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RIFFLE SHUFFLES OF DECKS WITH REPEATED CARDS

BY MARK CONGER AND D. VISWANATH1

University of Michigan

By a well-known result of Bayer and Diaconis, the maximum entropy
model of the common riffle shuffle implies that the number of riffle shuf-
fles necessary to mix a standard deck of 52 cards is either 7 or 11—with the
former number applying when the metric used to define mixing is the total
variation distance and the latter when it is the separation distance. This and
other related results assume all 52 cards in the deck to be distinct and require
all 52! permutations of the deck to be almost equally likely for the deck to
be considered well mixed. In many instances, not all cards in the deck are
distinct and only the sets of cards dealt out to players, and not the order in
which they are dealt out to each player, needs to be random. We derive tran-
sition probabilities under riffle shuffles between decks with repeated cards to
cover some instances of the type just described. We focus on decks with cards
all of which are labeled either 1 or 2 and describe the consequences of hav-
ing a symmetric starting deck of the form 1, . . . ,1,2, . . . ,2 or 1,2, . . . ,1,2.
Finally, we consider mixing times for common card games.

1. Introduction. The connection between examples and concepts in proba-
bility theory is a particularly close one. That examples derived from the question
“How many shuffles mix a deck of cards?” have featured prominently in the devel-
opment of the convergence theory for Markov chains by Persi Diaconis and others
can be seen in this light. This article deals with riffle shuffling, which is the most
common way of shuffling cards.

There are 2n ways to cut a deck of n cards into two packets and then riffle them
together since a card that ends up in the ith position can be dropped by either the
left hand or the right hand. The maximum entropy model assigns equal probability
to all these 2n riffle shuffles. More generally, the maximum entropy model assigns
equal probability to all an a-shuffles, with an a-shuffle being a way to cut a deck
into a packets and then riffle them together. Several equivalent descriptions of the
a-shuffle have been given by Bayer and Diaconis [2]. The a-shuffle with a = 2 is
also described by Epstein [5] who calls it the amateur shuffle.

We will refer to elements of the group Sn of permutations of {1,2, . . . , n} as
shuffles. If π ∈ Sn and π(i) = j , then by convention the shuffle π sends the card
in the ith position to the j th position. The number of descents of π is defined as the
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number of positions 1 ≤ i < n at which π(i) > π(i + 1). Bayer and Diaconis [2]
proved that the probability that an a-shuffle results in a shuffle π with d descents
is given by 1

an (
a + n − d − 1

n
). The picture below shows a 3-shuffle of 6 cards.

The bottom line indicates that the 0th, 1st and 2nd packets in the cut have 3, 2
and 1 cards, respectively. The top line indicates that the 1st, 2nd, 3rd, 4th, 5th and
6th cards in the shuffled deck are dropped from the 2nd, 0th, 1st, 1st, 0th and 0th
packets, respectively. If the numbers are ignored, the arrows alone depict a shuffle.
In a depiction of a shuffle such as the one above, a descent corresponds to a cross-
ing between arrows that originate at adjacent positions. The shuffle depicted above
has 2 descents, and therefore, according to Bayer and Diaconis [2], the probability
that an a-shuffle results in the shuffle depicted above is 1

a6

(a+3
6

)
.

In nearly all of the literature on card shuffling, the cards in a deck are assumed to
be distinct. We allow cards to be indistinguishable. In our notation, both 1,1,2,1
and 12,2,1 denote the deck with two cards labeled 1 above a card labeled 2 above
a card labeled 1. Let a1, a2, . . . , an be a deck. When it is shuffled using π ∈ Sn, the
deck obtained is aπ−1(1), aπ−1(2), . . . , aπ−1(n). We define π(D1;D2) as the set of
shuffles π ∈ Sn such that π applied to D1 results in D2. The descent polynomial
of the shuffles from the starting deck D1 to the ending deck D2 is defined as∑

π∈π(D1;D2)

xdes(π),

where des(π) is the number of descents in π . For example, the descent polynomial
of shuffles from 1,1,2,2 to 1,2,2,1 is 2x + 2x2.

If the descent polynomial of the shuffles from a deck D1 with n cards to a deck
D2 is

∑n−1
d=0 cdxd , the probability that an a-shuffle of D1 results in the deck D2 is

pa =
n−1∑
d=0

cd

an

(
a + n − d − 1

n

)
,(1.1)

a formula obtained by summing over all the shuffles in π(D1;D2). The system of
linear equations (1.1) can be inverted to obtain

cd = pd+1(d + 1)n − pddn

(
n + 1

1

)

(1.2)

+ pd−1(d − 1)n
(

n + 1
2

)
− · · · + (−1)dp11n

(
n + 1

d

)
,
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for 0 ≤ d < n. It is possible to pass back and forth between the transition probabil-
ities pa and the descent polynomial of π(D1;D2) using (1.1) and (1.2).

