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Let F be a class of measurable functions on a measurable space (S, §)
with values in [0, 1] and let

n
P, = n~! Z dx;
i=1
be the empirical measure based on an i.i.d. sample (X1, ..., X;) from a prob-
ability distribution P on (S, 4). We study the behavior of suprema of the
following type:
|Pnf — Pf]

sup  ———,

rn<op f<8 é(opf)

12 . . . . . .
where op f > Varp~ f and ¢ is a continuous, strictly increasing function
with ¢(0) = 0. Using Talagrand’s concentration inequality for empirical
processes, we establish concentration inequalities for such suprema and use
them to derive several results about their asymptotic behavior, expressing
the conditions in terms of expectations of localized suprema of empirical
processes. We also prove new bounds for expected values of sup-norms of
empirical processes in terms of the largest op f and the L, (P) norm of the
envelope of the function class, which are especially suited for estimating lo-
calized suprema. With this technique, we extend to function classes most of
the known results on ratio type suprema of empirical processes, including
some of Alexander’s results for VC classes of sets. We also consider applica-
tions of these results to several important problems in nonparametric statistics
and in learning theory (including general excess risk bounds in empirical risk
minimization and their versions for L,-regression and classification and ratio
type bounds for margin distributions in classification).

1. Introduction. Let ¥ be a class of measurable functions defined on a mea-
surable space (S, 4) and taking values in [0, 1], let X, X, ..., X, ..., be a se-
quence of independent identically distributed S-valued random variables with
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probability law P and let

n
P, =n! 25)(1.
i=1

be the empirical measure based on the sequence X;, that, as usual, we consider as
a process on ¥ . Here is some notation that will be used throughout:

apszar}D/zf, op:=supopf
feF
(usually op f will either be the standard deviation of f or /Pf ). Given a continu-
ous, strictly increasing function ¢ with ¢ (0) = 0, we are interested in the behavior
of suprema of the following type:

|P,f — Pf|
sup ———
ra<opf<s, POPf)

for some sequences ry, §,. In particular, for given r, and §,, we would like to
determine a normalizing sequence S, such that

|Ppf — Pf]
,Bn rp<op f<é, ¢(0P f)

remains bounded or converges to a constant in probability or almost surely. We are
also interested in conditions under which the sequence of stochastic processes

n'2|p, f — Pf|
¢(opf)

converges in distribution to a Gaussian process indexed by f € ¥ . Such stochas-
tic processes are often called normalized or ratio type empirical processes and the
distributional convergence results are weighted central limit theorems for empiri-
cal processes. The study of these processes has a long history that goes back to the
1970s and 1980s when the classical case of F := {[(—o ] :t € R} was explored
in great detail and definitive answers to most of the questions about the classical
ratio type empirical processes were given; see, for example, [48]. In the late 1980s,
Alexander, in a series of papers [1-3], extended this theory to ratio type empiri-
cal processes indexed by VC classes of sets C (i.e., for F := {Ic:C € C}). He
discovered that in this case the crucial role is played by the following functional
characteristic of the class:

I(opf =rn), fer,

P(Ucee,picy<s €) y
)

which he called the capacity function of C. This function is involved in rather sharp

and subtle exponential inequalities for empirical processes indexed by VC classes

proved by Alexander. The behavior of the capacity function as § — 0 happened

ge(d) = 1,
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to be closely related to the asymptotic behavior of ratio type suprema of empirical
processes. In recent years, there has been a great deal of work on the development
of ratio type inequalities, primarily, in more specialized contexts of nonparametric
statistics (see [31, 46]) and learning theory (see [6, 5, 7, 9, 11, 26-28, 33, 37-39],
etc.). These inequalities have become one of the important ingredients in determin-
ing asymptotically sharp convergence rates in regression, classification and other
nonparametric problems and they proved to be crucial in bounding the generaliza-
tion error of learning algorithms based on empirical risk minimization.

In this paper, building upon our earlier work with Jon Wellner [22], we are
trying to develop further a general methodology for proving exponential bounds
and exploring asymptotics of ratio type empirical processes. This methodology
is based on the deservedly famous Talagrand’s concentration inequality [43] and
on the simple idea of splitting the class ¥ into slices consisting of functions for
which the values of ¢ (op f) are roughly the same. The empirical process on each
slice is compared with its expectation using Talagrand’s inequality and then all the
pieces are put together using the union bound. This simple approach, called the
method of slicing or peeling, proved to be rather successful in statistical applica-
tions (as in [9] or [31]) and it also allows us to obtain a number of sharp results
on asymptotics of ratio type suprema (including weighted CLTs), essentially as a
straightforward corollary of Talagrand’s inequality. The conditions of these limit
theorems are expressed in terms of expected values of localized suprema of empir-
ical processes (suprema over the slices). To translate these conditions into a more
convenient language for special function classes ¥ one has to develop bounds on
expected localized suprema. We prove such bounds (both upper and lower) under
some conditions on random entropies of the class. Unlike most previously known
bounds, the new bounds involve the L, norm of the measurable envelope of the
class ¥, which in applications to ratio limit theorems become the envelopes of
the slices. These localized envelopes play about the same role in our theory as
Alexander’s capacity function plays for classes of sets (and, moreover, in the case
when ¥ is a class of indicators of sets the conditions on localized envelopes can be
reformulated as conditions on the capacity function). We are trying to explore in
this paper both the power and the limitations of the approach based on slicing and
on Talagrand’s inequality, and to this end we provide some examples showing in
which cases the conditions we obtain are sharp. Our main goal is to provide a link
(that seemed to be missing) between the results for classical empirical processes of
the 1970s and 1980s extended by Alexander to VC classes of sets and more recent
results on ratios developed primarily in learning theory and based on Talagrand’s
concentration inequality. At the moment, our method allows us to generalize a
number of Alexander’s theorems to classes of functions, but some other theorems
and exponential inequalities seem to be beyond the reach of our approach. On
the other hand, most of his specific corollaries for classical empirical processes
in R can be obtained by a slight modification of our method, consisting in further
decomposing each slice corresponding to a small variance into a relatively small
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number of subclasses with envelopes which are considerably smaller than that of
the full slice. A bit surprisingly, the classical case of classes of sets of small en-
tropy (which are needed to study the standard empirical processes) are harder to
handle using Talagrand’s inequality and general expectation bounds than the much
more massive function classes commonly used in learning theory and nonpara-
metric statistics. In part, this is related to the fact that the Poisson tail parts of the
exponential inequalities play a more important role in this case, leading to more
complicated asymptotic properties.

Finally, we provide several applications of ratio type empirical processes. First
of all, we derive in a much shorter way recent results of the second named au-
thor [25] on empirical margin distributions motivated by the needs of learning the-
ory, specifically, the analysis of large margin classifiers. Second, we give general
ratio type bounds on excess risk and derive from them upper bounds on excess risk
in abstract empirical risk minimization problems and in a more specialized context
of regression and classification. In particular, this allows us to prove in a very easy
way recent results of Tsybakov [44] on fast convergence rates in classification and,
also for classification, to refine recent bounds of Massart and Nedelec [34], using
a version of Alexander’s capacity function.

The article is organized as follows. Section 2 contains the general exponential
bounds for ratio empirical processes. Section 3 is devoted to moment bounds for
empirical processes whose metric entropy with respect to the empirical L, dis-
tance is bounded by a regularly varying function independently of P,; this in-
cludes, among others, VC-subgraph and VC-major classes. The reader interested
in applications of the foregoing to ratios of margin distributions and to empirical
risk minimization, may go directly from Section 3 to Sections 6 and 7, where we
deal with these subjects. Sections 4 and 5 are devoted to rates (a.s. and in pr.), lo-
cal and global moduli and limit theorems (including the central limit theorem) for
ratio empirical processes.

2. Concentration inequalities for normalized empirical processes. In this
section we derive the basic inequalities for ratio empirical processes. They are
based on Talagrand’s fundamental 1996 inequality, which will be formulated be-
low. In what follows, (S, 4) is a measurable space, P is a probability measure
on it, X; are the coordinates SN — S, &; are independent Rademacher variables
independent of the variables X; (defined on, e.g., ([0, 1], A) and taking as €2 the
product probability space ([0, 1] x SN, A x PN:=Pr)),  is a countable or suit-
ably measurable (see, e.g., Dudley [17], Chapter 5) class of measurable func-
tions on S and F is a measurable envelope of £, that is, for all f € F,x € S,

15y

| f(x)] < F(x). For each n, P, is the empirical measure n~" ) /"_; dx,. As usual,
we will also write || ()|l # for sup ;e [ (f)I.
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TALAGRAND’S INEQUALITY. For any measurable, uniformly bounded class
n n
DD —E|Df(XD)

i=1 F i=1 F

of functions ¥,
Pr: ZI}
<K { L1 1 (1+IU>}
expi———1lo — ¢
= p KU g Vv

valid for all t > 0, and where K is a universal constant, U is a uniform bound for
the functions in ¥ and V' is any number satisfying V > E sup ;e ¢ i f 2(X).

2.1

The inequality holds also for {X;} that are not necessarily identically distrib-
uted. The quantity V is of course bounded by n| F ||% if F is a measurable en-
velope for the class ¥, a trivial bound that, however, can sometimes be used.
A more interesting bound that follows from randomization together with a con-
traction principle for Rademacher processes is the following, given by Talagrand
([42], Corollary 3.4):

n n
X D e f(Xi)
i=1

i=l

<no’+8UE
F

2.2) E

k]

F

where 02 = sup reF Ef 2(X1) (see also [29]). Typically, Talagrand’s inequality is
used in combination with this bound for V.

In the sequel, throughout, we may drop the subindex P in such notation as op f
if no confusion arises, particularly in proofs. Given 0 <r <l andr <§ <1, we
set

Fr)y={feF:op(f)y<r} and F(r,s]:=F )\ F@r);
forl<q§2andr<s§rqlf0rsomeleN,welet
pji=rq’, j=0,....1,
and
Un,q) :=E|| Py — Pllg ;1,015 uec(pj—1,pjl, j=1,...,L

Of course, given § and r we take / to be the smallest integer larger than or equal to
log,(8/r). Given a continuous, strictly increasing function ¢ such that ¢(0) =0,
we also define

bq(u) =d(p)), ue(pj—1,pjl,j=1,...,1,

and

o Vn,q ()
Pras(nshi= sup =
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and sometimes we may use instead the nondiscretized version, namely

3 E||Py — Pl g ot
Bn,q,¢(r,s]:= sup (ug ']
ue(r,s] ¢ (u)

Some of the subindices of 8 may be dropped in proofs. We also set

n

S (F(X) - Pr)?

i=1

Fpj-1,pjl
and note that, by (2.2) and the comment before it, if F'; is a measurable envelope
for F(p;j—1, p;], then

2.3) q72p7 < Va(pj) < (PF7) ALpT + 16y(p))],

1
Vn,q(pj) = Vn(p]) = ;E

where for the lower bound we assume that op f = Var}J/ 2 f. Finally, we let y be
the inverse function of y‘l(x) :=xlog(l +x),0 <x < 1. Note that

2x
s for x >0,
log(1 + x)
2
yix) = _x’ for x > 2,
log x
2./x, for 0 <x <2.
Denote
P, f—P
En’q’(j, = E Sup M
jer  glopf)
r<opf=<é
and
T}’l,q,(p = Tn’q’q}(sl, ooy Sl)
2sj

= max —
Jisi>2nV, 4(pj) n¢ (,Oj) IOg(sj/(nanq(pj)))

siV ;
v omax 2 %q(/’f)
Jis; <20V 4 (o)) ng<(p;)

for any Vn,q(pj) = Vn,q(pj)-
The following immediate application of Talagrand’s inequality holds the key to
the ratio limit theorems to be obtained below. It shows that the supremum

|Pof — Pf]
sup ————
rex Qq(opf)

r<opf=<é

concentrates with high probability around both 8, , 4 and E, 4 4 with the same
magnitude of the deviations (of the order 7, 4 ¢). In particular, it also means that
Bn.q.¢ and E, 4 ¢ are within ~ 1, 4 4 of each other.
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THEOREM 2.1. With the above definitions, there exist universal constants
K, C € (0, 00) such that for any sequence s; of positive numbers

|Pnf — Pf
Pr{ sup ——— — B, zt,,(sl,...,sl)}
feg ¢q(opf) e8| = a-

r<opf=<é

(2.4a) 1
<K Z e~SilK
j=1
and
|Pnf — Pfl
sup ———
rex Qqlopf)

r<opf<é

o

- En,q,d) = Cfn,q,tb(sl’ ceey sl)}

(2.4b)

l
<K Z e*Sj/K.
j=1

PROOF. Set F; := F(pj_1, p;]. Then, we can rewrite Talagrand’s inequality
as

Pel 17, = Pllr, — ENPy = Pl | = Valppy (=)
' nvn(pj)
2.5

< Keis./'/K’

j=1,...,1. Hence, with probability at least 1 — le:1 e SilK,

‘ sup |Pnf—Pf|_IB ‘<max IPn = Pllz; — Yng(pj)
e dglor ) T IES] 600 $(p))

B Va(p)y (s;/(nVa(p))))
Tis<j<l é(pj) '

Now, (2.4a) follows from the bounds for the function y, namely, if s; > 2nV,(p i)

2x
foax 10 get

we use y(x) <

Va(pj) y(sj/(nVa(pj))) - 25
#(pj) ~ n¢(pj)log(s;/(nVa(pj)))

and otherwise we use y (x) < 2./x to get

Vn(Pj)V(Sj/(nVn(ﬂj)))<2 siVa(pj)
é(pj) - n>(p;)
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Next, we will show that

{ |Pnf — Pf] ‘ }

(2.6) Pri| sup ————— —Bug.s| =25Tu g6 < C(s;}) exp{—s/K},
Rii?fé ¢q(6P13

where

l
Csjh =K e /X,
j=1
which is supposed to be smaller than 1 (otherwise, the inequalities of the theorem
are trivial). Integration of (2.6) immediately implies that, for some C > 0,
|Pnf — Pf]

E| sup ——,Bﬂ‘fCrH
er gopf)  mT? a9

r<opf<é

and, as a consequence,

Prn.a.¢ < Eng.¢ < Png.6 T CTng,o-

The last bound shows that in (2.4a) B, 4 ¢ can be replaced by E,, 4 ¢ if we multiply
Ty,q,¢ DY a constant, which proves (2.4b).

To prove (2.6), we again use (2.5) with s; replaced by s; + s. It is enough to
assume that s, s; > 2. The right-hand side of (2.5) becomes K exp{—(s +s;)/K}.
If s; >2nV,(p;) (and s; + s is even larger), we argue as in the proof of (2.4a) to
get

Voo () < 2064
AR nvn(pj) _n¢(,0])10g((sj+S)/(nvn(pj)))
25

=s = =STn,q,¢
ng(pj)log(s;/(nVn(pj)))

(using s, s; > 2). On the other hand, if 5; < 2nV,(p i), we use subadditivity of y,
yx+y) <y@+y®),

which follows from the inequality

y e+ =yt +y o)

that is easy to prove directly. This gives

— sji+s = Sj v §
n{Qj n\rFj niry

The first term is bounded (as in the first part of the proof of Theorem 2.1) by

2J s <SJ sValop L

ng2(pj) ~ N ne*(pj) T2
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The second term is dominated either by
Va(pj Vap)) 1
2 S ;1(,0/) ES Sj 2}1(/0/) S _Tn’q,¢s
ne=(p;) ng=(pj) — 2
in the case when s <2nV,, (p0j), or otherwise [if s > 2nV, (pj)] by
2s 2 1

— < s
ng(pj)log(s/(nVu(p;))) ~ log2 né(p;)
which can be further bounded by

2 Valp)) 3
s S n(pj) < ZTpg.8
log2"\ ng2(p;) — 2™

nVau(pj) =s;/2=1>1/sj].

