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KOLMOGOROV EQUATIONS IN INFINITE DIMENSIONS:
WELL-POSEDNESS AND REGULARITY OF SOLUTIONS,
WITH APPLICATIONS TO STOCHASTIC GENERALIZED

BURGERS EQUATIONS1

BY MICHAEL RÖCKNER AND ZEEV SOBOL

Universität Bielefeld and University of Wales Swansea

We develop a new method to uniquely solve a large class of heat equa-
tions, so-called Kolmogorov equations in infinitely many variables. The equa-
tions are analyzed in spaces of sequentially weakly continuous functions
weighted by proper (Lyapunov type) functions. This way for the first time
the solutions are constructed everywhere without exceptional sets for equa-
tions with possibly nonlocally Lipschitz drifts. Apart from general analytic
interest, the main motivation is to apply this to uniquely solve martingale
problems in the sense of Stroock–Varadhan given by stochastic partial differ-
ential equations from hydrodynamics, such as the stochastic Navier–Stokes
equations. In this paper this is done in the case of the stochastic generalized
Burgers equation. Uniqueness is shown in the sense of Markov flows.

1. Introduction. In this paper we develop a new technique to uniquely solve
generalized heat equations, so-called Kolmogorov equations, in infinitely many
variables of type

du

dt
= Lu

for a large class of elliptic operators L. The main new idea is to study L on
weighted function spaces consisting of sequentially weakly continuous func-
tions on the underlying infinite-dimensional Banach space X (e.g., a classical
Lp-space). These function spaces are chosen appropriately for the specifically
given operator L. More precisely, the function space on which L acts is weighted
by a properly chosen Lyapunov function V of L and the image space by a func-
tion � bounding its image LV . Apart from general analytic interest, the motivaton
for this work comes from the study of concrete stochastic partial differential equa-
tions (SPDEs), such as, for example, those occuring in hydrodynamics (stochastic
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Navier–Stokes or Burgers equations, etc.). Transition probabilities of their solu-
tions satisfy such Kolmogorov equations in infinitely many variables. To be more
specific, below we shall describe a concrete case, to which we restrict in this paper,
to explain the method in detail.

Consider the following stochastic partial differential equation on

X := L2(0,1)= L2(
(0,1), dr

)
(where dr denotes Lebesgue measure):

dxt = (
�xt + F(xt )

)
dt +√Adwt

(1.1)
x0 = x ∈X.

Here A :X → X is a nonnegative definite symmetric operator of trace class,
(wt )t≥0 a cylindrical Brownian motion on X, � denotes the Dirichlet Laplacian
(i.e., with Dirichlet boundary conditions) on (0,1), and F :H 1

0 →X is a measur-
able vector field of type

F(x)(r) := d

dr
(� ◦ x)(r)+�

(
r, x(r)

)
, x ∈H 1

0 (0,1), r ∈ (0,1).

H 1
0 := H 1

0 (0,1) denotes the Sobolev space of order 1 in L2(0,1) with Dirichlet
boundary conditions and � : R → R, � : (0,1) × R → R are functions satisfy-
ing certain conditions specified below. In case �(x) = 1

2x2, � ≡ 0, SPDE (1.1)
is just the classical stochastic Burgers equation, and if � ≡ 0 and, for example,
�(r, x)=−x3, we are in the situation of a classical stochastic reaction diffusion
equation of Ginsburg–Landau type. Therefore, we call (1.1) “stochastic general-
ized Burgers equation.”

Stochastic generalized Burgers equations have been studied in several papers. In
fact, the first who included both a “hydrodynamic part” (i.e., � above) and a “reac-
tion diffusion part” (i.e., � above) was Gyöngy in [29], where, as we do in this pa-
per, he also considered the case where the underlying domain is D = (0,1). Later
jointly with Rovira in [31] he generalized his results to the case where � is allowed
to have polynomial growth; � is still assumed to have linear growth and is locally
Lipschitz with at most linearly growing Lipschitz constant. A further generaliza-
tion to d-dimensional domains was done by the same two authors in [32]. Contrary
to us, these authors purely concentrated on solving SPDE of type (1.1) directly and
did not analyze the corresponding Kolmogorov equations. In fact, they can allow
nonconstant (but globally Lipschitz)

√
A and also explicitly time dependent co-

efficients. We refer to [29, 31, 32] for the exact conditions, but emphasize that
always the reaction diffusion part is assumed to be locally Lipschitz and of at most
linear growth. As we shall see below, for the solution of the Kolmogorov equa-
tions, our method allows the reaction diffusion part to be of polynomial growth
(so Ginsburg–Landau is in fact included) and also the locally Lipschitz condi-
tion can be replaced by a much weaker condition of dissipative type [see condi-
tions (�1)–(�3) in Section 2 below].
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SPDE of type (1.1) with either � ≡ 0 or �≡ 0 have been studied extensively.
For the case � ≡ 0, the literature is so enormous that we cannot record it here,
but instead refer, for example, to the monographs [24] and [13] and the references
therein. For the case �≡ 0, we refer, for example, to [6, 10, 12, 18, 19, 30, 38, 39,
55], and for the classical deterministic case, for example, to [11, 33, 37, 41, 44].
References concerning the Kolmogorov equations for SPDE will be given below.

The motivation of handling both the hydrodynamic and reaction diffusion part
in SPDE of type (1.1) together was already laid out in [29]. It is well known that the
mathematical analysis is then much harder, standard theory has to be modified and
new techniques must be developed. It is, however, somehow imaginable that this,
with some effort, can be done if as in [29, 31, 32] � has at most linear growth (see,
e.g., Remark 8.2 in [35], where this is shown in a finite-dimensional situation).
The case of � with polynomial growth treated in this paper seems, however, much
harder. In contrast to [29, 31, 32], our methods require, on the other hand, that �

grows less than |x|5/2 for large x [cf. condition (�) in Section 2].
Showing the range of our method by handling � and � together has the dis-

advantage that it makes the analysis technically quite hard. Therefore, the reader
who only wants to understand the basic ideas of our new general approach is ad-
vised to read the paper under the assumption that � does not explicitly depend
on r and has polynomial growth strictly less than 5. This simplifies the analysis
substantially [e.g., in definition (2.4) of the Lyapunov function below we can take
p = 2, so the simpler weight functions in (2.3) below suffice].

But now let us turn back to the Kolmogorov equations corresponding to
SPDE (1.1).

A heuristic (i.e., not worrying about existence of solutions) application of Itô’s
formula to (1.1) implies that the corresponding generator or Kolmogorov opera-
tor L on smooth cylinder functions u :X→R, that is,

u ∈D :=F C2
b := {u= g ◦ PN |N ∈N, g ∈C2

b(EN)} (cf. below),

is of the following form:

Lu(x) := 1
2 Tr(AD2u(x))+ (

�x + F(x),Du(x)
)

(1.2)

= 1
2

∞∑
i,j=1

Aij ∂
2
ij u(x)+

∞∑
k=1

(
�x + F(x), ηk

)
∂ku(x), x ∈H 1

0 .

Here ηk(r) :=
√

2 sin(πkr), k ∈ N, is the eigenbasis of � in L2(0,1), equipped
with the usual inner product (·, ·), EN := span{ηk|1 ≤ k ≤ N}, PN is the corre-
sponding orthogonal projection, and Aij := (ηi,Aηj ), i, j ∈ N. Finally, Du, D2u

denote the first and second Fréchet derivatives, ∂k := ∂ηk
, ∂2

ij := ∂ηi
∂ηj

with ∂y :=
directional derivative in direction y ∈X and (�x,ηk) := (x,�ηk) for x ∈X.
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Hence, the Kolmogorov equations corresponding to SPDE (1.1) are given by

dv

dt
(t, x)= L̄v(t, x), x ∈X,

(1.3)
v(0, ·)= f,

where the function f :X→ R is a given initial condition for this parabolic PDE
with variables in the infinite-dimensional space X. We emphasize that (1.3) is only
reasonable for some extension L̄ of L (whose construction is an essential part of
the entire problem) since even for f ∈ D , it will essentially never be true that
v(t, ·) ∈D .

Because of the lack of techniques to solve PDE in infinite dimensions, in sit-
uations as described above the “classical” approach to solve (1.3) was to first
solve (1.1) and then show in what sense the transition probabilities of the solution
solve (1.3) (cf., e.g., [3, 13, 17, 24, 26, 27, 45, 50] and the references therein).
Since about 1998, however, a substantial part of recent work in this area (cf.,
e.g., [20, 52, 53] and one of the initiating papers, [46]) is based on the attempt
to solve Kolmogorov equations in infinitely many variables [as (1.3) above] di-
rectly and, reversing strategies, use the solution to construct weak solutions, that
is, solutions in the sense of a martingale problem as formulated by Stroock and
Varadhan (cf. [54]) of SPDE as (1.1) above, even for very singular coefficients
(naturally appearing in many applications). In the above quoted papers, as in sev-
eral other works (e.g., [1, 4, 15, 16, 22, 23, 42]), the approach to solve (1.3) directly
was, however, based on Lp(µ)-techniques where µ is a suitably chosen measure
depending on L, for example, µ is taken to be an infinitesimally invariant measure
of L (see below). So, only solutions to (1.3) in an Lp(µ)-sense were obtained, in
particular, allowing µ-zero sets of x ∈ X for which (1.3) does not hold or where
(1.3) only holds for x in the topological support of µ (cf. [20]).

In this paper we shall present a new method to solve (1.3) for all x ∈ X (or an
explicitly described subset thereof) not using any reference measure. It is based on
finite-dimensional approximation, obtaining a solution which, despite the lack of
(elliptic and) parabolic regularity results on infinite-dimensional spaces, will, nev-
ertheless, have regularity properties. More precisely, setting Xp := Lp((0,1), dr),
we shall construct a semigroup of Markov probability kernels pt(x, dy), x ∈Xp ,
t > 0, on Xp such that, for all u ∈D , we have t 	→ pt(|Lu|)(x) is locally Lebesgue
integrable on [0,∞) and

ptu(x)− u(x)=
∫ t

0
ps(Lu)(x) ds ∀x ∈Xp.(1.4)

Here, as usual for a measurable function f :Xp →R, we set

ptf (x) :=
∫

f (y)pt (x, dy), x ∈Xp, t > 0,(1.5)
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if this integral exists. p has to be large enough compared to the growth of � (cf.
Theorem 2.2 below). Furthermore, pt for each t > 0 maps a class of sequentially
weakly continuous (resp. a class of locally Lipschitz functions) growing at most
exponentially into itself. That pt , for t > 0, has the property to map the test func-
tion space D (consisting of finitely based, hence, sequentially weakly continuous
functions) into itself (as is the case in finite dimensions at least if the coefficients
are sufficiently regular) cannot be true in our case since F depends on all co-
ordinates of x =∑∞

k=1(x, ηk)ηk and not merely finitely many. So, the regularity
property of pt , t > 0, to leave the space of exponentially bounded (and, since it is
Markov, hence, also the bounded) sequentially weakly continuous functions fixed
is the next best possible.

As a second step, we shall construct a conservative strong Markov process
with weakly continuous paths, which is unique under a mild growth condition and
which solves the martingale problem given by L, as in (1.2) and, hence, also (1.1)
weakly, for every starting point x ∈ Xp . We also construct an invariant measure
for this process.

The precise formulation of these results require more preparations and are there-
fore postponed to the next section (cf. Theorems 2.2–2.4), where we also collect
our precise assumptions. Now we would like to indicate the main ideas of the
proof and the main concepts. First of all, we emphasize that these concepts are
of a general nature and work in other situations as well (cf., e.g., the companion
paper [47] on the 2D-stochastic Navier–Stokes equations). We restrict ourselves to
the case described above, so in particular to the (one dimensional) interval (0,1)

for the underlying state space Xp = Lp((0,1), dr), in order to avoid additional
complications.

The general strategy is to construct the semigroup solving (1.4) through its cor-
responding resolvent, that is, we have to solve the equation

(λ−L)u= f

for all f in a function space and λ large enough, so that all u ∈ D appear as
solutions. The proper function spaces turn out to be weighted spaces of sequen-
tially weakly continuous functions on X. Such spaces are useful since their dual
spaces are spaces of measures, so despite the nonlocal compactness of the state
space X, positive linear functionals on such function spaces over X are automati-
cally measures (hence, positive operators on it are automatically kernels of positive
measures). To choose exponential weights is natural to make these function spaces,
which will remain invariant under the to be constructed resolvents and semigroups,
as large as possible. More precisely, one chooses a Lyapunov function Vp,κ of L

with weakly compact level sets so that

(λ−L)Vp,κ ≥�p,κ,

and so that �p,κ is a “large” positive function of (weakly) compact level sets
[cf. (2.3), (2.4) below for the precise definitions]. �p,κ “measures” the coerciv-
ity of L [or of SPDE (1.1)]. Then one considers the corresponding spaces WCp,κ
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and W1Cp,κ of sequentially weakly continuous functions over X, weighted by
Vp,κ and �p,κ , respectively, with the corresponding weighted supnorms [cf. (2.2)
below]. Then for λ large, we consider the operator

λ−L :D ⊂WCp,κ →W1Cp,κ

and prove by an approximative maximum principle that, for some m > 0,

‖(λ−L)u‖W1Cp,κ ≥m‖u‖WCp,κ

(cf. Proposition 6.1). So we obtain dissipativity of this operator between these two
different spaces and the existence of its continuous inverse Gλ := (λ−L)−1. Con-
sidering a finite-dimensional approximation by operators LN on EN , N ∈N, with
nice coefficients, more precisely, considering their associated resolvents (GN

λ )λ>0,
we show that (λ−L)(D) has dense range and that the continuous extension of Gλ

to all of W1Cp,κ is still one-to-one (“essential maximal dissipativity”). Further-
more, λGN

λ (lifted to all of X) converges uniformly in λ to λGλ which, hence, turns
out to be strongly continuous, but only after restricting Gλ to WCp,κ , which is con-
tinuously embedded into W1Cp,κ , so has a stronger topology (cf. Theorem 6.4).
Altogether (Gλ)λ≥λ0 , λ0 large, is a strongly continuous resolvent on WCp,κ , so we
can consider its inverse under the Laplace transform (Hille–Yosida theorem) to ob-
tain the desired semigroup (pt )t>0 of operators which are automatically given by
probability kernels as explained above. Then one checks that pt , t > 0, solves (1.4)
and is unique under a mild “growth condition” [cf. (2.17) and Proposition 6.7 be-
low]. Subsequently, we construct a strong Markov process on Xp with weakly
continuous paths with transition semigroup (pt )t>0. By general theory, it then
solves the Stroock–Varadhan martingale problem corresponding to (L,D), hence,
it weakly solves SPDE (1.1). We also prove its uniqueness in the set of all Markov
processes satisfying the mild “growth condition” (2.18) below (cf. Theorem 7.1).