In Section 2 we deduce efficient recursions for the descent polynomial from the
starting deck D1 to the ending deck D2 when either D1 or D2 is a sorted deck
of the form 1n1,2n2, . . . , knk . We derive a formula for the transition probabilities
when D1 = 1,2, . . . , k, xn without using the descent polynomial. Sections 3 and 4
consider the starting decks D1 = 1n,2n and D1 = (1,2)n. Section 5 summarizes
mixing times for card games obtained using results in the preceding sections and
Monte Carlo simulations.

Although decks with repeated cards do not seem to have been considered, the
work of Diaconis, McGrath and Pitman [4], Fulman [7] and Lalley [11] on cycle
decompositions, and of Fulman [8] on increasing subsequences are in a somewhat
similar vein. The thesis of Reyes [13] has new results, as well as many references
related to other types of shuffles.

2. Transition probabilities. We begin with a recursive algorithm to obtain
the descent polynomial of shuffles from 1n1,2n2, . . . , hnh to a deck D which has
the same n1 + n2 + · · · + nh cards but in a different order. Each of the numbers
n1, n2, . . . , nh is a positive integer. The transition probability under an a-shuffle
can be obtained using the descent polynomial and (1.1).

We assume the starting deck to be 1n1,2n2, . . . , hnh , which is in sorted order.
We denote by D(i, c) the position of the ith card labeled c in D. For example,
if D = 1,2,1,1,2,2, then D(2,1) = 3. The deck obtained from D by keeping
the cards labeled 1,2, . . . , e and by discarding cards with all other labels will be
denoted D1e. Similarly, the deck obtained from D by keeping the cards with labels
f, . . . , h and discarding other cards will be denoted by Df h. We assume 1 ≤ · · · ≤
e < f ≤ · · · ≤ h and that there is no card whose label is in-between e and f , or,
equivalently, f = e + 1. Let N = n1 + n2 + · · · + nh, N1 = n1 + n2 + · · · + ne and
N2 = N − N1. Then N , N1 and N2 equal the number of cards in D, D1e and Df h,
respectively.

Consider the set of all shuffles π from the sorted deck 1n1,2n2, . . . , hnh to D

such that π(1) = D(i,1) and π(N) = D(j,h), where 1 ≤ i ≤ n1 and 1 ≤ j ≤ nh.
The number of these shuffles with d descents is set equal to the coefficient of xd

to define the polynomial pi,j (x).
To obtain a recursion for pi,j (x), consider the set of shuffles from the sorted

deck 1n1,2n2, . . . , ene to D1e and the set of shuffles from the sorted deck
f nf , . . . , hnh to Df h. Define qi,k(x), for 1 ≤ i ≤ n1 and 1 ≤ k ≤ ne, as the polyno-
mial in which the coefficient of xd equals the number of shuffles π with d descents
belonging to the first set which satisfy π(1) = D1e(i,1) and π(N1) = D1e(k, e).
The polynomial rl,j (x), for 1 ≤ l ≤ nf and 1 ≤ j ≤ nh, is defined similarly, with
the coefficient of xd equal to the number of shuffles π with d descents in the
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second set which satisfy π(1) = Df h(l, f ) and π(N2) = Df h(j,h). Then the fol-
lowing recursive relationship holds:

pi,j (x) = ∑
k,l

qi,k(x)rl,j (x)xε(k,l).(2.1)

The indices k and l vary over 1 ≤ k ≤ ne and 1 ≤ l ≤ nf . The exponent ε(k, l) is
0 if D(k, e) < D(l, f ) and 1 if D(k, e) > D(l, f ).

To prove (2.1), we consider a bijection between π(1n1,2n2, . . . , hnh;D) and
π(1n1, . . . , ene;D1e)×π(f nf , . . . , hnh;Df h). Let the shuffle π map to the pair of
shuffles (π1, π2) under this yet to be defined bijection. If position i is occupied
by a card labeled δ in the starting deck 1n1,2n2, . . . , hnh and π(i) = D(j, δ), then
π1(i) = D1e(j, δ) if 1 ≤ δ ≤ e and π2(i − N1) = Df h(j, δ) if f ≤ δ ≤ h, by de-
finition of the bijection. To complete the proof of (2.1), we relate the number of
descents of π to the number of descents of π1 and π2. The number of descents
of π equals the sum of the number of descents of π1 and π2 if π(N1) = D(k, e),
π(N1 + 1) = D(l, f ) and D(k, e) < D(l, f ). However, if D(k, e) > D(l, f ), the
sum must be incremented by 1.

The base case of the recurrence (2.1) occurs when the starting deck has cards
of only one type. Take this deck to be 1n. The coefficient of xd in pi,j (x) is then
equal to the number of shuffles π ∈ Sn with π(1) = i, π(n) = j and with d de-
scents. The number of shuffles π ∈ Sn with d descents is defined as the Eulerian
number 〈 n

d
〉 [9]. Given a permutation of {1,2, . . . , n− 1} with d or d − 1 descents,

the number n can be inserted in d + 1 or n − d places, respectively, to obtain a
permutation of {1,2, . . . , n} with d descents. Thus, as shown in [9], consideration
of the insertion of the number n into a permutation of the numbers 1,2, . . . , n − 1
gives the recurrence〈

n

d

〉
= (d + 1)

〈
n − 1

d

〉
+ (n − d)

〈
n − 1
d − 1

〉
if n > 0,

(2.2) 〈
0
0

〉
= 1,

〈
0
d

〉
= 0 if d �= 0.