[since we have

The result now follows easily. [

We may want to normalize the empirical process P, f — Pf by ¢ (op f) instead
of ¢4 (op f); in this case we do not obtain a concentration inequality, but two very
similar deviation inequalities (one from above and one from below), particularly if
¢ is regular enough. The above theorem gives the following:

COROLLARY 2.2. Assume that the continuous nondecreasing function ¢ sat-
isfies that the quantity cg r.¢ = SUp, <y <1 $(qx)/¢(x) is finite for some 1 < q < 2.
Then, with s j and K as in Theorem 2.1 and under the same assumptions, we have
both

. |Paf — P ok
Pr{c1 X sup —————— > + 1 }szesJ/
q.r,¢ fE?E d)(OPf) IanQy(b n,q,¢ :
r<opf=<é J
and
P f — Pf] o
L o)
e ¢(opf) na.$ g >
r<opf=<

A way to use these propositions is as follows: if we let

bp = Bn.q.6 NV Tg.n¢

where g, r, § and {s;} may depend on n, and take s; = s, such that le”zl e SinlK

tends to zero, then the sequence

1 P,f—P
N Sup M’ ne N,
bn yer  @(opf)

r<opf=<é
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is stochastically bounded. The following lemma of Alexander [2] allows one to get
a.s. results.

LEMMA 2.3.  With the same notation as above, let c,/n |, r, |, \/né, 1 and
U 4. Set
Ay ={/n|Pyf — Pf| > cagp(op f) +uy for some f € F withr, <opf <8}
and

Ap={Vn|Pof — Pfl= (1 —¢)(cap(op f) + up) for some f € F
withr, <opf <v(1 +g)8n},

and assume
inf{c,@p(t)/t: n>1, t €[ry, 5,1} > 0.
Then, if for some €,0 > 0
Pr(A%) = O(1/(logn)'*?),
we have
Pr(A, i.0) =0.

Sometimes, ¥, 4, [and therefore also B, 4.4 and V, 4(p;)] is still too large be-
cause the envelope of ¥ is too large. Then, one may further subdivide F; into
N classes F; ; with smaller envelopes and such that N; is not too large (perhaps
of the order of log ,oj_l). For instance, this happens with the d-dimensional distrib-
ution function as we see below. One may take ¥ i to be the intersection with ; of
each of the components of an optimal covering of F; by L, (P) balls of radius p;,
0 < 7 < 1, but other subdivisions are possible; in particular, N; could be 1 for
some or all j. We can apply the same principle as in the proof of Theorem 2.1 and

. . N
get a bound that takes this into account, as follows. Let ¥; = J, .| ¥ k. let
1/fn,q,j,k = E|P, — P”.?'jqk’

) wn q.j.k
B : = max — ",
TR 9 0))
- 2
Vig.jk == E (f(Xi) — PY) ,
i=1 Fik

_ 25k
Thg.¢ = max —
Jok:sj>2nVy g ik ”¢(Pj) 10g(sj,k/(” Vn,q,j,k))

SjkVing.jk
\/ max_ 2 ']2#
Jokisjk=2nV, g ik ne (:0_/')

and V4. jk > Va.q.j.k- Then, we have the following.
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THEOREM 2.1".  With the above definitions and letting s ;. be a double se-
quence of positive numbers, there exists a universal constant K € (0, 00) such
that

|Pnf —Pfl  — ‘ _ } —six/K
sup ——— — B >Tugot <K e Sikli
e ¢q(GPf) n,q.,¢ n.q.¢ Z Z

r<opf=<é J

(2.4 Pr{

The analogues of inequality (2.4b) and of the one-sided inequalities of Corol-
lary 2.2 hold as well.

REMARK 2.4 (On the choice of 5;). In general, we must take
1
sj=Klog—
€j
with lezl c¢;j small, as in this case, le:] e SilK = lezl cj.If we take s; = s for
a number of j’s more or less comparable to /, then a good choice is to take
s =K'logl

for some K’ > K, so that

I
Ze—Sj/K < l/lK//K_l,
j=1
which will tend to zero if [ — oo [so, if logqn (8,/rn) — o0]. Another possible
choice is

s;j=sq%
for some o > 0, which gives
- J « G-=D
e—sq"‘ /K _ q a]e—sq K qa Jj—
> Ty (¢ ~q0)
Q2.7) . / e K dx
— 1 fv/K
q* —1s ’
and
ad aj 11
e atK < (1 +K— —)e_S/K
i q* —1s
2.7)

< K—qa le_s/Kq
q*—1s
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bounds that can be made small by increasing s. Finally, another choice is

sj =sn + Kloglog,(gé/p)),

as is easy to check. However, there does not seem to be a choice of s; that works
in all situations (see, e.g., the last part of Example 2.7 below for an unexpected
choice for s).

REMARK 2.5 (The role of the stratification ¥, 51 C Uﬁ:l Flpi_1.p1)- Since on
each stratum F; := F(,,_, ;] the function of f > ¢ (op f) is essentially constant
[assuming that ¢ (u) =~ ¢ (qu)], we have

HPnf—Pf R
porf) Iz o))

which is why the terms in the bounds (2.4) do depend on the complexity of
these strata [measured by ¥, 4(p0;) and V,(p;), which ultimately also depends
on ¥, 4(p;)], usually simpler than the complexity of F. Instead of stratify-
ing, we could simply apply Talagrand’s inequality to the class of functions
{o(r)f/d(opf): f € F,opf > r}. But these classes are more complicated
than ¥ and so would be the parameters of the inequality. These parameters of-
ten depend on the L, norm of the envelope of the corresponding classes, and there
may be a good advantage in using the local envelopes sup{| f (x)|: f € F;}/P(p;)
rather than the global sup{| f (x)/¢(op f)|: f € F}. This advantage comes at a
cost, at least with regard to distributional or in probability results: whereas the se-
quence s; should be large enough so that the series ) e~%i/K converges and has a
small sum, we do not have to deal with this series if we apply Talagrand’s inequal-
ity to the whole class. In this last case s can be any number such that ¢~ is of the
desired size. However, if one wants to apply Alexander’s lemma, then s must be of
the order of loglogn, which in general is comparable to log/, hence to s if s; does
not depend on j. This cost is usually overwhelmed by the mentioned advantage,
and in the worst case, the number 7, ¢ 4 in (2.4) is at most a factor of log/, or even
J/Togl, larger than it would be by direct application of Talagrand, and not larger at
all (except perhaps for a constant factor) if we want the probability bound to be of
the order of 1/(logl)'*?.

IPaf — Pflis,.

REMARK 2.6. Another approach, used, for instance, by Massart [31] or
Bousquet [9], is based on stratification, but uses Talagrand’s inequality only once,
which is relevant to Remark 2.5, but which results in other losses when the class
of functions is relatively small. We briefly describe this approach. Suppose that for
all p >0

E| Py — Pllz o) < ¥n(p),
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where Wn is a function satisfying that for some A € (0, 1) the function p +— g’;g)’ ;
is nonincreasing. Assume also that with the same A
Z 1 - 1
o 1-x =Cq.h0 T o
$(p)1+ = TP ()

jipjzr
for some constant ¢, 3 4. Note that these conditions immediately imply that

lﬁn(/oj) _ 1ﬁn(/oj)
2 o 2 8 ee

Jjipj=r Jjipj=r

() 1
S00r 2 o)

Jjipj=r

wn(r)
=Ty

Consider now the class

P(r) _
= Fi,
9’ jzggjz,wj) !

which is also bounded by 1. We have

¢ (r)
o(pj)

ElP,—Plg< Y
Jjipj=r

00) 5
= 2 gy

jipjzr

E|P,— Pl

< cgpWn(r).

Using (2.2), this gives

1 n
Va§) = —E| 3 (f(Xi) — Pf)’
i=1 g
$(r,)?
16E| P, — P
S SR Sy T IGE NP = Plg.
0

We will assume that either p — ) is nonincreasing (case 1), or it is nondecreas-
ing (case 2). In case 1,

Vi (§) <72 4164 5.6Un(r) = V,(9).
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Applying Talagrand’s inequality to the class § the same way we did in the proof
of Theorem 2.1, we get that with probability at least 1 — Ke /K

sup |Puf = PfI
reF ¢q(opf) a9

r<opf<

=m|lan — Pllg — El|P, — Plig]|

<I(s>2nV,(9)) 2

ne (r)log(s/(nV,($)))

ng(r)?

_ 1(# (1 + 16, ﬂ”(”))

2s
. ne(r)log(s/(nr2(1+ 16cq rdVn () /1)

= )

s r? 1//n(r)
2 |- 1+ 16
* Jnmrﬂ( +1600.0 5 )
Similarly, in case 2,

Va(§) < cod(r)* + 16¢4 3.9V (r) =: V().
Again, by Talagrand’s inequality, with probability at least 1 — Ke /K
' wp [Pl =PI nw‘
= ¢q(op f) o

r<opf=<

<I(s>2nV,($)) 2 +1(s <2nV,(9))2 M
" g (r) log(s/ (V1 (9))) =Y ng ()2

e =15 >2(%“6WZ’25§3))

+1(s <2nV,(9))2

(2.8)

2s
" 16 () log(s/ (16 (N2(cp + 1664149 (/B (D))

L S ) TR )
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Bartlett and Mendelson [7] used another approach that also allowed them to ap-
ply Talagrand’s inequality only once under an extra geometric assumption on the
class F (namely, that the class is star-shaped).

EXAMPLE 2.7. As an illustration of Theorem 2.1, we will recover known
results on the a.s. and the in probability behavior of

T,:= sup | F (1) — t]
" n<t<1)2 Nt

where F;, is the empirical distribution function corresponding to n independent
samples from the uniform distribution on [0, 1]. In this case, ¥ = {Ij0,;1:0 <t <
1/2},0plc =~/ PC,¢(t) =t,r =r, = 1//n, 8§ = 1/4, q is any number between
I and 2, say 2, [, = (logn/4)/2log2, F; = {ljo,n:t < pjz.}, we can take Vn(,oj) =
2pj2. and

apj
N

where the first inequality follows by symmetrization and the second by Lévy’s
inequality. So, the quantity 7, 4 ¢ of Theorem 2.1 is

2s j J
max 3 \ max -
jisj=anp? npjlog(s;/(2np7))  jisj<anp?V n

n 4
> el n(Xi)| < ;E <

2
Yn(pj) < —E sup
n i=1

1<p?

n
ZgiI[O’pJZ_](Xi)
i=1

(2.10)

Then, if we take s; = K'q logl, > K" loglogn with K” > 4K, this bound is dom-
inated by
2K"loglogn
J/nlogloglogn
and
In

Z e_s.f/ZK < (log n)_(K///2K_1) ,

j=1
which, by Lemma 2.3, give

J/nlogloglogn

limsup —— 7, =C < © a.s.
n—>00 loglogn

(as B, <4/+/n multiplied by the factor in front of T}, tends to zero). This is sharp:
Csaki [13] computed this constant, which is not zero. Suppose now we want to find
the order of magnitude of 7;, in probability. Then we still take s; = K" loglogn
if K”loglogn < 4”:0]2' and notice that the number of the remaining j’s, such that

4n,o/2. < K”loglogn is of the order of K" logloglogn; this allows us to take a
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smaller s; for such j’s, for instance, we can take s; = 2K logloglogn and still
have

— 0.

In
S esii2K < K™logloglogn k" /2x-1)
i ~  loglogn .

The bound (2.10) becomes of the order

logloglogn y \/logloglogn y \/loglogn _ \/loglogn
Jnloglogloglogn n no no
This gives that the sequence

n

T, neN,

loglogn

is stochastically bounded, a result that is also best possible since it follows
from [14] that it converges in probability to a positive constant. We should re-
mark that these results on the almost sure and the in probability size of 7}, can also
be obtained by direct application of Talagrand’s inequality to the class of func-
tions {/[o.11/~/t : t < 1/4}, although the estimation of expected values in this case is
more complicated. However, they do not follow from the method developed in Re-
mark 2.6. At any rate, this example illustrates the power of Theorems 2.1 and 2.1’
when good expectation bounds are available, and also how to choose s;. See Ex-
amples 4.9, 4.10 and 5.8 below for more on uniform empirical c.d.f.’s, in one or
more dimensions.

Typically one wishes to normalize the empirical process by /Varp f, which
corresponds to ¢ (x) = x, or by Pf, which corresponds to ¢ (x) = x% and op f =
W/ Pf (recall 0 < f < 1), or by a function of op f of the form ¢ (x) = x L (x) with L
slowly varying at zero. Although other situations may be considered, we will only
specialize Theorem 2.1 to a small number of cases, including these. The main
job consists in choosing s; so that > e%i/K is small. The following proposition
recovers an inequality in [22].

PROPOSITION 2.8. With the notation of Theorem 2.1 for op f = /Pf and
¢(t) = 2, we have that, for all s > 0,

Pr{ -1 su ‘PLf—l‘>ﬂ +2\/L(1+165 )
q fe_I; Pf —_ n’qu) nrz n,q,¢
r2<Pf<s

2s
(2.11) Y a2 log((s/ (2 (1 + 1661.4.4))) V 2) }

K2 1 le—S/K
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and
P, f ‘ \/ s
P — 1< -2 /—(1+16
r{ Jsflelg Pf < Png.s nrz( + 16Bn.q.0)
r2<Pf<s
2s
(2.12) vV — 5 }
nr=log((s/(nr=(1+ 168, 4.¢))) VvV 2)

K2 1 1164/1(
q— N

PROOF. Take V, (pj) = ,0J2-(1 + 168,) [which is allowed by (2.3)] and s; =

sq*/ in Corollary 2.2, and use (2.7) with & = 2 to compute the probability bound.
g

Especially important is the case ¢ () = ¢, that is, the normalization of the em-
pirical process at f by the standard deviation of f(X). The following proposition
is slightly sharper (up to constants) than a similar inequality in [22], and applies in
a larger range.

PROPOSITION 2.9. Let ¢(t) =t. Set ¢, = max; <<, (log j)/q’ and denote

10\/s/q + 2cqK\/s + 2K loglog,(¢8/r)
= nrlog(((5s/q + 10¢,K)/(17nr2)) v 10)

s+ 2K loglo 8/r
v/ \/ g gq (ad/r).
(@) If By = Bu.q,¢ <, then, for any positive number s,
P, f—P
(2.13) Pr{ sup (LS ZPIL_ gl Bn} <2Ke™?
re ¢q(opf)
r<opf=<

with obvious changes in the constants if B,, < Cr for some C < 00.
(b) If B, > r, then, forany s >0, t > 0,

Pr{ wp \Pf =PI '> 2
ger dgor) = nrlog(t/(1Tnrfu) v 2)
(2.14) v 24/17 %” \/B,,}

1 1
<K?>— ¢ UK 1 2Ke™,
g—1t

with obvious changes in the constants if r < CB,, for some C < 0.
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PROOF. Assume first 8, < r. Since ¥,,(p;)/pj < Bn <r < p; wWe can take
Vn(pj) = 17,012. Now take s; = s + 2K10g10gq(,0j/r,1) =5 + 2K log j if this
quantity does not exceed 34n,0]2- and five times this quantity otherwise. Then, to
estimate

2s; siV i
Tngt = max - V. max 2 L(zpj)
Ji8i>2nV,(pj) NPj 10g(Sj/(nVn(,0j))) 5;<2nV,(pj) n/oj

note that if x > ¢2, then x!/2 /log x is nondecreasing, so that
10s 4+ 20K log j
nrq’ log((5s + 10K log j)/(17nr2g37))
\/10s/q + 20cqK\/10s + 20K loglog,(¢d/r)
<
nrlog((5s/q + 10c, K)/(17nr?))

’

which gives
Tn,qt = By.

Moreover, K Zl]f’zl e SilK < Ke™s > 1/j%> <2Ke .

Assume now r < B,. The j’s for which p; > B, can be treated as in the
previous case (where all the p; were larger than or equal to 8,). If p; < By,
then Valpj)/pj < pj+ 168, < 178, and we take V,(p;) = 17p;B,. Then, with

sj =tq’, the contribution of these j to 7, 4, is easily seen to be dominated by

2t I,Bn
nrlog(( /1 TnrB) v 2) © 2*/ﬁ\/ nr’

and, by (2.7), their contribution to the probability bound is dominated by

Kz—qzl %e_t/qK. O

Comparing with inequality (2.8) in Remark 2.6, we see that the result in the
previous proposition is better if in (2.8) we take s of the order of loglog, (¢3/r)

because ¢, (r) > Y (r), but smaller s’s are possible in (2.8), and these do better
than s + 2K loglog, (¢8/r).