In comparison to other constructions of semigroups on weighted function spaces
using locally convex topologies and the concept of bicontinuous semigroups
(cf. [36] and the references therein), we emphasize that our spaces are (separa-
ble) Banach spaces so, as spaces with one single norm, are easier to handle.

In comparison to other constructions of infinite-dimensional Markov processes
(see, e.g., [43, 52]) where capacitory methods were employed, we would like to
point out that instead of proving the tightness of capacities, we construct Lyapunov
functions (which are excessive functions in the sense of potential theory) with
compact level sets. The advantage is that we obtain pointwise statements for all
points in Xp , not just outside a set of zero capacity. Quite a lot is known about
the approximating semigroups (pN

t )t>0, that is, the ones corresponding to the
(G

(N)
λ )λ>0, N ∈N, mentioned above, since they solve classical finite-dimensional

Kolmogorov equations with regular coefficients. So, our construction also leads to
a way to “calculate” the solution (pt )t>0 of the infinite-dimensional Kolmogorov
equation (1.3).
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The organization of this paper is as follows: as already mentioned, in Section 2
we formulate the precise conditions (A) and (F1) on the diffusion coefficient A

and the drift F , respectively, and state our main results precisely. In Section 3
we prove the necessary estimates on RN , uniformly in N , which are needed for
the finite-dimensional approximation. In Section 4 we introduce another assump-
tion (F2) on F which is the one we exactly need in the proof, and we show that
it is weaker than (F1). In Section 5 we collect a few essential properties of our
weighted function spaces on Xp . In particular, we identify their dual spaces which
is crucial for our analysis. This part was inspired by [34]. The semigroup of ker-
nels pt(x, dy), t > 0, x ∈ Xp , is constructed in Section 6, and its uniqueness is
proved. Here we also prove further regularity properties of pt , t > 0. The latter
part is not used subsequently in this paper. Section 7 is devoted to constructing
the process, respectively showing that it is the solution of the martingale problem
given by L as in (1.2), hence, a weak solution to SPDE (1.1), and that it is unique in
the mentioned class of Markov processes (see also Lemma A.1 in the Appendix).
In deterministic language the latter means that we have uniqueness of the flows
given by solutions of (1.1). The invariant measure µ for (pt )t>0 is constructed in
the Appendix by solving the equation L∗µ = 0. As a consequence of the results
in the main part of the paper, we get that the closure (L̄µ,Dom(L̄µ)) of (L,D)

is maximal dissipative on Ls(X,µ), s ∈ [1,∞) (cf. Remark A.3), that is, strong
uniqueness holds for (L,D) on Ls(X,µ). In particular, the differential form (1.3)
of (1.4) holds with L̄µ replacig L̄ and the time derivative taken in Ls(X,µ).

2. Notation, conditions and main results. For a σ -algebra B on an ar-
bitrary set E, we denote the space of all bounded (resp. positive) real-valued
B-measurable functions by Bb, B+, respectively. If E is equipped with a topol-
ogy, then B(E) denotes the corresponding Borel σ -algebra. The spaces X =
L2(0,1) and H 1

0 are as in the Introduction and they are equipped with their usual
norms | · |2 and | · |1,2; so we define, for x : (0,1)→R, measurable,

|x|p :=
(∫ 1

0
|x(r)|p dr

)1/p

(∈ [0,∞]), p ∈ [1,∞),

|x|∞ := ess sup
r∈(0,1)

|x(r)|,

and define Xp := Lp((0,1), dr), p ∈ [1,∞], so X =X2. If x, y ∈H 1
0 , set

|x|1,2 := |x′|2, (x, y)1,2 := (x′, y′),
where x′ := d

dr
x is the weak derivative of x. We shall use this notation from now

on and we also write x′′ := d2

dr2 x =�x.

Let H−1 with norm | · |−1,2 be the dual space of H 1
0 . We always use the contin-

uous and dense embeddings

H 1
0 ⊂X ≡X′ ⊂H−1,(2.1)
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so H 1
0
〈x, y〉H−1 = (x, y) if x ∈H 1

0 , y ∈X. The terms “Borel-measurable” or “mea-

sure on X, H 1
0 , H−1 resp.” will below always refer to their respective Borel

σ -algebras, if it is clear on which space we work. We note that since H 1
0 ⊂

X ⊂ H−1 continuously, by Kuratowski’s theorem, H 1
0 ∈ B(X), X ∈ B(H−1)

and B(X) ∩ H 1
0 = B(H 1

0 ), B(H−1) ∩ X = B(X). Furthermore, the Borel
σ -algebras on X and H 1

0 corresponding to the respective weak topologies coin-
cide with B(X), B(H 1

0 ), respectively.
For a function V :X → (0,∞] having weakly compact level sets {V ≤ c},

c ∈R+, we define

WCV :=
{
f : {V <∞}→R

∣∣∣f is continuous on each {V ≤R},R ∈R,

in the weak topology inherited from X,(2.2)

and lim
R→∞ sup

{V≥R}
|f |
V
= 0

}
,

equipped with the norm ‖f ‖V := sup{V <∞} V −1|f |. Obviously, WCV is a Banach
space with this norm. We are going to consider various choices of V , distinguished
by respective subindices, namely, we define, for κ ∈ (0,∞),

Vκ(x) := eκ|x|22, x ∈X,
(2.3)

�κ(x) := Vκ(x)(1+ |x′|22), x ∈H 1
0 ,

and for p > 2,

Vp,κ(x) := eκ|x|22(1+ |x|pp), x ∈X,
(2.4)

�p,κ(x) := Vp,κ(x)(1+ |x′|22)+ Vκ(x)|(|x|p/2)′|22, x ∈H 1
0 .

Clearly, {Vp,κ <∞} = Xp and {�p,κ <∞} = H 1
0 . Each �p,κ is extended to a

function on X by defining it to be equal to +∞ on X \H 1
0 . Abusing notation, for

p = 2, we also set V2,κ := Vκ and �2,κ :=�κ . For abbreviation, for κ ∈ (0,∞),
p ∈ [2,∞), we set

WCp,κ :=WCVp,κ , W1Cp,κ :=WC�p,κ ,(2.5)

and we also abbreviate the norms correspondingly,

‖ · ‖p,κ := ‖ · ‖Vp,κ , ‖ · ‖κ := ‖ · ‖0,κ and ‖ · ‖1,p,κ := ‖ · ‖�p,κ .(2.6)

All these norms are, of course, well defined for any function on X with values
in [−∞,∞]. And therefore we shall apply them below not just for functions in
WCp,κ or W1Cp,κ . For p′ ≥ p and κ ′ ≥ κ , by restriction, WCp,κ is continuously
and densely embedded into WCp′,κ ′ and into W1Cp,κ (see Corollary 5.6 below), as
well is the latter into W1Cp′,κ ′ . Vp,κ will serve as convenient Lyapunov functions
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for L. Furthermore, �p,κ bounds (λ−L)Vp,κ from below for large enough λ, thus,
�p,κ measures the coercivity of L (cf. Lemma 4.6 below). Note that the level sets
of �p,κ are even strongly compact in X.

We recall that, for PN as in the Introduction, there exists αp ∈ [1,∞) such that

|PNx|p ≤ αp|x|p for all x ∈Xp,N ∈N(2.7)

(cf. [40], Section 2c16), of course, with α2 = 1. In particular,

Vκ,p ◦ PN ≤ αp
p Vκ,p.(2.8)

For a function V :X→ (1,∞], we also define spaces Lipl,p,κ , p ≥ 2, κ > 0,
consisting of functions on X which are locally Lipschitz continuous in the norm
|(−�)−l/2 · |2, l ∈ Z+. The respective seminorms are defined as follows:

(f )l,p,κ := sup
y1,y2∈Xp

(
Vp,κ(y1)∨ Vp,κ(y2)

)−1 |f (y1)− f (y2)|
|(−�)−l/2(y1 − y2)|2

(2.9)
(∈ [0,∞]).

For l ∈ Z+, we define

Lipl,p,κ :=
{
f :Xp →R|‖f ‖Lipl,p,κ

<∞}
,(2.10)

where ‖f ‖Lipl,p,κ
:= ‖f ‖p,κ + (f )l,p,κ . When X is of finite dimension, (f )l,p,κ is

a weighted norm of the generalized gradient of f (cf. Lemma 3.6 below). Also,
(Lipl,p,κ ,‖ · ‖Lipl,p,κ

) is a Banach space (cf. Lemma 5.7 below) and Lipl,p,κ ⊂
Lipl′,p′,κ ′ for l′ ≤ l, p′ ≥ p and κ ′ ≥ κ . In this paper we shall mostly deal with the
case l ∈ {0,1}.

Obviously, each f ∈ Lipl,p,κ is uniformly |(−�)−l/2 · |2-Lipschitz continuous
on every | · |p-bounded set. In particular, any f ∈ Lip1,p,κ is sequentially weakly
continuous on Xp , consequently weakly continuous on bounded subsets of Xp .
Hence, for all p′ ∈ [p,∞), κ ′ ∈ [κ,∞),

Bb(Xp)∩ Lip1,p,κ ⊂WCp′,κ ′(2.11)

and obviously, by restriction,

Bb(Xp)∩ Lip0,p,κ ⊂W1Cp′,κ ′ .(2.12)

Further properties of these function spaces will be studied in Section 5 below.
Besides the space D := F C2

b defined in the Introduction, other test function
spaces Dp,κ on X will turn out to be convenient. They are for p ∈ [2,∞), κ ∈
(0,∞) defined as follows:

Dp,κ := {u= g ◦ PN |N ∈N, g ∈C2(RN),
(2.13)

‖u‖p,κ + ‖|Du|2‖p,κ + ‖Tr(AD2u)‖p,κ <∞}.
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Again we set Dκ := D2,κ . Obviously, Dp,κ ⊂ WCp,κ and Dp,κ ⊂ Dp′,κ ′ if
p′ ∈ [p,∞) and κ ′ ∈ [κ,∞). We extend the definition (1.2) of the Kolmogorov
operator L for all u ∈ F C2 := {u = g ◦ PN |N ∈ N, g ∈ C2(RN)}. So, L can be
considered with domain Dp,κ .

Now let us collect our precise hypotheses on the terms in SPDE (1.1), re-
spectively the Kolmogorov operator (1.2). First, we recall that in the entire paper
�= x′′ is the Dirichlet Laplacian on (0,1) and (Wt)t≥0 is a cylindrical Browninan
motion on X. Consider the following condition on the map A :X→X:

(A) A is a nonnegative symmetric linear operator from X to X of trace class such
that AN := PNAPN is an invertible operator represented by a diagonal matrix
on EN for all N ∈N.

Here EN , PN are as defined in the Introduction. Furthermore, we set

a0 := sup
x∈H 1

0 \{0}

(x,Ax)

|x′|22
= |A|H 1

0→H−1,(2.14)

where | · |H 1
0→H−1 denotes the usual operator norm on bounded linear operators

from H 1
0 into its dual H−1.

Consider the following condititons on the map F :H 1
0 →X:

(F1)

F(x)= d

dr
(� ◦ x)(r)+�

(
r, x(r)

)
, x ∈H 1

0 (0,1), r ∈ (0,1),(2.15)

where � : R→R, � : (0,1)×R→R satisfy the following conditions:
(�) � ∈ C1,1(R) (i.e., � is differentiable with locally Lipschitz derivative)

and there exist C ∈ [0,∞) and a bounded, Borel-measurable function
ω : [0,∞)→[0,∞) vanishing at infinity such that

|�xx |(x)≤ C +√|x|ω(|x|) for dx-a.e. x ∈R.

(�1) � is Borel-measurable in the first and continuous in the second vari-
able and there exists g ∈ Lq1(0,1) with q1 ∈ [2,∞] and q2 ∈ [1,∞)

such that

|�(r, x)| ≤ g(r)(1+ |x|q2) for all r ∈ (0,1), x ∈R.

(�2) There exist h0, h1 ∈ L1+(0,1), |h1|1 < 2, such that for a.e. r ∈ (0,1)

�(r, x) signx ≤ h0(r)+ h1(r)|x| for all x ∈R.

