‖Pn − P‖Fj

ρj

≥ γn(r, s)

}
≤K

q

q − 1

1

s
e−s/Kq.(7.3)
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Its proof is a straightforward modification of the proof of (2.4a) of Theorem 2.1
with further bounding as in (2.11) of Proposition 2.8 (but taking sj = sqj ), so we
skip the details of the derivation. The only difference is that the bound on

Vn(ρj ) := 1

n
E

∥∥∥∥
n∑

i=1

(
f (Xi)− Pf

)2
∥∥∥∥
Fj

now involves the diameter of the set F (ρj ):

Vn(ρj )≤D2(ρj )+ 16ψn(ρj ).

Now on the event

E :=
{

max
1≤j≤l

‖Pn − P‖Fj

ρj

≤ γn(r, s)

}

we have for all 1≤ j ≤ l the following implication:

f ∈F (ρj ) \F (ρj−1) �⇒ ∀σ ∈ (0, ρj )∀g ∈F (σ )

EP (f ) ≤ P(f − g)+ σ

≤ Pn(f − g)+ σ + ‖Pn − P‖Fj

≤ EPn(f )+ σ + ρjγn(r, s)

≤ EPn(f )+ σ + qEP (f )γn(r, s).

Since σ > 0 is arbitrary, this implies that on the event E for all f ∈ F with
EP (f )≥ r ,

EPn(f )

EP (f )
≥ 1− qγn(r, s).

Since EPn(f̂n) = 0, under the condition 1 − qγn(r, s) > 0, we must have on the
event E EP (f̂n) < r . Therefore, we have on the event E the following implication:

f ∈F (ρj ) \F (ρj−1) �⇒ EPn(f )

= Pnf − Pnf̂n ≤ Pf − P f̂n + ‖Pn − P‖Fj

≤ EP (f )+ ρjγn(r, s)≤ EP (f )
(
1+ qγn(r, s)

)
,

which means that on the event E for all f ∈F with EP (f )≥ r

EPn(f )

EP (f )
≤ 1+ qγn(r, s).

Since by (7.3)

Pr(Ec)≤K
q

q − 1

1

s
e−s/Kq,

inequality (7.1) now follows. Inequality (7.2) is an obvious consequence of (7.1)
since the assumptions

EPn(f̃n)≤ (
1− qγn(r; s))r
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and EP (f̃n)≥ r lead to

EPn(f̃n)

EP (f̃n)
≤ 1− qγn(r, s). �

If we define

ωn(δ) :=E sup
f,g∈F ,ρP (f,g)≤δ

|(Pn − P)(f − g)|,

then

ψn(δ)≤ ωn(D(δ)).

As a result, under the assumptions

ωn(δ)≤ Cδ1−ρn−1/2

and

D(δ)≤ Cδ1/(2κ)

with some C > 0, ρ ∈ (0,1), κ ≥ 1, Theorem 7.1 gives a convergence rate of
EP (f̃n) to 0 of the order

O
(
n−κ/(2κ+ρ−1)),

a very typical rate in regression and classification problems.

7.1. Regression. For simplicity and in order to directly use the above bounds,
we consider only regression models with bounded response. Let (X,Y ) be a ran-
dom couple taking values in S × [0,1]. The regression function

g0(x) :=E(Y |X = x), x ∈ S,

takes its values in [0,1] and minimizes the functional g �→ E(Y − g(X))2. The
problem of estimating g0 becomes a risk minimization problem Pf −→min if one
defines P as the distribution of (X,Y ) and relates to each g on S the function f

on S × [0,1] as follows:

f (x, y) := fg(x, y) := (
y − g(x)

)2
, (x, y) ∈ S × [0,1].

Given a class G of measurable functions from S into [0,1] and a sample
(X1, Y1), . . . , (Xn,Yn) of i.i.d. copies of (X,Y ), one can define a least-squares
estimate of g0 as a solution ĝn of the following minimization problem:

n−1
n∑

j=1

(
Yj − g(Xj )

)2 −→min, g ∈ G,

which is equivalent to minimizing Pnf over the class F := {fg :g ∈ G}, Pn being
the empirical measure based on the sample (X1, Y1), . . . , (Xn,Yn). This will allow
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us to use the bounds of Theorem 7.1. First suppose that g0 ∈ G. Then, by a simple
and direct computation,

EP (fg)=E
(
Y − g(X)

)2 −E
(
Y − g0(X)

)2 = ‖g − g0‖2
L2(�),

where � is the distribution of X. Therefore,

F (δ)= {f ∈F :EP (f )≤ δ} = {
fg :‖g− g0‖2

L2(�) ≤ δ
}
.