The modified Eulerian number 〈 n

d
〉i is defined as the number of π ∈ Sn with

π(1) = i and d descents. If d = 0, 〈 n

d
〉i is 0 if i > 1 and 1 if i = 1. Considera-

tion of the insertion of n into a permutation of the numbers 1,2, . . . , n − 1 that
begins with i gives the recurrence〈

n

d

〉
i

= (d + 1)

〈
n − 1

d

〉
i

+ (n − d − 1)

〈
n − 1
d − 1

〉
i

if n > i, d > 0,

(2.3) 〈
n

d

〉
n

=
〈
n − 1
d − 1

〉
if n = i, d > 0.

If n = i = 1, 〈 n

d
〉i is equal to 1 if d = 0 and equal to 0 if d > 0. The modified

Eulerian number 〈 n

d
〉i,j is defined as the number of π ∈ Sn with π(1) = i, π(n) = j
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and d descents. If d = 0, 〈 n

d
〉i,j is 1 if i = 1 and j = n but 0 otherwise. For d > 0,

the following recurrence can be derived:〈
n

d

〉
i,j

= d

〈
n − 1

d

〉
i,j

+ (n − d − 1)

〈
n − 1
d − 1

〉
i,j

if n > i,n > j,

=
〈
n − 1
d − 1

〉
n−j

if n = i, n > j,(2.4)

=
〈
n − 1

d

〉
i

if n > i,n = j.

If n = i = j = 1 and d > 0, 〈 n

d
〉i,j = 0. Using (2.2), (2.3) and (2.4), the polynomi-

als pi,j (x) can be formed in the base case.
The descent polynomial of shuffles from 1n1,2n2, . . . , hnh to D is obtained as

the sum of the polynomials pi,j (x) over 1 ≤ i ≤ n1 and 1 ≤ j ≤ nh.
We now turn to the descent polynomial of shuffles π from D to the sorted deck

1n1,2n2, . . . , hnh . We first consider the occurrence of descents between π(k) and
π(k + 1) when the positions k and k + 1 are occupied in D by cards with different
labels. There will be a descent if and only if the label of the card at k is greater
than the label of the card at k + 1. Thus, the number of descents of this type is the
same for every shuffle from D to the sorted deck and is equal to the number of
places where a card with a greater label immediately precedes a card with a lesser
label in the deck D. This quantity, which may be denoted by des(D), is called the
number of descents in D and is extensively studied in [10] and [12].

We next consider descents between π(k) and π(k + 1) only if both positions k

and k + 1 are occupied in D by cards with the label c. The cards at k and k + 1
both have the label c if and only if k = D(i, c) and k + 1 = D(i + 1, c) for some
integer i, 1 ≤ i < nc. To facilitate the counting of this type of descent, denote
the generating polynomial

∑n−1
d=0〈 n

d
〉xd of the Eulerian numbers by ηn(x) [10].

If we pay attention only to cards with label c in the deck D, it will look like
∗ ∗ ccc ∗ ∗ ∗ cc ∗ ∗ c with blocks of c’s separated by cards with different labels.
Assume that the lengths of these blocks are given by m1,m2, . . . ,mγ , with γ being
the number of blocks. Then nc = m1 + m2 + · · · + mγ . Let

jc =
c∑

j=1

nj

and let ic = jc − nc + 1. If π is a shuffle from D to the sorted deck, then ic ≤
π(D(i, c)) ≤ jc must hold for 1 ≤ i ≤ nc. The nc integers in [ic, jc] can be divided
into sets of m1,m2, . . . ,mγ in nc!/(m1!m2! · · ·mγ !) ways. For each such division
of these nc integers into sets, there are m1!m2! · · ·mγ ! ways of assigning values to
π(D(i, c)), 1 ≤ i ≤ nc, such that a number assigned to a position within the first
block of cs is in the first set and so on. The coefficient of xd of the polynomial
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ηm1(x)ηm2(x) · · ·ηmγ (x) is equal to the number of these assignments which have
d descents. Therefore, the coefficient of xd of the polynomial

pc(x) = nc!
m1!m2! · · ·mγ !ηm1(x)ηm2(x) · · ·ηmγ (x)(2.5)

is equal to the number of assignments with d descents out of the nc! assignments of
integers in [ic, jc] to π(D(i, c)), 1 ≤ i ≤ nc. As intended, (2.5) counts the descent
between π(k) and π(k + 1) if and only if cards at positions k and k + 1 in D both
have the label c.