(�3) There exist ρ0 ∈ (0,1], g0 ∈ L1+(0,1), g1 ∈ L
p1+ (0,1) for some p1 ∈

[2,∞], and a function ω : [0,∞)→ [0,∞) as in (�) such that with
σ : (0,1)×R→R, σ(r, x) := |x|√

r(1−r)
for a.e. r ∈ (0,1)

�(r, y)−�(r, x)≤ [
g0(r)+ g1(r)|σ(r, x)|2−1/p1ω

(
σ(r, x)

)]
(y − x)

for all x, y ∈R, 0≤ y − x ≤ ρ0.
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Furthermore, we say that condition (F1+) holds if, in addition to (F1), we have

(�4) � is twice continuously differentiable and there exist g2, g3 ∈ L2+(0,1),
g4, g5 ∈ L1+(0,1), and ω : [0,∞)→ [0,∞) as in (�) such that, for their
partial derivatives �xx , �xr , �x , �r , and with σ as in (�3),

|�xx | + |�x |2
|�| + 1

≤ g2 + g3
√

σ ω(σ)

and

|�xr | + |�x�r |
|�| + 1

≤ g4 + g5σ
3/2ω(σ).

REMARK 2.1. (i) Integrating the inequality in (�) twice, one immediately
sees that (�) implies that there exist a bounded Borel-measurable function
ω̂ : R+→R+, ω̂(r)→ 0 as r →∞, and C ∈ (0,∞) such that

|� ′(x)| ≤ C + |x|3/2ω̂(|x|), |�(x)| ≤ C + |x|5/2ω̂(|x|) for all x ∈R.

(ii) We emphasize that conditions (�2), (�3) are one-sided estimates, so that
(�1)–(�3) is satisfied if �(r, x)= P(x), r ∈ (0,1), x ∈ R, where P is a polyno-
mial of odd degree with strictly negative leading coefficient.

(iii) Under the assumptions in (F1), SPDE (1.1) will not have a strong solution
in general for all x ∈X.

(iv) If (�1) holds, (�2) only needs to be checked for x ∈ R such that |x| ≥ R

for some R ∈ (0,∞). And replacing ω [in (�) and (�3)] by ω̃(r) := sups≥r ω(s),
we may assume that ω is decreasing.

(v) (�4) implies that there exists a bounded measurable function ω̂ : R+→R+,
ω̂(r)→ 0 as r →∞, such that

|�x | ≤ C + σ 3/2ω̂(σ ) and |�| ≤ g1 +C + σ 5/2ω̂(σ ).

In particular, (�4) implies (�3) with p1 = 2, g0(r)= g1(r)= const. Indeed, we
have, for x ∈R, r ∈ (0, 1

2),

�x(r, x)=�x(0,0)+
∫ r

0
�xx

(
s,

x

r
s

)
x

r
ds +

∫ r

0
�xr

(
s,

x

r
s

)
ds.

As shown in the previous item, we may assume ω decreasing. Then it follows
from (�4) and Hölder’s inequality that

|�x |(r, x)≤ C + |x|
r

∫ r

0
g2 ds +

( |x|
r

)3/2 ∫ r

0
g3(s)ω

( |x|
r

√
s

)
s1/4 ds +

∫ r

0
g4 ds

+
( |x|

r

)3/2 ∫ r

0
g5(s)ω

( |x|
r

√
s

)
s3/4 ds
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≤ C + |x|√
r
|g2|2 +

( |x|√
r

)3/2

|g3|2
(∫ 1

0
ω2

( |x|√
r

√
τ

)√
τ dτ

)1/2

+ |g4|1 +
( |x|√

r

)3/2 ∫ 1

0
g5(s)ω

( |x|√
r

√
s

)
ds.

Now observe that

ω̃(σ ) :=
(

2
∫ 1

0
ω2(√

2στ
)
τ dτ

)1/2

+
∫ 1

0
g5(s)ω

(√
2σ
√

s
)
ds

is a bounded measurable function and ω̃(r)→ 0 as r →∞. So the first assertion
follows for r ∈ (0, 1

2). For the case r ∈ (1
2 ,1), the assertion is proved by the change

of variables r ′ = 1− r . The second assertion is proved similarly.

In the rest of this paper hypothesis (A) (though repeated in each statement to make
partial reading possible) will always be assumed. As it is already said in the In-
troduction, all of our results are proved for general F :H 1

0 → X under condition
(F2) [resp. (F2+), or parts thereof], which is introduced in Section 4 and which
is weaker than (F1) [resp. (F1+)]. For the convenience of the reader, we now,
however, formulate our results for the concrete F given in (2.15), under condition
(F1) [(F1+) resp.]. For their proofs, we refer to the respective more general results,
stated and proved in one of the subsequent sections.

THEOREM 2.2 (“Pointwise solutions of the Kolmogorov equations”). Sup-
pose (A) and (F1) hold. Let κ0 := 2−|h1|1

8a0
(with a0 as in (2.15) and h1 as in (�2),

0 < κ1 ∈ κ∗ < κ0, and let p ∈ [2,∞)∩ (q2− 3+ 2
q1

,∞) [with q1, q2 as in (�1)]).
Then there exists a semigroup (pt )t>0 of probability kernels on Xp , independent
of κ∗, having the following properties:

(i) (“Existence”) Let u ∈Dκ1 . Then t 	→ pt(|Lu|)(x) is locally Lebesgue inte-
grable on [0,∞) and

ptu(x)− u(x)=
∫ t

0
ps(Lu)(x) ds for all x ∈Xp.(2.16)

In particular, for all s ∈ [0,∞),

lim
t→0

ps+tu(x)= psu(x) for all x ∈Xp.

(ii) There exists λκ∗ ∈ (0,∞) such that∫ ∞
0

e−λκ∗ sps(�p,κ∗)(x) ds <∞ for all x ∈Xp.(2.17)

(iii) (“Uniqueness”) Let (qt )t>0 be a semigroup of probability kernels on Xp

satisfying (i) with (pt )t>0 replaced by (qt )t>0 and Dκ1 by D . If, in addition,
(2.17) holds with (qt )t>0 replacing (pt )t>0 for some κ ∈ (0, κ0) replacing κ∗, then
pt(x, dy)= qt (x, dy) for all t > 0, x ∈Xp .
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(iv) (“Regularity”) Let t ∈ (0,∞). Then pt(Wp,κ∗)⊂Wp,κ∗ . Furthermore, let
f ∈ Lip0,2,κ1

∩Bb(X) ∩ Wp,κ∗(⊃ D). Then ptf uniquely extends to a contin-
uous function on X, again denoted by ptf , which is in Lip0,2,κ1

∩Bb(X). Let
q ∈ [2,∞), κ ∈ [κ1, κ

∗]. Then there exists λq,κ ∈ (0,∞), independent of t and f ,
such that

‖ptf ‖q,κ ≤ eλq,κ t‖f ‖q,κ

and

(ptf )0,q,κ ≤ eλq,κ t (f )0,q,κ .

If moreover, (F1+) holds, then there exists λ′q,κ ∈ (0,∞), independent of t , such
that, for all f ∈ Lip1,2,κ1

∩Bb(X),

(ptf )1,q,κ ≤ eλ′q,κ t (f )1,q,κ .

PROOF. The assertions follow from Corollary 4.2, Remark 6.6, Proposi-
tions 6.7, 6.9 and 6.11(iii). �

THEOREM 2.3 [“Martingale and weak solutions to SPDE (1.1)”]. Assume that
(A) and (F1) hold, and let p,κ∗ be as in Theorem 2.2.

(i) There exists a conservative strong Markov process M := (�,F , (Ft )t≥0,

(xt )t≥0, (Px)x∈Xp) in Xp with continuous sample paths in the weak topology
whose transition semigroup is given by (pt )t>0 from Theorem 2.2. In particular,
for λκ∗ as in Theorem 2.2(ii),

Ex

[∫ ∞
0

e−λκ∗ s�p,κ∗(xs) ds

]
<∞ for all x ∈Xp .

(ii) (“Existence”) Let κ1 ∈ (0, κ0− κ∗). Then M satisfies the martingale prob-
lem for (L,Dκ1), that is, for all u ∈Dκ1 and all x ∈Xp , the function t 	→ |Lu(xt )|
is locally Lebesgue integrable on [0,∞) Px-a.s. and under Px ,

u(xt )− u(x)−
∫ t

0
Lu(xs) ds, t ≥ 0,

is an (Ft )t≥0-martingale starting at 0 (cf. [54]).
(iii) (“Uniqueness”) M is unique among all conservative (not necessarily

strong) Markov processes M′ := (�′,F ′, (F ′
t )t≥0, (x

′
t )t≥0, (P

′
x)x∈Xp) with weakly

continuous sample paths in Xp satisfying the martingale problem for (L,D)

[as specified in (ii) with D replacing Dκ1 ] and having the additional property
that, for some κ ∈ (0, κ0), there exists λκ ∈ (0,∞) such that

E′x
[∫ ∞

0
e−λκs(�p,κ)(x′s) ds

]
<∞ for all x ∈Xp.(2.18)

(iv) If p ≥ 2q2 − 6+ 4/q1, then M weakly solves SPDE (1.1).
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PROOF. Corollary 4.2, Remark 6.6, Theorem 7.1 and Remark 7.2 below. �

THEOREM 2.4 (“Invariant measure”). Assume that (A) and (F1) hold. Let
p,κ∗ be as in Theorem 2.2.

(i) There exists a probability measure µ on H 1
0 which is “L-infinitesmally

invariant,” that is, Lu ∈L1(H 1
0 ,µ) and∫

Ludµ= 0 for all u ∈D(2.19)

(L∗µ= 0 for short). Furthermore,∫
�p,κ∗ dµ <∞.(2.20)

(ii) µ, extended by zero to all of Xp , is (pt )t>0-invariant, that is, for all
f :X→R, bounded, measurable, and all t > 0,∫

ptf dµ=
∫

f dµ

[with (pt )t>0 from Theorem 2.2]. In particular, µ is a stationary measure for the
Markov process M from Theorem 2.3.

PROOF. See the Appendix. �

3. Finite-dimensional approximation: uniform estimates. In this section
we study finite-dimensional approximation of (1.2)–(1.3). The results will be used
in an essential way below.

The main result of this section is Proposition 3.4, giving estimates on the resol-
vent, including its gradients associated with the approximation LN of our opera-
tor L on EN [cf. (3.3) below], but these estimates are uniform with respect to N .
As a preparation, we need several results of which the second (i.e., an appropriate
version of a weak maximum principle) is completely standard. Nevertheless, we
include the proof for the convenience of the reader.

Below, the background space is the Euclidean space RN , N ∈ N, with the
Euclidean inner product denoted by (·, ·), dx denotes the Lebesgue measure on
RN and Lp(RN), W

r,p
loc (RN), r ∈ N ∪ {0}, p ∈ [1,∞] the corresponding Lp and

local Sobolev spaces, respectively.

PROPOSITION 3.1. Let A : RN → RN be a symmetric strictly positive def-
inite linear operator (matrix), F : RN → RN be a bounded measurable vector

field, λ∗ := supx∈RN
(F (x),A−1F(x))

4 , ρ ∈ L1(RN) be strictly positive and locally
Lipschitz and W ∈ L∞loc(R

N), W ≥ 0. Let

Lu := ρ−1 div(AρDu)+ (F,Du)= TrAD2u+ (ρ−1ADρ + F,Du)−Wu,

u ∈W
2,1
loc (RN).
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Then there exists a unique sub-Markovian pseudo-resolvent (Rλ)λ>0 on L∞(RN),
that is, a family of operators satisfying the first resolvent equation, which is
Markovian if W = 0, such that:

(a) Range(Rλ)⊂Dom := {u ∈⋂
p<∞W

2,p
loc (RN)|u,Lu ∈ L∞(RN)} and

(λ−L)Rλ = id for all λ > 0.

(b) For all λ > λ∗ and f ∈ L∞(RN), one has |DRλf | ∈ L2(RN,ρ dx).
(c) For all f ∈ L∞(RN), one has lim

λ→∞λRλf = f in L2(RN,ρ dx).

Hence, in particular, Rλf for f ∈L∞(RN) has a continuous dx-version, as have
its first weak derivatives, and for the continuous versions of Rλf , λ > 0, the resol-
vent equation holds pointwise on all of RN . If both f and F above are in addition
locally Lipschitz, then Rλf ∈⋂

p<∞W
3,p
loc (RN) for every λ > 0, hence, its con-

tinuous dx-version is in C2(RN).

PROOF. Consider the following bi-linear form (E ,D(E)) in L2(RN,ρ dx):

E(u, v) :=
∫

RN
[(Du,ADv)− (F,Du)v+Wuv]ρ dx,

D(E) :=
{
u ∈W

1,2
loc (RN)

∣∣∣ ∫
RN
[u2 + |Du|2 +Wu2]ρ dx <∞

}
.

