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SHORTEST SPANNING TREES AND A COUNTEREXAMPLE
FOR RANDOM WALKS IN RANDOM ENVIRONMENTS

BY MAURY BRAMSON,1 OFER ZEITOUNI2 AND MARTIN P. W. ZERNER3

University of Minnesota, Technion and Universität Tübingen

We construct forests that span Z
d , d ≥ 2, that are stationary and directed,

and whose trees are infinite, but for which the subtrees attached to each vertex
are as short as possible. For d ≥ 3, two independent copies of such forests,
pointing in opposite directions, can be pruned so as to become disjoint. From
this, we construct in d ≥ 3 a stationary, polynomially mixing and uniformly
elliptic environment of nearest-neighbor transition probabilities on Z

d , for
which the corresponding random walk disobeys a certain zero–one law for
directional transience.

1. Introduction. Let d ≥ 2 and let a : Zd → Z
d be a random function for

which x and a(x) are always nearest neighbors. If a(a(x)) �= x for all x and the
set Fa = {{x, a(x)}|x ∈ Z

d} of edges defines a forest in Z
d [i.e., the graph (Zd,Fa)

does not have cycles], we call such a random function a an ancestral function. In
particular, if a is an ancestral function, then each connected component of Fa is
infinite and we can interpret a(x) as the parent or immediate ancestor of x. The
nth generation ancestor of x, n ≥ 1, is denoted by an(x) = a(an−1(x)), where
a0(x) = x. Then, Ray(x) = {an(x)|n ≥ 0} is the set of ancestors of x, including x

itself, whereas Tree(x) = {y ∈ Z
d |x = an(y) for some n ≥ 1} is the set of progeny

of x. The length of the longest branch in Tree(x) is defined as

h(x) = sup{n ≥ 0|x = an(y) for some y ∈ Z
d}, x ∈ Z

d .(1)

In this paper, we study the tail behavior of h(0) for such forests Fa that are also
stationary with respect to the translations of the lattice Z

d [that is, the collection
(a(x) − x)x∈Zd is stationary]. The proof of the following theorem is easy.

THEOREM 1. There is a constant c1 > 0 that depends only on d ≥ 2, such that
for all stationary ancestral functions (a(x))x∈Zd ,

lim inf
n→∞ nd−1

P[h(0) ≥ n] ≥ c1.(2)
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Here and throughout the paper, P will denote the probability measure of the
underlying probability space. The corresponding expectation operator will be de-
noted by E.

An ancestral function (a(x))x∈Zd is directed if for some z ∈ {±1}d , a(x) − x ∈
{ziei |i = 1, . . . , d} for all x ∈ Z

d , P-a.s., where e1, . . . , ed denote the standard
basis vectors of R

d . We then refer to z as the direction of a (or of the corresponding
forest). Perhaps the simplest example of a stationary directed forest spanning Z

d

is given in the following example.

EXAMPLE 1. Define a(x) = x + i(x), where i(x), x ∈ Z
d , are independent

random variables with P[i(x) = ej ] = 1/d for j = 1, . . . , d . This defines a directed
forest that spans Z

d . Part of such a forest is shown in Figure 1(a), in d = 2. (It is
not difficult to show that, in d = 2, the forest consists of a single tree, P-a.s.;
see [9].) It follows from the discussion in [9], page 1730, that Tree(0) is enclosed
by two directed simple symmetric random walk paths on the dual lattice that are
independent of each other until they meet. So, P[h(0) ≥ n] ≥ c2n

−1/2 for some
c2 > 0 and all n ≥ 1. (Neither this last fact nor Example 1 is used in the sequel,
except as motivation.)

Example 1 might suggest that trees in stationary spanning forests need to be
longer than suggested in Theorem 1, that is, that the rate of decay given in Theo-
rem 1 is not optimal. However, this is not the case, as is shown by the following
result.

FIG. 1. (a) Example 1. (b) Part of the forest constructed for d = 2 in the proof of Theorem 2. Note
the long straight branches in the latter case.
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THEOREM 2. For each d ≥ 2, there is a stationary and directed ancestral
function (a(x))x∈Zd that is polynomially mixing of order 1 and for which

lim sup
n→∞

nd−1
P[h(0) ≥ n] < ∞.(3)

Here, we are using the following notion of mixing.

DEFINITION 1. Let b = (b(y))y∈Zd be a family of random variables on some
common probability space. For G ⊂ Z

d , define the collections of real-valued ran-
dom variables

Mb
G = {

f : |f | ≤ 1, f is measurable with respect to σ
(
b(y), y ∈ G

)}
.(4)

For a given γ > 0, b is polynomially mixing (of order γ ) if for all finite G ⊂ Z
d ,

sup
s∈Zd

sup
f ∈Mb

G,g∈Mb
G+s

|s|γ | cov(f, g)| < ∞.

Our motivation for studying the above growth properties of random forests in Z
d

was our desire to investigate possible extensions of a conjectured 0–1 law for ran-
dom walk in a random environment (RWRE). We proceed to introduce the RWRE
model.

For d ≥ 1, let S denote the set of 2d-dimensional probability vectors and set
� = SZ

d
. We consider all ω ∈ �, written as ω = ((ω(x, x + e))|e|=1)x∈Zd , as an

environment for the random walk that we define next. The random walk in the
environment ω, started at z ∈ Z

d , is the Markov chain (Xn)n≥0 with state space Z
d ,

such that X0 ≡ z, and whose transition probabilities P z
ω satisfy

P z
ω(Xn+1 = x + e|Xn = x) = ω(x, x + e) for e ∈ Z

d with |e| = 1.(5)

An environment ω is called elliptic if ω(x, x +e) > 0 for all x, e ∈ Z
d with |e| = 1.

A random environment ω is called uniformly elliptic if there exists a so-called
ellipticity constant κ > 0, such that P[ω(x, x + e) > κ] = 1 for all x, e ∈ Z

d with
|e| = 1. (See [6] and [8] for an introduction to the RWRE model and its properties.)

One of the major open questions in the study of the RWRE concerns the so-
called 0–1 law. Fix a vector � ∈ R

d , � �= 0, and define the events A+(�) and A−(�)

by

A±(�) =
{

lim
n→∞Xn · � = ±∞

}
.

It has been known since the work of Kalikow [2] that if the random vectors ω(x, ·),
x ∈ Z

d , are i.i.d. and ω is uniformly elliptic, then

E
[
P 0

ω[A+(�) ∪ A−(�)]] ∈ {0,1}.
This was extended in [9], Proposition 3, to the elliptic i.i.d. case.
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The 0–1 law conjecture for RWRE states that if ω(x, ·), x ∈ Z
d , are i.i.d. and ω

is uniformly elliptic, then, in fact,

E
[
P 0

ω[A+(�)]] ∈ {0,1}.(6)

(The origin of this conjecture is a bit murky. For d = 1, it is a consequence of
the law of large numbers in [5]. Kalikow [2] presented it as a question in d = 2;
that case was settled only recently in the affirmative in [9]. The conjecture has
since become folklore and is mentioned, e.g., in [7]. Although the question has
arisen whether (6) holds for elliptic i.i.d. environments or for uniformly elliptic
ergodic environments, we state the conjecture here in the weaker form, that is, for
uniformly elliptic i.i.d. environments. For d ≥ 3, this is still an open problem.)
Recently, it has been shown that the law of large numbers for the RWRE follows
from (6) for i.i.d. environments [10], and for a class of Gibbsian environments [3].

When d = 2 and the environment is elliptic and i.i.d., (6) was proved in [9], us-
ing techniques that do not extend to higher dimensions. The same paper provides
an example, based on a construction of a forest that spans Z

2, of an elliptic, ergodic
environment, where (6) fails. However, this environment is neither uniformly el-
liptic nor mixing (in the ergodic theoretic sense), and not even totally ergodic, and
thus the results in [9] do not contradict the validity of (6) for uniformly elliptic,
mixing environments. (See [4], page 21, for the definition of total ergodicity.)

Our attempts to address the validity of (6) in this last setting led to the tree tail
estimates discussed in Theorem 2. Employing these bounds, we construct a coun-
terexample to (6), in d ≥ 3, with a stationary, uniformly elliptic and polynomially
mixing environment.

THEOREM 3. For d ≥ 3, there is a probability space (with probability mea-
sure P) that supports a stationary, uniformly elliptic and polynomially mixing fam-
ily ω = (ω(x))x∈Zd , such that for some constant c > 0 and P-a.a. realizations of ω,

P 0
ω

[
lim inf
n→∞

Xn · 
1
n

> c

]
> 0 and P 0

ω

[
lim inf
n→∞

Xn · (−
1)

n
> c

]
> 0.(7)

Here, 
1 = e1 + · · · + ed .

We outline how we use the spanning forest constructed in Theorem 2 to obtain
Theorem 3. The counterexample in [9] was based on constructing two disjoint
directed trees in Z

2 with opposite directions z = 
1 and z = −
1, and adjusting the
transition probabilities of the RWRE on each edge that belongs to one of the trees,
so that the drift at x toward the ancestor a(x) increases as a function of h(x). By
appropriately choosing the rate at which the drift increases, one can ensure that
the RWRE, when started on one of the trees, remains on it forever with positive
probability, while progressing up its ancestral line. Because of this, the uniform
ellipticity of the environment cannot be maintained.
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When trying to restore uniform ellipticity to the environment, a natural idea is
to add “insulation” around each of the directed trees. The insulation should allow
one to specify a uniformly elliptic environment that, with positive probability, for-
ever traps the walker near the tree. Of course, this implies that the insulation must
grow as one progresses up the ancestral line. To leave room for two directed trees
pointing in opposite directions to have nonoverlapping insulation, one needs for
the trees not to be “too large.” When quantifying the notion of “large” needed, one
is naturally led to study the random variable h(x) in (1).

The rest of the paper is organized as follows. Theorems 1 and 2 are proved in
Section 2. In Section 3 we prune the forest obtained in Theorem 2 to make room
for an independent copy of it with the direction z reversed and then add insulation
to be able to obtain uniform ellipticity of the environment of the RWRE later on.
Geometric properties of insulated rays are investigated in Section 4. In Section 5
we equip each such insulated ray with an environment ω that traps the RWRE
with positive probability. These environments are patched together in Section 6 to
complete the proof of Theorem 3. After a short discussion of open problems in
Section 7, we prove in the Appendix the mixing properties stated in Theorems 2
and 3.