To find the descent polynomial of shuffles from D to the sorted deck, note that
the occurrence of a descent between π(k) and π(k + 1), with cards labeled c at
positions k and k + 1 in D, is completely independent of the occurrence of a
descent between π(l) and π(l + 1), with cards labeled d at positions l and l + 1,
if c �= d . Moreover, there are always des(D) descents in a shuffle π from D to the
sorted deck that correspond to positions k and k + 1 occupied in D by cards with
different labels. Therefore, the descent polynomial is given by

xdes(D)p1(x)p2(x) · · ·ph(x),(2.6)

where the pi(x) are defined by (2.5).
If the deck D is any permutation of the multiset {1n1,2n2, . . . , hnh},

(2.1) and (2.6) make it possible to find the descent polynomials of shuffles from
the sorted deck to D and of shuffles from D to the sorted deck in polynomial time.
The descent polynomial of shuffles between decks neither of which is sorted will
be considered in later work.

In the rest of this section, we turn to theorems about transition probabilities
between decks under an a-shuffle which do not use the descent polynomial. Let
a1, a2, . . . , an be one of the an integer sequences with 0 ≤ ai < a for 1 ≤ i ≤ n.
This sequence can be sorted to ai1 ≤ ai2 ≤ · · · ≤ ain in a stable manner and
the permutation i1, i2, . . . , in of {1,2, . . . , n} is uniquely determined since we re-
quire ij < ij+1 if aij = aij+1 . Associate the shuffle π ∈ Sn with π(k) = ik for
1 ≤ k ≤ n with the sequence a1, a2, . . . , an. Then the uniform distribution on the
an sequences induces the a-shuffle distribution on Sn [2]. This description of the
a-shuffle is used in Theorems 2.1 and 2.2.

THEOREM 2.1. Among all decks D that are permutations of the multiset
{1n1,2n2, . . . , hnh}, the transition probability under an a-shuffle from the sorted
deck 1n1,2n2, . . . , hnh to D is greatest for D = 1n1,2n2, . . . , hnh and least for
D = hnh, . . . ,2n2,1n1 .

PROOF. Assume the sorted deck to be 1n,2n. The proof for more general
sorted decks is similar.
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Let a1, a2, . . . , a2n be a sequence with 0 ≤ ai < a for 1 ≤ i ≤ 2n. If D(i,1) = j ,
define αi = aj , and if D(i,2) = j , define βi = aj . For example, if D =
1,2,1,2,1,2, then

a1, a2, a3, a4, a5, a6 = α1, β1, α2, β2, α3, β3.

For the sequence to induce a shuffle from 1n,2n to D, each αi must be less than
or equal to each βi . In addition, each αi must be strictly less than all the β’s that
precede it in the sequence. For example, if D = 1,2,1,2,1,2, the inequalities are

max(α1, α2, α3) ≤ min(β1, β2, β3), α2 < β1, α3 < β1, α3 < β2.

If D = 1n,2n, it is enough if each α is less than or equal to each β . If D = 2n,1n,
each α must be strictly less than each β . Therefore, the number of sequences that
induce a shuffle from 1n,2n to D is greatest for D = 1n,2n and least for D =
2n,1n. The statement about transition probabilities follows. �

Theorem 2.2 below generalizes Theorem 3 of [2] and their proofs use similar
arguments. Similar arguments can also be found in [6] and [10].

THEOREM 2.2. Let the deck D be a permutation of the multiset {1,2, . . . ,

h, xn}. Let the number of cards labeled c, 1 ≤ c ≤ h, that are not preceded by
a card labeled c − 1 in D be equal to r . Let the number of cards labeled x that
precede the card labeled h in D be equal to l. Then the probability that an a-shuffle
applied to the sorted deck 1,2, . . . , h, xn results in D is

1

an+h

a−1∑
m=r−1

(
m − r + h

h − 1

)
(a − m − 1)l(a − m)n−l ,

where if l = 0 and m = a − 1, (a − m − 1)l must be taken to be 1.

PROOF. Let a1, a2, . . . , ah+n be an integer sequence with 0 ≤ ai < a for 1 ≤
i ≤ h + n. If D(1, c) = i, 1 ≤ c ≤ h, define αc = ai . If D(j, x) = k, 1 ≤ j ≤ n,
define βj = ak . For the sequence a1, a2, . . . , ah+n to induce an a-shuffle from the
sorted deck to D, we require

α1 ≤ α2 ≤ · · · ≤ αh ≤ min(β1, . . . , βn).(2.7)

In addition, the inequality αc−1 ≤ αc, 2 ≤ c ≤ h, must be strict if the card labeled
c in D is not preceded by the card labeled c − 1. Therefore, exactly r − 1 inequal-
ities between the αs in (2.7) are strict. Further, at least l of the βi , the ones with
1 ≤ i ≤ l, must be strictly greater than αh.