Since, for all u, v ∈D(E),

|u(F,Dv)| ≤ |(Dv,ADv)| + λ∗|u|2,(3.1)

it follows that E ≥ −λ∗. Then it is easy to show that (E + λ∗(·, ·),D(E)) is
a Dirichlet form (cf. [43], Section I.4., i.e., a closed sectorial Markovian from)
on L2(RN,ρ dx). Hence, there exists an associated sub-Markovian strongly con-
tinuous resolvent (Rλ)λ>λ∗ and semigroup (Pt )t≥0 on L2(RN,ρ dx) (cf. ibid.).
Note that 1 ∈ D(E) and E(1, v) = 0 for all v ∈ D(E), provided W = 0, so
(Rλ)λ>λ∗ and (Pt )t>0 are even Markovian in this case. In particular, assertion (b)
holds. Note that, for a bounded f ∈ L2(RN,ρ dx), we can define

Rλf :=
∫ ∞

0
e−λtPtf dt

even for all λ > 0 instead of λ > λ∗. Here, the L2(RN,ρ dx)-valued intregral is

taken in the sense of Bochner. Then λRλf = λRλf
λ→∞−→ f in L2(RN,ρ dx) and

(Rλ)λ>0 is a sub-Markovian pseudo-resolvent on L∞(RN). In particular, the first
resolvent equation and assertion (c) hold.

To show (a), we first note that, for λ > λ∗ and f ∈ L∞(RN), the bounded func-
tion u :=Rλf is a weak solution to the equation

λu−Lu= λu− ρ−1 div(AρDu)− (F,Du)+Wu= f in RN .
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Hence, it follows from [28], Theorem 8.8, that u ∈ W
2,2
loc (RN). Then [28],

Lemma 9.16, yields that u ∈ Dom. Thus, Range(Rλ) ⊆ Dom, provided λ > λ∗.
Now let λ ∈ (0, λ∗]. Then for all λ′ > λ∗, Rλf =Rλ′f +(λ′−λ)Rλ′Rλf . Hence,
Rλf ∈ Dom and (λ′ − L)Rλf = f + (λ′ − λ)Rλf . So, (λ− L)Rλf = f . The
last part follows by Sobolev embedding. �

LEMMA 3.2. Let A : RN →RN be a symmetric strictly positive definite linear
operator (matrix), F : RN → RN be a bounded measurable vector field, λ∗ :=
supx∈RN

(F (x),A−1F(x))
4 , ρ > 0 be locally Lipschitz and W ∈ L∞loc(R

N), W ≥ 0.

For λ > λ∗, let u ∈W
1,2
loc (RN) ∩L2(RN,ρ dx) be a weak super-solution to the

equation

λu− ρ−1 div(AρDu)− (F,Du)+Wu= 0 on RN

[i.e., a weak solution to the inequality λu−ρ−1 div(AρDu)− (F,Du)+Wu≥ 0].
Then u≥ 0.

PROOF. For θ ∈ C1
c (RN), choose u−θ2ρ as a test function. Then, using the

fact that u+ ∧ u− = 0, we obtain that, for all ε > 0,

0 ≤−
∫ [

(λ+W)(u−θ)2 + (
D(u−θ2),ADu−

)− u−θ2(F,Du−)
]
ρ dx

=−
∫ [

(λ+W)(u−θ)2 + (
D(u−θ),AD(u−θ)

)− u−θ
(
F,D(u−θ)

)]
ρ dx

+
∫

(u−)2[(Dθ,ADθ)− θ(F,Dθ)]ρ dx

≤−
∫ (

λ− (1+ ε)λ∗
)
(u−θ)2ρ dx +

∫
(u−)2

(
1+ 1

ε

)
(Dθ,ADθ)ρ dx,

where we used the fact that W ≥ 0, E ≥ −λ∗ and we applied (3.1) with εθ , 1
ε
θ

replacing u, v, respectively. Hence, for all ε > 0,

(
λ− (1+ ε)λ∗

) ∫
(u−θ)2ρ dx ≤

(
1+ 1

ε

)∫
(u−)2(Dθ,ADθ)ρ dx.

Now we choose ε > 0 such that λ > (1+ ε)λ∗ and let θ ↗ 1 and Dθ → 0 such
that (Dθ,ADθ) ≤ CA. Then the dominated convergence theorem yields u− = 0.

�

COROLLARY 3.3. Let A : RN → RN be a symmetric strictly positive definite
linear operator (matrix), F : RN → RN be a bounded measurable vector field,

λ∗ := supx∈RN
(F (x),A−1F(x))

4 , ρ > 0 be locally Lipschitz and W ∈L∞loc(R
N).

Let V ∈ C2(RN), V ≥ 1 be such that, for some λV ∈R,

λV V − ρ−1 div(AρDV )− (F,DV )+WV ≥ 0.(3.2)
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Let f ∈ L2(RN,ρ dx), V −1f ∈ L∞(RN), λ > λ∗ + λV and u ∈ W
1,2
loc (RN) ∩

L2(RN,ρ dx) be a weak sub-solution to the equation

λu− ρ−1 div(AρDu)− (F,Du)+Wu= f on RN

[i.e., a weak solution to the inequality λu−ρ−1 div(AρDu)−(F,Du)+Wu≤ f ].
Then

‖V −1u‖∞ ≤ 1

λ− λV

‖V −1f ‖∞.

PROOF. Let W̃ := V −1[λV V −ρ−1 div(AρDV )− (F,DV )+WV ] and v :=
V −1u. It is easy to see that v ∈ W

1,2
loc (RN) ∩ L2(RN,V 2ρ dx) and it is a weak

sub-solution to the equation

(λ− λV )v − 1

V 2ρ
div(AV 2ρDv)− (F,Dv)+ W̃v = V −1f on RN.

Note that V −1f ∈ L2(RN,V 2ρ dx). Since W̃ ≥ 0, the result now follows from
Lemma 3.2 and the fact that the resolvent associated on L2(RN,V 2ρ dx) with the
bi-linear form

E(g,h) :=
∫

RN
[(Dg,ADh)− (F,Dg)h+ W̃gh]V 2ρ dx,

D(E) :=
{
g ∈W

1,2
loc (RN)

∣∣∣ ∫
RN
[g2 + |Dg|2 + W̃g2]V 2ρ dx <∞

}
,

is sub-Markovian. �

PROPOSITION 3.4. Let A,H : RN → RN be symmetric strictly positive def-
inite linear operators (matrices) such that AH = HA. Let F : RN → RN be a
bounded locally Lipschitz vector field. Let

Lu(x) := Tr (AD2u)(x)+ (−Hx + F(x),Du(x)
)
,

(3.3)
u ∈W

2,1
loc (RN), x ∈RN.

Let � : RN → RN be a symmetric nondegenerate linear operator (matrix) such
that �H =H�. Assume the following:

(i) there exists V0 ∈ C2(RN), V0 ≥ 1 and λV0 ∈R such that(
λV0 −L

)
V0 ≥ 0;(3.4)

(ii) there exists V1 ∈ C2(RN), V1 ≥ 1 and λV1 ∈R such that(
λV1 −L−W

)
V1 ≥ 0

(3.5)
with W(x) := sup

|y|=1

[(
DF(x)�y,�−1y

)− |H 1/2y|2]
, x ∈RN.
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Then:

(i) there exists a unique Markovian pseudo-resolvent (Rλ)λ>0 on L∞(RN)

such that

Range(Rλ)⊂
{
u ∈ ⋂

p<∞
W

2,p
loc (RN)|u,Lu ∈ L∞(RN)

}
,

(λ− L)Rλ = id for all λ > 0, and λRλf → f as λ→∞ pointwise on RN for
bounded locally Lipschitz f ;

(ii) for a bounded locally Lipschitz f , we have

‖V −1
0 Rλf ‖∞ ≤ 1

λ− λV0

‖V −1
0 f ‖∞(3.6)

for all λ > λV0 ; and

sup
x

V −1
1 |�DRλf |(x)≤ 1

λ− λV1

essup
x

V −1
1 |�Df |(x)(3.7)

for all λ > λV1 provided V −1
1 |Df | ∈ L∞(RN) and |Df | ∈ L2(RN,ρ dx). Here

DRλf and Rλf denote the (unique) continuous dx-versions of DRλf , Rλf , re-
spectively, which exist by assertion (i) and ρ(x) := exp{−1

2(x,A−1Hx)}, x ∈RN .

To prove Proposition 3.4, we need another lemma.

LEMMA 3.5. Let A,H : RN →RN be symmetric strictly positive definite lin-
ear operators (matrices) such that AH = HA. Let F : RN → RN be a bounded
locally Lipschitz vector field. Let L be defined as in (3.3).

Let � : RN →RN be a symmetric nondegenerate linear operator (matrix) such
that �H =H�.

Let λ ∈ R, f be locally Lipschitz and u ∈W
1,2
loc (RN) be a weak solution to the

equation (λ−L)u= f on RN .
Then u ∈⋂

p<∞W
2,p
loc (RN) and v := |�Du| is a weak sub-solution to the equa-

tion

(λ−L−W)v = |�Df |
with W(x) := sup

|y|=1

[(
DF(x)�y,�−1y

)− |H 1/2y|2]
, x ∈RN.

PROOF. Throughout the proof let 〈f,g〉 stand for
∫
RN f (x)g(x) dx or∫

RN (f (x), g(x)) dx whenever fg ∈ L1(RN,dx) or (f, g) ∈ L1(RN,dx), for
f,g : RN → R or f,g : RN → RN measurable, ηm, m = 1, . . . ,N be the (com-
mon) orthonormal eigenbasis for H and �, �ηm = γmηm, m= 1, . . . ,N .
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By [28], Theorem 8.8 and Lemma 9.16, u ∈ ⋂
p<∞W

2,p
loc (RN). For m =

1, . . . ,N , let um := ∂mu. Then, for a bounded φ ∈W 1,2
c (RN), integration by parts

yields

〈Dum,ADφ〉 = −〈λum − ∂mf − (−H + F,Dum)− (−Hηm + ∂mF,Du),φ〉.
Set [Du] := |�Du| and, for ε > 0, [Du]ε :=

√
|�Du|2 + ε. For θ ∈ C∞c (RN) and

m= 1, . . . ,dimE, choose φm := |γm|2um

[Du]ε θ . Then φm is bounded and

Dφm = |γm|2um

[Du]ε Dθ + |γm|2Dum

[Du]ε θ − |γm|2umD2u�2Du

[Du]3ε
θ

with |Dφm| ∈
⋂

p<∞
Lp(RN,dx).

Hence, a.e. on RN ,∑
m

(Dum,ADφm)

= ([Du]ε,ADθ)

+
[
Tr{�D2uAD2u�} −

(
�Du

[Du]ε ,�D2uAD2u�
�Du

[Du]ε
)]

θ

[Du]ε .

Since D([Du]ε)= D2u�2Du
[Du]ε , it follows that vε := [Du]ε is a weak solution of the

equation (λ−L−Wε)v =Gε , where

Wε = 1

[Du]2ε
(−|H 1/2�Du|22 +

(
�Du,�(DF)t Du

))
and

Gε := λ
ε

[Du]ε +
(

�Du

[Du]ε ,�Df

)

− 1

[Du]ε
[
Tr{�D2uAD2u�} −

(
�Du

[Du]ε ,�D2uAD2u�
�Du

[Du]ε
)]

.

We have Wε ≤W a.e. so vε is a weak sub-solution to the equation (λ−L−W)v =
Gε . Passing to the limit as ε→ 0, we see that vε = [Du]ε converges to v = [Du]
in W

1,2
loc (RN) and, thus, the assertion follows. �

PROOF OF PROPOSITION 3.4. Note that, provided AH =HA, we have

Lu= ρ−1 div(AρDu)+ (F,Du),

where ρ(x) = exp{−1
2(x,A−1Hx)}. Hence, Proposition 3.1(a) implies asser-

tion (i) except for the fact that λRλf → f pointwise as λ→∞, which we shall
prove at the end.
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Let f : RN →R be bounded and locally Lipschitz and such that

V −1
1 |�Df | ∈ L∞(RN) and u :=Rλf.

By assertion (i), u is a weak solution of the equation (λ − L)u = f on RN

and, by Lemma 3.5, v := |�Du| is a weak sub-solution to the equation (λ −
L − W)v = |�Df | on RN with W as in Lemma 3.5. Let first λ > λ∗ +
λV0 ∨ λV1 . Note that u ∈ L2(RN,ρ dx) and v ∈ L2(RN,ρ dx) by Proposi-
tion 3.1(b). Then (3.6)–(3.7) follow from assumptions (i) and (ii) and Corol-
lary 3.3, since f, |�Df | ∈ L2(RN,ρ dx).

By density, for λ > λ∗ + λV0 ∨ λV1 , the operator Rλ can be continuously
extended to the completion of the bounded locally Lipschitz functions on RN

with respect to ‖V −1
0 · ‖∞, preserving the resolvent identity and estimate (3.6).

Moreover, for a locally Lipschitz f such that V −1
0 f,V −1

1 |�Df | ∈ L∞(RN) and
|Df | ∈ L2(RN,ρ dx), estimate (3.7) holds. This is easy to see by replacing f by
(f ∨ (−v)) ∧ n and letting n→∞. Now, for λ ∈ (λV0, λ∗ + λV0 ∨ λV1], one can
define

Rλ =
∞∑

k=1

(λ0 − λ)k−1Rk
λ0

(3.8)

with some λ0 > λ∗ +λV0 ∨λV1 . The series converges in operator norm due to (3.6)
and (3.6) is preserved:

‖V −1
0 Rλf ‖∞ ≤

∞∑
k=1

(λ0 − λ)k−1∥∥V −1
0 Rk

λ0
f

∥∥∞ ≤
∞∑

k=1

(λ0 − λ)k−1

(λ0 − λV0)
k
‖V −1

0 f ‖∞

= 1

λ− λV0

‖V −1
0 f ‖∞.