By (2.3), if || Fj||2 is comparable to p;, then we can take Vn(,oj) = ijz ~
Vu(pj) and obtain better inequalities than (2.13) and (2.14); this is the case in
Example 2.7 and, if one uses Theorem 2.1’, this is also the case for the c.d.f. in
several dimensions (as Alexander [2] observed and we see below). This applies
also to Proposition 2.8 and to the ones that follow.

REMARK 2.10. If in the previous proposition we assume

s + 2K loglog, (qd/r)

(2.15) rv B, > \/ Y
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then the Poisson term of 7, 4 ; can be deleted from the bounds; under this condi-
tion, if B, < r, then we see that s; <2nV,(p;) for all j. Under condition (2.15),
if r < B, the same is true for p; > B,. Thus we obtain

Pr{ sup |Pnf — Pfl
reF ¢q(opf)

r<opf<

s +2K loglo S/r
>2\/—\/ g gq(q / )}gzKe—S,

- rgn,q«ﬁ‘
(2.16)

if 8, <r, and

P, f—P 2t t
Pr{ sup M—ﬂn,m’ > vy | Pr
fe}; ; ¢q(opf) nrylog((t/(17nrpBy)) V 2) nr
r<opf<
s+ 2K loglo 8/r)
2.17) NENG \/ g gq(q / }
2 11 —t/K —s
<K —e +2Ke
qg—1t
if r < By.

PROPOSITION 2.11. Let ¢(t) =t% for some a € (1, 2). Then, for any positive
number s,

pof| sup BLPIL ) 10s
15 dg(op )T nrlog(/ (T (2 1)) v 10)
2—a
(2.18) NPNGE W}
nr

§K2 1 le—S/K
qt—1s

where T =2(a — 1).

PROOF. One proceeds as in the previous proof by considering the cases
pjgfa > B, and ,012-7“ < Bn, which correspond to V,(pj) = 17p]2. and V,(p;) =
17,0;?‘ Bn, respectively; in the first case one takes s; = sq2@=DJ or five times this,
and in the second, s; = s¢*/. [

The bounds for ¢ (r) =%, 0 < a < 1, are similar to those for &« = 1. We only
state them in a case analogous to Remark 2.10.
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PROPOSITION 2.12. Let ¢(t) =1t%, o € (0, 1), and assume

2K logl 28
(215/) rvVv :3}1/(2_“) > \/S + 0g qu(q /I") ‘
n
@) If By, <r>~%, then forall s > 0,
P.f—P
Pr{ sup M — By
fle'?q ¢q(opf)
(2.19) Pi=
2(1—a)
22«/17\/“"S 2Ky }§2Ke_s,
n

where ¢g,q = SUPy_, <54 u*1=9 Jog log, (q%8/u).
(b) If B > 2 st >0and

§2(l-) L 2K 2t t
B, ;=2«/17\/s e, vayi | P
n nr®log((t/(17nr%B,)) v 2) nr¢
then
P.f—P 11
(2.20) Pr{ sup 1Puf =PIV Bul > Bn} <K?>’———¢7"K 4L 2KeS.
rer @qlopf) q*—1t

r<op <8

PROOF. Take V,,(p;) = 17p%B, if p;~* < B, and V,(p;) = 17p7 otherwise.
In the first case, set s; = sq® and in the second sj =s+2K loglog, (qzé/pj) or
e2/® /2 times this. O

The case ¢(¢) =t“L(1/t) with L monotone and slowly varying at infinity is
also easy to handle, and we will when needed.

It should be noted that the bounds in the last three propositions are sharp only
to the extent that the estimate V,(p;) < ,012 + 16Y,(p;) is sharp. Sometimes the
class F; can be further decomposed into a relatively small number of classes Fj x
for which V;, j x < c,ojz-, and then it is Theorem 2.1” that gives inequalities leading
to sharp results.

3. Inequalities for expected values of suprema of empirical processes un-
der uniform, regularly varying (or slowly varying) entropy bounds. We need
good bounds for ¥, (p;) in order to apply the inequalities in Section 2. In this
section we do this for a large collection of classes of functions that includes the
ubiquitous VC classes. In the theorems below, we assume that the functions in &
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take their values in [—1, 1] and they are P-centered, and F < 1 denotes a measur-
able envelope of ¥ . For each n, we set

IFll2 := I FliLypys I F 12,0 := 1 Fll LR n €N,
and let o be a positive number such that
(3.1) sup Pf? <o <||FJj3,
feF
unless we specify
(3.2) o= sup Pf>.
feF

We also let H : [0, o0) — [0, 00) be a regularly varying function of exponent 0 <
a < 2, strictly increasing for x > 1/2 and such that H(x) =0 for 0 < x < 1/2.
Given such a function, we let the quantities Cy, Dy, Ap satisfy

)

~H W) d
oo>Cstupfx - () v
=1 X LWH®X)

o0
oo > Dy 2/ u_z\/H(u)du,
1

log(Dpx/(4CH~/H(x)))
00 > Ay > sup 3 v L
x>2 X

’

Finally, if (T, d) is a pseudometric space and ¢ > 0, then N(7T,d, ¢) denotes the
& covering number of (7', d) (the smallest number of open balls of radius at most
¢ needed to cover T') and D(T,d, ¢) denotes the ¢ packing number (the largest
possible number of elements in T separated from each other by at least a distance
of ¢), and recall the elementary inequality

N(T,d,e) <D(T,d,e) <N(T.,d,e/2)

for all ¢ > 0, that we will use without further mention.

THEOREM 3.1. If

(3.3) log N(F ., Ly(Py). T) < H( ”Ff”z’”>

forallt > 0,n € Nand w € Q, then there is a positive constant C (H) that depends
only on Ay, Cg and Dy, such that

D f(Xi)

1
——F
CH) |3

F

a4 <[VAlFIh] A [(ﬁa H(2||§||2>>

2IIF F
VH( I ||2/\ﬁ|| |Iz>v1]
o 1440Cy
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The bound
2||1”||2>} [ <2IIF||2)}
3.5 —E X; < H V| H ,
65 Ef( ) _[ﬁa (% -
which also holds in general, is useful when no? > ¢ > 0. Finally, for any ¢ > 0, if
2||F
(3.6) no? > cH<M),
o
then

(3.7 (Xi)

< K(H. o) o H(2IIF||2>’
F o

for a constant K (H, c) that depends only on H and c.

PROOF. We delete the subscript £ from norms when no confusion may arise.
By standard symmetrization, E|| Y7, f(X)I| <2E|| X7 & f(Xi)|. Set

op = Puf?llz.

The usual entropy bound for sub-Gaussian processes (for the constant, we com-
bine the last display on page 320 of [29] with Theorem 11.17 and first display on
page 322 of [29]) gives

f28,f(X)

20,
< 6OE/ JIog N(F, La(P,), 7) dt
0

on F
(3.8) < IZOE/ H(” ”2’”>d
0 T

On 211 F
sleE[/ ‘/H( ”tnz)dﬂ(llFllznS2IIF||2)]
0
On F n
+120E[/0 1/H(” l'z’ >df1(||F||2,n>2||F||2)]-

Now, [o" VH(Fll2,n/T)dt < [IF 2,8 Jo VHJu)du < Dy||F||2.n, and there-

fore, Holder’s inequality followed by Bernstein’s gives

o [ F
o[ \/:dTI(I|FI|2,n>2||FII2)]

<DH||F||zexp{— n||F||2}

3.9
< 2\/»
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for the second summand in (3.8). To bound the first summand, note that by con-
cavity of f(f h(t)dt when h \, and by the properties of H, if ||o,]2 < B,

EU H<2||F||2)d 1(||F||2n52||F||2)]
0 T

o A2[FIl2 2F
SE/ H( l ”2>d‘c
0 T

lowln21F [ /21 F
(3.10) < f H ( ) de
0

T

BA2|[F|, 2| F|2
S/ H( )d‘L’
0 T

- CHB\/H< E )

B B A2||F|l2
Taking B = || F||2 in (3.10), inequalities (3.8)—(3.10) give the bound E|| }"7_, &; X
F XD <60(Dy + 2/H(2)Cy)/n| F||2, hence the first term in the minimum
at the right-hand side of (3.4). This bound is accurate only if || F'||2 is comparable

to o, and useful only if 4/n| F||, is not too large. Otherwise, to get the remainder
of bound (3.4), we use (2.2) to the effect that
8
||<7n||%§<72+<ﬁ ),

and take the right-hand side term of this inequality as B in (3.10). Inequality (3.10)
with this B then gives, using (3.1),

E|:/Un H<”F”2’n)dl’ I(||F||2,n > 2||F||2)]
0 T

2||F||2)

o

1 n
E|—=> & f(X)
el

<Cgyo H(

n

Zs, (X)

’ < H<2”:”2> ’ J H(J<8/n>E|| > Zlnjixun A 2||F||2> )

x/_CHJ
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Combining this inequality with inequalities (3.8) and (3.9), and setting
E:=E|Y"_ ;& f(Xp)l, it follows that

2| F
either ~ E<120Dy or E <360Cy+/no H( I ||2>

o

or E<8. 1202C§,[H<2”§”2) A (H(%) v H(l))]

Now the result follows using elementary algebra, upon observing that if W (x) :=
x/H(1/y/x),0<x<1,then W~ ) <u(H(1/Ju)Vv1),0<u<1/H(). O

It is easy to keep track of the constants in the previous proof, but not necessarily
useful.
Several remarks on the previous theorem are in order here.

(1) One may ask for similar inequalities for higher moments. In fact, Theo-
rem 3.1 together with Proposition 3.1 in [23], yields that there exists a constant
C(H) that depends on H only through Ay, Cy and Dpg, such that, under the
same assumptions as in Theorem 3.1, foralln e Nand p > 1,

n P
E|Y " f(X)
i=1 F
2 F |l 2IF|l  /nlFl2\\”
p
i scran({(vier(F0E) ) v (R A )|

v pP2(Jn o)’ \/ppj|.

(2) In (3.3) we could replace H (|| F||2,,/7) by slightly more complicated ex-
pressions and the proof of the theorem would still yield sensible bounds; for
instance, we show in Example 3.7 that for VC-major classes the right-hand
side of (3.3) is of the form Hi(||F|2,n/t) + H2(|| Fll2,n/7)log(A/|| F|l2.n), with
Hy and H; regularly varying of exponent 1, and with the whole expression
monotone in || F||2,,, and in this case the proof of Theorem 3.1 works with only
formal changes.

(3) Note that it is the regular variation of H that allows us to replace the typical
entropy integrals by actual entropies in Theorem 3.1. This is significant because
it turns out that a partial Sudakov inequality for Rademacher processes due to
Talagrand ([29], page 114, Proposition 4.13) allows us to obtain a lower bound
for expectations that in some cases is of the same order as the upper bound (3.4).
Here is this inequality applied to classes of functions whose absolute values are
uniformly bounded by 1:
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LEMMA 3.2 (Talagrand). There exists a universal constant L such that

1 & 1
(3.12) | e > 28\/log N(F . La(P). ).
i=1
whenever
ﬁsz
(3.13) [Zs,f(X) T

We will apply this result with § = o/8. In what follows, the function H satisfies
the same conditions as in Theorem 3.1. Also, we set || F |2, := | FllL,(p,)-

DEFINITION 3.3. A class of functions £ that satisfies condition (3.3), that is,

F
log N(F, Ly(Py). 7) < H( | ”2’”)
T

forall T > 0,n e Nand w € €2, is full for H and P if there exists ¢ > 0 such that

(3.14) log N(F, Ly(P), 5/2) ch<”I;”2).

THEOREM 3.4. Let F satisfy condition (3.3). Assume

16A 6l F
(G.15) no? 22500V =, nazz[(672L2)\/1]19202C%1H( | ”2),
o
where L is the constant in Lemma 3.2. Then,
n
3.16 E X)| = log N(F, La(P), /2
(3.16) ;ﬂ )?_32 7 Jiog 2(P).5)2).

In particular, if a class ¥ satisfies the entropy bound (3.3) and is full, then, for
all n for which conditions (3.15) hold,

|F||2
16L

E|Y f(Xd)
i=1 F

(3.17)

2| F
<1920CH/n o H( | ”2).

o

PROOF. By Talagrand’s lemma above,

(3.18)

1 & 1
| e > 22\ log N (F. La(Py). o/8),
i=1
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whenever

fa

T 64L

(3.19)

Z&(X)

Now we will lowerbound the right-hand side of (3.18) and upperbound the left-
hand side of (3.19) with large probability. We start with the right-hand side
of (3.18). Let D := D(¥, L>»(P),0/2). By the law of large numbers applied to
D functions in F and to F, for all £ > O there exists n and w such that
D(F,Ly(P),0/2) < D(F, La(Py(w)), (1 — £)o/2)

< N(F, Ly(Py(®)), (1 —&)o /4)

and

IF Nl Ly Paeyy < (T +&)F 2,
so that, taking, for example, ¢ = 1/5, we obtain by (3.3) that
(3.20) D(¥,Ly(P),0) < e OlFl2/0)

Let f1,..., fp be a maximal set of £ satisfying P(f;i — fj)2 > ¢2/4 for all
1 <i # j < D. By Bernstein’s inequality (e.g., in the form given in [8]), since
moreover P(fi — fj)* <4P(fi — f})* <1602,

Pril max D(nP(f,- — =Y (i - fj)Z(Xk)) > 81+ \/32th2] < D%
Si#j< =1

Hence, taking ¢ = 8no? and using P(f; — fj)2 > 02 /4 and (3.20),

Pr{ min Z(ﬁ f] (Xk) <0 (i_ @ _ 32 )} < eZH(3||F||2/0)e—8n(72’

1<l7$]<Dl’l

which for § = 1/(32 . 83) gives
2
P P, eH Gl F2/0) fncrz/(32~83)'
r{1<f§11n (fi = i) = 16} ¢

This implies that the event A; on which
N(F,Ly(Py),0/8) > D(F,La(Py),0/4)
(3.21) > D = D(F,Ly(P),0/2)
> N(F, L2(P),0/2)
has probability
(3.22) Pr(A}) > 1 — HOIFI2/0)—n0?/(328)
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Under the present hypotheses, (3.7) holds; actually, the proof of Theorem 3.1 gives,

before desymmetrizing, that
2||F
<960Cy/n o /H( ” ”2>,
o

in particular giving the right-hand side inequality in (3.17). Therefore, using
(2.2) and (3.15), we have

E

Y e f(Xi)
i=1

> (f2(X) — Pf?)

i=1

XD

i=1

E <no’*+E

Y e f(Xi)

i=1

< 2no’ + 8E

2IF
<2102 +4 x 1920Cy /1 o H< I ”2)
o

< 6no 2.

Hence, Bousquet’s version of Talagrand’s inequality ([10], Theorem 7.3; see
also [32]) gives

|

which, taking t = 26n02, becomes

|

[Here we could have used Talagrand’s inequality (2.1) instead of Bousquet’s, but
the resulting bound would have been less neat.] So, the event A where

S (2 (X — Pf)

i=1

> 6no? +v26tno? + t/3} <e !,

S (fA(X) — Pf?)

i=l

_ 2
2411162} < g 26n0”

(3.23) Xn: F2(X)| < 42n0?
i=1
has probability
(3.24) Pr(Ay) > 1 — ¢~26097,
Also, by Bernstein’s inequality, as mentioned above, the event
(3.25) A3 ={[Fll2,n =2l Fll2}
has probability

(3.26) Pr(A3) > 1 —exp{—3nl FII3}.
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Now, on Ay N Az, the usual entropy bound and (3.15) give

On | Fll2,n
<120 H dr
0 T
V420 2 F >
5120[ H( )dt
0 T
20 2€WE
(3.27) 560\/42/ /H( I ”2)dr
0 T

F
< 120V/42Cy o H(” ”2>

o
Jn o?
< :
64L

E;

1 n
ﬁ Zgif(xi)
i=1

It follows from (3.18)—(3.27) that

D e f(Xi)

i=1

(3.28) E

> %\/log N(F. La(P), 0/2) Pr(A; N A2 N As3)

F
and that
Pr(A|NAyNA3) > 1 — eH(6||F||2/a)—n02/(32-83) . e—26n62 . e—9n02/4.