The number of solutions to (2.7), with the additional conditions described below
it, can be counted by allowing αh = m to vary from r − 1 to a − 1. Given m, the
number of ways to pick the αc, 1 ≤ c < h, can be counted as follows. Start with
m “jumps.” Allocate r − 1 of these jumps to the inequalities in α1 ≤ α2 ≤ · · · ≤
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αh−1 ≤ m that must be strict. The remaining m− r + 1 jumps can be assigned to h

positions, namely, the position before α1 and the h − 1 inequalities, in (
m − r + h

h − 1 )

ways. The value of αi , for 1 ≤ i ≤ h−1, is equal to the number of jumps preceding
it. The number of ways to pick the βs is (a − m − 1)l(a − m)n−l . The formula for
the transition probability from the sorted deck to D follows. �

3. Starting deck 1n,2n. The probability distribution over decks that are per-
mutations of the same multiset of cards under an a-shuffle can be obtained from
(2.1) or (2.6) if either the starting deck or the ending deck is in sorted order. The to-
tal variation distance from the uniform distribution is a sum over all possible decks
and its calculation can therefore involve a very large number of terms. However,
the calculation becomes simpler if it is recognized that the transition probabilities
are the same for whole classes of decks. In the case where all n cards have dif-
ferent labels, the transition probabilities depend only upon the number of descents
in the shuffle and, hence, the n! decks fall into only n equivalence classes. In this
section we investigate this type of equivalence relationship when the starting deck
is 1n,2n.

In this section and the next, we use α, β and γ to denote sequences of 1’s and 2’s
that stand for segments of a deck of cards. The number of entries in the se-
quence α is denoted by |α|. The sequence obtained by reversing the order of α

and then replacing each 1 by 2 and each 2 by 1 is denoted α∗. For example, if
α = 1,2,2,2,1,1, then α∗ = 2,2,1,1,1,2. A total of

(2n
n

)
decks can be obtained

by rearranging the cards of 1n,2n. The equivalence relation R on that set of decks
is defined as follows. The deck D1 = αβγ is R-related to D2 = αβ∗γ if |α| = |γ |,
and the number of 1’s and the number of 2’s in β are equal. For example, 1,2,2,1
is R-related to 2,1,1,2 and 1,1,2,2,1,2 is R-related to 1,2,1,1,2,2. The equiv-
alence relation is obtained by taking the transitive, reflexive closure. For example,
the decks 1,2,1,2,2,1,2,1 and 1,2,2,1,1,2,2,1 and 2,1,1,2,2,1,1,2 and
2,1,2,1,1,2,1,2 are all in the same equivalence class.

THEOREM 3.1. If D1 is R-related to D2, the transition probability from 1n,2n

to D1 is equal to the transition probability from 1n,2n to D2 under an a-shuffle
for any a.

PROOF. It is sufficient to consider D1 = αβγ and D2 = αβ∗γ with |α| = |γ |
and with equal number of 1’s and 2’s in β . It is enough to show that the descent
polynomial of shuffles from 1n,2n to D1 is equal to the descent polynomial of
shuffles from 1n,2n to D2. We will construct a bijective map from π(1n,2n;D1)

to π(1n,2n;D2) such that a shuffle maps to another shuffle with exactly the same
number of descents.

The number of 1’s in α is equal to the number of 2’s in γ since the number of
1’s and 2’s are equal in αβγ and in β . Similarly, the number of 2’s in α is equal
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to the number of 1’s in γ . Let p1 < · · · < pa and q1 < · · · < qb and r1 < · · · < rc
be the positions of D1 that correspond to α and β and γ , respectively, that are
occupied by 1’s. Similarly, let p′

1 < · · · < p′
c and q ′

1 < · · · < q ′
b and r ′

1 < · · · < r ′
a

be the positions of D1 that correspond to α and β and γ , respectively, that are
occupied by 2’s.

Define f (x) = 2n − x + 1. The map f reflects a position in a deck of size 2n

about its center; for example, the first position is reflected to the last position. The
positions occupied by 1’s in D2 = αβ∗γ are

p1 < · · · < pa < f (q ′
b) < · · · < f (q ′

1) < r1 < · · · < rc,

where ps and rs correspond to α and γ , and f (q)s correspond to β∗. In D1,
the position q ′

i is occupied by a 2. When β is reversed that 2 is moved to the
position f (q ′

i ) and then it is replaced by 1 to form β∗. This explains the central
block of f (q ′

i )’s above. Similarly, the positions occupied by 2’s in D2 are

p′
1 < · · · < p′

c < f (qb) < · · · < f (q1) < r ′
1 < · · · < r ′

a,

where the p′s correspond to positions in α, f (q)’s to positions in β∗ and r ′’s to
positions in γ . Note that each p or p′ is less than each q or q ′, which is less than
each r or r ′.

Let π ∈ S2n be a shuffle from 1n,2n to D1. Then the numbers

π(1),π(2), . . . , π(n)

must be an arrangement of the positions occupied by 1’s in D1. Similarly, the
numbers

π(n + 1),π(n + 2), . . . , π(2n)

must be an arrangement of the positions occupied by 2’s in D1. The map to a
shuffle from 1n,2n to D2 is based on two cases. In the first case, we assume that
not both π(n) and π(n + 1) correspond to positions in β . The shuffle π∗ from
1n,2n to D2 that π maps to is defined as

π∗(i) = φ(π(i)),

for 1 ≤ i ≤ 2n, where φ(·) will now be defined. First, we define φ(pi) = pi ,
φ(ri) = ri , φ(p′

i ) = p′
i and φ(r ′

i ) = r ′
i . In addition, we define φ as

q1 → f (q ′
b) q2 → f (q ′

b−1) · · · qb → f (q ′
1)

q ′
1 → f (qb) q ′

2 → f (qb−1) · · · q ′
b → f (q1).