We conclude the Introduction with some conventions and notation. The p-norm,
p ∈ [1,∞] (on either R

d or Z
d ), will be denoted by | · |p . Most of the time, we will

use the 1-norm, in which case we will drop the index 1 from | · |1. The metric d(·, ·)
will always refer to | · |, and B(x, r) [resp. B∞(x, r)] denotes the closed | · | ball
(resp. | · |∞ ball) of center x and radius r in Z

d . The collection of strictly positive
integers will be denoted by N and the cardinality of a set A will be denoted by #A.
Throughout the paper, ci , i = 1,2,3, . . . , will denote strictly positive and finite
constants that depend only on d and β , where β is introduced in (24).

2. Spanning Z
d with short trees. In this section we provide the proofs of

Theorems 1 and 2. We begin with the easy proof of Theorem 1.

PROOF OF THEOREM 1. Choose c1 > 0 such that for all n ≥ 1,

c1#{x ∈ Z
d ||x| = n} ≤ nd−1.

Since (a(x))x∈Zd is stationary, so is (h(x))x∈Zd and, therefore,

nd−1
P[h(0) ≥ n] ≥ c1

∑
|x|=n

P[h(x) ≥ n] for n ≥ 1.(8)

If x is an ancestor of 0, then h(x) ≥ |x|. Consequently, the right-hand side of (8)
is at least

c1
∑

|x|=n

P[x ∈ Ray(0)] = c1E[#{x ∈ Ray(0)||x| = n}] ≥ c1,
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where the inequality holds since Ray(0) contains at least one x with |x| = n. The
bound (2) follows. �

The remainder of this section is devoted to demonstrating Theorem 2. We begin
with the construction of the ancestral function a referred to there. Fix γd > 0 such
that for all n ≥ 1,

#{x ∈ N
d ||x| = n} ≥ γdnd−1.(9)

Also, let n0 ∈ N and θd be finite constants such that

nd
0 ≥ θd ≥ dd

γd

.(10)

Let L(x) > 1, x ∈ Z
d , be i.i.d. random variables whose distribution is atomless

and satisfies

P [L(0) > t] = θdt−d for all t ≥ n0.(11)

We define, for each t ≥ 1, the umbrella

Ut =
d⋃

i=1

Ui,t ,

where

Ui,t = {x ∈ [0, t]d |xi = 0, and xj > 0 for j �= i}, i = 1, . . . , d,

are the sides of the umbrella. Note that the umbrella Ut contains exactly those
points in Z

d through which one can enter the box [1, t]d ∩ Z
d by moving one step

in one of the directions e1, . . . , ed .
We next provide an informal description of the construction of the ancestral

function a that captures our way of thinking. [The reader can safely defer this dis-
cussion until after the precise definitions given in (12)–(14).] Imagine the ancestral
line as being given by rainwater that always follows a directed nearest-neighbor
flow on Z

d . Rain is leaving each lattice point in all of the positive coordinate di-
rections and is being deflected by the umbrellas y + UL(y), y ∈ Z

d . The umbrellas
will protect most of the points in the cubes y +[1,L(y)]d from the rain, as follows.
Water that has reached a vertex x is blocked from flowing to x + ei by any um-
brella whose side y + Ui,L(y) contains x. However, for every direction e1, . . . , ed ,
there is an umbrella whose side y +Ui,L(y) � x blocks that direction. This “battle”
is lost by the direction ei for which the largest umbrella in x blocking that direc-
tion is smallest among all directions, and the water will flow in this direction. (See
Figure 2 for an illustration in d = 2. Note that the topological duality present for
d = 2 is absent for d ≥ 3.)

More precisely, we define, for all i = 1, . . . , d and all x ∈ Z
d ,

λi(x) = sup
y∈Zd : x∈y+Ui,L(y)

L(y),(12)
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FIG. 2. Water will follow the thick line if there are no umbrellas around larger than the ones shown.

which is the length of the largest umbrella whose i side passes through x. Since
L(0) > 1 a.s., we have x ∈ x − ej + Ui,L(x−ej ) a.s., for each j �= i. Consequently,
the set on the right-hand side of (12) is nonempty and λi(x) is greater than 1. The
following lemma implies that λi(x) is also a.s. finite.

LEMMA 4. There is a constant c3, such that for all i ∈ {1, . . . , d} and all
t > n0,

P[λi(0) > t] ≤ c3t
−1.(13)

PROOF. It suffices to show that (13) holds for t large. Let t1 > n0 be chosen
large enough so that (1 − θdt−d)t

d/θd > 1/3 for t > t1. Set

Dn
i = {y ∈ Z

d ||y|∞ = n,yi = 0, yj < 0 for all j �= i}.
By the definition of λi(x) and the independence of L(y), y ∈ Z

d , one obtains for
t > t1, that

P[λi(0) ≤ t] = P[L(y) ≤ t for all y ∈ −Ui,t ]
∏
n>t

P[L(y) < n for all y ∈ Dn
i ]

(11)≥ (1 − θdt−d)
t�d−1 ∏
n>t

(1 − θdn−d)c4n
d−2

≥ 3−θd/t−∑n>t c5n
−2 ≥ 3−c6t

−1 ≥ 1 − c3t
−1
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for appropriate constants c3, . . . , c6. �

Since the distributions of λi(x) and L(x) are atomless, there is an a.s. unique
I (x) ∈ {1, . . . , d}, for which

λI (x)(x) = min{λi(x)|i = 1, . . . , d}.
This defines a direction with the smallest “protecting” umbrellas. Any umbrella
passing through x that is perpendicular to that direction will be penetrated at that
site, in the sense that water will flow from x in that direction. We now set, for
x ∈ Z

d ,

a(x) = x + eI (x).(14)

Note that since a is directed with z = 
1, a is an ancestral function; this is the
ancestral function we will use to demonstrate Theorem 2. The edges {x, a(x)},
x ∈ Z

d , that are “wetted by the rain” define a random forest of infinite trees that
spans Z

d [as in Figure 1(b) for d = 2].
We still need to demonstrate the tail estimates and mixing properties in the

statement of Theorem 2. As a first step, the next lemma bounds the probability that
an umbrella, with side length at least t , has been penetrated at any given site.

LEMMA 5. For some constant c7 and all i ∈ {1, . . . , d}, t > n0 and z ∈ Ui,t ,

P[I (z) = i,L(0) > t] ≤ c7t
−2d+1.(15)

PROOF. Denote by Ai(z) the σ -field generated by the random variables L(u),
with ui = zi and uj �= zj for all j �= i. Note that Ai(z), i = 1, . . . , d , are indepen-
dent. Moreover, λi(z) is measurable with respect to Ai(z), and L(0) is measurable
with respect to Ai (z) if z ∈ Ui,n. Therefore, for i = 1, . . . , d and z ∈ Ui,n,

P[I (z) = i,L(0) > t] = E

[
P

[
λi(z) < min

j �=i
λj (z)

∣∣∣Ai (z)

]
;L(0) > t

]

= E

[∏
j �=i

P[λi(z) < λj (z)|Ai(z)];L(0) > t

]
.

By (13) (for the first inequality), and by (11) and the independence of (L(x))x (for
the second inequality), this is

≤ E[(c3λi(z)
−1)d−1;L(0) > t] ≤ c7t

−(d−1)−d,

because L(0) > t implies λi(z) > t . �

We can now demonstrate Theorem 2.

PROOF OF THEOREM 2. It remains to show that the ancestral function (a(x))x
constructed above is polynomially mixing of order 1 and satisfies the bound in (3).
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Here, we demonstrate (3); the demonstration of polynomial mixing is deferred to
Lemma A.1 in the Appendix. (The lemma in fact deals with a slightly stronger
notion of mixing.)

We begin the proof of (3) by introducing some notation. Denote by

Sn
m = {x ∈ Z

d |m ≤ x · 
1 ≤ n}, m,n ∈ Z,

the slab bounded by the hyperplanes perpendicular to 
1 and passing through m
1
and n
1. (This slab is empty if m > n.) Also, set

Sn,+
m = Sn

m ∩ N
d, Sn,−

m = Sn
m ∩ −N

d .

We define the random variables

Mn = sup
{
m ∈ {n0, . . . , n}|∃x ∈ S

−m,−
−m with L(x) > m

}
, n ≥ 1,(16)

where we set Mn = n0 − 1 if the set in (16) is empty.
We will show that

P[h(0) > m,Mn = m] ≤ c8n
−d, m = n0 − 1, . . . , n.(17)

This implies

P[h(0) > n] ≤
n∑

m=n0−1

P [h(0) > m,Mn = m] ≤ c9n
−d+1,

from which (3) follows. The proof of (17) is divided into the degenerate case,
m = n0 − 1, and the general case, m = n0, . . . , n, which involves considerably
more work.

We first consider the case m = n0 − 1. Then, there is no umbrella y + UL(y),
with n0 ≤ |y| ≤ n, that protects the origin. Therefore,

P[h(0) > m,Mn = n0 − 1]
≤ P[Mn = n0 − 1]
= P[for all m = n0, . . . , n and y ∈ S

−m,−
−m ,L(y) ≤ m]

(11)=
n∏

m=n0

(
1 − θd

md

)#S
−m,−
−m (9)≤

n∏
m=n0

(
1 − θd

md

)(md/θd)(γdθd/m)

.

Since (1 − x−1)x ≤ e−1 for x ≥ 1, the last expression is, by (10) and (11), at most

exp

(
−dd

n∑
m=n0

m−1

)
≤ exp

(
−dd

∫ n

n0

x−1 dx

)
≤ c10n

−d(18)

for appropriate c10. This implies (17) for m = n0 − 1 if one takes c8 ≥ c10.



830 M. BRAMSON, O. ZEITOUNI AND M. P. W. ZERNER

We now demonstrate (17) for the general case m = n0, . . . , n. We will employ
the events

An
m(x, r) = {L(y) ≤ −y · 
1 + r for all y ∈ Sn

m ∩ (x − N
d)},

m,n, r ∈ Z, x ∈ Z
d .

Since the proof is long, we break it into three parts. The first part consists of show-
ing

P[h(0) > m,Mn = m]
(19)

≤
d∑

s=1

E

[
#{x ∈ Sm,+

m |h(x) > m};L(0) > m;A−1
m−n

(⌊
m

d

⌋
es,m

)]
.

In the next part, we will decouple the events that appear in this expectation, whose
probabilities we will then compute.

To prove (19), first note that by definition (16),

P[h(0) > m,Mn = m]
= P [h(0) > m,L(x) > m for some x ∈ S

−m,−
−m ,

L(y) ≤ −y · 
1 for all y ∈ S
−m−1,−
−n ]

≤ ∑
x∈S

−m,−
−m

P[h(0) > m,L(x) > m,A−m−1−n (0,0)].

By stationarity, this equals∑
x∈S

−m,−
−m

P[h(−x) > m,L(0) > m,A−1
m−n(−x,m)]

= ∑
x∈S

m,+
m

P[h(x) > m,L(0) > m,A−1
m−n(x,m)]

≤
d∑

s=1

∑
x∈S

m,+
m

xs=|x|∞

P[h(x) > m,L(0) > m,A−1
m−n(x,m)].