This last probability is larger than 1/2 by the inequalities in (3.15). So, integrat-
ing in (3.28) and desymmetrizing, we obtain inequality (3.16). The left-hand side
of (3.17) now follows from (3.16) and Definition 3.3, proving the theorem. [J

Theorem 3.1 recovers and improves on inequalities that go back to
Talagrand [42] (see also follow-up work in [20, 21, 35] and, more recently, [22],
where only the first and last of these four references use the L, norm of the en-
velope in their inequalities). Theorem 3.4 shows that, at least for large n, these
inequalities are sharp up to constants.

EXAMPLE 3.5. Suppose that ¥ is VC-subgraph, that is,
{x,0):0<t<f)}: feFlU{{(x,):0>1> f(x)}: f € F}

is a VC class of sets. Or, more generally, suppose ¥ is VC type, that is, there exist
A > e and v > 1 such that

A|llF v
N(F, L2(0), 7) < (7” !Lz(@)

for all 0 < v < 2||F||1,(p) and all probability measures Q, where F := sup{| f|:
f € F}. Inthis case H(u) = vlog(Au) is slowly varying (« = 0) and we can take
CH = 2, Dy =2A\/E/€ and AH =A.
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Since subsets of a VC-subgraph class are also VC-subgraph, this can be applied
to the class F (1™, 11 ={f € F :tq~' < op f <t} with its measurable envelope,
say, F;. Define

AllFtl2\"
”;”2)’ 0<i<l.

8q (1) =<

where || F||2 := || F'||L,(p)- Then the function log g, (¢) plays the crucial role in the
expectation bound for the class F (rg~', r] (which is needed in the inequalities of
Section 2 for ratio type suprema). In Sections 4 and 5 below, this function will be
involved in conditions for limit theorems about ratio type empirical processes on
VC-subgraph classes. It turns out that if ¥ is a class of indicator functions (i.e.,
we are dealing with a VC class of sets) such that PC < 1/2 for all I¢ € ¥, then
PrlU{C:Ic € F,tq7" Ic) <t
A_z(gq (t))z/v _ r[U{ C ZZ <op(lc) <t}]

is comparable to (in fact, posssibly smaller than) Alexander’s [2] capacity func-
tion g(tz).

EXAMPLE 3.6. The scope of Theorem 3.1 is much larger than just VC classes.
For instance, let ¥ = {f;, := Iaw)/log(n Vv e),n € N}, with A(n) C [0, 1] inde-
pendent for Lebesgue measure and with Lebesgue measure equal to 1/2 (intro-
duced in [16], proof of Theorem 2.1), and let P be Lebesgue measure on [0, 1].
Then, F :=1and o = 1/2. Also, considering the L, (P,) balls centered on the first
m functions, with m of the order of e!/¢, it is easy to see that log N(F, L2(Py), €)
is of the order of a constant times 1/¢, independently of n. Then, Theorem 3.1
gives that E|| Y7, f(X;)|l < C4/n for some fixed ¢ < oo, and this is best possi-
ble up to constants since F is P-Donsker.

Other classes whose covering numbers are not polynomial include VC-major
and VC-hull (see [16] for definitions). We mention the definition of VC-major, that
we use below: ¥ is VC-major if the collection of sets {{s € S:
f(s)>t}:t eR, f e F}is VC. The following bound on the entropy of such a
class is, most likely, new. Note that, as in the case of VC-subgraph classes, it also
involves the envelope of the class.

EXAMPLE 3.7. Suppose that ¥ is a measurable VC-major class of P-cente-
red functions whose absolute values are bounded by 1. Our goal will be to show
that there exists A > 0 such that for all probability measures Q and all 0 < 7 <

Al F Al F 1
IOgN(T, LZ(Q), T) < || !Lz(Q) log( ” !LZ(Q))10g<T>

To this end, take #; := (1 + )7, Jj >0, and let m(t) be the smallest j such that
tj <T||FllL,y(0)- Clearly,

m(r) = IOg(l/(ﬂLF”Lz(Q)))'
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For f € ¥, define

m(z)
fri= Z l‘j](l‘j <f Stj—l)-

j=1
Ift; < f(x) <tj_y for j <m(7), then
0< f(0) — fr(0) <tj1 —1; =t1; <Tf(x) < TF(2).
Hence, as soon as f(x) > || F|l1,0)
0= fx)— fr(x) =TF(x),
otherwise
0=<f(x)— fr(x) = f(x) =Tl FllLy0)-

This implies that

Lf = fellZ,0 < T2UF 1,00 + T2 IF 12,00 =272 F 1 Z,0)-
Denote 7 :={f;: f € ¥}. Since

m(T)

{0 fe@) =y = [ s FOO) = 1521} x (15,2511

j=1

and ¥ is a VC-major class, the class F; is VC-subgraph with VC dimension
bounded by Vm(t) for some V > 0. Clearly, F is an envelope of F; (since
0< fr < fforall f € F). Therefore (see, e.g., [47], Theorem 2.6.7), for t > 0

Vm(r)
N(F2: L2(0): Tl Fll o) < (;) ,

which implies

Vm(r)
N(F: Lo(0): 37| Fllao)) < (?) .

Taking into account the bound on m(7) and changing variables t || F||z,0) > T,
the result follows. Note that the bound can be also written as

log N(F, L2(Q), 7)

< AllFllL,0) [10g2<A” Fllr,0) )
T T

+ log(iAllFllLZ(Q))log<71 )}
T AllF Ly

:=H(IFllLy0), T),




NORMALIZED EMPIRICAL PROCESSES 1173

which can be used in the proof of Theorem 3.1 (with some modifications), to give

Zf@)

S (WnllFllypy(1 +\/10g (Al FlLypy) 1))

Ao H(IF sy, 0)) v H(IFllycpy, o) v ylogn ]

EXAMPLE 3.8. As a more specific example, consider the class ¥ of nonde-
creasing functions from [0, 1] into itself. Obviously, it is a VC-major class. Let P
be a nonatomic probability measure on [0, 1] and let G be its distribution function.
Denote

Fs:={f e F 0bf:=Pf2<8?,

which, of course, is also a VC-major class. An easy computation shows that the
envelope of Fj is

Fs(x):= sup f(x)=
feF Pfr<s? Plx, 1]
(if x is such that P[x, 1] > 82, then the supremum in the definition is attained at
the function f, such that f,(y) =0 for y < x and fy(y) = \/% for y > x;
otherwise, the supremum is equal to 1). Let x5 be such that
Plxs, 11=1— G(x5) = 8%
Then
*s P(d
1E13= PR =g [ L
0o Plx, 1]
% dG ld
:52/ _46() +52=52/ D 52 = 52108 <.
0o 1—Gx) 82y 52
Hence

1Fsl2 _ . €
5V 8s

and using this together with our bound on the entropy of VC-major classes in
Theorem 3.1 yields, by a simple computation,

mm—mﬂsfmw)mmmw>m

A1
v L1ogs™) 2 toglogs") v V£
n n
So, in spite of the fact that the entropy of the class of monotone functions is rel-
atively large, the supremum of the empirical process over the class F5 of “small”
monotone functions is of about the same size as for VC-classes of sets due to the
small size of localized envelopes.
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4. Ratio limit theorems I: rates when ¢ () = t*. In this section we will
derive limit theorems a.s. and in probability for general ratio empirical processes,
as direct applications of the bounds in Section 2, and we will specialize these to
different types of classes of functions, particularly, VC classes, for which we will
use the results from Section 3.

4.1. The case ¢(t) = 2. We begin with a law of large numbers already in [22],
Theorem 6. In this case we take o%, f = Pf (recall that the class # consists of
functions taking values in [0, 1]). We set

lgmq = :Bn,q,tz = Sup wn(fj) ’
lfjfln IOJ

where pj = g/ry, 1 < j <y, with I, =loglog, (8¢ /rs).

THEOREM 4.1. LetO<§<1landr, \(O.Let 1 < g, <2 be anonincreasing
sequence such that log(g, — 1)~ = o(nr,%). If nr,% — 00, then the condition

“4.1) Bn.g, = 0

is necessary and sufficient for

P
4.2) sup Lf—l‘—>0
rer | Pf
r2<Pf<8

in probability. Moreover, if 1 > q,, —1 > (logn)~° for some § > 0, nr,%/ loglogn /
oo and B g, /+/n \\ 0, then condition (4.1) is necessary and sufficient for the limit
in (4.2) to hold a.s.

PROOF. The “in probability” part of the theorem follows directly from Propo-
sition 2.8 with s =5, — 0o such that s,l/(nr,%) — 0 and s”/log(q,% -5 0.
The “a.s.” part follows from Lemma 2.3 together with Proposition 2.8 with s =
spn =2+ 38)Kqgnloglogn. U

The condition nr,% — 00 is natural in this problem: it certainly is for ¥ =
{Ii0,1:0 <t <1/2},since Y7 Ij0,1/n)(X;) =1 =4 N — 1, where N is Poisson 1.

For a specialization of Theorem 4.1 to VC type classes of functions, obtained by
replacing v, (p;) in the definition of E, 4 by its estimate from Section 3, see The-
orem 10 in [22], which recovers classical results and compares to the sufficiency
part of Theorem 5.1 of [2] if we restrict to VC classes of sets.

Regarding rates, Proposition 2.8 also gives immediately the following:
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THEOREM 4.2. (a) For g, € (1,2] nonincreasing, and with vy, := nr

log(g, — 1)~!, the sequence

< 1 A Yn
,Bn,qn 1+13”?f[n

4.3)

_ P
A ynlog(va (1 + Bn.g,) 1v2)> sup ‘ }:’f—l‘, n €N,
feF
rn2<Pf§E
is stochastically bounded.
(b) With gy, as in part (a), if
“4.4) sup Bu,g, <00 and /¥YnPn,g, —> 00,
n
then
1 P
4.5) lim sup ‘ nf 1' =1 inpr
n n,qn feF Pf
r,%<Pf§6

1175

2
n

/

Lemma 2.3 and Proposition 2.8 also give almost sure counterparts of Theo-

rem 4.2, that we leave to the reader.

Here is an example showing that normings other than B, := 8, 4, do occur

in (4.3).

EXAMPLE 4.3.  Our object here is to exhibit an example of a class of functions

that satisfies

(4.6) nr2 — oo and /nr,fy, — 0
for which the sequence
1 Puf
4.7 — sup ‘ — 1, n €N,
Bn feF a1l Pf
is not stochastically bounded, but the sequence
P
(4.8) JVn  sup nt —1], neN,
feF ol Pf
is. Let &, ; be independent random variables with
1
Pr{ek,jz1}:.—2=1—Pr{8k,]~=O}, j,k €N,
J
and

8k,j

sz( _ :k=1,2,...),
(log j)?
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where logx :=log(x V ¢) [and below, loglogx = loglog(x V ¢°)]. The variables
X are i.1.d. c,-valued r.v.’s.
Let

F={fj()=x;:j N},

where x; is the jth coordinate of x € ¢,, so that Pf; = (j log j)~2 and

Py = P)(f}) = (log wlog /) Z( e~

and
Pnfj j2 i .2
—1==— N .
7 - g( kj—J )
Set
logn 1
rn = ﬁ , d= 2
CLAIM 1. There is a permissible g, such that
B, =p ./log logn
nan S (logn)?

PROOF. We can take

|Pnf_Pf|

where 2 > g, \ 1 is such that

log 1_ T = o(nr?) = o((logn)?).

n

In fact we take

(logn)*
N

In order to upperbound B, we note that the number of integers j such that u? <
Pf < uzq,%, that is, such that (ug,)~' < jlogj <u~!, u > r,, is dominated by

1 1 -1 —1

L _ qn < dn <logn

U ugy ugy Tnqn

gn=1+
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because if F(x) =xlogx, x > 1, then (F_l)/(y) < 1. Moreover, the smallest j in
this range, call it j (u), satisfies

—————— and j(r,) = T > Vn 5
uqnlog(ugn)~ rngnlog(rpgn)=—" — 2(logn)

Bernstein’s inequality and Lemma 2.2.10 in [47] (a convexity argument due to
Pisier) then give that, for some universal constant K,

Jw) >

P,f—P
u>ry feF u
L¢2§Pf<u2q%

K
S Su
usty nu2(log(1/ (1gn 10g(gn)1)))2

1
X [§ log(1 + logn)

+ /nug, log(uqn)*1 log(1 + log n)}.

Since this bound is the sup of a decreasing function of u, we have

5K 1
B < W[— log(1 4 logn) + (logn)z,/log(l + logn):|
i (logn)= 13

- 6K /loglogn
~  (logn)?

at least for all n large enough. Claim 1 is proved. [J

It follows from Claim 1 that:

(i) B, — 0,and
(i) irf < SAfRERE 0,

logn

in particular, (4.6) holds. From (i) and Theorem 4.1, we know that

Puf ‘ :
sup —1/—0 in pr.;
przrz| Pf
in fact, from Theorem 4.2,
P,
(logn)'/? sup Lf—l , neN,
Per,% Pf

is stochastically bounded [note that /¥, = /nr,/,/log(g, — 1)~ is of the order

of (log n)1/2], so that (4.8) holds. Next we are going to show the following:
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CLAIM 2. For any A, — 00, the sequence

)Ln(logn)y2 sup Lf 1], neN,
Pf>r Pf
converges to infinity in probability, hence so does the sequence
1 P
— sup nf — 14, n €N,
18’1 Pf>r2 Pf

by (ii) above, B, = o(/Toglogn/(logn)?).

PROOF. Since j < /n/(logn)? implies Pf; > r , it follows that

P.f ' Z(Ek]—Jz

sup
Pf>r,%

max
j=/n/(logn)*> N

(4.9)

n

> (ex,j — j‘%‘.

k=1

1
> max
4(logn)* Ju/2(10gn)?<j</n/(logn)?

Now we estimate this supremum. First we note that, by direct computation (or,
e.g., by Hoffmann—Jgrgensen’s inequality), if & is Bin(n, p) and np(1 — p) > 1,
then there is a universal constant ¢ < oo such that E|& — np|® < c(np)>/?, which,
by Berry—Esséen, implies

C
(4.10) |Pr{€ —np <t,/np(1 — p)} —Pr{g <1}| < 7

for another universal constant C, where g is standard normal. Hence, for any A =

A, >0,
>A}

>A})

> 1 _1;[<1 —Prllgl > ﬁj‘lh} + 27%)

where the product is over the set of j’s such that \/n/2(logn)? < j < /n/(logn)>.
Now,

Z(k]_] 2

k=1

Z(gk i~

Pr max
Vi/2(logn)?<j<y/n/(logn)?

4.11) =1—H<1—Pr{

A 2A

<
Jajfi— 2 T Gogm)?
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and, by well-known Gaussian computations, for 2A > (logn)?,

Pr{|g| > L} = \/Z/ eI gy > 447 Qogn)?
(logn)? 7 J24/(ogn)? -

Hence, taking

4A2 1 |
—— = —logn,
(logn)* 3 8
we get
A C 1 2C  2c,(logn)?
Prilgl> ——t——F—=2> 7 ——F—=—"F7—",
(logn)? Jn a3 n Jn

with ¢, — 0o [¢, is of the order of n!/ 6/2(10gn)2]. Replacing this estimate
into (4.11), gives

k=i

k=1

> %(logn)s/z}

Pr max
V/n/2(ogn)? < j<\/n/(logn)?

2¢,(logn)? i/ Q2(logn)?)
>1— (1 _ 7)
Jn

>1l—e " — 1.

Hence, by (4.9),

Pr{ (log n)3/? sup
Pf>r?

?f—l‘>%}—>l,

proving Claim 2. [J

4.2. The case ¢(t) =t. Hereis aresult on convergence in probability and sto-
chastic boundedness of the “normalized” empirical process. It expands Theorem 1
in [22].

THEOREM 4.4. Let¢(t) =1,6 < 1,r, \\Oand, for1 <q <2,let B, 4 denote
ﬂn,q,t- Set

e PSP
n rn<;Py}f§§ UPf

Then the following statements hold:

(@) If for all q € (1, ) for some o > 1, \J 22T v L — o, ). then

Eg—gn — 1 in pr.; also, there are sequences q, \ 1 such that ﬁf’; — linpr.
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(b) If for some q > 1, ,/% Y % = O(Bn,q), then the sequences
En

It and S” are stochastically bounded.