This definition maps the qs to the f (q ′)’s and the q ′’s to the f (q)’s and, therefore,
π∗ is a shuffle from 1n,2n to D2. Further, x < y if and only if φ(x) < φ(y),
except when x is a q and y is a q ′ or when x is a q ′ and y is a q . However, in the
arrangement

π(1), . . . , π(n),π(n + 1), . . . , π(2n),



SHUFFLING DECKS WITH REPEATED CARDS 813

a q and q ′ can occur in consecutive positions as π(n) and π(n + 1), and in no
other way, and we have assumed that not both of those positions correspond to β .
Therefore, the above arrangement has the same number of descents as

φ(π(1)), . . . , φ(π(n)),φ(π(n + 1)), . . . , φ(π(2n))

and π∗ has the same number of descents as π .
The other case is when π(n) is a q and π(n+1) is a q ′. Then we define φ(qi) =

f (qi), φ(q ′
i ) = f (q ′

i ), pi
φ←→ r ′

a−i+1 and ri
φ←→ p′

c−i+1. We map π to π∗, where
π∗ is defined as

π∗(i) = φ
(
π(2n − i + 1)

)
,

for 1 ≤ i ≤ 2n. It can be verified that π∗ is a shuffle from 1n,2n to D2. Further,
x < y if and only if φ(x) > φ(y), except when x is a p and y is a p′, or x is a
p′ and y is a p, or x is an r and y is an r ′, or x is an r ′ and y is an r . In the
arrangement,

π(1), . . . , π(n),π(n + 1), . . . , π(2n),

a p and p′ or an r and r ′ can occur in consecutive positions only at π(n) and
π(n + 1). However, we have assumed that π(n) is a q and that π(n + 1) is a q ′.
Therefore, every descent in the above arrangement becomes an ascent in

φ(π(1)), . . . , φ(π(n)),φ(π(n + 1)), . . . , φ(π(2n))

and every ascent becomes a descent. This arrangement is reversed to define
π∗(1), . . . , π∗(2n) which changes the ascents back into descents and, therefore,
the number of descents in π∗ is equal to the number of descents in π .

Finally, we need to show that the map defined above is a bijection. A shuffle
from 1n,2n to D2 can be mapped to a shuffle from 1n,2n to D1 using the same
procedure as above. The resulting map is the inverse of the above map because
φ ◦ φ is identity in both cases above. �

It is natural to ask if the equality of the descent polynomials of the shuffles from
1n,2n to D1 and D2 implies that D1 is R-related to D2. We have checked that this
is indeed so for n = 1,2,3,4,5,6,7. The theorem below counts the total number
of equivalence classes under the relation R.

THEOREM 3.2. The number of equivalence classes under R is equal to the
Catalan number 1

n+2

(2n+2
n+1

)
.

PROOF. We describe a method to find a unique representative for each equiv-
alence class and then count the number of unique representatives. The function
f (x) = 2n − x + 1 reflects positions with respect to the center of the deck as be-
fore. In this proof, we refer to f (x) as the reflection of the position x. A position
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and its reflection either both lie in β or lie outside it, since |α| = |γ |. Consider the
positions x = n + 1, n + 2, . . . ,2n. Assume that x and f (x) both lie inside β . If
the positions x,f (x) are occupied by 1,2 in the deck D, reversal of β changes
it to 2,1, and the replacements of 1’s by 2’s and 2’s by 1’s changes it back to
1,2. Similarly, application of the basic rule that generates the relation R does not
change D in the positions x,f (x) if those positions are occupied by 2,1. How-
ever, if they are occupied by 1,1, that becomes 2,2 when the rule is applied using
a β large enough to include positions x and f (x). Similarly, 2,2 becomes 1,1.
With each position x, we associate the symbol “+” if positions x,f (x) are oc-
cupied by 1,2, the symbol “−” if occupied by 2,1, the symbol 1 if occupied by
1,1, and the symbol 2 if occupied by 2,2. The deck as a whole is coded as the
list of symbols associated with positions n + 1 through 2n. For example, the deck
1,1,2,1,2,2,2,1,1,2,1,2,1,2 is coded as +,+,2,1,2,1,−.

The +s and −s never change when the rule that generates the relation R is
repeatedly applied with possibly many different choices of β . They are ignored
in much of the rest of this proof. We can find the β’s which lead to a nontrivial
application of the rule to generate the relation R using the code for the deck D

as follows. We traverse the code from left to right, and record the excess of 1’s
over 2’s. For example, for the code −,−,2,1,2,1,+, this excess is −1 after the
first 2 is passed, then becomes 0, and then −1, and then 0. The rule for generating
R can be applied whenever this excess becomes 0. If the excess becomes zero, after
traversing i symbols in the code, the corresponding β in the deck is a segment
of 2i cards extending from position n − i + 1 to position n + i. When the rule
is applied, the 1’s become 2’s and the 2’s become 1’s among the first i symbols
of the code. If the excess becomes 0 after i symbols and then again after i + j

symbols, the application of the rule with a β of length equal to 2i followed by
another application using a β of length 2(i + j) changes the code for the deck only
between the (i + 1)st and the j th symbol. Among these symbols, the 1’s change
to 2’s and the 2’s change to 1’s. By applying the rule with judicious choices of β ,
it is possible to obtain a single code in which the excess never becomes negative.
For example, the code −,−,2,1,2,1,+ can be converted to −,−,1,2,1,2,+.
We use such codes as unique representatives of equivalence classes of decks.