Observe that (m/d)es ≤ x coordinatewise whenever x ∈ Sm,+
m and xs = |x|∞. For

such x, 
m/d�es − N
d ⊆ x − N

d . (See Figure 3 for an illustration.) Consequently,
the above double sum is at most

d∑
s=1

∑
x∈S

m,+
m

xs=|x|∞

P

[
h(x) > m,L(0) > m,A−1

m−n

(⌊
m

d

⌋
es,m

)]
,

which yields (19).
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FIG. 3. The dark region (
m/d�e1 − N
d) ∩ S−1

m−n is always included in the lightly shaded region

(x − N
d) ∩ S−1

m−n, regardless of where x is located on the bold line. The condition h(x) > m implies
that Tree(x) extends past the box on whose diagonal x is located.

We next perform the decoupling previously mentioned, which leads to (21) be-
low. If x ∈ Sm,+

m and h(x) > m, then Tree(x) is not contained in the cube [1,m]d
(see Figure 3). That is, Tree(x) must possess at least one branch that penetrates the
umbrella Um that “protects” the cube. Consequently,

#{x ∈ Sm,+
m |h(x) > m} ≤ #

( ⋃
z : z∈UI(z),m

Ray(z) ∩ Sm,+
m

)

≤ ∑
z : z∈UI(z),m

#
(
Ray(z) ∩ Sm

m

)= d∑
i=1

∑
z∈Ui,m

1I (z)=i .

In the last step, we used the fact that rays are directed (in the direction 
1) and
therefore can intersect the hyperplane Sm

m at exactly one site. Substituting this into
(19) yields

P[h(0) > m,Mn = m]
(20)

≤
d∑

s=1

d∑
i=1

∑
z∈Ui,m

P

[
I (z) = i,L(0) > m,A−1

m−n

(⌊
m

d

⌋
es,m

)]
.
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To get (17), we would like the first two events inside the last probability to be
independent of A−1

m−n(
m/d�es,m). Unfortunately, this is not quite true, but will
be true if we replace it by the larger event B−1

m−n(
m/d�es,m), where

B−1
m−n(
m/d�es,m)

=
{
L(y) ≤ m − y · 
1

for all y ∈
(
S−1

m−n ∩
(⌊

m

d

⌋
es − N

d

))∖ d⋃
j=1

{x|xj = zj }
}
.

Indeed, for z ∈ Ui,m, I (z) and L(0) are measurable with respect to the σ -field
generated by the random variables L(x), where x has at least one coordinate in
common with z, whereas B−1

m−n(
m/d�es,m) is independent of L(x) for such x.
Therefore, we obtain

P[h(0) > m,Mn = m]
(21)

≤
d∑

s,i=1

∑
z∈Ui,m

P[I (z) = i,L(0) > m]P[B−1
m−n(
m/d�es,m)].

As the last step in showing (17), we bound the probabilities that appear on the
right-hand side of (21). By Lemma 5, (11) and independence of (L(x))x , the right-
hand side of (21) is at most

d∑
s,i=1

∑
z∈Ui,m

c7m
−2d+1

(22)

×
n−m∏
k=2

(
1 − θd

(m + k)d

)#((S−k
−k ∩(
m/d�es−N

d ))\⋃d
j=1{x|xj=zj })

,

where we have dropped the factor for k = 1.
We proceed to simplify (22) by estimating the cardinality of the sets in the

exponent of the above product. For all m ≥ 1, k ≥ 2 and s = 1, . . . , d ,

#
(
S−k

−k ∩
(⌊

m

d

⌋
es − N

d

))
(9)≥ γd

(⌊
m

d

⌋
+ k

)d−1

≥ γd

(
m + (k − 1)d

d

)d−1

≥ γdd−d+1(m + k)d−1 (10)≥ d

θd

(m + k)d−1.

[For the first inequality, note that the set on the left-hand side consists of those
z ∈ Z

d with z < 
m/d�es coordinatewise and d(z, 
m/d�es) = 
m/d� + k.]
Similarly,

#

(
S−k

−k ∩
(⌊

m

d

⌋
es − N

d

)
∩

d⋃
j=1

{x|xj = zj }
)

≤ c11

(
m

d
+ k

)d−2

.
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The expression in (22) is consequently at most
d∑

s,i=1

∑
z∈Ui,m

c7m
−2d+1

n−m∏
k=2

(
1 − θd

(m + k)d

)d(m+k)d−1/θd

(23)

× ∏
k≥2

(
1 − θd

(m + k)d

)−c11(m/d+k)d−2

.

One easily checks that the infinite product in (23) is less than a constant inde-
pendent of m because of the difference of 2 in the exponents d and d − 2 of k.
[Recall that θd < (m + k)d for k ≥ 2, by (10).] Applying (1 − x−1)x ≤ e−1 for
x ≥ 1 to the terms of the finite product, the right-hand side of (23) is at most

d2(#U1,m)c12m
−2d+1 exp

(
−d

n−m∑
k=2

(m + k)−1

)

≤ c13m
d−1m−2d+1 exp

(
−d

n∑
k=m+2

k−1

)

≤ c13m
−d exp

(
−d

∫ n

m+2
t−1 dt

)
= c13

(
m + 2

m

)d

n−d ≤ c14n
−d .

This bounds P [h(0) > m,Mn = m] for m = n0, . . . , n. Together with (18), this
completes the proof of (17) if one chooses c8 = max(c14, c10). �

3. Pruning and insulating trees. For the remainder of the paper, we will
consider arbitrary ancestral functions (a(x))x∈Zd that satisfy the statement of The-
orem 2. Eventually, when studying mixing properties (in the proof of Theorem 3
and in the Appendix), we will need to use the explicit construction of ancestral
functions provided in Section 2.

In this section we prune the trees constructed in Theorem 2, with an eye toward
the construction of an environment for the RWRE. This will allow us to build wide
enough channels to trap the random walker and direct it in certain chosen direc-
tions. Throughout the remainder of the paper, we will assume d ≥ 3 and employ a
constant β that satisfies

0 < β <
d − 2

2d
.(24)

(This bound is needed for the construction of the environment. To guarantee its
mixing properties, we will eventually take β small enough so that the conclusion
of Lemma A.5 in the Appendix holds.)

For each y ∈ Z
d , we consider the ball B(y,h(y)β), where h is defined in (1).

(Such balls will serve as the “insulation” alluded to in the Introduction.) Any given
x ∈ Z

d may be covered by a number of balls: we set

H(x) = sup
{
h(y)|x ∈ B

(
y,h(y)β

)}
.(25)
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We first estimate the tail behavior of H(0).

LEMMA 6. For appropriate c17,

lim sup
n→∞

n(1−β)d−1
P[H(0) ≥ n] ≤ c17 < ∞.(26)

PROOF. For t = nβ chosen large enough,

P[H(0)β ≥ t] = P
[
0 ∈ B

(
y,h(y)β

)
and h(y)β ≥ t, for some y ∈ Z

d]
≤ ∑

m≥0

∑
|y|=m

P[h(y)β ≥ m ∨ t]

≤ ∑
|y|≤
t�

P[h(0) ≥ t1/β ] + ∑
m>
t�

∑
|y|=m

P[h(0) ≥ m1/β ].

By (3) of Theorem 2, this is

≤ c15t
d t (1−d)/β + ∑

m>
t�
c16m

d−1m(1−d)/β ≤ c17t
d+(1−d)/β

for appropriate c15, c16, c17, since d − 1 > βd by (24). This implies (26). �

Recall that Theorem 2 guarantees the existence of a directed stationary for-
est with certain specific properties. By relabeling the coordinate axes, we can
choose the directions in which the rays of this forest grow, that is, we can spec-
ify z ∈ {±1}d such that, for each x ∈ Z

d , a(x) − x ∈ {ziei |i = 1, . . . , d}. We may
therefore assume that there exist, on the same probability space, two independent
directed forests, Fi = {{x, ai(x)}|x ∈ Z

d}, i = 1,2, with ancestral functions ai ,
such that a1(x) − x = ej for some j = 1, . . . , d and a2(x) − x = −ej for some
j = 1, . . . , d . These two forests “grow” in opposite directions 
1 and −
1. We de-
fine the corresponding functions hi and Hi in the same way as above, using their
respective forests Fi .

We proceed to “prune” the trees in both forests in such a way that each
pruned forest will consist solely of infinite trees, and these forests will be “well
separated.” (The forests will no longer span Z

d .) To this end, we define, for
(i, j) = (1,2), (2,1),

T̃i = {
x ∈ Z

d |hi(x) > Hj(y) for y ∈ B
(
x,hi(x)β

)}
.

We prune the original forests Fi by removing the vertices Z
d\T̃i . This will split

any tree in such a forest into a number of finite and at most one infinite piece. After
removing the finite branches, we are left with the set of (a priori, possibly empty)
directed infinite pruned trees

Ti = {x ∈ T̃i |an
i (x) ∈ T̃i for all n ≥ 0}.
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So that the transition probabilities we are going to construct are uniformly elliptic,
we insulate the forests Ti by defining, for i = 1,2,

Bi = ⋃
x∈Ti

B
(
x,hi(x)β

)
.(27)

The next proposition shows that the sets B1 and B2 are disjoint and not empty.

PROPOSITION 7. The sets B1 and B2 are a.s. disjoint. There exist a.s. Ni ∈ N,
i = 1,2, such that an

i (0) ∈ Ti for all n ≥ Ni . In particular, Bi �= ∅ a.s.

PROOF. To prove the disjointness of B1 and B2, assume instead that x ∈
B1 ∩ B2. Then there exist x1 ∈ T1 and x2 ∈ T2 so that x ∈ B(xi, hi(xi)

β) for
i = 1,2. Since x ∈ B(x1, h1(x1)

β), one has H1(x) ≥ h1(x1). Moreover, since
x2 ∈ T̃2 and x ∈ B(x2, h2(x2)

β), one has H1(x) < h2(x2) by the definition of T2.
Consequently, h2(x2) > h1(x1). Analogously, one obtains h1(x1) > h2(x2), which
is a contradiction and proves B1 ∩ B2 = ∅.