On L∞(RN), obviously Rλ defined in (3.8) coincides with Rλ defined in Propo-
sition 3.1 with W = 0. So, λRλ remains Markovian for λ ∈ (λV0, λ∗ + λV0 ∨ λV1].
By similar arguments, using the closability of �D, we prove that (3.7) is preserved
for λ ∈ (λV1, λ∗ + λV0 ∨ λV1].

We are left to prove that λRλf → f pointwise on RN as λ→∞, for any
bounded locally Lipschitz f . The proof is by contradiction. Let x0 ∈RN such that
for some subsequence λn→∞ and some ε ∈ (0,1],∣∣λnRλnf (x0)− f (x0)

∣∣ > ε ∀n ∈N.(3.9)

Selecting another subsequence if necessary, by Proposition 3.1(c), we may assume
that the complement of the set

M :=
{
x ∈RN

∣∣∣ lim
n→∞λnRλnf (x)= f (x)

}
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in RN has Lebesgue measure zero, so M is dense in RN . By (3.7), the sequence
(λnRλnf )n∈N is equicontinuous and converges on the dense set M to the contin-
uous function f , hence, it must converge everywhere on RN to f . This contra-
dicts (3.9). �

LEMMA 3.6. Let V : RN → [1,∞) be convex (hence, continuous) and let
� : RN →RN be a symmetric invertible linear operator (matrix) and f : RN →R

be locally Lipschitz. Then

‖V −1|�Df |‖∞ = sup
y1,y2∈RN

1

V (y1)∨ V (y2)

|f (y1)− f (y2)|
|�−1(y1 − y2)| .(3.10)

PROOF. We may assume that f ∈ C1(RN). The general case follows by ap-
proximation. Let x ∈RN . Then we have

1

V (x)
|�Df (x)| = lim

y1,y2→x

y1,y2∈RN

1

V (y1)∨ V (y2)

|f (y1)− f (y2)|
|�−1(y1 − y2)| .

On the other hand, for y1, y2 ∈RN ,
1

V (y1)∨ V (y2)

|f (y1)− f (y2)|
|�−1(y1 − y2)|

= 1

V (y1)∨ V (y2)

×
∣∣∣∣
∫ 1

0

(
�Df

(
τy1 + (1− τ)y2

)
,�−1(y2 − y1)|�−1(y2 − y1)|−1)

dτ

∣∣∣∣
≤ ‖V −1|�Df |‖∞,

where we used that V (τy1 + (1 − τ)y2) ≤ V (y1) ∨ V (y2), since V is convex.
Hence, the assertion follows. �

REMARK 3.7. We note that if the right-hand side of (3.10) is finite, then f is
Lipschitz on the level sets of V .

4. Approximation and condition (F2). In this section we construct a se-
quence FN :EN → EN , N ∈ N, of bounded locally Lipschitz continuous vec-
tor fields approximating the nonlinear drift F . The corresponding operators LN ,
N ∈N, are of the form

LNu(x) := 1
2 Tr(AND2u)(x)+ (

x′′ + FN(x),Du(x)
)
,

(4.1)
u ∈W

2,1
loc (EN), x ∈EN,N ∈N,

whose resolvents (G
(N)
λ )λ>0, lifted to Xp , will be shown in Section 6 to converge

weakly to the resolvent of L.
We introduce the following condition for a map F :H 1

0 →X:
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(F2) For every k ∈ N, the map F (k) := (F, ηk) :H 1
0 → R is | · |2-continuous on

| · |1,2-balls and there exists a sequence FN :EN → EN , N ∈ N, of bounded
locally Lipschitz continuous vector fields satisfying the following condi-
tions:
(F2a) There exist κ0 ∈ (0, 1

4a0
] and a set Qreg ⊂ [2,∞) such that 2 ∈Qreg

and for all κ ∈ (0, κ0), q ∈ Qreg, there exist mq,κ > 0 and λq,κ ∈ R

such that for all N ∈N,

LNVq,κ := LN

(
Vq,κ�EN

)≤ λq,κVq,κ −mq,κ�q,κ on EN.(4.2)

(F2b) For all ε ∈ (0,1), there exists Cε ∈ (0,∞) such that for all N ∈N and
dx-a.e. x ∈EN (where dx denotes Lebesgue measure on EN )(

DFN(x)y, y
)≤ |y′|22 + (ε|x′|22 +Cε)|y|22 ∀y ∈EN.

(F2c) limN→∞ |PNF − FN ◦ PN |2(x)= 0 ∀x ∈H 1
0 .

(F2d) For κ0 and Qreg as in (F2a), there exist κ ∈ (0, κ0), p ∈Qreg such that,
for some Cp,κ > 0 and some ω : [0,∞)→[0,1] vanishing at infinity,

|FN ◦ PN |2(x)≤ Cp,κ�p,κ(x)ω(�p,κ(x)) ∀x ∈H 1
0 ,N ∈N.

Furthermore, we say that condition (F2+) holds if, in addition, to (F2) we have:

(F2e) For all ε ∈ (0,1), there exists Cε ∈ (0,∞) such that, for all N ∈ N and
dx-a.e. x ∈EN ,(

DFN(x)(−�)1/2y, (−�)−1/2y
)≤ |y′|22 + (ε|x′|22 +Cε)|y|22

∀y ∈EN.

The main result of this section is the following:

PROPOSITION 4.1. Let F be as in (2.15) and let assumptions (�), (�1)–(�3)

be satisfied. Then (F2) holds. More precisely, (F2a) holds with κ0 := 2−|h1|1
8a0

,

Qreg := [2,∞), (F2c) holds uniformly on H 1
0 -balls, and (F2d) holds with

p ∈ [2,∞)∩ (q2 − 3+ 2
q1

,∞) and any κ ∈ (0, κ0). If, in addition, (�4) is sat-
isfied, then (F2+) holds.

To prove our main results formulated in Section 2, we shall only use conditions
(F2), (F2+), respectively. Before we prove Proposition 4.1, as a motivation, we
shall prove that (F2) [in fact, even only (F2a)–(F2c)] and (F2e) will imply reg-
ularity and convergence (see also Theorem 6.4 below) of the above mentioned
resolvents (GN

λ )λ>0.

COROLLARY 4.2. Let (A) and (F2a)–(F2c) hold and let LN be as in (4.1)
with FN as in (F2). Let (R(N)

λ )λ>0 be the corresponding Markovian pseudo-
resolvent on L∞(EN) from Proposition 3.1. For a bounded Borel measurable
f :X→R, we define

G
(N)
λ f := (

R(N)
λ

(
f �EN

)) ◦ PN.
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Then λG
(N)
λ is Markovian and λG

(N)
λ f → f ◦ PN pointwise as λ→∞ for all

bounded f which are locally Lipschitz on EN .
Let κ0, Qreg be as in (F2a) and let κ ∈ (0, κ0), q ∈Qreg with λq,κ as in (F2a).

Set λ′q,κ := λq,κ + Cmq,κ , with mq,κ as in (F2a) and function ε 	→ Cε as in (F2b).
Let N ∈N and f ∈ Lip0,q,κ , f bounded. Then

∣∣G(N)
λ f (x)

∣∣≤ 1

λ− λq,κ

Vq,κ(PNx)‖f ‖q,κ , x ∈Xq,λ > λq,κ ,(4.3)

and for y1, y2 ∈Xq ,

|G(N)
λ f (y1)−G

(N)
λ f (y2)|

|y1 − y2|2 ≤ |G
(N)
λ f (y1)−G

(N)
λ f (y2)|

|PN(y1 − y2)|2
≤ Vq,κ(PNy1)∨ Vq,κ(PNy2)

λ− λ′q,κ

(f )0,q,κ ,(4.4)

λ > λ′q,κ .

In particular, if λ > λ′q,κ ∨ λq,κ , then G
(N)
λ f ∈ ⋂

ε>0 Dq,κ+ε and, provided

f ∈D , G
(N)
λ f ∈⋂

ε>0 Dε . Furthermore, for all x ∈H 1
0 , λ > λ′q,κ ,∣∣(λ−L)G

(N)
λ f (x)− (f ◦ PN)(x)

∣∣
(4.5)

≤ 1

λ− λ′q,κ

|PNF − FN ◦ PN |2(x)αq
qVq,κ(x)(f )0,q,κ .

In particular, for all λ∗ > λ′q,κ ,

lim
m→∞ sup

λ≥λ∗
λ
∣∣(λ−L)G

(m)
λ f − f

∣∣(x)= 0 ∀x ∈H 1
0 .(4.6)

If, moreover, (F2e) holds, let λ′′q,κ := λq,κ + Cmq,κ , with mq,κ as in (F2a) and
function ε 	→ Cε as in (F2e). Then, for N ∈ N and f ∈ Lip1,q,κ , f bounded, we
have, for y1, y2 ∈Xq ,

|G(N)
λ f (y1)−G

(N)
λ f (y2)|

|(−�)−1/2(y1 − y1)|2 ≤ Vq,κ(PNy1)∨ Vq,κ(PNy2)

λ− λ′′q,κ

(f )1,q,κ .(4.7)

PROOF. To prove (4.3), (4.4) and (4.7), fix x ∈ Xq . By (F2a), we can apply
Proposition 3.4 with V0 := Vq,κ�EN

to conclude that, for λ > λq,κ ,∣∣G(N)
λ f (x)

∣∣= ∣∣R(N)
λ

(
f �EN

)
(PNx)

∣∣
≤ 1

λ− λq,κ

Vq,κ(PNx) sup
y∈EN

V −1
q,κ (y)|f (y)|

≤ 1

λ− λq,κ

Vq,κ(PNx) sup
y∈Xq

V −1
q,κ (y)|f (y)|,
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which proves (4.3). By (F2a), (F2b), respectively, (F2a), (F2e), we can apply
Proposition 3.4 with V1 := Vq,κ�EN

to conclude that, for λ > λ0 := λ′q,κ or λ′′q,κ if
l := 0, respectively, l := 1 and all y1, y2 ∈Xq ,

|G(N)
λ f (y1)−G

(N)
λ f (y2)|

|(−�)−l/2(y1 − y2)|2

≤ |R
(N)
λ (f �EN

)(PNy1)−R(N)
λ (f �EN

)(PNy2)|
|(−�)−l/2(PNy1 − PNy2)|2

≤ Vq,κ(PNy1)∨ Vq,κ(PNy2) sup
y∈EN

V −1
q,κ (y)

∣∣(−�)l/2(
DR(N)

λ

(
f �EN

)
(y)

)∣∣
2

≤ Vq,κ(PNy1)∨ Vq,κ(PNy2)

λ− λ0
(f )l,q,κ ,

where we used both Proposition 3.4 and Lemma 3.6 in the last two steps. We
note that, by our assumption on κ0 in (F2a), we really have that |Df �EN

| ∈
L2(EN,ρ dx), so the conditions to have (3.7) are indeed fulfilled.

By the last part of Proposition 3.1, we have that u :=R(N)
λ f �EN

∈ C2(EN) and
that

λu(x)−LNu(x)= f (x) ∀x ∈EN.(4.8)

Hence, it follows from (4.3), (4.4), Lemma 3.6 and (2.8) that G(N)
λ f ∈⋂

ε>0Dp,κ+ε

and, provided f ∈ D , that G
(N)
λ f ∈ ⋂

ε>0 Dε . Furthermore, (4.8) implies that,
on H 1

0 , ∣∣(λ−L)
((

R(N)
λ f �EN

) ◦ PN

)− f ◦ PN

∣∣
= ∣∣(PNF − FN ◦ PN,D

(
R(N)

λ f �EN

) ◦ PN

)∣∣
≤ 1

λ− λ′q,κ

|PNF − FN ◦ PN |2(f )0,q,κVq,κ ◦ PN,

where we used (4.4) and Lemma 3.6. Now (4.5) follows by (2.8) and (4.6) follows
by (F2c). �

Now we turn to the proof of Proposition 4.1, which will be the consequence of
a number of lemmas which we state and prove first.

In the rest of this section, φ : (0,1)×R→R will be a function square integrable
in the first variable locally uniformly in the second and continuous in the second
variable, and ψ ∈ C1(R). For such functions, we define

Fφ(x) := φ
(·, x(·)), Gψ(x) := x′ψ ′ ◦ x, x, y ∈H 1

0 .(4.9)

Note that Fφ :H 1
0 →X and Gψ :H 1

0 →X.
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LEMMA 4.3. Let ψ satisfy (�), and θ ∈ C∞c (−1,1), 0 ≤ θ ≤ 1,
θ �[−1/2,1/2] ≡ 1. For N ∈N, let ψ(N)(x) :=ψ(x)θ( x

N
), x ∈R.

Then for N ∈ N, ψ(N) ∈ C1,1
c (R) satisfying (�) uniformly in N , that is, with

some Ĉ ≥ 0 and ω̂ : R+→R+, ω̂(r)→ 0 as r →∞, independent of N . Moreover,
|Gψ(N) −Gψ |2 → 0 as N →∞ uniformly on balls in H 1

0 .

PROOF. Let, for x ∈ R, θ1(x) := xθ ′(x) and θ2(x) := x2θ ′′(x). Then
ψ

(N)
xx (x) = ψxx(x)θ( x

N
) + 2ψx(x)

x
θ1(

x
N

) + ψ(x)

x2 θ2(
x
N

). Hence, the first assertion
follows from Remark 2.1(i).