Assume that in such a code, there are k symbols equal to 1 and k symbols equal
to 2. Then there must be n − 2k symbols equal to + or −. If the + and − symbols
are ignored, and each 1 is substituted by a ( and each 2 by a), we obtain a valid
arrangement of parentheses of length 2k. The number of valid arrangements of
parentheses of length 2k is well known to be the Catalan number 1

k+1

(2k
k

)
. For

each assignment of 1’s and 2’s to the 2k positions, the other positions can be filled
with symbols + and − in 2n−2k ways. The 2k positions that are assigned either the
symbol 1 or the symbol 2 can be chosen in

( n
2k

)
ways. Therefore, the total number
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of equivalence classes is given by
∑

k
2n−2k

k+1

(2k
k

)( n
2k

)
. This sum can be simplified:

∑
k

2n−2k

k + 1

(
2k

k

)(
n

2k

)
= 2n

∑
k

1

k + 1

(
n/2
k

)(
(n − 1)/2

k

)

= 2n

n/2 + 1

∑
k

(
n/2 + 1
k + 1

)(
(n − 1)/2

k

)
.

The first equality above uses (5.35) in [9]. The proof may be completed using the
binomial identity

∑
k

( l
m+k

)( s
p+k

) = ( l+s
l−m+p

)
for integers l,m,p and l ≥ 0. The

cases with n even and odd have to be considered separately. �

4. Starting deck (1,2)n. The equivalence relation R in this section is dif-
ferent from the one considered in the previous section. In this section D1 = αβγ

is R-related to D2 = αβ∗γ if β has the same number of 1’s as 2’s. The addi-
tional condition |α| = |γ | is no longer required. The decks Di are all permutations
of {1n,2n}. The equivalence relation is obtained by taking the transitive, reflexive
closure. The equivalence class containing 1,2,1,2,2,1,2,1 has five other decks
in it.

THEOREM 4.1. If D1 is R-related to D2, the transition probability from
(1,2)n to D1 is equal to the transition probability from (1,2)n to D2 under an
a-shuffle for any a.

PROOF. It is sufficient to consider D1 = αβγ and D2 = αβ∗γ with equal
number of 1’s and 2’s in β . We will construct a bijective map from π((1,2)n;D1)

to π((1,2)n;D2) such that a shuffle maps to another shuffle with exactly the same
number of descents.

Let π ∈ π((1,2)n;D1). Let π(2i − 1) = ai , 1 ≤ i ≤ n, and π(2i) = bi ,
1 ≤ i ≤ n. The number of descents in π is equal to the number of descents in
the arrangement a1, b1, a2, b2, . . . , an, bn. To facilitate the proof, we depict this
arrangement in the following way:

.

In the deck D1 each position ai is occupied by a 1 and each position bi is occupied
by a 2 [because π is a shuffle from (1,2)n to D1]. We assume that β begins at the
(i + 1)st position and ends at the (i + 2j)th position. In the depiction above, circle
all the ai and bi that do not correspond to β , that is, circle an ai or a bi if it is
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less than i + 1 or greater than i + 2j . When π is mapped, the circled numbers will
stay fixed. The uncircled numbers form segments that run from a circled number
to another circled number (or they might begin or end at a1 or bn). These segments
of uncircled numbers are of four types according as they either begin or end at the
top line or the bottom line:

.

The third type of segment has one more uncircled position in the bottom line,
corresponding to a position occupied by a 2 in D1, than in the top line. The fourth
type of segment has an extra uncircled position in the top line, corresponding to
a position occupied by a 1 in D1. Since the number of 1’s in β is equal to the
number of 2’s, the number of uncircled positions in the top line must be equal
to the number of uncircled positions in the bottom line. Therefore, the number
of uncircled segments of the third type must be equal to the number of uncircled
segments of the fourth type.

To map π to a shuffle from (1,2)n to D2, we will modify the uncircled segments
and insert them back in-between the circled numbers in the original arrangement
of ai and bi . We define a map f from the uncircled positions, that is, the positions
that correspond to β , back to the the uncircled positions as follows:

i + 1 → i + 2j, i + 2 → i + 2j − 1, . . . , i + 2j − 1 → i + 2, i + 2j → i + 1.