We will next show that

lim sup
k→∞

k(1−2β)d−2
P[an

i (0) /∈ T̃i for some n ≥ k] < ∞, i = 1,2,(28)

which implies the second claim since, by (24), (1 − 2β)d − 2 > 0. To demon-
strate (28), let k ≥ 0 and (i, j) = (1,2) or (i, j) = (2,1). Then

P[an
i (0) /∈ T̃i for some n ≥ k]
≤∑

n≥k

P
[
Hj(y) ≥ hi(a

n
i (0)) for some y ∈ B

(
an
i (0), hi(a

n
i (0))β

)]
(29)

≤∑
n≥k

E

[ ∑
y∈B(an

i (0),hi(a
n
i (0))β)

P
[
Hj(y) ≥ hi(a

n
i (0))|σ (ai(x), x ∈ Z

d)]].
The number of terms in the inner sum is bounded above by c18(hi(a

n
i (0))βd for

appropriate c18. Moreover, Hj is measurable with respect to σ(aj (x), x ∈ Z
d),

which is independent of σ(ai(x), x ∈ Z
d). Hence, we can use Lemma 6 to estimate

each such term from above and obtain that (29) is at most∑
n≥k

E
[
c19hi(a

n
i (0))1−(1−2β)d]≤∑

n≥k

c19n
1−(1−2β)d

for appropriate c19, since hi(a
n
i (0)) ≥ n. Since 1 − (1 − 2β)d < −1 by (24), in-

equality (28) follows. �

Since they are subsets of Fi , the sets 
i = {(x, ai(x))|x ∈ Ti}, i = 1,2, are
also forests. By Proposition 7, they almost surely contain infinite rays that point
in opposite directions and they do not have any vertices in common. Moreover,
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the set of immediate ancestors of vertices in Ti is contained in Bi , because, for
any x ∈ Ti , hi(x) ≥ 1 [since Hj(x) ≥ 0] and hence ai(x) ∈ B(x,hi(x)β). Conse-
quently, no vertex in 
1 is connected to a vertex in 
2 and so 
1 ∪ 
2 is also a
forest (although it does not span all of Z

d ). With a slight abuse of notation, we say
that the ancestral function of 
1 ∪ 
2 is given by

α(x) =
{

a1(x), if x ∈ T1,
a2(x), if x ∈ T2,

(30)

where α(x) is defined only for x ∈ T1 ∪ T2.

4. Geometry of insulated rays. In this section we introduce terminology and
provide estimates that we will need when we analyze the RWRE environment in
Sections 5 and 6. For i = 1,2, let ∂Ti = {z ∈ Ti |z �= α(x) for all x ∈ Ti} denote
the set of leaves of the infinite pruned tree Ti . By (27),

Bi = ⋃
z∈∂Ti

⋃
n≥0

B
(
αn(z), (hi(α

n(z)))β
)
, i = 1,2.

Instead of Bi , we will work with the somewhat simpler sets (see Figure 4)

Ci = ⋃
z∈∂Ti

InsRay(z),(31)

where

InsRay(z) = ⋃
n≥0

B
(
αn(z), nβ)(32)

is the insulated ray emanating from z ∈ ∂Ti . [Since ∂T1 and ∂T2 are disjoint, there
is no need to index InsRay(z) or Ray(z) with i.] Because hi(α

n(z)) ≥ n, Ci ⊆ Bi .
In particular, since B1 and B2 are disjoint by Proposition 7, so are C1 and C2.

FIG. 4. Ci is shaded and InsRay(z) is darkly shaded.
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For z ∈ ∂T1 ∪ ∂T2 and x ∈ Z
d , we define two quantities uz(x) and vz(x), each

measuring the “effective” insulation at x in a slightly different way. We set

uz(x) = d
(
x, InsRay(z)c

)
and vz(x) = sup

n≥0

(
nβ − |x − αn(z)|).(33)

One can check that

vz(x) ≤ sup
n≥0

d
(
x,B

(
αn(z), nβ)c)≤ uz(x).(34)

Also, let nz(x) be the largest value of n at which the supremum in (33) is attained,
that is,

nz(x) = max{n ≥ 0 :nβ − |x − αn(z)| = vz(x)}.(35)

Since uz(x) < ∞ and β < 1, nz(x) < ∞, a.s. Also,

|vz(x) − vz(x + e)| ≤ 1(36)

for all x, e ∈ Z
d with |e| = 1; this follows from

vz(x) = nz(x)β − ∣∣x − αnz(x)(z)
∣∣

≤ nz(x)β − ∣∣x + e − αnz(x)(z)
∣∣+ |e|

≤ vz(x + e) + 1.

We will need the following estimates that involve uz(x) and x − z in Sections
5 and 6.

LEMMA 8. For appropriate c20, all z ∈ ∂Ti , i = 1,2, and all x ∈ InsRay(z),

|x − z| ≤ 2Hi(x)(37)

and

uz(x) ≤ c20
(
(−1)i+1(x − z) · 
1)β.(38)

Consequently, for appropriate c21,

uz(x) ≤ c21Hi(x)β.(39)

PROOF. Inequality (39) follows from (37) and (38). For the proof of (37),
recall that since x ∈ InsRay(z) for z ∈ ∂Ti , |x − am

i (z)| ≤ mβ for some m ≥ 0; in
particular, Hi(x) ≥ hi(a

m
i (z)) ≥ m. Therefore,

|x − z| ≤ |x − am
i (z)| + |am

i (z) − z| ≤ mβ + m ≤ 2m ≤ 2Hi(x).

The argument for (38) is longer. Set n = (−1)i+1(x − z) · 
1; n ≥ 0 since Ray(z)

is directed. Moreover, we may assume n ≥ 1, because n = 0 implies that x = z, in
which case uz(x) = 0 and (38) is trivial.
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We introduce a vector w �= 0, as follows. For x /∈ Ray(z), one has x �= αn(z), in
which case we set w = x − αn(z). Then

w · 
1 = (x − z) · 
1 + (
z − αn(z)

) · 
1 = (−1)i+1(n − n) = 0,

since (z − αn(z)) · 
1 = (−1)in. For x ∈ Ray(z), one has x = αn(z); we then set
w = e1 − e2 �= 0, which is also orthogonal to 
1.

We choose c20 large enough so that

c22 = (
(c20 − 2)d−2)1/β satisfies c

−β
22 (c22 − 1) >

√
d(40)

and set

y = x +
⌊
c20n

β

|w|
⌋
w = αn(z) +

(
1{x /∈ Ray(z)} +

⌊
c20n

β

|w|
⌋)

w.

To demonstrate (38), it is enough to show y /∈ InsRay(z), since then uz(x) ≤ |x −
y| ≤ c20n

β .
We argue by contradiction and assume that y ∈ InsRay(z). We will show that

there exists an m such that both

m ≥ c22n(41)

and

m ≤
(

c22
√

d

c22 − 1

)1/(1−β)

(42)

must hold. This is not possible because of our choice of c22 in (40) and n ≥ 1.
We choose m ≥ 0 so that

mβ ≥ |y − αm(z)|
(43)

=
∣∣∣∣αn(z) − αm(z) +

(
1{x /∈ Ray(z)} +

⌊
c20n

β

|w|
⌋)

w

∣∣∣∣
and show that m satisfies (41) and (42). Since Ray(z) is directed, the coordinates
of αn(z) − αm(z) all have the same sign. On the other hand, |wj | ≥ d−1|w| must
hold for at least one of the coordinates wj of w. There is also at least one other
coordinate wk of w with sign opposite to that of wj and with |wk| ≥ d−2|w|,
because w · 
1 = 0. Therefore, either wj or wk has sign that is the opposite of
that of the corresponding coordinate of αn(z) − αm(z) and has absolute value at
least d−2|w|. So, by (43),

mβ ≥
(

1{x /∈ Ray(z)} +
⌊
c20n

β

|w|
⌋)

d−2|w|

≥
(

c20n
β

|w| − 1{x ∈ Ray(z)}
)
d−2|w|

≥ (c20 − 2)d−2nβ.
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Because of our choice of c22 in (40), this implies (41).
We still need to show (42), which we do by bounding |y − αm(z)| from below.

One has the string of inequalities

|y − αm(z)| ≥ |y − αm(z)|2
≥ ∣∣(y − αm(z)

) · 
1∣∣/√d

= ∣∣(αn(z) − αm(z)
) · 
1∣∣/√d

= |m − n|/√d

≥ (1 − 1/c22)m/
√

d,

where the second inequality follows from Cauchy–Schwarz and the last inequality
follows from (41) and c22 > 1. Along with (43) this implies (42) and completes
the proof of (38). �

5. Environment attached to an insulated ray. In this section we construct,
for every insulated ray InsRay(z), z ∈ ∂T1 ∪ ∂T2, a uniformly elliptic environment
that forever traps the walk {Xn} inside InsRay(z) with positive probability. This is
achieved by both “pushing” the walk toward Ray(z) and in a direction parallel to
Ray(z) in which InsRay(z) widens. Proposition 7 is the main result of the section;
most of the work is done in Lemmas 10 and 11.

These two directions are determined as follows, for any x ∈ InsRay(z). The
parallel motion of the walk consists of jumping from x to x + rz(x), where

rz(x) = αnz(x)+1(z) − αnz(x)(z)(44)

and nz(x) is given by (35). To define the second direction sz(x), note that since

x ∈ Ray(z) iff x = αnz(x)(z),(45)

there exists, for any x /∈ Ray(z), a (deterministically chosen) unit vector sz(x) ∈ Z
d

so that ∣∣x + sz(x) − αnz(x)(z)
∣∣= ∣∣x − αnz(x)(z)

∣∣− 1;(46)

moving from x to x + sz(x) takes the walk closer to αnz(x)(z). For x ∈ Ray(z), the
choice of the unit vector sz(x) is arbitrary. (See Figure 5 for an illustration of both
motions, for z ∈ B1.)

For z ∈ ∂T1 ∪ ∂T2, we define the environment ωz attached to Ray(z) by setting,
for e ∈ Z

d with |e| = 1,

ωz(x, x + e) =


3

4
1e=rz(x) + 1

5
1e=sz(x) + 1e/∈{rz(x),sz(x)}

20(2d − 1 − 1rz(x) �=sz(x))
,

if x ∈ InsRay(z),
1

2d
, if x /∈ InsRay(z).

(47)
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FIG. 5.

That is, when x ∈ InsRay(z), the walk moves with probabilities 3/4 and 1/5 in
the directions rz(x) and sz(x), respectively (if the directions are different), and
uniformly chooses one of the other directions with the remaining probability; when
x /∈ InsRay(z), the motion of the walk is symmetric.

The environment ωz ∈ � is uniformly elliptic since for x, e ∈ Z
d , with |e| = 1,

and for κ = (20(2d − 1))−1,

ωz(x, x + e) ≥ κ.(48)

As mentioned in the beginning of the section, ωz has been constructed so that,
for X0 ∈ InsRay(z),

Tz = inf{n ≥ 0 :Xn /∈ InsRay(z)}
is infinite with positive probability. For the proof of this we need to distinguish
when the walk is and is not on Ray(z). To this end, we introduce a sequence of
stopping times defined by τ0 = 0 and

τn+1 = inf{k > τn|Xk ∈ Ray(z)}, n ≥ 0.