Note that ψ(N)(x)= ψ(x) whenever |x| ≤ N
2 . Hence, the second assertion fol-

lows. �

LEMMA 4.4. Let θ ∈ C∞(R), odd, 0 ≤ θ ′ ≤ 1, θ(x)= x for x ∈ [−1,1] and
θ(x)= 3

2 sign(x) for x ∈R \ [−2,2].
For N ∈N, let θN(x) :=Nθ(N−1x), x ∈R and φN := θN ◦ φ.
Then for all N ∈N, φN is a bounded function.
If φ satisfies (�1)–(�3), then so does φN , N ∈ N, with the same q2 ≥ 1 and

functions g, h0, h1, g0, g1 and ω. Moreover, |Fφ − FφN
|2 → 0 as N →∞ uni-

formly on balls in H 1
0 .

If, in addition, φ satisfies (�4), then φN is twice continuously differentiable and

|∂2
xxφN(r, x)| ≤ cθg2(r)+ cθg3(r)

∣∣∣∣ x√
r(1− r)

∣∣∣∣
1/2

ω

( |x|√
r(1− r)

)
,

r ∈ (0,1), x ∈R,

and

|∂2
xrφN(r, x)| ≤ cθg4(r)+ cθg5(r)

∣∣∣∣ x√
r(1− r)

∣∣∣∣
3/2

ω

( |x|√
r(1− r)

)
,

r ∈ (0,1), x ∈R,

with cθ := 1∨ supξ ξ2|θ ′′(ξ)|.
PROOF. The first assertion is obvious. Then, given that φ satisfies (�1), (�2),

so does φN since θN is an odd contraction. Note that θN(η)− θN(ξ) < 0 whenever
η < ξ and 0≤ θN(η)− θN(ξ)≤ η− ξ for η ≥ ξ . So, (�3) holds also for φN if it
holds for φ. To prove the next assertion, we note that, since θN(x)= x if |x| ≤N ,
for x ∈ H 1

0 , condition (�1) implies that {g(1 + |x|q2∞) ≤ N} ⊂ {φ(·, x(·)) =
φN(·, x(·))}. Hence, again by (�1),

∣∣Fφ − FφN

∣∣2
2(x)=

∫ ∣∣φ(
r, x(r)

)− φN

(
r, x(r)

)∣∣2 dr

≤ 4(1+ |x′|q2
2 )2

∫
1{g≥N/(1+|x|q2∞)}g

2(r) dr,
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which converges to zero as N →∞ uniformly for x in any ball in H 1
0 .

Finally, the last assertion follows from the following identities: with θ(2)(ξ) :=
ξθ ′′(ξ),

∂2
xxφN = (θ ′N ◦ φ)∂2

xxφ + 1{|φ|≥N}
(
θ(2) ◦ φ

N

)
(∂xφ)2

φ
,

∂2
xrφN = (θ ′N ◦ φ)∂2

xrφ + 1{|φ|≥N}
(
θ(2) ◦ φ

N

)
∂xφ ∂rφ

φ
. �

LEMMA 4.5. Let δ ∈ C∞c ((−1,1)), nonnegative, even, and
∫

δ(x) dx = 1. For
β ∈ (0,1), x ∈R, r ∈ (0,1), let

δβ(r, x) := 1

β
√

r(1− r)
δ

(
x

β
√

r(1− r)

)

and

φβ(r, x) :=
∫

R
φ(r, x − y)δβ(r, y) dy.

Then φβ(r, ·) ∈C∞(R) for all r ∈ (0,1).
If φ is bounded, then, for β ∈ (0,1), n= 0,1,2, . . . , x ∈R and r ∈ (0,1),

∣∣∣∣ ∂n

∂xn
φβ

∣∣∣∣(r, x)≤ |φ|∞
∫
R |δ(n)|(y) dy

(β
√

r(1− r))n
.

If φ satisfies (�1)–(�3), then φβ , β ∈ (0,1), does so, with the same q1 ∈ [2,∞]
and q2 ∈ [1,∞) and functions h1 and g1 and g′ = 2q2+1g, h′0 = h1+h0+2q2+2g,
g′0 = g0 + 9(supr ω(r))g1, and ω′(r) := 9

4 sup{ω(s)|s > r
2}, r > 0.

Moreover, |Fφ − Fφβ |2(x)→ 0 as β→ 0 uniformly on balls in H 1
0 .

PROOF. The first two assertions are well-known properties of the convolution.
By (�1), for all β ∈ (0,1), x ∈R and r ∈ (0,1),

|φβ(r, x)| ≤ g(r)

∫
R
(1+ |x − y|q2)δβ(r, y) dy

≤ 2q2g(r)

(
1+ |x|q2 + (

β
√

r(1− r)
)q2

∫
|y|q2δ(y) dy

)
.

So, all φβ , β ∈ (0,1), satisfy (�1) with g′ = 2q2+1g.
By Remark 2.1(iv), since φβ satisfy (�1) uniformly in β ∈ (0,1), it suf-

fices to verify (�2) for all x ∈ R, |x| > 1. Then sign(x − y) = sign(x) for all
y ∈ ⋃

β,r∈(0,1) supp δβ(r, ·) ⊂ (−1,1), β ∈ (0,1). Since φ satisfies (�2), for a.e.
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r ∈ (0,1), all x ∈R, |x|> 1, β ∈ (0,1), we obtain

φβ(r, x) sign(x)=
∫

R
sign(x − y)φ(r, x − y)δβ(r, y) dy

≤ h0(r)+ h1(r)

∫
R
|x − y|δβ(r, y) dy

≤ h0(r)+ h1(r)

(
|x| + β

√
r(1− r)

∫
R
|y|δ(y) dy

)
.

Hence, φβ , β ∈ (0,1), satisfy (�2) with the same h1 as φ does and with
h′0 = h1 + h0 + 2q2+2g.

Set ξ(r, x) := x√
r(1−r)

, x ∈ R, r ∈ (0,1). By (�3), for all ρ ∈ (0, ρ0), x ∈ R,
N ∈N, β ∈ (0,1), r ∈ (0,1),

1

ρ

(
φβ(r, x + ρ)− φβ(r, x)

)

= 1

ρ

∫
R

(
φ(r, x + ρ − y)− φ(r, x − y)

)
δβ(r, y) dy

≤ g0(r)+ g1(r)

∫
R
|ξ(r, x − y)|2−1/p1ω

(|ξ(r, x − y)|)δβ(r, y) dy

= g0(r)+ g1(r)

∫
R
|ξ(r, x)− βy|2−1/p1ω

(|ξ(r, x)− βy|)δ(y) dy.

By Remark 2.1(iv), we may assume ω nonincreasing, by replacing ω with ω̃(r) :=
sups>r ω(s). Then, for |ξ(r, x)| ≤ 2,∫

R
|ξ(r, x)− βy|2−1/p1ω

(|ξ(r, x)− βy|)δ(y) dy ≤ 9ω(0),

and, for |ξ(r, x)| > 2, 1
2 |ξ(r, x)| ≤ |ξ(r, x) − βy| ≤ 3

2 |ξ(r, x)|, provided |y| ≤ 1,
hence,∫

R
|ξ(r, x)−βy|2−1/p1ω

(|ξ(r, x)−βy|)δ(y) dy ≤ (3
2 |ξ(r, x)|)2−1/p1ω

(1
2 |ξ(r, x)|).

Thus, φβ , β ∈ (0,1), satisfy (�3) with the same g1 as φ does, and with g′0 =
g0 + 9ω(0)g1 and ω′(r) := 9

4 ω̃( r
2), r ∈R+.

Finally, to prove the last assertion, we first note that, for all x ∈H 1
0 and

β ∈ (0,1),

∣∣Fφ − Fφβ

∣∣2
2(x)=

∫ 1

0

∣∣φ(
r, x(r)

)− φβ

(
r, x(r)

)∣∣2 dr

≤
∫ 1

0
sup
y∈R

|y|≤|x′|2

|φ(r, y)− φβ(r, y)|2 dr.
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But φβ(r, y)→ φ(r, y) as β→ 0 locally uniformly in y for all r ∈ (0,1) and, since
we have seen that each φβ satisfies (�1) with 2q2+1g and q2, we also have that the
integrand is bounded by

22q2+4g(r)2(
1+ (|x′|2 + 1)q2

)2
.

Therefore, the last assertion follows by Lebesgue’s dominated convergence theo-
rem. �

LEMMA 4.6. Define, for N ∈N, u ∈W
2,1
loc (EN),

Lφ,ψu(x) := 1
2 Tr(AND2u)(x)+ (

x′′ + Fφ(x)+Gψ(x),Du(x)
)
, x ∈EN.

Assume that (�2) holds. Let κ0 := 2−|h1|1
8a0

. For κ ∈ (0, κ0), let λκ := 2κ TrA +
|h0|21κ

4−2|h1|1−8κa0
. Then

Lφ,ψVκ := Lφ,ψ

(
Vκ�EN

)≤ λκVκ on EN,(4.10)

and, for all λ > 2λκ ,

Lφ,ψVκ ≤ λVκ −mκ,λ�κ on EN,(4.11)

with

mκ,λ :=min
(

λ

2
,2κ − |h1|1κ − |h0|21κ2

λ− 4κ TrA
− 4a0κ

2
)

(> 0).(4.12)

Moreover, for all q ∈ [2,∞) and κ ∈ (0, κ0), there exist λq,κ > 2λκ and
mq,κ < min{q(q − 1),mκ,λ} depending only on q , κ , |h0|1, |h1|1, |A|X→X and
TrA such that

Lφ,ψVq,κ := Lφ,ψ

(
Vq,κ�EN

)≤ λq,κVq,κ −mq,κ�q,κ on EN .(4.13)

PROOF. First observe that, due to (�2), for all q ∈ [2,∞) and x ∈H 1
0 ,

(
Fφ(x), x|x|q−2)≤ ∫ 1

0
(h1|x|q + h0|x|q−1) dr ≤ |h1|1|x|q∞ + |h0|1|x|q−1∞(4.14)

and

(
Gψ(x), x|x|q−2)=−(q − 1)

∫ 1

0
x′|x|q−2ψ ◦ x dr

(4.15)

=−(q − 1)

∫ x(1)

x(0)
ψ(τ)|τ |q−2 dτ = 0,

since x(1)= x(0)= 0.
To prove the first assertion, note that, for x ∈EN , i, j = 1, . . . ,N ,

∂i |x|22 = 2(x, ηi) and ∂2
ij |x|22 = 2(ηi, ηj )= 2δij .(4.16)
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So, we have, for x ∈EN by (4.15) with q = 2,

Lφ,ψVκ(x)= 2κeκ|x|22(TrAN + (
Fφ(x), x

)+ 2κ(x,Ax)− |x′|22
)
.(4.17)

Now (4.14) for q = 2, together with the estimates |x|∞ ≤ 1√
2
|x′|2 and the in-

equality ab ≤ 2εa2 + b2

8ε
, a, b, ε > 0, imply that, for all ε > 0 and x ∈H 1

0 ,

(
Fφ(x), x

)≤ (1
2 |h1|1 + ε

)|x′|22 + |h0|21
8ε

,

hence,

TrAN + (
Fφ(x), x

)+ 2κ(x,Ax)− |x′|22
≤ TrA+ |h0|21

8ε
−

(
1− 1

2
|h1|1 − ε− 2κa0

)
|x′|22.

So, (4.10) follows by choosing ε > 0 so that the last term in brackets is equal to
zero. Equation (4.11) follows by choosing ε > 0 so that

2κ

(
TrA+ |h0|21

8ε

)
= λ

2
.

To prove the second assertion, observe that, for x ∈EN , i, j = 1, . . . ,N ,

∂i |x|qq = q(x|x|q−2, ηi),

∂2
ij |x|qq = q(q − 1)(|x|q−2ηi, ηj ),

(4.18)
∂j (x|x|q−2, ηi)= (q − 1)(|x|q−2, ηiηj ),

(x|x|q−2, x′′)=−(q − 1)
∣∣x′|x|q/2−1∣∣2

2.

So by (4.15), we have, for x ∈EN ,

Lφ,ψVq,κ(x)= (1+ |x|qq)Lφ,ψVκ(x)

+ qeκ|x|22[(Fφ(x), |x|q−2x
)+ 4κ(Ax, |x|q−2x)

]
(4.19)

+ q(q − 1)eκ|x|22
[(
|x|q−2,

N∑
i=1

Aiiη
2
i

)
− ∣∣x′|x|q/2−1∣∣2

2

]
.

It follows from (4.11) that, for all λ > 2λκ , x ∈EN ,

(1+ |x|qq)Lφ,ψVκ(x)≤ Vq,κ(x)
(
λ−mκ,λ(|x′|22 + 1)

)
.(4.20)

Below we shall use the following consequence of the inequality |z|2∞ ≤ 2|z′|2|z|2,
z ∈H 1

0 : For x ∈H 1
0 and q ≥ 2,

|x|q∞ =
∣∣x|x|q/2−1∣∣2∞ ≤ 2

∣∣(x|x|q/2−1)′
∣∣
2

∣∣x|x|q/2−1∣∣
2

(4.21)
= q

∣∣x′|x|q/2−1∣∣
2|x|q/2

q .
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It follows by (4.14) and (4.21), together with Young’s inequality, that there ex-
ists c1(q) > 0 depending only on q , such that, for all ε > 0,(

Fφ(x), |x|q−2x
)

≤ |h1|1|x|q∞ + |h0|1|x|q−1∞
≤ q|h1|1

∣∣x′|x|q/2−1∣∣
2|x|q/2

q
(4.22)

+ q(q−1)/q |h0|1
∣∣x′|x|q/2−1∣∣(q−1)/q

2 |x|(q−1)/2
q

≤ ε
∣∣x′|x|q/2−1∣∣2

2

+ c1(q)
(|h1|21ε−1 + |h0|2q/(q+1)

1 ε−(q−1)/(q+1))(1+ |x|qq).