Also, if g1, g2 ∈ G, then

P
(
fg1 − fg2

)2 = E
((

Y − g1(X)
)2 − (

Y − g2(X)
)2)2

= E
(
g1(X)− g2(X)

)2(2Y − g1(X)− g2(X)
)2

≤ 4‖g1 − g2‖2
L2(�) =: ρ2

P

(
fg1, fg2

)
,

since Y,g1(X), g2(X) ∈ [0,1]. It immediately follows that the ρP -diameter of
F (δ) satisfies the following bound: D(δ) ≤ 4

√
δ and as a result we have

�(r)≤ 16.
Next, the usual symmetrization inequality gives

ψn(δ)= E sup
g1,g2∈G,‖g1−g0‖2

L2(�)≤δ,‖g2−g0‖2
L2(�)≤δ

∣∣(Pn − P)
(
fg1 − fg2

)∣∣

≤ 4E sup
g∈G,�(g−g0)

2≤δ

∣∣∣∣∣n−1
n∑

i=1

εi

((
Yi − g(Xi)

)2 − (
Yi − g0(Xi)

)2)∣∣∣∣∣,
and, using a Rademacher comparison inequality (e.g., [29], Theorem 4.12), this
can be bounded further by

8E sup
g∈G,�(g−g0)

2≤δ

∣∣∣∣∣n−1
n∑

i=1

εi

(
g(Xi)− g0(Xi)

)∣∣∣∣∣=: ψ̃n(δ).

The inequality of Theorem 4.12 in [29] is used as follows: for fixed Xi,Yi , define
Ai := (Yi − g0(Xi))

2, φi(u) := (Ai − u)2 − A2
i and, using the fact that φi are

Lipschitz functions on [0,1], upper bound

Eε sup
g∈G,�(g−g0)

2≤δ

∣∣∣∣∣n−1
n∑

i=1

εiφi

(
g(Xi)− g0(Xi)

)∣∣∣∣∣.
Define now

β̃n(r) := sup
ρ≥r

ψ̃n(ρ)

ρ

and

γ̃n(r, s) := β̃n(r)+ 8
√

s

nr

(
1+ β̃n(r)

)∨ 2s

nr log((s/(16nr(1+ β̃n(r))))∨ 2)
.
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Theorem 7.1 immediately implies that as soon as g0 ∈ G and qγ̃n(r, s) < 1 we have

Pr
{‖ĝn − g0‖2

L2(�) ≥ r
}≤K

q

q − 1

1

s
e−s/Kq.(7.4)

Clearly, a similar bound holds for approximate least-squares estimates (as in The-
orem 7.1). It is also possible and easy to handle the case g0 /∈ G and to bound in
this case ‖ĝn − g0‖2

L2(�) by

K

(
inf
g∈G
‖g − g0‖2

L2(�) + r

)

with high probability, but we do not give this type of bound here (see, e.g., [26]).
We conclude this brief discussion of regression problems with a couple of specific
examples where the expectation bounds are used to derive the value of r in (7.4).

EXAMPLE 7.2. Let G be a VC-subgraph class of measurable functions
from S into [0,1]. Let Fδ :S �→ [0,1] be a measurable envelope of the class
{g − g0 :�(g− g0)

2 ≤ δ}. Denote

τ(δ) := ‖Fδ‖L2(�)√
δ

.

Applying Theorem 3.1 to VC-subgraph classes gives

ψ̃n(δ)≤ K√
n

√
δ log τ(δ),

assuming log τ(δ)
δ

≥ n. Therefore, we have (under a natural assumption that the

function δ �→ log τ(δ)
δ

is nonincreasing)

β̃n(r)≤ K√
n

√
log τ(r)

r

for r larger than or equal to the solution rn of the equation

log τ(r)

r
= n.

Then for r = C(rn+ s
n
) with large enough C and for q = 2, we have qγ̃n(r, s) < 1

and the following bound holds for the least-squares estimate ĝn:

Pr
{
‖ĝn − g0‖2

L2(�) ≥C

(
rn + s

n

)}
≤K

1

s
e−s/K.