We will employ two martingale estimates in Lemma 10. Both use Azuma’s
inequality [1], a version of which we recall in Lemma 9.

LEMMA 9 (Azuma’s inequality). For every b1, b2 ∈ (0,∞), there exist
b3, b4, b5 ∈ (0,∞) so that the following holds. If (Yn)n≥0 is a sequence of ran-
dom variables on a probability space with measure P and expectation E, and τ

is a ( possibly infinite) stopping time w.r.t. that sequence such that P -a.s., Y0 = 0,
|Yn+1 − Yn| ≤ b1 and

E[Yn+1 − Yn|σ(Ym,m ≤ n)] ≥ b2 on the event {n < τ },(49)

then

P [Yn < b3n,n ≤ τ ] ≤ b4e
−b5n for all n ≥ 0.
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Lemma 10 will be used in the proof of Lemma 11.

LEMMA 10. For appropriate c23, c24 and c25, and all i ∈ {1,2}, z ∈ ∂Ti ,
x ∈ InsRay(z) and n ≥ 0, P-a.s.,

P x
ωz[(−1)i+1(Xn − x) · 
1 < c23n,Tz ≥ n] ≤ c24e

−c25n(50)

and

P x
ωz[Tz = n < τ1] ≤ c24e

−c25(uz(x)∨n).(51)

Roughly speaking, (50) says that the speed of the walk is bounded below in the
direction (−1)i+1
1, as long as the walk remains in InsRay(z), whereas (51) bounds
the probability of leaving InsRay(z)\Ray(z) through the boundary of InsRay(z).

PROOF OF LEMMA 10. Set Fn = σ(Xk, k ≤ n). To demonstrate (50), it suf-
fices to verify that Yn = (−1)i+1(Xn − x) · 
1 satisfies the assumptions of Azuma’s
inequality, Lemma 9, with P = P x

ωz and τ = Tz. Except for (49), all assumptions
are obviously satisfied, with b1 = 1. The bound (49) is also satisfied since, on the
event {Tz > n},

Ex
ωz[(−1)i+1(Xn+1 − Xn) · 
1|Fn]

= ∑
e∈Zd ,|e|=1

(−1)i+1ωz(Xn,Xn + e)e · 
1(52)

≥ (−1)i+1 3
4rz(Xn) · 
1 − ∑

e �=rz(Xn)

ωz(Xn,Xn + e) = 3
4 − 1

4 > 0.

We now demonstrate (51). Since (Xn)n is a nearest-neighbor walk, Tz ≥ uz(x)

and so the statement is trivial for n < uz(x). Set Yn = vz(Xn) − vz(x). For
n ≥ uz(x) on {Tz = n < τ1}, Xn /∈ InsRay(z), and so by (34), Yn ≤ uz(Xn) = 0.

We first consider x ∈ InsRay(z)\Ray(z). For (51) it suffices to check (49) in
Azuma’s inequality, with τ = τ1 ∧Tz and P = P x

ωz , since the other assumptions are
obviously satisfied. For this we consider y ∈ InsRay(z)\Ray(z) and estimate the
value of vz at the nearest neighbors of y in terms of vz(y). For the increment rz(y),

vz

(
y + rz(y)

) (33)≥ (
nz(y) + 1

)β − ∣∣y + rz(y) − αnz(y)+1(z)
∣∣

(44)≥ nz(y)β − ∣∣y − αnz(y)(z)
∣∣= vz(y).

Therefore, moving from y to y + rz(y), which occurs in the environment ωz with
probability at least 3/4, does not decrease vz. Similarly,

vz

(
y + sz(y)

) (33)≥ nz(y)β − ∣∣y + sz(y) − αnz(y)(z)
∣∣

(46)≥ nz(y)β − (∣∣y − αnz(y)(z)
∣∣− 1

)= vz(y) + 1;
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since a walker at y moves with probability at least 1/5 to y + sz, vz increases
by 1 with probability at least 1/5. With probability 1/20, the walker moves to one
of its other neighbors; when doing so, vz can decrease by at most 1 due to (36).
Therefore,

Ex
ωz[Yn+1 − Yn|Fn] ≥ 1/5 − 1/20 > 0(53)

for any n ≥ 0 on the event {n < τ1 ∧ Tz}, which implies (49) and hence (51) for
x ∈ InsRay(z)\Ray(z).

On the other hand, for x ∈ Ray(z) and n = 0, (51) is trivial. For x ∈ Ray(z) and
n > 0,

P x
ωz[Tz = n < τ1] = ∑

y∈Zd\Ray(z) : |x−y|=1

ωz(x, y)P
y
ωz[Tz = n − 1 < τ1]

and we can apply the bound (51) already proved for y ∈ InsRay(z)\Ray(z) to
obtain (51) in this case, with a new choice of c24. �

Inequality (55) is the main result we will need for the proof of Proposition 12.
It follows quickly from (54), which is an analog of (51), but without the restriction
on not hitting Ray(z) before exiting InsRay(z).

LEMMA 11. For appropriate c26, c27, c28 and c29, and all i ∈ {1,2}, z ∈ ∂Ti ,
x ∈ InsRay(z), and n ≥ 0,

P x
ωz[Tz = n] ≤ c26e

−c27(uz(x)∨nβ), P-a.s.(54)

and

Ex
ωz[Tz;n < Tz < ∞] ≤ c28e

−c29(uz(x)∨nβ), P-a.s.(55)

PROOF. By symmetry, we may assume i = 1. We will demonstrate (54) by
a union bound with four events. Choose kn so that τkn ≤ n < τkn+1 and set ξn =
(x − z) · 
1 + c23n, where c23 is as in Lemma 10. Since x ∈ InsRay(z), ξn > 0. One
can then check that

P x
ωz[Tz = n] ≤ I + II + III + IV,

where

I = P x
ωz[(Xn − x) · 
1 < c23n,Tz = n],

II = P x
ωz[Tz = n < τ1],

III = P x
ωz

[
τ1 < Tz = n,n − τkn ≥ ξβ

n /2
]
,

IV = P x
ωz

[
(Xn − x) · 
1 ≥ c23n, τ1 < Tz = n,n − τkn < ξβ

n /2
]
.

In words, the event in I occurs when, by the time n at which the walk exits
InsRay(z), it has not moved to a much wider part of InsRay(z). The event in II
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occurs when, by that time n, the walk has not hit Ray(z). The event in III occurs
when, by that time n, the walk has hit Ray(z), but the elapsed time since last vis-
iting Ray(z) is large. The event in IV occurs when, by that time n, the walk has
hit Ray(z), the elapsed time since last visiting Ray(z) is not large and the walk has
moved to a much wider part of InsRay(z).

We will show that each of these four terms has an upper bound of the form
in (54). The bounds for I and II follow directly from Lemma 10, while those for
III and IV require some additional work. For I, note that from (50) and Tz ≥ uz(x),
it follows that I ≤ c24e

−c25(uz(x)∨n), which is a stronger bound than required. The
same is true for the estimate of II provided by (51). We next bound III. Since τk is
the time of the kth visit to Ray(z), τk ≥ k for all k ≥ 0. It follows from this and the
Markov property that

III =
n∑

k=1


n−ξ
β
n /2�∑

l=k

P x
ωz[τk = l < Tz = n < τk+1]

=
n∑

k=1


n−ξ
β
n /2�∑

l=k

Ex
ωz

[
P

Xl
ωz [Tz = n − l < τ1]; τk = l < Tz

]
(51)≤

n∑
k=1


n−ξ
β
n /2�∑

l=k

Ex
ωz

[
c24e

−c25(n−l); τk = l < Tz

]
(56)

≤ c24e
−c25ξ

β
n /2

n∑
k=1

P x
ωz[τk < Tz]

≤ c24ne−c25ξ
β
n /2

≤ c26e
−c30((x−z)·
1+n)β

(38)≤ c26e
−c27(uz(x)∨nβ)

for appropriate c26, c27, c30, where the next to last inequality in (56) follows from
the elementary observation that for all α,γ, δ > 0 there exists η > 0 such that for
all s, t ≥ 0,

tαe−γ (s+t)δ < ηe−γ (s+t)δ/2.(57)

We demonstrate IV = 0 by showing that the corresponding event cannot occur.
We argue by contradiction; on the event in IV,

0 = uz

(
XTz

) (34)≥ vz

(
XTz

) (36)≥ vz

(
Xτkn

)− (n − τkn

)
.(58)

Since τ1 < n, we have kn ≥ 1 and therefore Xτkn
∈ Ray(z). Because of (45),

Xτkn
= αm(z), where m = nz(Xτkn

) = (Xτkn
− z) · 
1. So, on the event considered
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in IV,

vz

(
Xτkn

)1/β = (
Xτkn

− z
) · 
1

= (
Xτkn

− Xn

) · 
1 + (Xn − x) · 
1 + (x − z) · 
1
≥ τkn − n + ξn.

Substituting this into (58) and using n − τkn ≤ ξ
β
n /2, we get

0 ≥ (ξn − ξβ
n /2)β − ξβ

n /2 ≥ (ξn − ξn/2)β − ξβ
n /2 = (2−β − 2−1)ξβ

n > 0,

which is a contradiction, so, IV = 0 and we have demonstrated (54).
To obtain (55), note that the left-hand side equals

∑
l>n lP x

ωz[Tz = l]. One can
consider separately the cases uz(x) ≤ nβ and uz(x) > nβ , in the latter case de-
composing the sum into l < u

1/β
z and l ≥ u

1/β
z . One can then obtain (55) from

(54) and (57) by standard manipulation. �

In the next section we will patch together the different environments ωz defined
in (47). To do this, it will be useful to introduce some further terminology. Choose
c31 > c21 ∨ 1 large enough so that for all n ≥ 1,

c28e
−c29c

β
31n/c21 ≤ κn,(59)

where c21 is chosen as in Lemma 8, c28 and c29 are chosen as in Lemma 11, and
κ is the ellipticity constant given in (48). For x ∈ Z

d and z ∈ ∂Ti , i = 1,2, define

pz(x) = P x
ωz[Tz ≤ c31Hi(x)],

Ez(x) = Ex
ωz[Tz;Tz ≤ c31Hi(x)],

E∞
z (x) = Ex

ωz[Tz;Tz < ∞].
Note that

Ez(x) ≥ κ for x ∈ InsRay(z) with d
(
x, InsRay(z)c

)= 1,(60)

since for such x, P x
ωz[Tz = 1] ≥ κ , and both c31 and Hi(x) are at least 1.

Proposition 12 will be used in Section 6. The inequalities in the first line of (61)
are elementary; the second line will follow from (55) of Lemma 11.