© Iffor some q > 1, 4/ % = O0(Bu,q) and nryfy 4 — 0, then the se-
quence [nrylog(1/(nryBn.q))1én is stochastically bounded.

1 loglog 1/ry, 1 s
(d) Let o % — 0o and — = O(Bnq) for some q > 1; if, moreover,

>/ logl%, then m&q is stochastically bounded, and otherwise,
< n nrn log((nrz) Iy 2))
\ loglog,, l/rn /loglog,, 1/
(e) Let ﬁ,/% — 00 and nryPyq — 0 for some q > 1. Then, if

m = ,Bn,q,
( n L log((nr>)~'v 2)>€
loglog1/r, J/loglog1/r, "

is stochastically bounded, and otherwise,
[ n nrylog((nr)~! v 2))
log(1 A A
(nrn og( /(nrn,Bn,q)) loglog1/ry loglog1/r, n

PROOF. (a) In this case condition (2.15) is satisfied and we can apply in-
equalities (2.16) and (2.17) with s = s,, = 00 so that s = O(loglog(1/r,)) and
t =t, — o0 so that 1, = o(nr, B, 4); then the lower bounds 7, 4 ; for

|Pnf — Pf

m<op f<8 ¢q (opf)
feF

is.

is.

- ﬁn,q

in these inequalities are o(B,, 4). Now the result follows because ¢ < ¢, (¢) < gt
and B, 4 < Eu g < Bu,g + Ctny [see the proof of Theorem 2.1 for this last in-
equality, which holds when the probability in (2.4a) is less than 1].

(b) Follows from similar considerations.

(c) In this case (2.15) is still satisfied (at least up to a multiplicative constant
whose only effect is in the multiplicative constants in the probability inequalites).
Then, since n,B2 1.q —> 00, necessarily B, > r, from some n on, and inequality (2.17)
applies. Under the hypotheses of (c), we have (with < signifying “little 0”)

loglog, (1/ry) Bn 1
[ et /T
n Sh < nry < nrylog(nr,By) !

so that ¢ times this last term is the dominant one in 7, 4, inequality (2.17).
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(d) In the first case, By,4 < /n~!loglogn <r, and (2.16) applies. Otherwise
we must use (2.13) and (2.14); for (2.14), note that if 8, ;4 > r,, then

1 loglogn
g B cp,, « [REOE
nrylog(10 v (nryBn,q)~") nry n

(e) Follows using (2.13) and (2.14), from similar easy considerations. [

A similar result for the a.s. size of &, can be obtained as well. One applies the
same principles but makes sure that Lemma 2.3 is satisfied. For instance, direct
application of Remark 2.10 and Lemma 2.3 gives that if

Bn.,q ¥, 2 and loglog1/r, Vloglogn y loglogn = o(Bng)
vn n nry ’
for g € (1, @), then
lim sup Sn <1 a.s.
n—o0 n

To show that this lim sup is actually equal to 1, apply Remark 2.10 for n; = X and
Borel-Cantelli, as in the second part of the proof of Theorem 2 in [22].

EXAMPLE 4.5. We now modify Example 4.3 to show that the condition

/loglog, 1/r 1
B R N 0(Bn.q)
n nry

from part (a) of Theorem 4.4 has some degree of sharpness (the problem with
absolute sharpness is that we are not using the exact value of 8, , to violate the
condition, but only an upper estimate), so that our example will satisfy

nrpBug < K < o0,

but it might well be that actually nr,f, , — 0, which might be too strong a viola-
tion of the condition.
We consider

|Pof — Pfl
&= sup ——M—
rp<opf<§ op f
from Theorem 4.4 with, for example, § = 1/8, and (see also Section 2)

fo= s ~E( s 1Ps—Pr1),

u€(ry,d] u u/qn<opf=<u

with g, N\ 1 and r,, \( 0. Take & ; and F as in Example 4.3, and X} = ( k=

fogj -/
2,...) €co. Since Varp(f;) = is of the order of 1/(j log j)?

1 1
j*(log > j*(log j)?
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for large j and ﬁn_ U /n, taking 012,( f)=1/(jlog j)* will be equivalent to tak-
ing o,%(f) = Varp(f). Now define
1
=—, =1 logn.

n nloglogn n T rnlogn

If, for u € (r,, s] we set
Ju={j:u/gn <op(fj) <u}
={ju/gn <1/(jlogj) =u},

we have

Jw):=min{j:j ey} = ———
ulogu
and
gn — 1
I'n

1
Card(J,) < an _ 2 < <logn.
u u

Using Bernstein and Lemma 2.2.10 in [47], as in Example 4.3, we obtain

AT )

U Nu/gn<opf=<u

K 1
< —logl logu~!/log1 }
= pulog(1/(ulogu—1) [3 oglogn + v/nulogu oglogn

Taking the sup over u € (r,,, §) we obtain that

<K loglogn
n =

n

for some other K and for all n large enough. So, as mentioned, we have

nry E,, <K.
Now we show that &, /8, — oo in probability (actually faster than any rate A,
such that m — 0). First we observe that
&n 1 “ 2
2w > sup ey~ i)
IBn ogn (1/2)y/nloglogn/logn<j<./nloglogn/logn | k=1

and then we easily check, proceeding as in the previous example, that

1 1
Pr{2K$~l>— OEn }—)1
4\ loglogn

n

as n — Q.
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Next, we will consider the case of VC classes of functions, for which we will
obtain a result that, although it falls short of recovering the full strength of The-
orem 3.1 in [2] when restricted to classes of sets, still gives best possible results
up to constants in the classical situation of the uniform empirical c.d.f. in several
dimensions, indicators of intervals for the uniform, and half-spaces for the normal
(Corollaries 3.5, 3.7 and 3.9 there).

We refer to Example 3.5 for the definition of VC-subgraph classes of func-
tions and recall that, by a result of [40], reproduced in [15], if ¥ is a bounded
VC-subgraph, there exist A > e and v > 1 such that, for every subclass § C ¥, if
G is a measurable envelope for §, then

AllG v
N(§.L2(Q).7) < (M)

for all probability measures Q and 0 < v < 2||G||1,(p). Hence, by Theorem 3.1
there exists a constant 1 < K| < oo such that if & is such a class and, moreover,
it is suitably measurable and consists of functions taking values in [0, 1], then for
allg € F,

E

(X - Pf)”
%

i=1

[ AIG
4.12) gKl[ﬁ||G||2A<ﬁ09 log 1G1l2
a4

vlog<A”G”2 A ﬁ||G||2) v 1)}

9

In particular this applies to the classes F (g~ !, t]={f € F:tq~' <opf <t}.
Letting F; denote a measurable envelope of & (tq_l, t], we define (as in Exam-
ple 3.5)

Al Fll2\Y
I t||2)’ 0<r<l1.

@.13) ga(t) = (

where || Fll2 := | Fllzy(p)-
Assume that op(f) [which is always > Var}o/ 2( f)] satisfies the following con-
dition:
Vfie¥F I fll2<Cop(f)

with some constant C > 0.
Recall that, given f_, fi € L(P), the set

[f—. frl={felaP): f- =< f=<f4)

is called an L, (P)-bracket of size (or of order) § > O iff || f — f_|l2 <. It will be
said that £ satisfies the local bracketing condition iff there exists a constant K > 0
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such that for all f € & and 0 < § < op(f)/K there exists an L;(P)-bracket
[f—, f4] of size K& such that

{geF:lg—flla=d}Clf-, f4]

[in other words, L, (P) balls of radius § are to be covered by L, (P)-brackets of
size K 4.

Given 0 <r <8 <1 and 0 < g <2, with p; :rqj, j=0,1,...,1 =
log,(8q/r), we also define

(4.14) w=w(r)= Org?gl(log log,(8q/p)) v (log g4 (p;)).

In the following theorem, we go as far as we can toward extending
Alexander’s [2] Theorem 3.1 to classes of functions.

THEOREM 4.6. Letl <qg <2andr, — 0. Let ¥ be a VC-subgraph class sat-
isfying the local bracketing condition. Then the following hold with w, := w(ry).

(a) Ifliminf, nr,f Jwy, > 0 (infinity not excluded ), then the sequence

n |Pnf — Pfl

— sup —_—

Wy feF opf
m<opf<é

is stochastically bounded.
(b) Iflim, nr,%/u)n =0 and log ;”7"2 = O (e™ ™) for some t’' > 0, then

nry log(wn/nry) wp \Fnf =PI
Wy feF opf
m<opf<é
is stochastically bounded.
(c) These statements with stochastic boundedness replaced by lim sup finite
a.s. (in fact a constant) also hold with w, changed to w, = w, V (loglogn)
in assumptions and conclusions, under the extra hypothesis that W, /n* | and

Wp i/
132y, log(wy, /(nr2)v2) ¥°
To prove the theorem, we start by adapting Theorem 2.1’ to this situation, using
the bound from Section 3. Let us set up the simplifying notation
Fi=F(pj-1,p)]
and denote as F; a measurable envelope of ;.

LEMMA 4.7. Let & be a (measurable) VC-subgraph class of functions taking
values in [0, 1], and let A, v, K1,0<r <68,0<q <2, p;, Fj,1, g4 and w be

as above. Assume further that for each j for which nplz- <w, Fj= U,I(V;  Fj.x and
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Fj ik has an envelope F i satisfying || Fj i|l2 < K»pj for some Ky > 1 [i.e., F; de-
composes into Nj Lo(P)-brackets of size of the order of pj]. Then, for s < 2K %w

Pr{ . |P,,f—Pf| ge’sI (nr? < w)
feF opf nr(l Vv log(e2s/(K3nr?)))

r<opf=<é
7 2w
+2q(17K1 + K1 K> + K5) P

—34K1w>
K

(4.15)
<Kw exp<

1 —
+K< max N)(l—i—zlogq )I(nr <w)exp<Ks>.

jnp <w

PROOF. We will apply Theorem 2.1". Set J = {1,...,1}, J1 ={j € J:
n,ojz- <w}and J, = J \ J;. For j € J;, we define

n

S (fF(Xi) - Pf)

i=1 Fik

1
1ﬂn,j,k =-F
n

and

n

E|S(f(Xi) - Pf)’

i=1
which we upperbound by (4.12) and (2.3) as

Viik=—
n,j, n

Fik

Yn, ik < —=KillFjill2 < Kleﬁ

Jn

and
Vi ik < I1Fjxll3 < K%ﬁ? =V, jk-
For j € Jp, by (4.12),

‘//n(pj)<K<\/§vi)<K1\/§
0j no npj) n

(note that w > 1) and, by (2.3),
V(o)) < pi + 16y (p)) < 17K1p7 :=V,(p)).

Brgs= max Ynjk o Yn(pj) <KiK, /

(J.k):jed ] GJ
L Pj JESH  Pj

Then,
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Now, for j € J, we take
sj=34Kjw < ZnVn(pj)

so that the contribution of J, to T4, in (2.4') is just 34K;/2w/n and the
contribution to the probability bound, K/eG*K1/K=Dw For j e J;, we take
Sjk=s8= 2K22w if w<nr? and Sjk= e%s otherwise. Then the contribution of
{(]’ k) ] € Jl} to ?n,q,t is

e2s1(w > nrz) 2s
nrlog(e=s/(Kynr=)) n
on account of the fact that /x/logx is increasing for x > e, whereas the contri-
bution to the probability bound is dominated by

(maxN )(Card e /CK <2k (maxN )(1 +log, %)e‘sﬂ(.
JjeJi Jjed nr

Collecting bounds, the lemma follows. [J

In the previous proof, we could take s = e% K>w which dominates e2n7,,, j.k for
j € Ji, and obtain

P.f—P 2qge*K2wl (nr? 2
Pr{ sup L =PIV, 20 RowIWrT =) |k ey ko) _w}
n

feF opf nrlog(e?w/(nr?))
r<opf=<é

(4.15") < Kwexp(—34K|w)

—I—2K( max N_>(1—|—10gq >I(nr < w)exp(—e ng/K)

jnp <w

but in situations when N; is small (e.g., a constant, as in the case of the uniform
empirical c.d.f. in R) we should take s of a smaller order.

Note that replacing w by cw, 0 < ¢ < 00, in the hypothesis of the previous
lemma yields the same conclusion up to constants.

Theorem 4.6 follows at once from (4.15"):

PROOF OF THEOREM 4.6. First, for any slice ¥;, we construct a partition
{Fjk:1=<k<N,},asneeded in Lemma 4.7. To this end, consider a minimal cov-
ering of F; with L, (P)-balls of radius p; /(K ¢) and define F; ; as the intersection
of F; with the kth ball in the partition (if it is empty, discard it). By the bound on
the covering numbers of subclasses of a VC-subgraph class, the number N; will
be upperbounded by (K ¢q)"g, (), which is in turn upperbounded by ce’w(pf) for
some ¢, T > 0. By the local bracketing condition, for any k =1, ..., N; there ex-
ists an Lo (P)-bracket [fjx,—, fjk ] of size Kp; covering the class 3:j,k- If we
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set Fj i := fjk+» Fj i becomes an envelope of F;  and for arbitrary f € Fj

N Fjxllz < fjk+— Fik—-ll2+ 1 fjk -2
<Kpj+|fll2<Kpj+Cop(f)<(K+C)pj:=Kp;j.

Now we are in a position to apply directly inequality (4.15") [together with
Lemma 2.3 for part (c)]: increase if necessary the constant K, so that Ko/ K —
7 — 7’ is positive for (a) and (b), and is larger than 1 for (c); for (c) we should also
increase K1 so that 34K;/K > 1. The a.s. limit is a constant by Borel-Cantelli.

O

REMARK 4.8. 1. Suppose that for all ¢ the “slice” F (tq~", t] is full for P and
H(u) =vlog Au with o =t (recall Definition 3.3 and Theorem 3.4). Then, in the
case (a) of Theorem 4.6 and under additional assumption

Wp
—
loglog, (1/ry)

’

we have for some C > 0

P, f—P
Pr{C_1§ i sup MSC}—)I as n — 0o.
Wp  feF opf

m<opf<é

For example, it is clear that the (VC) class C of all closed (or open) inter-
vals in [0, 1] is full for the uniform distribution and so are any of the slices
{CeC:tqg7! < /PC <t}. Then, 8q(t) = 1/t*. Take r, = /(logn)/n, which
yields w;, =w, =~ logn, so that Theorem 4.6(b) and (c) give

lim sup ! sup [P (©) = PIO)] =L <oo a.s
n—00 logn CeC:logn/n<P(C)<1/2 JP(C)

Then, the class C being full, the above limit implies that L > 0, a result first ob-
tained by Shorack and Wellner [41] (L < 00), Yukich [49] (L > 0) and Alexander
([2], Corollary 3.9, equation (3.12)), where he also obtains it in several dimensions.
See also [30].

2. Note that the conclusions of Theorem 4.6 are also true if we only assume
(instead of the local bracketing condition) that ¥ is as in Lemma 4.7, except that
now, the bracketing condition of this lemma holds for all p; with N; < ce™ (%)) for
some ¢, T > 0. In principle, the condition || F; x||> < p; can be replaced by weaker
assumptions on the local envelopes Fj x, which would give rise to different rates.

Alexander [2] does not have an equivalent of the local bracketing assumption in
his Theorem 3.1 for VC classes of sets. At this moment, we do not know whether
this assumption is needed because of our method (based on combining Talagrand’s
concentration inequalities and expectation bounds of Section 3), or if it is un-
avoidable in some form for function classes. However, this assumption holds in
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all classical examples of classes of sets to which Alexander’s Theorem 3.1 applies.
Suppose, for instance, that S = [0, 11 for some d > 1 and P has a density that is
uniformly bounded and bounded away from 0 on S. For C C § closed and § > 0,
let C? be the set of all points in S that are within a distance < § from C and let C ™
be the set of all points x such that the closed ball of radius é around x is included
in C. Denote h the Hausdorff distance between closed subsets of S, that is,

h(Cy,Cy) :=inf{§ > 0:C; C C3,C, C CY).