It follows from the estimate |z|p ≤ |z|∞, (4.21) and Young’s inequality that, for
every ε > 0, ∣∣(Ax, |x|q−2x)

∣∣≤ |A|X→X|x|2|x|q−1
2q−2 ≤ |A|X→X|x|q∞

≤ q|A|X→X

∣∣x′|x|q/2−1∣∣
2|x|q/2

q(4.23)

≤ ε
∣∣x′|x|q/2−1∣∣2

2 +
q2

4ε
|A|2X→X|x|qq.

Next, observe that
∑N

i=1 Aiiη
2
i (r) ≥ 0 for all r ∈ (0,1). Hence, it follows

by (4.21) and Young’s inequality that there exists c2(q) > 0 depending only on q ,
such that, for every ε > 0,(

|x|q−2,

N∑
i=1

Aiiη
2
i

)
≤ |x|q−2∞

N∑
i=1

Aii

≤ q(q−2)/q
∣∣x′|x|q/2−1∣∣(q−2)/q

2 |x|(q−2)/2
q TrA(4.24)

≤ ε
∣∣x′|x|q/2−1∣∣2

2

+ c2(q)(TrA)2q/(q+2)ε−(q−2)/(q+2)(1+ |x|qq).

Collecting (4.22), (4.23) and (4.24), we conclude that there exists cq > 0 de-
pending only on q , such that, for every ε ∈ (0,1),

qeκ|x|22[(Fφ(x), |x|q−2x
)+ 4κ(Ax, |x|q−2x)

]

+ q(q − 1)eκ|x|22
[(
|x|q−2,

N∑
i=1

Aiiη
2
i

)
− ∣∣x′|x|q/2−1∣∣2

2

]

≤ cqε−1(|h1|21 + |h0|2q/(q+1)
1 + κ|A|2X→X + (TrA)2q/(q+2))Vq,κ(x)

− q
(
q − 1− (4κ + q)ε

)
Vκ(x)

∣∣x′|x|q/2−1∣∣2
2.
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This together with (4.20) and (4.19) implies (4.13). �

LEMMA 4.7. Let φ be continuously differentiable in the second variable such
that sup|ξ |≤R φx(·, ξ) ∈ L1(0,1) for all R > 0 and let φ satisfy (�3).

Then there exists a nonnegative function ε 	→ C(ε) depending only on ω, p1,
|g0|1 and |g1|p1 such that, for all ε > 0 and x, y ∈H 1

0 ,

∂y(Fφ, y)(x)≤ 1
2 |y′|22 +

(
ε|x′|22 +C(ε)

)|y|22.
If, moreover, φ is twice continuously differentiable and there exist g2, g3 ∈
L2+(0,1), g4, g5 ∈ L1+(0,1) and a bounded Borel-measurable function
ω : R+→R+, ω(r)→ 0 as r →∞, such that

|φxx(r, x)| ≤ g2(r)+ g3(r)

∣∣∣∣ x√
r(1− r)

∣∣∣∣
1/2

ω

( |x|√
r(1− r)

)
,

(4.25)
r ∈ (0,1), x ∈R,

and

|φxr(r, x)| ≤ g4(r)+ g5(r)

∣∣∣∣ x√
r(1− r)

∣∣∣∣
3/2

ω

( |x|√
r(1− r)

)
, r ∈ (0,1), x ∈R

[which is the case, if φ satisfies (�4)] then there exists a nonnegative function
ε 	→ C(ε) depending only on ω, p1, |g0|1, |g1|p1 |g2|2, |g3|2, |g4|1 and |g5|1 such
that, for all ε > 0 and x, y ∈H 1

0 ,

∂(−�)1/2y

(
Fφ, (−�)−1/2y

)
(x)≤ 1

2 |y′|22 + (ε|x′|22 +Cε)|y|22.

PROOF. As before, we set σ(r, x) := |x|√
r(1−r)

. Since φ is continuously differ-
entiable in the second variable, (�3) implies that, for all x ∈R and r ∈ (0,1),

φx(r, x)≤ g0(r)+ g1(r)|σ(r, x)|2−1/p1ω
(
σ(r, x)

)
.(4.26)

Fix x ∈ H 1
0 . Note that, for ξ, η ∈ H 1

0 , since sup|ξ |≤R φx(·, ξ) ∈ L1(0,1) for all
R > 0, we have

∂ξ (Fφ, η)(x)=
∫ 1

0
ξ(r)η(r)φx

(
r, x(r)

)
dr.

Hence, (4.26) implies that, for y ∈H 1
0 ,

∂y(Fφ, y)(x)=
∫ 1

0
(y2)(r)φx

(
r, x(r)

)
dr

≤ |y|2∞|g0|1 + |y|22p1/(p1−1)|g1|p1 |σ 2−1/p1ω ◦ σ |∞(x),

where, for α,β ≥ 0, we set

|σαωβ ◦ σ |∞(x) := sup
r∈(0,1)

∣∣σα(
r, x(r)

)
ωβ(

σ
(
r, x(r)

))∣∣.
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Note that, for y ∈H 1
0 , |y|2∞ ≤ 2|y′|2|y|2 and, hence,

|y|22p1/(p1−1) ≤ |y|2/p1∞ |y|2(p1−1)/p1
2 ≤ 2|y′|1/p1

2 |y|(2p1−1)/p1
2 .

Hence, by Young’s inequality, there exists ĉp1 > 0 such that

∂y(Fφ, y)(x)≤ 1
2 |y′|22+ ĉp1 |y|22

[|g0|21+|g1|2p1/(2p1−1)
p1

∣∣σ 2ω2p1/(2p1−1) ◦σ
∣∣∞(x)

]
.

Observe now that, for all ε > 0,

ĉp1 |g1|2p1/(2p1−1)
p1

∣∣σ 2ω2p1/(2p1−1) ◦ σ
∣∣∞(x)≤ ε|σ |2∞(x)+ Ĉ(ε),

with Ĉ(ε) := sup{ĉp1 |g1|2p1/(2p1−1)
p1 s2ω2p1/(2p1−1)(s)|s ≥ 0 such that

ĉp1 |g1|2p1/(2p1−1)
p1 ω2p1/(2p1−1)(s) > ε}. Now the first assertion follows from the

inequality |σ |∞(x)= supr
|x|(r)√
r(1−r)

≤√2|x′|2, x ∈H 1
0 , which is a consequence of

the fundamental theorem of calculus (or of Sobolev embedding).
To prove the second assertion, let z := (−�)−1/2y, y ∈H 1

0 . Then (−�)1/2y =
−z′′, |z′|2 = |y|2 and |z′′|2 = |y′|2. Moreover,

∂(−�)1/2y

(
Fφ, (−�)−1/2y

)
(x)=−

∫ 1

0
z′′(r)z(r)φx

(
r, x(r)

)
dr

=
∫ 1

0
|z′|2(r)φx

(
r, x(r)

)
dr

(4.27)

+
∫ 1

0
z′(r)z(r)x′(r)φxx

(
r, x(r)

)
dr

+
∫ 1

0
z′(r)z(r)φxr

(
r, x(r)

)
dr.

We can estimate the first term in the right-hand side of (4.27) in the same way
as above. Indeed, note that (4.25) was shown in the proof of Remark 2.1(v) to
imply (4.26). So, as above, we obtain that there exists a nonnegative function
ε 	→C1(ε) depending only on ω, p1, |g0|1 and |g1|p1 such that, for all ε > 0,∫ 1

0
|z′|2(r)φx

(
r, x(r)

)
dr ≤ 1

4 |z′′|22 +
(
ε|x′|22 +C1(ε)

)|z′|22
(4.28)

≤ 1
4 |y′|22 +

(
ε|x′|22 +C1(ε)

)|y|22.
To estimate the second and the last terms in the right-hand side of (4.27), we note
that

|z′|∞ ≤ (2|z′′|2|z′|2)1/2 = (2|y′|2|y|2)1/2, |z|∞ ≤ 2−1/2|z′|2 = 2−1/2|y|2.
By (4.25) and the estimate |σ |∞(x)≤√2|x′|2, we conclude that, for all ε > 0,

|φxx(·, x)|2 ≤ |g2|2 + |g3|2
∣∣σ 1/2ω ◦ σ

∣∣∞(x)

≤ 1

6 · 21/4 ε|σ |1/2∞ (x)+C2(ε)≤ 1

6
ε|x′|1/2

2 +C2(ε)
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and

|φxr(·, x)|1 ≤ |g4|1 + |g5|1|σ 3/2ω ◦ σ |∞(x)

≤ 1

6 · 23/4 ε|σ |3/2∞ (x)+C3(ε)≤ 1

6
ε|x′|3/2

2 +C3(ε),

with

C2(ε) := |g2|2 + sup
{
|g3|2s1/2ω(s)|s ≥ 0 such that |g3|2ω(s) >

1

6 · 21/4 ε

}
,

C3(ε) := |g4|1 + sup
{
|g5|1s3/2ω(s)|s ≥ 0 such that |g5|1ω(s) >

1

6 · 23/4 ε

}
.

Thus, it follows from Young’s inequality that there exists a nonnegative function
ε 	→ C̃(ε) dependent on ω, |g2|2, |g3|2, |g4|1 and |g5|1 only such that, for all
ε ∈ (0,1),∫ 1

0
z′(r)z(r)x′(r)φxx

(
r, x(r)

)
dr +

∫ 1

0
z′(r)z(r)φxr

(
r, x(r)

)
dr

≤ |y′|1/2
2 |y|3/2

2

[1
6ε|x′|3/2

2 + |x′|2C2(ε)+ 1
6ε|x′|3/2

2 +C3(ε)
]

≤ 1
4 |y′|22 +

(
ε|x′|22 + C̃(ε)

)|y|22.
Now the second assertion follows from (4.28). �

LEMMA 4.8. Let ψ satisfy (�).
Then there exists a nonnegative function ε 	→ C(ε) depending on ω and C such

that, for all ε > 0 and x, y ∈H 1
0 ,

∂y(Gψ,y)(x)≤ 1
2 |y′|22 + (ε|x′|22 +Cε)|y|22,

(4.29)
∂(−�)1/2y

(
Gψ, (−�)−1/2y

)
(x)≤ 1

2 |y′|22 + (ε|x′|22 +Cε)|y|22.

PROOF. Fix x ∈H 1
0 . Note that, for ξ, η ∈H 1

0 , we have

∂ξ (Gψ,η)(x)=−
∫ 1

0
ξη′ψx ◦ x dr.

Hence, for all y ∈H 1
0 ,

∂y(Gψ,y)(x)=−1
2

∫ 1

0
(y2)′ψx ◦ x dr

= 1
2

∫ 1

0
y2x′ψxx ◦ x dr ≤ 1

2 |y|24|x′|2|ψxx ◦ x|∞.

Set z := (−�)−1/2y so that (−�)1/2y =−z′′. Then

∂(−�)1/2y

(
Gψ, (−�)−1/2y

)
(x)=

∫ 1

0
z′z′′ψx ◦ x dr ≤ 1

2 |z′|24|x′|2|ψxx ◦ x|∞.
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Note that |y|24 ≤ |y|∞|y|2 ≤
√

2|y′|1/2
2 |y|3/2

2 . Hence, by Young’s inequality, there
exists ĉ > 0 such that

∂y(Gψ,y)(x)≤ 1
2 |y′|22 + ĉ|y|22|x′|4/3

2 |ψxx ◦ x|4/3∞ ,

∂(−�)1/2y

(
Gψ, (−�)−1/2y

)
(x)≤ 1

2 |y′|22 + ĉ|y|22|x′|4/3
2 |ψxx ◦ x|4/3∞ .

(�) implies that, for all ε > 0, |ψxx |4/3(x) ≤ ε|x|2/3 + Ĉ(ε) with Ĉ(ε) :=
sup{(C + r1/2ω(r))4/3|r ≥ 0 such that Cr−1/2 + ω(r) > ε3/4}. Now the assertion
follows from the estimate |x|∞ ≤ 1√

2
|x′|2. �

LEMMA 4.9. Assume that sup|x|≤R |φ(·, x)| ∈L2(0,1) for all R > 0.
Then Fφ :H 1

0 → L2(0,1) is | · |2-continuous on | · |H 1
0
-balls.

If, in addition, supx |φ(·, x)|1 < ∞ and φ is differentiable in the second
variable with sup|ξ |≤R |φx(·, ξ)| ∈ L1(0,1) for all R > 0, then, for all N ∈ N,
PNFφ ◦ PN :EN →EN is bounded and locally Lipschitz continuous.

If φ satisfies (�1), then, for all p ∈ [2,∞), there exists cp,q1,q2 > 0 such that

|Fφ|2(x)≤ cp,q1,q2 |g|q1�
(q2−1+2/q1)/(p+2)
p,κ (x) for all x ∈H 1

0 , κ > 0.

PROOF. Let (xn)n∈N be a bounded sequence in H 1
0 and limn→∞ xn = x ∈H 1

0
in the | · |2-topology. Since a | · |1,2-bounded set is compact in C0(0,1), we conclude
that xn → x uniformly on (0,1) and, hence, φ(r, xn(r))→ φ(r, x(r)) as n→∞
for all r ∈ (0,1) and supn |φ|(r, xn(r)) ≤ sup|ξ |≤|x|∞+1 |φ|(r, ξ) ∈ L2(0,1). Thus,
the first assertion follows by the dominated convergence theorem.