PROPOSITION 12. For all i ∈ {1,2}, z ∈ ∂Ti and x ∈ InsRay(z),

κuz(x) ≤ pz(x) ≤ Ez(x) ≤ E∞
z (x),

(61)
E∞

z ≤ (c28e
−c29uz(x))∧ (Ez(x) + pz(x)

)
,

P-a.s., where c28 and c29 are given in Lemma 10.
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PROOF. Choose a path of length uz(x) from x to InsRay(z)c. By (39),
uz(x) ≤ c31Hi(x). Therefore, following this path contributes at least probabil-
ity κuz(x) to the probability of the event {Tz ≤ c31Hi(x)}, which implies the first
inequality of the first line of (61). The other inequalities on this line are immediate
from the definition of the quantities involved.

The first part of the inequality in the second line of (61) follows from (55) of
Lemma 11, applied to n = 0. The second part follows from

E∞
z (x) − Ez(x) = Ex

ωz[Tz; c31Hi(x) < Tz < ∞] (55)≤ c28e
−c29(c31Hi(x))β

(39)≤ c28e
−c29c

β
31uz(x)/c21

(59)≤ κuz(x) ≤ pz(x),

where the last step employs the first inequality in the first line of (61). �

6. Patching environments attached to insulated rays. In this section we
prove Theorem 3 by constructing an appropriate random environment ω. The main
idea behind the construction of ω is to choose, for any point x ∈ Ci , among all
environments attached to insulated rays covering x, the one that “minimizes the
probability of exiting the ray.” To make this choice locally and thus not destroy the
mixing properties inherited by the trees Ti we have constructed, a slight modifica-
tion of this idea is actually needed. This is done by minimizing the expectations of
exit times from the insulated rays (on the event they are finite).

For x ∈ C1 ∪ C2, we set Z(x) = {z ∈ ∂T1 ∪ ∂T2|x ∈ InsRay(z)} and denote
by z(x) a leaf z ∈ Z(x) that minimizes Ez(x). (We apply some arbitrary rule, e.g.,
lexicographic order, to break ties.) Using this, we define, for x, e ∈ Z

d with |e| = 1,

ω(x, x + e) =
{

ωz(x)(x, x + e), if x ∈ C1 ∪ C2,
(2d)−1, otherwise,

(62)

where ωz is given by (47). Note that ω inherits the uniform ellipticity of the
environments ωz, with ellipticity constant κ given above (48). Moreover, for
x ∈ C1 ∪ C2, we set

E(x) = Ez(x)(x), E∞(x) = E∞
z(x)(x) and p(x) = pz(x)(x).

Because of (60), we will find it useful to employ the stopping time

σ = inf{n ≥ 0|E(Xn) ≥ κ}.
The next lemma is the reason for our choice of the environment ω in (62).

LEMMA 13. For all x ∈ C1 ∪ C2, the sequence (Yn)n≥0 given by Yn =
E(Xσ∧n) is a supermartingale under P x

ω with respect to the filtration Fn =
σ(Xk, k ≤ n), n ≥ 0.
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PROOF. Suppose x ∈ C1 ∪ C2. If E(x) ≥ κ , then σ = 0 and the statement is
trivial. So, we can assume that E(x) < κ . For y ∈ C1 ∪ C2 with E(y) < κ ,

E(y) = Ez(y)(y)
(61)≥ E∞

z(y)(y) − pz(y)(y)

= E
y

ωz(y)

[
1 + (Tz(y) − 1

);Tz(y) < ∞]− pz(y)(y)

≥ E
y

ωz(y)

[
E

X1
ωz(y)

[
Tz(y);Tz(y) < ∞]]= E

y

ωz(y)

[
E∞

z(y)(X1)
]

(61)≥ E
y

ωz(y)

[
Ez(y)(X1)

]
.

Because of E(y) < κ and (60), d(y, InsRay(z(y))c) > 1. Since the walk is near-
est neighbor, this implies that X1 ∈ InsRay(z(y)) and, hence, by the definition
of z(X1), Ez(y)(X1) ≥ Ez(X1)(X1). Therefore,

E(y) ≥ E
y

ωz(y)

[
Ez(y)(X1)

]≥ E
y

ωz(y)

[
Ez(X1)(X1)

] (62)= Ey
ω[E(X1)].(63)

We need to show Ex
ω[Yn+1|Fn] ≤ Yn. For this, observe that on the event

{σ ≤ n} ∈ Fn, trivially Yn+1 = Yn, whereas on the event {σ > n}, by the Markov
property,

Ex
ω[Yn+1|Fn] = Ex

ω[E(Xn+1)|Fn] = EXn
ω [E(X1)]

(63)≤ E(Xn) = Yn.

This completes the proof of the lemma. �

We now prove that with positive probability, the random walk (Xn)n defined by
the environment in (62) remains in Ci forever.

PROPOSITION 14. For i = 1,2, there is P-a.s. some x ∈ Ci , so that

P x
ω [Xn ∈ Ci for n ≥ 0] > 0.(64)

PROOF. For i = 1,2, pick an arbitrary z ∈ ∂Ti and set x = αn(z) ∈ Ray(z),
where n is large enough so that

c28e
−c29n

β

< κ(65)

for c28 and c29 chosen as in Lemma 11. By Proposition 12,

E(x) ≤ c28e
−c29uz(x)(x)

(34)≤ c28e
−c29n

β (65)
< κ.(66)

We also require a lower bound on E(x). Since (Yn)n in Lemma 13 is a super-
martingale under P x

ω ,

E(x) = Ex
ω[Y0] ≥ Ex

ω[Yn] ≥ Ex
ω[Yn;σ < ∞] = Ex

ω[E(Xσ∧n);σ < ∞].
By Fatou, this implies

E(x) ≥ Ex
ω[E(Xσ );σ < ∞] ≥ κP x

ω [σ < ∞].
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Together with (66), this implies P x
ω [σ = ∞] > 0. On the other hand, by (60), on

the event {σ = ∞}, one has d(Xn,C
c
i ) ≥ 1 for all n. Therefore, (64) holds. �

We now present the proof of Theorem 3.

PROOF OF THEOREM 3. Define ω as in (62), with β satisfying (24). [Recall
that β was used throughout the construction of ω, beginning with (25).] By con-
struction, ω is stationary and is uniformly elliptic, with ellipticity constant at least
κ = (20(2d − 1))−1. By Lemma A.5 in the Appendix, one can choose β > 0 small
enough so that ω is polynomially mixing.

Let (Xn)n be the RWRE on this environment. We still need to verify that (7)
is satisfied. By Proposition 14, with positive probability, (Xn)n remains forever
in Ci , i = 1,2, if the RWRE starts at appropriate xi ∈ Ci . Let TCi

be the exit
time of (Xn)n from Ci (which may be infinite). Since (52) remains valid with the
environment ωz replaced by ω, a repetition of the proof of (50) shows that

P xi
ω

[
(−1)i+1(Xn − xi) · 
1 < c23n,TCi

≥ n
]≤ c24e

−c25n, i = 1,2.

By Borel–Cantelli, this implies

P xi
ω

[
Xn ∈ Ci for all n, lim inf

n→∞
(−1)i+1Xn · 
1

n
>

c23

2

]
> 0, i = 1,2.

Since the origin communicates with any x ∈ Z
d , one obtains (7). �

7. Open problems. In this brief section, we mention several open problems.
The first involves random forests in Z

d built from ancestral functions and is moti-
vated by the upper bound in Theorem 2.

OPEN PROBLEM 1. What is the optimal constant c1 in the lower bound (2) of
Theorem 1?

There are several natural questions involving RWRE.

OPEN PROBLEM 2. Does the statement of Theorem 3 continue to hold in
d = 2? If it does, what are the mixing assumptions on the environment that im-
ply the 0–1 law (6)? (Recall that the 0–1 law for i.i.d. environments is proved
in [9].)

As mentioned in the Introduction, the following question is still open.

OPEN PROBLEM 3. Prove the 0–1 law (6) for i.i.d. uniformly elliptic environ-
ments, when d ≥ 3.
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APPENDIX

We deferred the demonstration of mixing properties used in the paper to the
Appendix; a weaker form of Lemma A.1 was used in the proof of Theorem 2, and
Lemma A.5 was used in the proof of Theorem 3. Here, we demonstrate Lemmas
A.1 and A.5, and the intermediate Lemmas A.2–A.4 that are used in the proof of
Lemma A.5.

We need to extend the notion of polynomial mixing that was introduced in De-
finition 1, by allowing the set G there to grow with s. We will employ the nota-
tion Mb

G introduced in (4).

DEFINITION A.1. Let γ > 0, 0 ≤ ν < 1 and b = (b(x))x∈Zd be a collection of
random variables on a common probability space. Then b is polynomially ν-mixing
(of order γ ) if, for any fixed µ > 0,

sup
s∈Zd

sup
f ∈Mb

Bs
,g∈Mb

Bs+s

|s|γ | cov(f, g)| < ∞,(A.1)

where Bs = B(0,µ|s|ν).
Note that polynomial mixing is the same as polynomial 0-mixing.
Let a1 = (a1(x))x∈Zd and a2 = (a2(x))x∈Zd be two independent families of di-

rected ancestral functions that have the same law as the function a constructed
in Section 2, where for a2 the direction has been reversed, that is, each ej ,
j = 1, . . . , d , has been replaced by −ej . The quantities hi and Hi , i = 1,2, are
defined analogously to h and H in (1) and (25) by using ai ; the quantities α and ω

are given as before by (30) and (62).
We will investigate the mixing properties of the above variables. Our strat-

egy will be to first use i.i.d. random variables (Li(x))x∈Zd ,i∈{1,2} to construct
a realization of the ancestral functions ai ; this will allow us to conclude that
the pair (a1, a2) is polynomially ν-mixing (Lemma A.1). We extend polynomial
ν-mixing to the collection (a1, h1, a2, h2) (Lemma A.2), then to the collections
(a1, h1,H1, a2, h2,H2) (Lemma A.3) and (α,H1,H2) (Lemma A.4), and finally
to the variables (ω(x))x∈Zd (Lemma A.5). In each step, we will use the definitions
and appropriate tail estimates to “localize” the random variables that are involved.
The details depend on the specific random variables at each step.

The proofs of all five lemmas employ the following elementary inequality: for
any measurable functions f,g, f̄ and ḡ that are bounded in absolute value by 1,

| cov(f, g)| ≤ | cov(f̄ , ḡ)| + | cov(f − f̄ , g)| + | cov(f̄ , g − ḡ)|
(A.2)

≤ | cov(f̄ , ḡ)| + 4(P[f �= f̄ ] + P[g �= ḡ]).
The first inequality in (A.2) is an immediate consequence of the bilinearity of the
covariance function. Throughout this section, in addition to depending on β and d ,
all constants ci are also allowed to depend on µ and ν.
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LEMMA A.1. For d ≥ 2 and 0 ≤ ν < 1/d , the collection ((a1, a2)(x))x∈Zd is
polynomially ν-mixing of order 1 − dν.