Let @ be a VC class of closed convex subsets of S such that, for some K > 0 and
for all Cy € C with P(Cp) > 0,

K~'h(C,Cp) < P(CACy) < Kh(C,Cp), CEeC,

as soon as P(CACp) < P(Co)/K. The upper bound of this inequality always
holds for convex sets (see [17], pages 269-270), but the lower bound is satisfied
only for special classes of sets (balls, rectangles, etc). Denote op(Ic) := +/ P(C).
Then the class ¥ := {Ic: C € C} satisfies the local bracketing assumption. The
proof easily follows from several simple properties of convex sets described
on pages 269-270 of [17]. Indeed, if Cp € € and 0 < § < /P(Cp)/K, then
P(CACy) < 8% < P(Cp)/K implies that h(C, Cy) < K P(CACy) < K§2. It fol-
lows that, for o = K §2, C,° C C C C§.Hence,

{Ic:|Ic — Ic0||2 =,/P(CACy) <68} C [ICEU’ Icg].

Since also with some constant K’
P(Cy \CO_") <Ko,

the above inclusion provides a bracket of the size needed in the local bracketing
condition. Quite similarly, one can check the condition for VC-subgraph classes
of concave (i.e., with a convex subgraph) functions on [0, 1] as well as for some
other examples of function classes.

As an illustration, we apply Theorem 4.6 to the uniform empirical c.d.f. in RY
([2], Corollary 3.5).

EXAMPLE 4.9 (The finite-dimensional uniform empirical c.d.f.). Let P be
Lebesgue measure on [0, 114,d > 1, denote by x! the coordinates of points X € RY,
let F = {Ijox:0<x' <1,T]%,x" <1/2} and take op(Ij0x)) := ([T x)/2.
Then ¥ is VC of index v =d + 1 ([17], Corollary 4.5.11) so that (4.12) holds
with this v, and some A. It is also easy to see that ||Fj||% =P{xl...xd< pjz.} ~
2471 p2(log pj_])d_l/(d — 1)!, so that g(p;) = (log pj—‘)<d2—1>/2. The local brack-
eting condition holds by the argument given before the example for convex sets in
general. So, we can apply Theorem 4.6 with w, >~ loglog rn_1 and w, >~ loglogn,
assuming, for (c), that loglogr, ! is not larger than a constant times loglogn for
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all large n. The conclusion is: suppose r,, — 0 and loglog rn_1 /loglogn — ¢ > 0;
then,

2

nry n

liminf 0 = i
T loglogn ~ 1mnsup loglogn

[Fa®) = FOI

X sup a.s.
r,%<[—[f{=1x,-§1/4 ,/]_[?1:1)6,'
and, assuming loglogn/(n3/?r, log(log logn/(nr,%))) ¥,
lim nr,% —0 — Ilimsup nrylog(log logn/(nr,%))
n loglogn n loglogn
| Fn(x) — F(X)|
X sup ———— < a.s.

/T1d
r3<]_[?:1 xi<1/4 Hi:l X

In particular, this last limit allows us to recover the tightness part of a limit theorem

of [19], as follows. For dimension d > 2 and ¢ > 0, take r,, = /W. Then,
the last inequality gives

. N | Fr(x) — F(x)]

imsup sup —_— <0 a.s.

Moo n\d—1D/2
n (1Ogn)( )/ g(n(logl’l)d_l)_1<n;1:1xi§1/4 m

A simple computation shows that if &; are d independent random variables uniform
on [0, 1], then

d
& &
P i < ~ ,
f gs’ = n(logn)d—T ] d—1)!

which, by another simple computation, allows us to conclude from the previous
limit that the sequence

Jn |Fn(x) — F(X)|

— Y s
d-1)/2
(logn) M4, x;<1/4 L xi

is stochastically bounded.

EXAMPLE 4.10 (Example 2.7, revisited). Theorem 4.6 essentially does not
distinguish between stochastic and a.s. boundedness for the empirical c.d.f.
However, Lemma 4.7 does when d = 1. For d = 1 we can take s of the
order of log(w, /nr,f) since N; is constant (as we did in Example 2.7). If
rp 2 logloglogn/+/nloglogn, then w, >~ loglogn, and s/nr, is dominated by

~
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vV loglogn Log", so that Lemma 4.7 shows that the sequence

| n sup | Fn(x) — x|
loglogn .2y Jx

is stochastically bounded. Then, since Pr{min;<, X; < e/n} < ¢, we get that, for

d =1, the sequence
n sup | Fr(x) — x|
loglogn g<x<12 /%

is stochastically bounded. By the limiting result of Eicker [18] (see also [14, 24])
this rate is exact.

4.3. The cases ¢(t) =t%, a #1,2. For«a € (1,2) direct application of Propo-
sition 2.11 gives the following analogue of Theorems 4.1 and 4.2:

THEOREM 4.11. Leta e (1,2),0<é§<1landr, |0, and set

es sy (PSP
" m<opf<é8 (UPf)a
feF

(@) If nry — oo, then the condition B, 4 = Bng,« — 0 for some q > 1
is necessary and sufficient for &, — 0 in probability (a.s., if we also have
nry /loglogn — 00).

(b) If sup, B4 < oo and nry B, 4 — o0 forall g € (1,1 + 8) for some § > 0,
then

€n
E§,
in probability (and the convergence is a.s. if nry B, 4/ loglogn — 00).
(c) Forany q > 1, the sequence

1 nr¢
Anr®1log((nré 2= A Bug) ") v 2) A —")f
<,3n,q n (( n\'n n.q ) ) I”,%_a N Ign,q n

is stochastically bounded.

— 1

For VC classes of functions, adapting the proofs of Lemma 4.7 and Theorem 4.6
to the case of o € (1, 2] only gives the obvious: for instance, that if in Theorem 4.6
we replace op f by (op f)* in the displays, then multiplying by r&~! the cor-
responding expressions produces sequences that are stochastically bounded [or
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a.s. bounded in part (c)]. This observation applies, for instance, to give the tight-
ness part of the remaining cases in [19], namely, that, just as in Example 4.9, for
1/2 <v <1 (the case v = 1/2 is covered by that example), the sequence

n'” | Frn(x) — F(x)]
sup  ————

(log n)v@d—1)
(logn)Y M xi<1/4 m

is stochastically bounded, where we assume d > 2. Extensions of Example 4.10 to
powers of x different from 1/2 are equally easy to get in the case d = 1 (they are
omitted).

For «a € (0, 1), we make the rates explicit only under condition (2.15") and the
result is a direct consequence of Proposition 2.12.

THEOREM 4.12. Leta€(0,1),0<é<1landr, |0, set

. |Pnf — Pf
Eni= sup ———,

rp<apf<§ (UPf)a

feF
and assume
2
v gl z\/3K10glogq(q 8/r)
' n

forall g € (1, 1), for some T > 1. Then:

(@) if nry — o0, then the condition B, ;, — 0 for some q > 1 is necessary and
sufficient for &, — 0 in pr.;

() if /nPu,g — 0 for g € (1,7), then &,/E&, — 1 in pr., and there are se-
quences g, 1 for which &, /By 4, — 1 in pr;

©) if Bug < Cin~'2 A r,%_“)for some C < 00 and q > 1, then the sequence
J/n&, is stochastically bounded, and

(d) if, for some 0 < C < oo and g > 1, r,%*“ <CBug = n~Y2, then the se-
quence

(v Anrylog((nrg Bug) vV 2) Ay nré g )én

is stochastically bounded.

For VC classes of functions, one obtains analogues of Lemma 4.7 and Theo-
rem 4.6 for o € (0, 1) as follows: under the hypotheses of Lemma 4.7, the bound
in (4.15) holds for the probability

P, f—P
Pr{ sup MZC(KI,KLC]»O()
rer (op )
r<opf=

[ sI(nr? < w) l—o /w“
X +34 — .
nre (1 v log(s/(nr?))) n
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And under the hypotheses of Theorem 4.6, except that we replace 1/2 > § > r, by
1/2 > 6, > ry, we have:

o

(a) if liminf, n(r] 6,1!*“)2 /wy, > 0 (infinity not excluded), then the sequence

I |n |Pnf — Pf]
T—ay o, Sup «
5 Wy feF (orf)

m<opf<é§

is stochastically bounded;
(b) if lim, n(rg8}~*)*/w, = 0 and log £ = O (e" *») for some " > 0, then
nry log(wa/nry) |Pnf — Pfl

Wn feF (op f)*
m<opf<é

is stochastically bounded;
(c) the corresponding statements for asymptotic a.s. boundedness under
monotonicity conditions analogous to those in Theorem 4.6(c).

5. Ratio limit theorems II: asymptotic continuity moduli and weighted cen-
tral limit theorems. These two types of limit theorems usually involve functions
of the form ¢ (t) = ¢L(1/t) where L is nondecreasing and slowly varying at infin-

1ty.

5.1. Local and global moduli. Local asymptotic moduli in probability for gen-
eral classes of functions were already treated in [22], Theorems 4, 5 and 9. Here
we will only derive an a.s. general result which is the companion to Theorem 4 in
the just mentioned reference. As usual, # is a measurable class of functions taking
values on [0, 1].

Following Alexander [2], a local asymptotic modulus of the empirical process
over F at O is an increasing function w for which there exist r, < 8, < 1 both
nonincreasing, with ,/n8, nondecreasing such that

G.D limsup sup Vn ()] <00 a.s.,
n m<op f<én w(GP f)
feF
where

va(f) :=v/n(Py f — Pf)

is the empirical process indexed by ¥ .

Although the results below are under our general assumption that the functions
in the class ¥ take values in [0, 1], in the case when op(f) := 4/Varp(f) and
hence op(f +c) =op(f),op(cf) =|clop(f) for any constant c, a simple rescal-
ing allows one to deal also with arbitrary uniformly bounded classes of functions.
This is of importance in the case of global moduli. A global asymptotic modulus
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of the empirical process over F is any local modulus for F' ={f —g: f,g € F}
at 0, with 8, > ,/n~!logn.

THEOREM 5.1. Let g > 1, r, <8, < 1 both nonincreasing, with \/né,, non-
decreasing, and let w be a bounded nondecreasing function on [0, 1] such that

a)(t)z\/ﬁwn,q(t), t € [rn, 6],
for all n, and satisfying that w(u)/u |,

(Sn\/loglogn v loglog, (8,9%/rx)

sup () =%
" loglognvloglogq(canz/rn)
np x/ﬁa)(rn)

and that these two sequences decrease when divided by n. Then, the limit (5.1)
holds.

PROOF. We apply Theorem 2.1 and Lemma 2.3. Let K, which we can assume
to be larger than 1, be as in (2.4a). We take [see (2.3)]

Vg (pj) = L(p7 + 160 (p))//n) = L(p7 + 16¥.4(p)),

for j =1,...,£,, where £, is the smallest integer j such that p; = rnqj > §,, and
where L is the largest of K and the second supremum above. Then, if we take
sj =2K(loglogn + log logq (anz/pj)), we have s; < ZnVn,q(,o‘,-), and inequal-
ity (2.4a) directly gives

V. ; K
Pr{q_1 sup Vnlf) > 14 2max % ;’q(pj)} =< 7
rer w(opf) J w=(pj) (logn)
rp<op f=on

Now the theorem follows from Lemma 2.3 and the hypotheses on w. [

Let Fy, =sup{|f|:f € F,u/qg<opf <u},1<qg=<2,0<u<]l,bethe
local envelopes for F, and define g,(r) as any nonincreasing function satis-
fying gl Fy,rllL,Py/7r < 84(r) < q/r. By proceeding as in Theorem 9 in [22],
Theorem 5.1 gives that, for any bounded VC class of functions, the function

wi(t) = t\/log log(1/t) +log g, () is a local asymptotic modulus at 0 and that the

function wq(t) = t+/log(1/¢) is a global modulus, thus generalizing Theorem 4.1
of [2] to classes of functions (and demonstrating the same difference between lo-
cal and global continuity moduli as in the classical cases of Brownian motion,
Brownian bridge and univariate empirical process). For the global modulus, one

takes g, (u) =q/u.
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5.2. Central limit theorems. We consider here weighted CLTs for empirical
processes in the spirit of Alexander [3]. Let v be a strictly increasing continuous
function such that

t
(5.2) Y(0)=0 and lim m =00
t—0 f
We call such a function a weight. We will find conditions on ¥ and a decreasing
sequence 7, so that, for a P-Donsker class of uniformly bounded functions F, we
have

o () £ Grf)
Vo) T T e

in oo (F \ Fo) and the limiting process G p/{ oop is sample continuous on F \ Fo
for the pseudo distance dp(f, g) = op(f — g), where Fo:={f € F:0p f =0}.
(For definitions of P-Donsker or CLT(P) classes, pre-Gaussian classes, and others
associated to uniform central limit theorems, see, e.g., [17] or [47].)

We need to comment on condition (5.2). For classes of sets, this condition is
necessary for Gp /¥ o op to be a.s. in £ (Lemma 5.1 in [4]) but this is not so
for classes of functions: just consider ¥ = {of :0 < « < 1} for some bounded
function f. Then, Gp(af)/op(cf) does not depend on o and the sample paths
are just constants. However, if the class & is sufficiently rich, then (5.2) is also
necessary; for instance, assume that ¥ is convex and symmetric (i.e., f; € £ and
> fnite 12| < 1 implies >"X; f; € ), and that the subspace of L(€2) generated
by the process Gp(f), f € F, is infinite dimensional (if it were finite dimen-
sional, we would be in the case of the finite-dimensional central limit theorem).
Then, by Gram—Schmidt orthogonalization, there exists an infinite sequence of
functions f; in & such that op(f;) #0 and EGp(f;)Gp(f;) =0if i # j. But
then Gp(f;)/op(f;) are i.i.d. N(0, 1) and their sup is infinite with probability 1.
We are thus justified in assuming condition (1) for our weights.

Another useful remark is the following:

LEMMA 5.2. Assuming (5.2) and F P-pre-Gaussian, if Gp/y o op is dp
sample continuous on ¥ \ Fo (meaning that it has a version with bounded and
dp-uniformly continuous sample paths), then

Gp(f)

lim =0 a.s.
feF\Fo,opf—>0 Y (op f)

PRrROOF. Ifop(f), f € F\ Fo, is bounded away from zero, then there is noth-
ing to prove. Otherwise, let f;, € ¥ be such that op f;, — 0. Then, the sequence
Gp(fu)/¥(op fn) is a.s. Cauchy by hypothesis, and since E( Gp(f" )2 — 0
by (5.2), it also converges to zero in probability. Hence, this sequence converges
to zero a.s. [
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The following proposition, which is analogous to Theorem 4.2 in [4], will allow
use of the inequality in Theorem 2.1. From now on we will assume without loss of
generality that % is empty and that the functions in ¥ take values in [0, 1].

LEMMA 5.3. Let ¥ be a measurable class of functions, let W be a weight
function as defined above and let r, — 0, r, > 0. Then,

o (f) £ Gp(f)
g Y
vor ) O E T G

in Loo(F) and the limiting process Gp /W o op is dp sample continuous on ¥ if
and only if both

Fsri={f e F:op(f)=r}is P-Donsker
and

5.3) limlimsupPr{ sup M>s}
§—0 n rer Y(opf)

rm<opf<é

PROOF. If the weighted processes converge in law and the limit is dp sample
continuous, then, by the continuous mapping theorem, ¥, is P-Donsker. Also,
by the portmanteau lemma,

1imsupPr{ sup (DL > s} < Pr{ sup 1Gp(I > },
n rer Ylopf) feF.opf<s ¥opf)

m<opf<é

which, by Lemma 5.2, tends to zero as 6 — 0. The direct part follows as in [3].
O

THEOREM 5.4. Letr, —> 0,0 <r, < 1/2, and let W be a weight function
such that supy_, <1 o ¥ (2x) /Y (x) = C < 00. Assume

r,/loglog, 1/r

5.4 311—% hmnsup res(lrJES] T =0

and

loglog, 1/ry
Y (ra)/n

where 2 > g, \( 1 or g, = c. Then, the conditions ¥=, € CLT(P) for all r > 0
and

(5.5)

asn — 0o,

(5.6) (Slirr%) limsup sup M =0

n re(ry,s] Y(r)
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are necessary and sufficient for the process ‘f(’;i";)) , f € F,tobedp sample con-

tinuous and for

nl2(p, — P,
v(op(f))

£ Gp(f)
P >m) = S

(5.7 in loo(F).