Since τ(δ)≤ 1√
δ
, this always gives the convergence rate at least as good as O(

logn
n

)

for least-squares estimators picked from VC-subgraph classes. However, if τ(δ) is
smaller, one can get an improvement on the logarithmic factor. In particular, if G
is a subset of a finite-dimensional space of functions on S of dimension d , then
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one can find an orthonormal system of functions e1, . . . , ed in L2(�) such that
G⊂ l.s.(e1, . . . , ed). Then we have

sup
‖g−g0‖2

L2(�)≤δ

|g− g0|(x)= sup∑d
j=1(αj−α0

j )2≤δ

∣∣∣∣∣
d∑

j=1

(αj − α0
j )ej (x)

∣∣∣∣∣

≤ sup∑d
j=1(αj−α0

j )2≤δ

(
d∑

j=1

(αj − α0
j )

2

)1/2( d∑
j=1

e2
j (x)

)1/2

≤√δ

(
d∑

j=1

e2
j (x)

)1/2

.

If we set

Fδ(x) := √δ

(
d∑

j=1

e2
j (x)

)1/2

∧ 1,

this implies ‖Fδ‖ ≤
√

dδ and as a result τ(δ)≤√d , which gives the correct con-
vergence rate O(n−1).

EXAMPLE 7.3. Let G denote the set of all monotone step functions from [0,1]
into itself with a finite number of jumps. For a fixed g0 ∈ G, say with m jumps, the
class {g− g0 :g ∈ G} is VC-major (g0 defines a partition of [0,1] into m intervals;
on each of these intervals g − g0 is monotone and hence {{g − g0 ≥ t} :g ∈ G,

t ∈ R} is a VC class with VC dimension depending on m). Arguing as in Exam-
ple 3.8, we can show that

ψ̃n(δ)≤ K√
n

√
δ

(
log

1

δ

)3/4(
log log

1

δ

)1/2

∨ K

n

(
log

1

δ

)3/2

log log
1

δ
∨
√

logn

n
,

which implies

β̃n(r)≤ K√
nr

(
log

1

r

)3/4(
log log

1

r

)1/2

∨ K

nr

(
log

1

r

)3/2

log log
1

r
∨
√

logn

nr
.

Let us take q = 2. Then it is easy to conclude that qγ̃n(r, s) < 1 as soon as

r ≥ C
s + (logn)3/2 log logn

n
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with sufficiently large constant C (which will depend on the number of jumps
of g0!). Hence, if we take an estimate g̃n such that

n−1
n∑

j=1

(
Yj − g̃n(Xj )

)2 ≤ inf
g∈G

n−1
n∑

j=1

(
Yj − g(Xj )

)2

+ (logn)3/2 log logn

2n
,

then Theorem 7.1 implies that

Pr
{
‖g̃n − g0‖2

L2(�) ≥ C(g0)
s + (logn)3/2 log logn

n

}
≤K

1

s
e−s/K,

with some constants C(g0) and K . In particular, the bound implies that

E‖g̃n − g0‖2
L2(�) =O

(
(logn)3/2 log logn

n

)
.

Since the constant C(g0) tends to infinity as the number of jumps of the func-
tion g0 tends to infinity, the above bound cannot be made uniform in g0 ∈ G (and,
in fact, the convergence rate of supg0∈G E‖g̃n − g0‖2

L2(�) to 0 is much slower for
any estimator g̃n). Results of this type (in a slightly different context and with an
improvement on the logarithmic factors) can be found, for instance, in [45] and
references therein.

7.2. Classification. In classification problems, one deals with random couples
(X,Y ) in S×{0,1}, X being an observable instance and Y an unobservable binary
label assigned to this instance. Functions g from S into {0,1} are called classifiers.
The generalization error of a classifier g is defined as

Pr{Y �= g(X)} = P {(x, y) :y �= g(x)},
where P is the joint distribution of (X,Y ). It is well known that the minimal pos-
sible generalization error (the Bayes risk) is attained at a classifier

g0(x) := I
(
η(x)≥ 1/2

)
,

where η(x) := E(Y |X = x) is the regression function. Since the distribution P

of (X,Y ) and hence also the regression function η are unknown, a reasonable
approach to classification is to minimize the training error

n−1
n∑

j=1

I
(
Yj �= g(Xj )