PROOF. We may assume that the ancestral functions a1 and a2 have been de-
fined by two independent families (L1(x))x and (L2(x))x of umbrella lengths.

To prove that (a1, a2) is polynomially ν-mixing, we “localize” the variables ai

and show that the localization does not cause damage. Let λi
j (x) denote the value

of λj (x) that corresponds to the collection Li as in (12). We set, for i = 1,2,
j = 1, . . . , d and s, x ∈ Z

d ,

λ
s,i
j (x) = sup

y∈B(x,|s|/8) : x∈y+(−1)i+1Uj,Li (y)

Li(y).(A.3)

The random variable λ
s,i
j (x) is the length of the largest umbrella whose j side

passes through x and whose vertex y is contained in B(x, |s|/8). Let I s,i(x),
i = 1,2, s, x ∈ Z

d , be the unique element of {1, . . . , d} for which

λ
s,i

I s,i (x)
(x) = min{λs,i

j (x)|j = 1, . . . , d};
this is the direction with the smallest “protecting” umbrellas. We now set āi (x) =
x + (−1)i+1eIs,i (x); this corresponds to the definition of a(x) in Section 2.

Let (f, g) ∈ M(a1,a2)
Bs

× M(a1,a2)
Bs+s [where the notation is the same as in (4)]. Let

(f̄ , ḡ) denote the same functions for the collection (ā1, ā2) instead of (a1, a2).
To show that (A.1) holds, we use (A.2) to compare cov(f, g) with cov(f̄ , ḡ).

We will show that cov(f̄ , ḡ) = 0 for s chosen large enough so that
|s| − diam(Bs) ≥ |s|/2. To see this, set

B̂s = ⋃
y∈Bs

B

(
y,

|s|
8

)
,

B̂+
s = ⋃

y∈Bs+s

B

(
y,

|s|
8

)
.

Then, for large s,

d(B̂s, B̂
+
s ) ≥ |s| − diam(Bs) − |s|/4 ≥ |s|/4;

in particular, B̂s ∩ B̂+
s = ∅. Since f̄ depends on only those random vari-

ables Li(x) with x ∈ B̂s and since ḡ depends on only Li(x) with x ∈ B̂+
s , it

follows that f̄ and ḡ are independent and hence that cov(f̄ , ḡ) = 0.
We next bound P[f �= f̄ ]. The functions f and f̄ can differ only if there is an

i ∈ {1,2}, a j ∈ {1, . . . , d} and an x ∈ Bs such that λ
s,i
j (x) �= λi

j (x). In particular,

for such i, j and x, λi
j (x) ≥ |s|/8d , since diam(ULi(x)) ≤ dLi(x). Consequently,
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by Lemma 4, for appropriate c32,

P[f �= f̄ ] ≤
2∑

i=1

d∑
j=1

∑
x∈Bs

P

[
λi

j (x) ≥ |s|
8d

]
≤ 16d2c3(#Bs)

|s| ≤ c32|s|dν−1.

The same bound holds for P[g �= ḡ]. Together with (A.2) and cov(f̄ , ḡ) = 0, this
implies (A.1) with γ = 1 − dν and hence the lemma. �

We extend polynomial ν-mixing from the pair (a1, a2) to the collection
(a1, h1, a2, h2).

LEMMA A.2. For d ≥ 2 and 0 ≤ ν < 1/d , the collection ((a1, h1, a2,

h2)(x))x∈Zd is polynomially ν-mixing of order (1 − dν)(d − 1)/(2d − 1).

PROOF. Fix δ = (1+ν(d −1))/(2d −1) and note that δ > ν because ν < 1/d .
For any G ⊂ Z

d and s ∈ Z
d , define the event

As(G) = ⋂
x∈G

⋂
i=1,2

{hi(x) < |s|δ}.(A.4)

Also, set (a,h) = (a1, h1, a2, h2). By stationarity, P[As(Bs)] = P[As(Bs + s)],
where Bs is as in Definition A.1. Hence, by (A.2), for any (f, g) ∈ M(a,h)

Bs
×

M(a,h)
Bs+s ,

| cov(f, g)| ≤ ∣∣cov
(
f 1As(Bs ), g1As(Bs+s)

)∣∣+ 4P[As(Bs)
c].(A.5)

To demonstrate that (a,h) is polynomially ν-mixing, we bound the two terms on
the right-hand side of (A.5).

To bound the first term, we apply Lemma A.1. For G ⊂ Z
d , set

Gs(G) = σ
((

a1(y), a2(y)
)
, y ∈ Ds(G)

)
,

where

Ds(G) = {y ∈ Z
d |d(y,G) ≤ |s|δ + 1}.

To determine if hi(x) < |s|δ for x ∈ G, it suffices to check whether all branches
of Treei (x) terminate within Ds(G). These events are measurable with respect
to the ancestral functions ai restricted to Ds(G) and, hence, are measurable
with respect to Gs(G), so As(G) ∈ Gs(G). Similarly, the random variables hi(x),
x ∈ G, are determined by ai restricted to Ds(G). Therefore, setting G = Bs and
G = Bs + s, respectively, it follows that f 1As(Bs ) and g1As(Bs+s) are Gs(Bs)-
and Gs(Bs + s)-measurable, respectively. It is easy to see that diam(Ds(Bs)) =
diam(Ds(Bs + s)) ≤ c33|s|δ since δ > ν, where c33 is allowed to depend on µ but
not on s, f or g. Consequently, by Lemma A.1, for appropriate c34,∣∣cov

(
f 1As(Bs ), g1As(Bs+s)

)∣∣≤ c34|s|−(1−dδ) = c34|s|−(d−1)(δ−ν),(A.6)
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where the last equality follows from the choice of δ.
To bound P[As(Bs)

c], we note that on As(Bs)
c, there exist x ∈ Bs and

i ∈ {1,2} with hi(x) ≥ |s|δ . For each x′ ∈ Ray(x), hi(x
′) ≥ hi(x) ≥ |s|δ . More-

over, Ray(x) must intersect the boundary ∂Bs of Bs at some point y; thus,
on As(Bs)

c, hi(y) ≥ |s|δ . Consequently, for appropriate c35,

P[As(Bs)
c] ≤ 2(#∂Bs)P[h1(0) ≥ |s|δ] ≤ c35|s|−(d−1)(δ−ν),(A.7)

where (3) of Theorem 2 was used in the second inequality. Substitution of (A.6)
and (A.7) into (A.5) implies the lemma. �

We next strengthen the above lemma by including Hi . Recall that the definition
of Hi in (25) depends on the parameter β ∈ Id = (0, (d − 2)/2d).

LEMMA A.3. For d ≥ 3, fixed 0 < ν < 1/d and all β > 0 small enough, the
collection ((a1, h1,H1, a2, h2,H2)(x))x∈Zd is polynomially ν-mixing of order γ =
(1 − dν)(d − 1)/(2d − 1).

PROOF. Assume that β ∈ Id . We use (a,h,H) as shorthand notation for
(a1, h1,H1, a2, h2,H2). Let (f, g) ∈ M(a,h,H)

Bs
× M(a,h,H)

Bs+s for s ∈ Z
d . For i = 1,2

and x ∈ Z
d , we set

H̄i(x) = sup
{
hi(y)|x ∈ B

(
y,hi(y)β

)
, d(y,Bs) ≤ |s|ν},

(A.8)
H̄+

i (x) = sup
{
hi(y)|x ∈ B

(
y,hi(y)β

)
, d(y,Bs + s) ≤ |s|ν}.

The quantities H̄i and H̄+
i are “localized” versions of Hi , which was defined

in (25).
Let f̄ be defined the same way as f , except that one uses the random

variables (a1, h1, H̄1, a2, h2, H̄2) instead of (a,h,H). Similarly, let ḡ be de-
fined the same way as g, except that one uses (a1, h1, H̄

+
1 , a2, h2, H̄

+
2 ) instead

of (a,h,H). Note that f̄ (resp. ḡ) is measurable with respect to the random vari-
ables (a1, h1, a2, h2)(y) with |y| ≤ (µ + 1)|s|ν (resp. with |y − s| ≤ (µ + 1)|s|ν).
Therefore, by Lemma A.2,

sup
s,β∈Id

sup
f ∈M(a,h,H)

Bs
,g∈M(a,h,H)

Bs+s

|s|γ | cov(f̄ , ḡ)| < ∞.(A.9)

To show that (A.1) holds, we use (A.2) to compare cov(f, g) with cov(f̄ , ḡ).
We still need to bound P[f �= f̄ ] and P[g �= ḡ]. By the definition of f and f̄ ,
f �= f̄ can only occur if there exist i, y and x with i ∈ {1,2}, d(y,Bs) > |s|ν and
x ∈ B(y,hi(y)β) ∩ Bs . For such y and x, hi(y)β ≥ |y − x| > |s|ν and, therefore,
Hi(x) ≥ hi(y) > |s|ν/β . Consequently,

P[f �= f̄ ] ≤ P[Hi(x) ≥ |s|ν/β for some x ∈ Bs and i ∈ {1,2}]
(A.10)

≤ 2(#Bs)P[H1(0) ≥ |s|ν/β] (26)≤ c36|s|dν−((1−β)d−1)ν/β
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for appropriate c36. [We remind the reader that c36 is allowed to depend on β,µ

and ν, but not on the specific choice of functions (f, g) ∈ M(a,h,H)
Bs

× M(a,h,H)
Bs+s .]

For β chosen small enough, the right-hand side of (A.10) decays to 0 with exponent
larger than γ . An upper bound for P[g �= ḡ] is obtained similarly. Together with
(A.9) and (A.2), this completes the proof of the lemma. �

The next lemma shows that the triple (α,H1,H2) is polynomially ν-mixing.
Since the ancestral function α was defined only on T1 ∪ T2 [in (30)], we find it
convenient to extend the definition, setting α(x) = � for some � /∈ Z

d and all
x /∈ T1 ∪ T2.

LEMMA A.4. For d ≥ 3, β > 0 small enough and all 0 ≤ ν ≤ 1/8d , the col-
lection ((α,H1,H2)(x))x∈Zd is polynomially ν-mixing of order 1/10.