If i + 1 ≤ x ≤ i + 2j and the position x in D1 is occupied by 1 (or 2), the position
f (x) in D2 will be occupied by 2 (or 1). If ap, bp, ap+1, bp+1, . . . , bq is an uncir-
cled segment of the first type, it will be modified to f (bq), f (aq), . . . , f (ap+1),

f (bp), f (ap). In the deck D2, each position f (bi) [or f (ai)], p ≤ i ≤ q , is oc-
cupied by 1 (or by 2). Therefore, the modified segment is also of the first type.
However, when an uncircled segment of the third (or fourth) type is modified
in this way, it becomes a segment of the fourth (or third) type. The arrangement
a1, b1, a2, b2, . . . , an, bn can be converted to another arrangement in the following
steps:

1. Extract the uncircled segments of the first and second type from the arrange-
ment, modify them as described above, and put the modified segment back in
the same place.

2. Number the uncircled segments of the third and fourth type from left to right.
As explained above, they must be equally numerous.

3. Replace the ith uncircled segment of the third type by the modification of the
ith uncircled segment of the fourth type. Similarly, replace the ith uncircled
segment of the fourth type by the modification of the ith uncircled segment of
the third type.
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The shuffle π∗ is defined by setting π∗(i) equal to the ith number in the arrange-
ment constructed in this manner. By construction, π∗ is a shuffle from (1,2)n

to D2. Further, the number of descents of π∗ must equal the number of descents of
π for the following reason. If there is a descent or an ascent between two circled
positions in the arrangement a1, b1, a2, b2, . . . , an, bn, it remains unchanged. Also,
the modification of uncircled segments described above preserves the number of
descents, although it changes their locations. Finally, if a circled number is greater
than (or less than) a single uncircled number, it must be greater than (or less than)
all uncircled numbers and, therefore, the number of descents between circled and
uncircled numbers in the arrangement also remains unchanged.

It is possible to map a shuffle from (1,2)n to D2 to a shuffle from (1,2)n to D1
using the same procedure. That map would be the inverse of the map defined above.
Therefore, the map from shuffles π to shuffles π∗ defined above is a bijection. �

The converse of the above Theorem 4.1 appears to be true as well. The number
of equivalence classes seems to be given by the simple formula (n + 3)2n−2. One
can attempt to prove this by finding unique representatives for equivalence classes
and then counting them as in the proof of Theorem 3.2. We have derived a method
to construct unique representatives for equivalence classes of R. However, we have
not yet devised a method to count the number of unique representatives.

5. Card games. Some inferences about the mixing times for common card
games such as blackjack and bridge can be drawn using results given in the pre-
ceding sections. Let S be a finite set and let p be a probability distribution on S.
Then the total variation distance of p from the uniform distribution is given by
1
2

∑
s∈S |p(s) − 1

|S| |. For a deck of 52 distinct cards, the total variation distance
remains close to 1 until the number of riffle shuffles exceeds 4. The total variation
distance falls below 0.5 when the number of shuffles is 7 and this can be taken to
be the mixing time [2]. Another distance defined in [1] is the separation distance.
The separation distance of p from the uniform distribution is maxs∈S(1−|S|p(s)).
Like the total variation distance, the separation distance has a maximum of 1 and
a minimum of 0. However, it leads to a more demanding notion of mixing as the
number of riffle shuffles of a deck of 52 distinct cards needed to make the separa-
tion distance no more than 1/2 is 11. The use of entropy to understand mixing is
discussed in [14]. The validity and limitations of the maximum entropy model of
riffle shuffles are discussed in [3] and [5].

In the game of bridge, 52 distinct cards are dealt to four players. To apply the
results proved in Section 2, we need to assume that the first 13 cards are dealt to
one player, the next 13 to another and so on. Let the deck D be a permutation
of the multiset {113,213,313,413}. Let pD be the transition probability from D

to 113,213,313,413 under an a-shuffle. This transition probability can be obtained
using (2.6). The probability that the first player is dealt cards originally in the
positions occupied by cards labeled 1 in D, that the second player is dealt cards
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originally in the positions occupied by cards labeled 2 in D, and so on after an
a-shuffle is equal to pD . Therefore, the distance of the probability distribution pD

over decks from the uniform distribution will indicate the closeness of a deal after
an a-shuffle to a random deal to four players. If the separation distance is used to
define mixing, an application of (2.6) with D = (4,3,2,1)12 shows that the sep-
aration distance is greater than 0.5 after 10 riffle shuffles. Therefore, the mixing
time is still 11 riffle shuffles. The total variation distance involves a sum with a
great number of terms and the results of Sections 3 and 4 indicate that the recog-
nition of equalities among the transition probabilities pD is unlikely to make this
sum tractable. However, a Monte Carlo procedure for evaluating this sum, which
will be described elsewhere, implies that the mixing time is 6 riffle shuffles when
the total variation distance is used. If the cards are dealt to the players in cyclic
order, which is the common practice, the mixing times will almost certainly be
lower.

In the game of blackjack, the distinction between the suits is ignored. We as-
sume the starting deck to be 14,24, . . . ,134. Application of Theorem 2.1 and (2.1)
shows that the separation distance from the uniform distribution over decks be-
comes less than 0.5 after 9 riffle shuffles. Again, a Monte-Carlo procedure has
to be employed to find the total variation distance. It then follows that the total
variation distance becomes less than 0.5 after only 4 riffle shuffles.
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