PROOF. By Lemma 5.3, the proof is basically the same as that of Theorem 5.1.
Define

loglog,, 1/r, v sup Y g, (r)
W(’”n)\/ﬁ r€(rn,8qn) Y(r)

which, by (5.5) and (5.6), satisfies lims_, o limsup, €(n, §) = 0, and then,
Vg (0)) = K[} +168(n, 8)Y (p;)//n]
> K[pj +169in.q,(0))].

e(n,d) =

where K > 1 comes from (2.4a), and where, as usual, p; = rnq,{ so that it de-
pends on n even if we do not show it. Note that V,Wn (pj) is admissible in The-
orem 2.1 by (2.3). Now set s; = 2K[t(n, §) + loglogqn (5q2/,0j)], with t(n, §) =
min[log logqn rn_l, inf,, < <sg, ¥ (r)/r], which satisfies

(5.8) lim liminfz (n, §) = oo,
§—~0 n
because r, — 0 and i is a weight function. Note also that, by the hypotheses,

Sp,j < 2nVn,qn (pj) for all 1 < j < £,(8), where £,(8) is the smallest integer j
such that r,,g/ > 8. Therefore, Theorem 2.1 or Corollary 2.2 gives

Pr{C‘l sup v () > sup VY., (0))
rer Ylopf) = Y (p;))
rm<opf<§
4 2 max Ser;,qn(Pj)} < Ke~200)
j v=(p;)
.. . . . : \/EWn,qn(pj) —
Now, condition (5.6) implies that lims_, lim sup,, sup; T = 0 and more-
J
over, since
1 siVig (pj) __P 32¢(n, 8)loglog,, rot
2K Y pp) T (p)) V()

p;loglog, (8¢%/p;)
V2(pj)

’
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equations (5.4) and (5.5) imply

v ,
(5.9) lim limsupmax | 2L nePi) _
§—0 i

n j v2(pj)

Therefore, (5.3) holds, and by Lemma 5.3, so does (5.7). Conversely, if (5.6) does
\/ﬁwﬂ,qn (p/)
V(pj)
stays bounded away from zero for a sequence §; — 0, and this implies, by the
second inequality in Corollary 2.2, that (5.3) does not hold, and therefore, by

Lemma 5.3, neither does (5.7). O

not hold, while we still have (5.8) and (5.9), the term lim sup,, sup j

In order to apply the above theorem, one needs to have reasonable estimates
of ¥, 4(r), and it is here where the results in Section 3 may become useful.

In the case of the classical VC-subgraph classes (the uniform empirical distri-
bution function, indicators of intervals for the uniform law on the unit cube, or
half-spaces for the normal), the above theorem does not give best possible results,
just as in the case of ¢ (x) = x in Section 4.2 [see (4.6)—(4.8)]. As in that section,
we will prove a theorem that handles these cases, but we will only apply it to the
multidimensional empirical c.d.f.

For a VC-subgraph class &, or more generally for a VC type class [i.e., one
such that for any § € ¥ and any probability measure Q, N(%, L2(Q), 1) <
(Al|GllL,(0)/T)" for some A >e, v>1and all 0 < v <2||Gllz,(0)], and given
O<r<d<land1<gqg =<2,letg,(t) and w be as defined in (4.13) and (4.14).

THEOREM 5.5. Let & be a VC-subgraph class satisfying the local bracketing
condition and let r, — 0, g € (1,2]. Let

(5.10) ¢o@)=tL(/1), 0<tr<1,

with L(u) /" o0 as u /' o0 and u*L(1/u) nondecreasing for some 0 <t < 1.
Assume ¥, € CLT(P) for all r > 0. Then, the conditions

\/loggq(u) ) wy

512)  lim*——— =0 and | -
N T WSS i L(1 o) log(wn fnr)

where w, = w(r,), imply that the Gaussian process Gp(f)/¢p(opf), f € F,is
sample continuous and

vn (f) £ Gp(f)

I(opf >ry) —

¢(op f) ¢(apf)

infoo(F).

For the proof, we begin with the analogue of Lemma 4.7.
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LEMMA 5.6. Let & be a VC type class of functions satisfying the same hy-
potheses as in Lemma 4.7 (the bracketing properties). Let L, ¢, T be as in Theo-
rem 5.5 and set y =2/(1 — 7). Let 0 <r <& < 1 and q € (1,2]. Then, there is

C =C(Ky, K3, q) such that, for all n € N,
u+ . /logg,(u)

Pr{ sup Vn(f) ZC[ max
f<;p}£§5 ¢opf) Jw/n<u<édq L(1/u)

N e’wl(nr? < w) “
s 1 JnrL(1/r)log(e¥w/(nr?))
(511 §Kwe‘34K'w/K
+ K( max N; >< logq >I(nr < w)e_eszzw/K,
j: npj<w 2

with notation as in Lemma 4.7.

PROOF. We will apply Theorem 2.1". As in Lemma 4.7, let J; = {j :n,ojz < w}
and J, =J \ Ji, where J ={1,..., ¢}. Then, on Ji,

Pj -
wn,j,kSKle—ﬁ, Vi, jk= szjv
and on J3, by (4.12),

pjJ10gg,(p;)

i4 _ 2
o Vi) =17k}

Vn(pj) < Ky
So,

. Yk M}
\/r_llgn,q,qﬁ_\/_[u k): jXEJ1 ij(l//Oj jGJ)Z( ij(l/,Ol)

KK, J1og g, (pj)

<——V _ max
L(y/n/w) Jw/n<pj<dq L(l/pj)
log g4 (u)
<KiK; max ———
Jw/n<u<d8q L(l/”)

since logg, > 1. For j € J,, we take s; = 2nVn(pJ~) = 34K1n,0J2. > 34K 1w, so
that the contribution of J; to T, j ¢ is

vV
2 max u 4«[K1 max "
jEJQ Lz(l/pj A/w/n<u<8q L(l/u)
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whereas the contribution to the probability bound is
K (CardJy)e 34K1w/K < Klog(8q/r)e 34 K1w/K < gye=34Kiw/K
To keep things simple, on J; we take
sj=e’s:=e’Kjw > eVKzzn,oJZ =e" Vo k-
Then, the contribution of Jy to T, j ¢ is
eVng eVK%wI(nr <w)
jeh fquL(l/rqf)10g(€7’w/(nr26121)) VnrL(1/r)log(e?w/(nr?))’

where the inequality holds because x? L(1/x) is increasing and u' ="/ /logu is
increasing for u > ¢%/(1=?) = ¢ Finally, the contribution of J; to the probability
bound is

1
K<maxN )(Card J)e ¢ YK3w/K < K<maxN )(1 + = log i)e_eyK%w/K.
Jjen jedi 2 “nr?

Now the lemma follows from collecting the above bounds and plugging them into
inequality (2.4"), Theorem 2.1’. [

REMARK 5.7. The bound (5.11) can be slightly refined by taking s; = e”s <
24 K22w for j € J1 such that s > K%npjz. and s; = 34K1,012.n for the remaining j’s
in Ji. Then, the contribution of J; to T becomes

eVsI(Kznr <) 4K NG
er(l/r)(l\/log(eVs/(Kzan))) 2L(«/n/w)’

and the probability contribution is

1 w y
K N; )14 = log— |e /K,
(Ijléaf)f >< Tale nr2>e
The resulting inequality is analogous to that of Lemma 4.7, whereas (5.11) is more
similar to (4.15).

Theorem 5.5 is an immediate consequence of Lemmas 5.3 and 5.6.
The following example shows how this theorem recovers the (sufficiency part
of the) results in Example 2.9 of [3].

EXAMPLE 5.8 (The finite-dimensional uniform empirical c.d.f.). In the
case of F = {lj0x:0 < x' < 1,[[_, x' < 1/2}, P being the uniform measure
on [0, 114, as shown in Example 4.9, g,(p;) ~ (log;,()j-_l)(“ﬂ*])/2 and the class
satisfies the local bracketing condition. As long as loglogr,” 'is of the same

order as loglogn, we have w;, >~ loglogn. Then, the first condition (5.12) re-
quires L(u) > (loglog )2 as u — oo. To illustrate, take L(u) = (loglogu)* for
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o > 1/2. Then, the second condition (5.12) readily implies the CLT for any r,
(loglogn)!
J/nlogloglogn
the case of Theorem 4.6, this is not sharp for d = 1: in this case, since in Lemmas
4.7 and 5.6 N; = constant, we can take a smaller s and still have the probability
bound that results from Remark 5.7 tend to zero, for instance, s = log(w, / nr,%). It
is easy to see that if L(u)/loglogu — oo as u — 00, then Remark 5.7 implies the
CLT for r,, of a strictly smaller order than 1/+/n (r, = logloglogn/+/nloglogn),
which by the same argument as in Example 4.10, implies that we can take r,, =0,
namely, one obtains the well-known Cibisov—O’Reilly CLT for the weighted uni-

form empirical c.d.f. in R [3, 12, 36].

satisfying r, > , which is best possible for d > 1 [3]. However, as in

So, Theorem 5.5, perhaps complemented by a modification along the lines of
Remark 5.7, does give results comparable to those in [3] for the classical classes
of sets and, moreover, it applies as well to classes of functions.

6. Applications I: ratios of margin distributions. The goal of this section
is to suggest a much easier approach to the proofs of some of the results of
Koltchinskii [25] on bounding margin distributions. The motivation and the ter-
minology come from learning theory: functions f below represent what is known
as “classification margins.” “Large margin algorithms” tend to output functions
(classifiers) f whose empirical distribution is shifted in the positive direction. The
question is whether the true distribution is also shifted in the same direction. Since
we are interested in the values of the margin for which these distribution functions
are small, it is natural to study their ratios. See [25] for a detailed discussion.

Let

Fr(8):=P{f <4}, Fu 7 (8) :== Pa{f <6}

Suppose that F is a class of functions such that
D o
Ve>0 logN(.‘F;Lz(Pn);a)§<—>
e

with some constants D > 0 and « € (0, 2).
For two distribution functions F, G and interval (a, b), define

M, p(F; G):=loginf{c > 1:Vt € (a,b): F(t) <cG(ct) and G(t) < cF(ct)}.

If F, G are distribution functions on the positive real line [i.e., F(0) = G(0) = 0],
then M (F; G) := My +00(F, G) is a metric (a multiplicative version of Lévy dis-
tance). We want to study the closeness of Fj s to Fy in distances of this type
uniformly in f € . Unfortunately, the metric M itself cannot be used even in the
case of a single function f (the range of ¢’s in the definition has to be restricted).
However, define for A > 0

8n(f§ )\) = inf{(S > n_l ;52“/(2+06)Ff(5) > )\n—Z/(Z—I—a)}‘
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THEOREM 6.1. If A, — 00 asn — oo and

sup P{f >t} —0 ast— o0,
feF

then

sup Ms,(fia).+00(Fn. s Ff) —> 0 as n — oo a.s.
feF

PROOF. The proof is based on a couple of inequalities that follow from Propo-
sition 2.8 of Section 2. Namely, it will be shown that for all ¢ > 1 with some con-
stant ¢ > 0 depending only on D and g and with an absolute constant K > 0 we
have

Pr{3f e F :8,(f; D*/*T®o72) <8 and Fr(8) > (1 —co) " Fy £ ((1 +0)8)}
2
< Kq—le_t/qu
T g1t
and
Pr{3f € F :8,(f; D*/*T¥572) <S8 and F, 1(8) > (1 +co)Fr((1 +0)8))

2
<Kq—le*f/[<qz
T g1t

forallt > 0,0 € (0, 1] and

Dnl/2

=: A, ().

To this end, given § > 0, define a function ¢ that is equal to 1 on (—o0, ],
equal to 0 on [(1 4 0)6, +00) and is linear in between. Clearly, ¢ is Lipschitz with
constant L = #. Denote

1 A/ (2+a)
= 520 Rt

I'n

where A= DL.
Then Ff(8) > r2 iff § > 8,(f; D**/Ct®5=2) and, hence, for § > 8,(f;
D%/ 2+0) 5 =2y we also have

P(po f)* > Fr(8) >
Define

Ap:=  sup
P(pof)?=r}

Then for § > 8,(f; D>/ () 5=2)
Fr®) < Plpo )< (1= A Pulpo /)< (1= A Fup((1+0)9)

&WOﬁ_4
P(po f)
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and
Fu (8 < Py(po f) <A+ A)P(po f) <1+ A)Fr((1+0)8).

To prove the inequalities it remains to obtain a bound for Pr{A, > co}, which
is done using Proposition 2.8. First note that since ¢ is Lipschitz with constant L,
we have for the class g o F :={po f: f € F}

Ve>0 logN(p o F; La(Py); e) <logN(F; La(P,);e/L)
(%) =)
< | — =\ — .
“\ e e

AQ/2 A
E sup |(P.—P)(gof) Sc[_rl—a/zv }
P(pof)?<r? Jn e

By Theorem 3.1,

Under the assumption
Ao/ @+a)
r=r, = 1/
the first term dominates, so we have
1 A%
E,:=sup SE sup [(Py—P)gof)l=C—F=r, —/2 = Co,
r>r ¥ P(pof)2<r? ﬁ

by the definition of r,. Using Proposition 2.8, we get

t
Pr{An >qgCo +2q —2(1 +16Co)
\ nr;;

vV 24t }<K g’ l ~1/Kq*
nr2log(t/(nr2(1+16Co))v2) | ~

g*—1t
Now if
Dnl/Z
s [Cta)/2a

t 2

then, by a simple computation, 3 =0
¢>0and for o € (0, 1] ’

, S0 we easily get with some constant

2
1
Pr{Ay = co} < K———e /K4,
qg-—1t
The inequalities now follow. We will use them for §; = q‘j en ! A, (1)] to
prove that on an event E with

le—t/qu
g>—1t

Pr(E)> K logq (nA, (1))
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we have
Viv¥8e©j41.8]1  Fr®) <Fp(8)) <(1—co) ' Fyy((140)8))
<1 —co) 'Fy r((1+0)g8)
and
VjvVee@j41,8]1  Fuyr@) <Fur@))<1+co)Fr((1+0)3))
< (14 co)Fr((140)g8),

which implies that on this event
co

sup Man(f;DZa/(ZJra)a-fZ)’An(t)(Fn,f; Ff) = (Gq + q— 1) \%
eF

f l—co’

Choosing t = t, = 2K g* logn and using the Borel-Cantelli lemma we get
co

lim Sup sup Man(f;D2a/(2+a)072)’An(tn)(Fn,f; Ff) < (O'q +q — 1) \

a.s.,
n—>oo fef 1—co

and since o0 > 0 and ¢ > 1 are arbitrary and, under the condition A,, — oo, for
large enough n,

8u(f3 An) = 8, (f; DX/ CTOG=2),
we get

Sup M‘Sn(f§)‘-n)sAil(tn)(Fnrf; Ff) — O a.s.
feF

It now follows from the definitions that to prove

sup Ms, (f12,),+00(Fn, 53 Fr) = 0 a.s.
feF

it suffices to check that

sup M, +oo(Fp i Fr)—0 a.s.
fer VER

for any sequence B, such that

An(tn)
B,

— 0

We have by conditions

T, :=sup P{f>B,} -0
feF

and it also follows from (3.1) in [25] that a.s.

Np = Sup Pn{f = Bn} — 0.
feF
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Forall f € ¥ and all § > B,,, we have
Frd)>1—1, and F, ¢(8) >1—mny,.

Let ¢ > 1. Then a.s. for all large enough n (such that 7, <1 — ¢! and 5, <
l—c Yforall fe ¥ andall § > B,

Fr8) <1<cFu (@) and Fy () <1<cFy@),
implying

sup Mp, +oo(Fy,r; Fr) <logc<c—1,
feF '

and the result follows. [

7. Applications II: excess risk bounds in empirical risk minimization. In
this section, we discuss the problem of minimizing P f over the class ¥ that is in-
terpreted in learning theory as a risk minimization problem (e.g., in the regression
or classification setting). Since the distribution P is typically unknown, it has to
be replaced by empirical risk minimization

P, f —> min, feF.