)= Pn{(x, y) :y �= g(x)},

based on i.i.d. training examples sampled from P , over a suitable class G of classi-
fiers. For simplicity, we assume that g0 ∈ G. Denote ĝn a minimizer of the training
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error over the class G. Thus, the classification problem becomes a version of em-
pirical risk minimization and one can use Theorem 7.1 to study the size of the
excess risk

E(ĝn) := P {(x, y) :y �= ĝn(x)} − P {(x, y) :y �= g0(x)}.
As before, � denotes the distribution of X. If, with some κ ≥ 1 and c > 0, for all
g ∈ G

P {(x, y) :y �= g(x)} − P {(x, y) :y �= g0(x)} ≥ c�κ{x :g(x) �= g0(x)},
then the diameter D(δ)≤ Cδ1/(2κ). This holds, for instance, if for all t > 0

�{x : 0 < |η(x)− 1/2| ≤ t} ≤ Ctα

and in this case κ = 1+α
α

[44]. Under the standard condition that the ε-entropy
of the class G grows as O(ε−2ρ) [with several possible kinds of entropy involved
and with ρ ∈ (0,1)] Theorem 7.1 yields a bound on the excess risk of the order
O(n−κ/(2κ+ρ−1)) as in [44]. The main difference with the L2-regression problem
where κ = 1 is that in classification κ can take any value greater than or equal to 1
leading to the whole spectrum of convergence rates. If there exists h > 0 such that

∀x ∈ S |η(x)− 1/2| ≥ h,

then it is easy to see that

P {(x, y) :y �= g(x)} − P {(x, y) :y �= g0(x)} ≥ ch�{x :g(x) �= g0(x)},
so we do have κ = 1. This case of well-separated classes was looked at in the
recent paper of Massart and Nedelec [34]. Define fg(x, y) := I (y �= g(x)) and
F := {fg :g ∈ G}. We are using the distance

ρP

(
fg1, fg2

) :=�1/2(g1 − g2)
2.

Then we have the following bound for the diameter D(δ):

D(δ)≤ C

(
δ

h

)1/2

implying

�(r)≤ C

h
.

Suppose that C := {{g = 1} :g ∈ G} is a VC class and C0 := {g0 = 1}. Define a
local version of Alexander’s capacity function:

τ(δ) := �(
⋃

C∈C,�(C�C0)≤δ(C�C0))

δ
.
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Then

ψn(δ)≤K

√
V

nh
δ log τ

(
δ

h

)

and as a result

βn(r)≤K

√
V

nhr
log τ

(
r

h

)
.

To satisfy the condition qγn(r, s) < 1 (say, with q = 2) it is enough to take

r = C

[
hϕ

(
nh2

V

)
+ s

nh

]
,

where ϕ denotes the inverse of the function

r �→ log τ(r)

r

and C is a sufficiently large constant. Now it is easy to check that

ϕ

(
nh2

V

)
≤ V

nh2 log τ

(
V

nh2

)
,

yielding the following bound:

Pr
{
E(ĝn)≥ C

[
V

nh
log τ

(
V

nh2

)
+ s

nh

]}
≤K

1

s
e−s/K.

If we replace τ(r) by the trivial upper bound 1
r
, this gives one of the results of

Massart and Nedelec [34]: the excess risk is bounded by

K
V

nh
log

nh2

V
.

In the case of smaller τ , it is a slight improvement of their bound. It is easy to see
that for some classes of sets and probability measures P τ can be even bounded,
leading to the bound on excess risk of the order O( 1

nh
). For instance, as in Sec-

tion 4, suppose that S = [0,1]d for some d ≥ 1 and P has a density that is uni-
formly bounded and bounded away from 0 on S. As before, h is the Hausdorff
distance between subsets of S. Let C be a VC class of convex subsets of S and
C0 ∈ C, P(C0) > 0. Suppose that for some K > 0

K−1h(C,C0)≤ P(C�C0)≤Kh(C,C0), C ∈ C.

Recall that the upper bound always holds for convex sets ([17], pages 269–270),
but the lower bound holds only for special classes of sets (balls, rectangles, etc.).
Then the function τ is uniformly bounded. The proof easily follows from the same
type of argument as in Section 4 (before Example 4.9).
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