PROOF. Since polynomial ν-mixing is monotone in ν, it suffices to show the
statement for ν = 1/8d . Let β ∈ Id and fix (f, g) ∈ M(α,H1,H2)

Bs
× M(α,H1,H2)

Bs+s

for s ∈ Z
d . By the definition of α, f is a measurable function of the ran-

dom variables (ai(x),Hi(x),1x∈Ti
)i=1,2;x∈Bs

and g is a measurable function of
(ai(x),Hi(x),1x∈Ti

)i=1,2;x∈Bs+s .
We proceed to “localize” the variables 1x∈Ti

; this will allow us to apply (A.2)
the same way as in the previous lemmas. For (i, j) = (1,2), (2,1), set

Si(x) = ⋂
0≤n≤|s|6ν

⋂
y∈B(an

i (x),hi(a
n
i (x))β∧|s|6ν)

{Hj(y) < hi(a
n
i (x))}.

Let f̄ (resp. ḡ) denote the same function as f (resp. g), except that the ran-
dom variables 1x∈Ti

are replaced by 1Si(x). Note that {x ∈ Ti} ⊆ Si(x), because
one recovers the event {x ∈ Ti} by altering the definition of Si(x) by removing
the restriction n ≤ |s|6ν and not truncating the radius of the ball around an

i (x)

at |s|6ν . The event Si(x) is local in the sense that Si(x) is an element of the σ -field
generated by (ai(y), hi(y),Hj (y)) with |y − x| ≤ 2|s|6ν . (The event {x ∈ Ti},
of course, does not have this property.) Consequently, f̄ is measurable with re-
spect to the σ -field generated by (ai(y), hi(y),Hi(y)), where d(y,Bs) ≤ 2|s|6ν

and i ∈ {1,2}. Similarly, ḡ is measurable with respect to the σ -field generated by
(ai(y), hi(y),Hi(y)), where d(y,Bs + s) ≤ 2|s|6ν and i ∈ {1,2}.

We use the localized functions f̄ and ḡ together with (A.2) to prove polynomial
ν-mixing. For small β , Lemma A.3 implies that for appropriate c37,

| cov(f̄ , ḡ)| ≤ c37|s|−(1−6dν)(d−1)/(2d−1)

= c37|s|−(d−1)/4(2d−1)(A.11)

≤ c37|s|−1/10,
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where d ≥ 3 is used in the last inequality. To estimate P[f �= f̄ ] and P[g �= ḡ], we
use {x ∈ Ti} ⊆ Si(x) and translation invariance to obtain

P[f �= f̄ ] ∨ P[g �= ḡ]

≤ P

[ ⋃
x∈Bs ,i=1,2

Si(x)\{x ∈ Ti}
]

≤ ∑
x∈Bs ,i=1,2

(
P

[ ⋃
n>|s|6ν

⋃
y∈B(an

i (x),hi(a
n
i (x))β)

{Hj(y) ≥ hi(a
n
i (x))}

]

+ P

[ ⋃
0≤n≤|s|6ν

{hi(a
n
i (x))β > |s|6ν}

])
(A.12)

≤ (#Bs)
∑

i=1,2

(
P

[ ⋃
n>|s|6ν

{an
i (0) /∈ T̃i}

]
+ ∑

|y|≤|s|6ν

P[hi(y) > |s|6ν/β]
)

≤ c38
(|s|dν+6ν((2β−1)d+2) + |s|6dν+6ν(1−d)/β)

for appropriate c38. The last inequality uses (28) and (3) of Theorem 2. For β > 0
small enough, the second term in the right-hand side of (A.12) decays faster
than the first. The exponent of |s| in the first term is −5/8 + 3(1 + βd)/(2d),
which is less than −1/10 for d ≥ 3 and β > 0 small enough. Together with
(A.11) and (A.2), this proves the lemma. �

We are finally ready to prove that the environment ω is polynomially mixing.
This result is used in the proof of Theorem 3.

LEMMA A.5. For d ≥ 3, with β > 0 and ν > 0 both small enough,
(ω(x))x∈Zd is polynomially ν-mixing of order 1/13.

PROOF. Fix (f, g) ∈ Mω
Bs

× Mω
Bs+s . For G ⊆ Zd , denote by As(G) the

event that Hi(x) < |s|1/8d for all x ∈ G and i = 1,2. Set f̄ = f 1As(Bs ) and
ḡ = g1As(Bs+s). By Lemma 6,

P[As(Bs)
c] ≤ 2(#Bs)c17|s|(1−(1−β)d)/8d ≤ c39|s|−(d−1)/8d+dν+β/8

d≥3≤ c39|s|−1/12+dν+β/8 ≤ c39|s|−1/13

for β > 0 and ν > 0 small enough, and appropriate c39. So, to show polynomial
ν-mixing of order 1/13, it suffices to bound the first term on the right-hand side
of (A.2). For this, we will show that f̄ and ḡ are measurable with respect to
Hs(Bs) and Hs(Bs + s), respectively, where

Hs(G) = σ
((

α(x),H1(x),H2(x)
)
, d(x,G) ≤ c40|s|1/8d)
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and c40 = 4dc31, where c31 is as in (59). Since the arguments are the same, we will
only do this for f̄ . It will then follow from Lemma A.4 that the first term in (A.2)
is bounded above by c41|s|−1/10 for appropriate c41 not dependent on f,g or s.

We note that As(G) ∈ Hs(G) for G ⊂ Z
d and so As(Bs) ∈ Hs(Bs). For

G ⊂ Z
d , write NG for the set of functions that are measurable with respect

to Hs(G). Since it is assumed that f ∈ Mω
Bs

, to show f̄ ∈ NBs , it is clearly enough
to show that for x ∈ Bs ,

ω(x)1As(Bs ) ∈ NBs .(A.13)

That is, on the event As(Bs), ω(x) is a (measurable) function of the random vari-
ables that generate Hs(Bs).

We first recall how ω(x) was constructed. Whether x ∈ C1, x ∈ C2 or neither
holds is determined by Z(x). [Recall that z ∈ Z(x) exactly when x ∈ InsRay(z).
For Z(x) �= ∅, the direction of InsRay(z) for any z ∈ Z(x) determines whether
x ∈ C1 or x ∈ C2.] If Z(x) = ∅, then the components of ω(x) all equal 1/2d . If
Z(x) �= ∅, with x ∈ Ci , one computes the random variables nz(y), rz(y) and sz(y)

for all z ∈ Z(x) and y ∈ B(x, c31Hi(x)) ∩ InsRay(z), with c31 as in (59). From
these random variables, one determines the quantities ωz(y) as in (47). One then
computes Ez(x), which one uses to determine z(x); one then sets ω(x) = ωz(x)(x).

To show (A.13), we therefore proceed as follows.

(a) We show that on As(Bs), for x ∈ Bs , the random set Z(x) is a (measur-
able) function of the random variables that generate Hs(Bs), that is, for z ∈ Z

d ,
1z∈Z(x)1As(Bs ) ∈ NBs .

(b) We next show that on As(Bs), x ∈ Bs ∩ Ci , z ∈ Z(x) and y ∈ B(x,

c31Hi(x)) ∩ InsRay(z), the random variables nz(y), rz(y) and sz(y) are functions
of the random variables that generate Hs(Bs).

(c) Finally, we show that on As(Bs), x ∈ Bs ∩ Ci and z ∈ Z(x), Ez(x) is a
function of the random variables that generate Hs(Bs).

The following inclusion, whose justification we defer to the end of the proof,
is used for all three steps. For all x ∈ Bs, z ∈ Z(x) and y ∈ B(x, c31|s|1/8d) ∩
InsRay(z),

{αn(z)|0 ≤ n ≤ nz(y)} ⊆ B(x, c40|s|1/8d/2) on As(Bs).(A.14)

In particular, (a) is an immediate consequence of (A.14) with y = x and the defin-
ition of InsRay(z).

To see (b), first note that by (A.14), on As(Bs), the variables nz(y), αnz(y)(z)

and αnz(y)+1(z) are functions of the random variables that generate Hs(Bs).
[The set B(x, c40|s|1/8d/2) was enlarged to B(x, c40|s|1/8d) to include αnz(y)+1

in Hs(Bs).] Since rz(y) and sz(y) are determined by αnz(y)(z) and αnz(y)+1(z),
(b) follows.

To see (c), recall that for x ∈ Ci , Ez(x) = Ex
ωz[Tz;Tz ≤ c31Hi(x)]. The RWRE

is nearest neighbor and so, starting at x, will not escape B(x, c31|s|1/8d) by
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time c31|s|1/8d . On As(Bs), Hi(x) ≤ |s|1/8d . Consequently, on As(Bs), Ez(x) is a
function of ωz on B(x, c31|s|1/8d) and of InsRay(z). By (A.14), (47) and (b), the
claim in (c) holds.

It only remains to show (A.14). First observe that on As(Bs), for any z ∈ Z(x),

|z − x| ≤ ∣∣z − αnz(x)(z)
∣∣+ ∣∣αnz(x)(z) − x

∣∣≤ nz(x) + nz(x)β

(A.15)
≤ 2nz(x) ≤ 2

(
H1(x) ∨ H2(x)

)≤ 2|s|1/8d .

The second inequality follows from the definitions of nz(x) and InsRay(z) in
(35) and (32); the fourth inequality follows from the definition of H in (25) and
the inclusion x ∈ B(αnz(x)(z), nz(x)β).

Since B∞(x,2c31|s|1/8d) ⊆ B(x, c40|s|1/8d/2) and since the path αn(z),
n = 0, . . . , nz(y), is directed, it suffices to show that both endpoints z and
αnz(y)(z) are contained in B∞(x,2c31|s|1/8d). This holds for z because of (A.15).
For αnz(y)(z), first note that

nz(y)β ≥ ∣∣αnz(y)(z) − y
∣∣

≥ ∣∣αnz(y)(z) − z
∣∣− |z − x| − |x − y|

≥ nz(y) − (2 + c31)|s|1/8d .

The first inequality follows from the definition of InsRay(z); the last inequal-
ity follows from (A.15), since y ∈ B(x, c31|s|1/8d). Since β < 1, this implies
nz(y)β ≤ |s|1/8d for |s| large. Therefore,∣∣αnz(y)(z) − x

∣∣∞ ≤ ∣∣αnz(y)(z) − x
∣∣≤ ∣∣αnz(y)(z) − y

∣∣+ |y − x| ≤ 2c31|s|1/8d

for |s| large, where we used y ∈ InsRay(z) in the last inequality. This demon-
strates (A.14) and completes the proof of the lemma. �

REMARK. The only place where the explicit structure of the function a is used
is in the proof of Lemma A.1. Given any ancestral functions āi , i = 1,2, that are
directed in opposite directions and for which the conclusion of Lemma A.1 holds,
Lemmas A.2–A.5 will continue to hold. In particular, the environment ω̄ that is
constructed from such ā1, ā2 by using the pruning and insulation recipe leading up
to (62) will be polynomially ν-mixing of order 1/13.
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