For simplicity, assume that fn is a precise solution of the above problem, that is,
it is an empirical risk minimizer (the results can be easily modified if it is only an
approximate solution). Given f € ¥, let

Ep(f):=Pf — inf Pg.
geF

This quantity is often called the excess risk of f. It is of interest to obtain bounds

on the excess risk &p ( f,,) of the empirical risk minimizer fn. It is also of interest

to have some control of the ratios i,’z’ (f)) uniformly in ¥ .

The bounds given below are modifications of recent results of Koltchinskii [26].
Let

F@):={feF:&p(f)<é}
be the §-minimal set of P. For
2
pp(f,8) = P(f =) —(P(f—2)°,
define the diameter of the set £ ()

D) :=Dp(8):= sup pp(f, Q.
f.8€F (8)
Also define

Yn(8):=E sup [(Pn—P)(f—8l
f.8€F (9)
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Let
Ba(r) == sup Yn(p)
pzr P
and
2
A(r) :=sup b ('0).
pzr P

Finally, for s > 0, denote

s

Y, ) = Bu () + 2/ (A +166,0)

2s
Y arog((s/(r (A - 168, ) v D)’

THEOREM 7.1. There exists a constant K > 0 such that for g > 1, s > 0 and
r > 0 satisfying the condition

qyn(r;s) <1,
the following inequality holds:

& 1
(7.1) Pr{ sup P, (/) — 1' > qyn(r,s)} < KL_efS/Kq_
ol Er(f) qg—1s
pf)zr

Moreover, let f, € F be a data-dependent function such that

&p, (fn) < (1= qyu(ris))r.

Then
(72) Pr{Ep(f,) = 1) < qujie—sﬂw.
In particular, (1.2) holds for f, = fn
PROOF. As before, denote
,oj:=rqj, j=1,...,1,

with / being the smallest natural number such that p; > 1. Let
Fi={f—-g:1,.8€F(pj}
The key ingredient of the proof is the following inequality:

P, — Pl & 1
(7.3) Pr{ max M > (7, s)} < K1 _L,-s/Kq
l=j<l 0j qg—1s



1206 E. GINE AND V. KOLTCHINSKII

Its proof is a straightforward modification of the proof of (2.4a) of Theorem 2.1
with further bounding as in (2.11) of Proposition 2.8 (but taking s; = sq’/), so we
skip the details of the derivation. The only difference is that the bound on

1 " 5
Va(pj) :=—E | _(f(Xi) — Pf)
o5 Fj
now involves the diameter of the set F (p;):
Va(pj) < D*(p)) + 16¥(p;).
Now on the event
P, — P|
= { max M < ¥u(r, S)}
Isjst pj

we have for all 1 < j </ the following implication:
feFp)H\Fpj-1) = VYoe(0,pj))Vge F(o)
Ep(f) = P(f—8+o
Po(f —8)+ o+ 1Py — Pllg;
Ep, (f)+ 0+ pjya(r,s)

Ep, (/) +0 +qEp(Nya(r,s).
Since o > 0 is arbitrary, this implies that on the event E for all f € ¥ with
Ep(f)=r,

IAIA

IA

&p,(f) -
Ep(f) —

Since &p, ( fn) = 0, under the condition 1 — gy, (r, s) > 0, we must have on the

1 —qyu(r,s).

event £ Ep( ﬁ,) < r. Therefore, we have on the event E the following implication:
feFppD\Fpj-1) = E&p,(f)
= Puf —Pufu <Pf—Pfu+IP— Pl

< Ep(f)+pjvn(r,s) <Ep(F)(L+qyn(r,s)),
which means that on the event E for all f € ¥ with Ep(f) >r
€p,(f)
——— <14 (r,s).
e - "
Since by (7.3)

. 1
Pr(E®) < K—1——¢™5/Kq,
q—1s
inequality (7.1) now follows. Inequality (7.2) is an obvious consequence of (7.1)
since the assumptions

€p,(fu) < (1 = qyu(rs ))r
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and 6°p(fn) >rlead to

&p, (fn)
———— <1 —qy,(r,s).
€p(fu) ! O
If we define
wp(8) :=E sup |(Pn — P)(f — &)l
f.8€F .op(f,9)<$
then

Yn(8) < wn(D(5)).
As a result, under the assumptions
wy(8) < C8'=Pp~1/2
and
D(8) < €s'/0
with some C > 0,p € (0,1),x > 1, Theorem 7.1 gives a convergence rate of

Sp(f,,) to 0 of the order
O(H—K/(2K+p—l))’

a very typical rate in regression and classification problems.

7.1. Regression. For simplicity and in order to directly use the above bounds,
we consider only regression models with bounded response. Let (X, Y) be a ran-
dom couple taking values in S x [0, 1]. The regression function

gox)=EY|X =x), xes,

takes its values in [0, 1] and minimizes the functional g — E(Y — g(X))2. The
problem of estimating go becomes a risk minimization problem Pf —> min if one
defines P as the distribution of (X, Y) and relates to each g on S the function f
on S x [0, 1] as follows:

Oy = folx,y) =y —g)),  (x,y)eSx[0,1].

Given a class § of measurable functions from S into [0,1] and a sample
(X1,Y1),...,(X,,Y,) of iid. copies of (X, Y), one can define a least-squares
estimate of g as a solution g, of the following minimization problem:

n
_ 2 .
n 1Xj(Yj—g(Xj)) — min, g€,
Jj=1
which is equivalent to minimizing P, f over the class ¥ :={f,:g € 4}, P, being
the empirical measure based on the sample (X1, Y1), ..., (Xn, ¥»). This will allow
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us to use the bounds of Theorem 7.1. First suppose that go € §. Then, by a simple
and direct computation,

2 2
Ep(fo) = E(Y —g(X))* — E(Y — g0(X))" = llg — goll ()
where IT is the distribution of X. Therefore,
F@)={feF:6p(f)<8}={fe:llg—goli,m <3}
Also, if g1, g € 4, then

P(fo — foo)? = E((Y — 21(X))* = (¥ — g20X))*)?
= E(g1(X) — g2(X))*(2Y — g1(X) — g2(X))’

<4llg1 — 82||%2(n) =:pp(forr for)s

since Y, g1(X), g2(X) € [0, 1]. It immediately follows that the pp-diameter of
F (6) satisfies the following bound: D(§) < 44/8 and as a result we have
A(r) <16.

Next, the usual symmetrization inequality gives

Yn(8) = E sup |(Pa = P)(fer — fao)]
81.82€9.181~80lI7 () =<8. 8280117 , ) <

Y e (Y — g(X0) — (¥ — g0(X0)?)

i=1

<4FE sup
8€9.T(g—g0)*<8

and, using a Rademacher comparison inequality (e.g., [29], Theorem 4.12), this
can be bounded further by

’

8E sup
8€§.1(g—g0)> <8
The inequality of Theorem 4.12 in [29] is used as follows: for fixed X;, Y;, define
Ai = (Yi — go(Xi))?, ¢i(w) := (A; — u)> — A? and, using the fact that ¢; are
Lipschitz functions on [0, 1], upper bound

n! 281' (g(Xi) — gO(Xi))‘ =: 9, (8).

i=1

E. sup
8€§.T1(g—g0)? <8

n! Z&‘d’i (8(X;) — gO(Xi))"

i=1

Define now

Bn(”) = sup Yn(p)

p=r P

and

~ S 5 2s
~n , = P 8,/—(1 n 3 .
Vu(r,8) 1= Ba(r) + nr( + Bu(r)) v nrlog((s/(16nr(1 + B,(r)))) V 2)
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Theorem 7.1 immediately implies that as soon as go € § and gy, (r, s) < 1 we have

. g 1 _
(7.4) Pr{l12n — goll 7, > 1} < quge s/Kq_

Clearly, a similar bound holds for approximate least-squares estimates (as in The-
orem 7.1). It is also possible and easy to handle the case go ¢ § and to bound in

this case g, — 80||%2(n) by

K| inf ||g — goll?
(;relgng ol +7)

with high probability, but we do not give this type of bound here (see, e.g., [26]).
We conclude this brief discussion of regression problems with a couple of specific
examples where the expectation bounds are used to derive the value of r in (7.4).

EXAMPLE 7.2. Let 4 be a VC-subgraph class of measurable functions
from S into [0, 1]. Let Fs:S +— [0, 1] be a measurable envelope of the class
{g — g0:T1(g — g0)* < §}. Denote

| Fsll 2,
Applying Theorem 3.1 to VC-subgraph classes gives

~ K
Vn(d) < ﬁ\/ﬂogf(é‘),

assuming log% > n. Therefore, we have (under a natural assumption that the
log 7(8)
5

7(8) :=

function § is nonincreasing)

~ K J[logt(r)
ﬁn(r)fﬁ,/ .

for r larger than or equal to the solution r,, of the equation

logt(r)
=n
,

Then for r = C(ry, + %) with large enough C and for ¢ =2, we have gy, (r,s) < 1
and the following bound holds for the least-squares estimate g,:

N s I _
prf 18, — g0l = € (ra+ > )} < koK,

logn
)

for least-squares estimators picked from VC-subgraph classes. However, if t(§) is
smaller, one can get an improvement on the logarithmic factor. In particular, if §
is a subset of a finite-dimensional space of functions on § of dimension d, then

Since 7(§) < %S, this always gives the convergence rate at least as good as O (
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one can find an orthonormal system of functions ey, ..., e in Lo(IT) such that
G Cls.(eq,...,eq). Then we have

d
Y (arj —aej(x)

j=1

sup  |g —gol(x) = sup
llg=goll7,,(m) < Yy (aj—ah?<s

d 1/2 , 4 1/2
< sup (Z(a,-—a?)z) (Ze?(x))
j=1

Y4 (aj—ah?<s \j=1

d 1/2
< «/E(Z e?(x)) .
j=1

If we set
d 1/2
Fs(x) := JS(Z e?(x)> Al,
j=1

this implies || Fs|| < +/d8 and as a result 7(8) < +/d, which gives the correct con-
vergence rate O(n_l).

EXAMPLE 7.3. Let § denote the set of all monotone step functions from [0, 1]
into itself with a finite number of jumps. For a fixed gg € §, say with m jumps, the
class {g — go: g € $} is VC-major (go defines a partition of [0, 1] into m intervals;
on each of these intervals g — go is monotone and hence {{g — go >1t}:g2 € .,
t € R} is a VC class with VC dimension depending on m). Arguing as in Exam-
ple 3.8, we can show that

B K 1 3/4 1 1/2
7n(®) = 5 (log g) (loglog _)

Jn 5
K 1\/? 1

\ —(log —) loglog — Vv ogn’
n d ) n

which implies

) 3/4 12
Bn(r) < X (log l) (log log l)
Jnr r r

K 132 1/
VvV — <log —) loglog — Vv ogn
nr r r nr

Let us take ¢ = 2. Then it is easy to conclude that ¢y, (r, s) < 1 as soon as

Cs + (logn)3/*1oglogn

n
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with sufficiently large constant C (which will depend on the number of jumps
of go!). Hence, if we take an estimate g, such that

Y = (X)) < infa (Y — 8 (X))’
j=1 j=1

(logn)3/?loglogn
+ 9
2n
then Theorem 7.1 implies that

3/2
s + (logn) / loglogn} < Kle—s/K,

Pr{ugn — ol > Clg0) :

n
with some constants C(gp) and K. In particular, the bound implies that

(logn)3/? loglogn)
" .

ENgn - g0l = O

Since the constant C(gg) tends to infinity as the number of jumps of the func-
tion go tends to infinity, the above bound cannot be made uniform in go € $ (and,
in fact, the convergence rate of sup, g E| &n — golli2 ) to 0 is much slower for
any estimator g,). Results of this type (in a slightly different context and with an
improvement on the logarithmic factors) can be found, for instance, in [45] and
references therein.

7.2. Classification. In classification problems, one deals with random couples
(X,Y)in S x {0, 1}, X being an observable instance and Y an unobservable binary
label assigned to this instance. Functions g from S into {0, 1} are called classifiers.
The generalization error of a classifier g is defined as

Pr{Y # g(X)} = P{(x,y):y # g(x)},

where P is the joint distribution of (X, Y). It is well known that the minimal pos-
sible generalization error (the Bayes risk) is attained at a classifier

go(x) :=1(n(x) = 1/2),

where n(x) := E(Y|X = x) is the regression function. Since the distribution P
of (X,Y) and hence also the regression function n are unknown, a reasonable
approach to classification is to minimize the training error

nTIY I #8(X ) = Puf(x,y) 1y # g(0)},

Jj=1
based on i.i.d. training examples sampled from P, over a suitable class § of classi-
fiers. For simplicity, we assume that go € §. Denote g, a minimizer of the training
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error over the class §. Thus, the classification problem becomes a version of em-
pirical risk minimization and one can use Theorem 7.1 to study the size of the
excess risk

€(gn) = P{(x,y):y # &u(x)} — P{(x, y):y # go(x)}.
As before, IT denotes the distribution of X. If, with some x > 1 and ¢ > 0, for all
§€§
P{(x, y) 1y #g(0)} = P{(x,y) 1y # go(0)} = cIT*{x: g(x) # go(x)},
then the diameter D(§) < C §1/(2€) This holds, for instance, if for all 7 > 0
Mx:0<|nx)—1/2| <t} <Ct*

and in this case k = % [

44]. Under the standard condition that the ¢-entropy
of the class § grows as O(g~2?) [with several possible kinds of entropy involved
and with p € (0, 1)] Theorem 7.1 yields a bound on the excess risk of the order
O (n=*/@+,=1) a5 in [44]. The main difference with the L,-regression problem
where « = 1 is that in classification « can take any value greater than or equal to 1
leading to the whole spectrum of convergence rates. If there exists 4 > 0 such that

VxeS  In(x)—1/2[=h,
then it is easy to see that

P{(x,y):y #g(x)} = P{(x,y):y # go(x)} = chIl{x: g(x) # go(x)},

so we do have « = 1. This case of well-separated classes was looked at in the
recent paper of Massart and Nedelec [34]. Define fq(x,y) := I(y # g(x)) and
F :={fe:8 € $}. We are using the distance

pp(fer» foo) =1 (g1 — g2)%.

Then we have the following bound for the diameter D(§):

D@) < c<%>1/2

implying
C
A(r) < —.
(r) < .
Suppose that C :={{g =1}:g € G} is a VC class and C¢ := {go = 1}. Define a

local version of Alexander’s capacity function:

M(Ucee,mcacy<s(CACo))

7(8) := 5
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Then

Yn(6) < K 1810gr<§>
=Y nh h

Bn(r) < K‘/n%logr(%).

To satisfy the condition gy, (r, s) < 1 (say, with g = 2) it is enough to take

nh? K
r= C[h(p(7> + %:|,

where ¢ denotes the inverse of the function

and as a result

1
s og7(r)
r

and C is a sufficiently large constant. Now it is easy to check that

(4 = retoer(re)
— | <—logt|— ),
NV ) =2 % 2

yielding the following bound:

14 14 s 1
Pri{€(8,) > C| —logt| — )+ — |} <K-e/K.
r{ &n) 2 [nh Ogt<nh2> + nh“ =05¢
If we replace 7(r) by the trivial upper bound }, this gives one of the results of
Massart and Nedelec [34]: the excess risk is bounded by
s nh?

— log —.

nh g Vv
In the case of smaller 7, it is a slight improvement of their bound. It is easy to see
that for some classes of sets and probability measures P t can be even bounded,
leading to the bound on excess risk of the order 0(%). For instance, as in Sec-
tion 4, suppose that S = [0, 1]¢ for some d > 1 and P has a density that is uni-
formly bounded and bounded away from O on S. As before, 4 is the Hausdorff
distance between subsets of S. Let C be a VC class of convex subsets of S and
Co € C, P(Cp) > 0. Suppose that for some K > 0

K~ 'h(C, Cy) < P(CACy) < Kh(C, Cyp), C cC.

Recall that the upper bound always holds for convex sets ([17], pages 269-270),
but the lower bound holds only for special classes of sets (balls, rectangles, etc.).
Then the function t is uniformly bounded. The proof easily follows from the same
type of argument as in Section 4 (before Example 4.9).
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