Let now the second assumption hold. Then, for all n ∈N, x, y ∈H 1
0 ,∣∣(Fφ(x), ηn

)∣∣≤ sup
ξ

|φ(·, ξ)|1|ηn|∞
∣∣(Fφ(x)− Fφ(y), ηn

)∣∣≤ ∣∣∣∣ sup
|ξ |≤|x|∞∨|y|∞

|φx(·, ξ)|
∣∣∣∣
1
|ηn|∞|x − y|∞.

Hence, the second assertion follows.
To prove the last assertion, we first note that by (�1), for all x ∈H 1

0 ,

|Fφ|2(x)≤ |g|q1

∣∣1+ |x|q2
∣∣
2q1/(q1−2) ≤ |g|q1(1+ |x|q2

s )

with s := 2q1q2
q1−2 , and for p ∈ [2,∞),

|x|1+p/2∞ ≤ p+ 2

2

∫ 1

0
|x′||x|p/2 dr ≤ p+ 2

2
|x′|2|x|p/2

p .(4.30)

Since |x|ss ≤ |x|22|x|s−2∞ , it follows that

|x|q2
s ≤ |x|2q2/s

2 |x|q2(1−2/s)∞ ≤ |x|2q2/s
2

[(
p+ 2

2

)2

|x′|22|x|pp
](q2−2q2/s)/(p+2)

.
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Substituting s, we find

|Fφ|2(x)≤ 2|g|q1

(
p+ 2

2

)(2q2−2+4/q1)/(p+2)

(1+ |x|1−2/q1
2 )

× [(1+ |x′|22)(1+ |x|pp)](q2−1+2/q1)/(p+2),

which implies the assertion. �

LEMMA 4.10. Gψ :H 1
0 → L2(0,1) is continuous.

If, in addition, ψ is bounded, then, for all N ∈ N, PNGψ ◦ PN :EN → EN is
bounded and locally Lipschitz continuous.

If |ψ ′|(x)≤ C(1+ |x|q0), then, for all x ∈H 1
0 , κ ∈ (0,∞), p ∈ [2,∞),

|Gψ |2(x)≤ 2C

(
p+ 2

2

)2q0/(p+2)

�1/2+q0/(p+2)
p,κ (x).

In particular, if ψ satisfies (�), then

|Gψ |2(x)≤ 2C

(
p+ 2

2

)3/(p+2)

�(1/2)(1+3/(p+2))
p,κ (x) for all x ∈H 1

0 .

PROOF. Let (xn)n∈N be a | · |1,2-bounded sequence such that limn→∞ xn = x ∈
H 1

0 in the | · |2-topology. Since an | · |1,2-bounded set is compact in C0(0,1), we
conclude that xn→ x uniformly on (0,1) and, hence, ψ ′ ◦ xn→ψ ′ ◦ x uniformly
on (0,1). Thus, the first assertion follows by the definition of Gψ .

Let now ψ be bounded. Then, for all n ∈N, x, y ∈H 1
0 ,∣∣(Gψ(x), ηn

)∣∣≤ |ψ |∞|η′n|1∣∣(Gψ(x)−Gψ(y), ηn

)∣∣≤ ess sup
|s|≤|x|∞∨|y|∞

|ψ ′(s)||η′n|2|x − y|2.

Hence, the second assertion follows.
The third assertion follows from the estimate |Gψ |2(x) ≤ C(1 + |x|q0∞)|x′|2

and (4.30). The last assertion is then clear, because we can take q0 = 3
2 by Re-

mark 2.1(i). �

Now we are prepared for the following:

PROOF OF PROPOSITION 4.1. Let N ∈ N and let BN denote the closed ball
in H 1

0 of radius N . By Lemmas 4.4 and 4.5, there exist βN ∈ (0,1) such that

sup
x∈BN

∣∣F�N
− F(�N)β

∣∣
2(x)≤ 1

N

for all β ≤ βN and βN+1 ≤ βN . Define

FN := F(�N)βN
+G�N

, N ∈N.(4.31)



698 M. RÖCKNER AND Z. SOBOL

Then limN→∞ |F − FN |2 = 0 uniformly on balls in H 1
0 , where F is as in (2.15),

by Lemmas 4.3 and 4.4. Since by Lemmas 4.9 and 4.10, F is | · |2-continuous on
| · |1,2-balls, and since PNx → x in H 1

0 as N →∞ for all x ∈H 1
0 , it follows that

(F2c) holds.
By Lemmas 4.4 and 4.5, it follows that Lemma 4.6 applies to (�N)βN

and �N

for all q ∈ [2,∞) with κ0, λq,κ and mq,κ independent of N . So, (F2a) holds.
By Lemmas 4.3 and 4.5, we see that Lemmas 4.7 and 4.8 apply to (�N)βN

and �N with the functions ε→ Cε independent of N . So, (F2b) holds.
Since in Lemma 4.9 we have (q2 − 1 + 2

q1
)/(p + 2) ≤ 1 if and only if

p ≥ q2 − 3+ 2
q1

, (F2d) follows by Lemmas 4.9 and 4.10.
The boundedness and local Lipschitz continuity of FN follow by Lemmas 4.5,

4.9 and 4.10. So, (F2) is proved.
If, in addition, (�4) holds, then (F2e) follows from Lemmas 4.7 and 4.8 in the

same way as we have derived (F2b). �

5. Some properties of the function spaces WCp,κ , W1Cp,κ and Lipl,p,κ .
Below for a topological vector space V over R let V ′ denote its dual space.

The following we formulate for general completely regular topological spaces
and recall that our X = L2(0,1) equipped with the weak topology is such a space.

Let X be a completely regular topological space, V :X → [1,∞] a function,
and XV := {V < ∞} equipped with the topology induced by X. Analogously
to (2.2), we define

CV :=
{
f :XV →R|f �{V≤R} is continuous ∀R ∈R+ and

(5.1)

lim
R→∞ sup

{V≥R}
V −1|f | = 0

}
,

equipped with the norm ‖f ‖V := supV −1|f |. Obviously, CV is a Banach space.

THEOREM 5.1. Let X be a completely regular topological space. Let V :X→
[1,∞] be of metrizable compact level sets {V ≤R}, R ≥ 0, and let CV be as above.
Then σ(CV )=B(XV ) and

C′V =
{
ν|ν is a signed Borel measure on XV ,

∫
V d|ν|<∞

}
,(5.2)

‖ν‖C′V =
∫

V d|ν|. In particular, fn → f weakly in CV as n→∞ if and only if
(fn) is bounded in CV , f ∈ CV , and fn→ f pointwise on XV as n→∞.

PROOF. Let ν be a signed Borel measure on XV such that
∫

V d|ν|<∞. Then
f 	→ ν(f ) := ∫

f dν is a linear functional on CV and, since∣∣∣∣
∫

f dν

∣∣∣∣≤
∫ |f |

V
V d|ν| ≤ ‖f ‖V

∫
V d|ν|,
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we conclude that ν ∈ C′V and ‖ν‖C′V ≤
∫

V d|ν|.
Now let l ∈ C′V . Note that, for every f ∈ CV , there exists x ∈ XV such that

‖f ‖V = |f |(x)V −1(x). Hence, we can apply [14], Corollary 36.5, to conclude that
there exist positive l1, l2 ∈ C′V such that l = l1− l2 and ‖l‖C′V = ‖l1‖C′V +‖l2‖C′V .
So, we may assume that l ≥ 0. Let fn ∈ CV , n ∈ N, such that fn ↓ 0 as n→∞.
Then by Dini’s theorem, fn→ 0 as n→∞ uniformly on all sets {V ≤R}, R ≥ 1.
Hence, ‖fn‖V → 0 as n→∞ so l(fn)→ 0. CV is a Stone-lattice generating the
Borel σ -algebra on XV . Indeed, we first note that XV ∈ B(X) as a σ -compact
set, and if B ∈B(XV ), then B =⋃∞

n=1 Bn with Bn ∈B(Kn), Kn := {V ≤ n}. But
since Kn is a metric space, B(Kn)= σ(C(Kn)). But C(Kn)= CV �Kn

by Tietze’s
extension theorem (which holds for compact sets in completely regular spaces).
Hence, B(Kn)= σ(CV �Kn

)= σ(CV ) ∩Kn. So, B ∈ σ(CV ). We conclude by the
Daniell–Stone theorem (cf., e.g., [5], 39.4) that there exists a positive Borel mea-
sure ν on XV such that ∫

f dν = l(f ) ∀f ∈CV .

Since 1 ∈ CV , ν is a finite measure. To calculate ‖l‖C′V , let fn ↑ V be a sequence
of bounded positive continuous functions on XV increasing to V . Such a sequence
exists by [51], Lemma II.1.10, since XV as a union of metrizable compacts is
strongly Lindelöf. Then fn ∈ CV and ‖fn‖V ≤ 1 for all n ∈N and

‖l‖C′V ≥
∫

fn dν→
∫

V dν as n→∞.

Hence, ‖l‖C′V =
∫

V dν. The rest of the assertion follows from the dominated con-
vergence theorem. �

COROLLARY 5.2. Let X,Y be completely regular topological spaces. Let
� :Y → [1,∞] have metrizable compact level sets, and let X :V → [1,∞] be
a function. Let XV and Y�, CV and C� be as above. Let M :C� → CV be a
positive bounded linear operator. Then there exists a kernel m(x, dy) from XV to
Y� such that, for all f ∈ C�, Mf (x) = ∫

f (y)m(x, dy) and
∫

�(y)m(x, dy) ≤
‖M‖C�→CV

V (x).

COROLLARY 5.3. An algebra of bounded continuous functions on XV gener-
ating B(XV ) is dense in CV .

PROOF. By a simple monotone class argument, it follows that the algebra
forms a measure determining class on XV . So by Theorem 5.1, it follows that
the algebra is dense in CV with respect to the weak topology, hence, also with
respect to the strong topology since it is a linear space. �
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REMARK 5.4. In fact, on XV there is a generalization of the full Stone–
Weierstrass theorem and it can be deduced from the Daniell–Stone theorem, even
in more general cases than considered here. In particular, the algebra in Theo-
rem 5.3 generates B(XV ) if it separates points. We refer to [47].

LEMMA 5.5. Let X be a completely regular space, let V,� :X → [1,∞]
have metrizable compact level sets, V ≤ c� for some c ∈ (0,∞), and such that,
for all R > 0, there exists R′ ≥ R such {V ≤ R} is contained in the closure of the
set {V ≤R′} ∩X�.

Then CV ⊂ C� continuously and densely.

PROOF. Note that X� ⊂XV . If f ∈ CV , then, for R ∈ (0,∞),

|f | ≤
(

sup
{V≥√R }

|f |
V

)
V +√R‖f ‖V ,

hence,

sup
{�≥R}

|f |
�
≤ c sup

{V≥√R }

|f |
V
+ 1√

R
‖f ‖V .

Letting R →∞, we conclude that f �X�
∈ C�. Moreover, the last assumption

implies that, if f ∈ CV vanishes on X�, then it vanishes on {V ≤ R} for every
R > 0, since f is continuous on {V ≤ R′}. Hence, the restriction to X� is an
injection CV → C�. Since V ≤�, the injection is continuous. The density follows
from Corollary 5.3. Indeed, we have seen in its proof that σ(CV )=B(XV ). But
then σ(CV �X�

)= σ(CV )∩X� ⊃B(XV )∩X� =B(X�), since X� ∈B(X). �

Now we come to our concrete situation.

COROLLARY 5.6. For p ∈ [2,∞), p′ ≥ p, and x ∈ (0,∞), κ ′ ≥ κ , we have
WCp,κ ⊂WCp′,κ ′ and WCp,κ ⊂W1Cp,κ ⊂W1Cp′,κ ′ densely and continuously.

PROOF. Note that, for x ∈Lp(0,1), p > 1, PNx ∈H 1
0 , N ∈N, and Pmx→ x

in Lp(0,1) as m→∞ (see, e.g., [40], Section 2c16). Also by (2.8), Vp,κ ◦ PN ≤
α

p
pVp,κ and, hence, {PNx|Vp,κ(x) ≤ R,N ∈ N} ⊂ {Vp,κ ≤ α

p
pR} ∩H 1

0 . Further-
more, since(

2

p

)2∣∣(|x|p/2)′
∣∣2
2 =

∣∣x′|x|p/2−1∣∣2
2

= ∣∣|x′|1{|x|<1}|x|p/2−1∣∣2
2 +

∣∣|x′|1{|x|≥1}|x|p/2−1∣∣2
2

≤ |x′|22 +
∣∣x′|x|p′/2−1∣∣2

2,
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it follows that there exists cp ∈ (0,∞) such that

�p,κ ≤ cp�p′,κ ′ .(5.3)

Now the assertion follows from Lemma 5.5. �

LEMMA 5.7. Let l ∈ Z+, p ∈ [2,∞), κ ∈ (0,∞), (fn)n∈N ⊂ Lipl,p,κ , be such
that f (x) := limn→∞ fn(x) exists for all x ∈Xp . Then

‖f ‖p,κ ≤ lim inf
n→∞ ‖fn‖p,κ and (f )l,p,κ ≤ lim inf

n→∞ (fn)l,p,κ .

In particular, (Lipl,p,κ ,‖ · ‖Lipl,p,κ
) is complete.

PROOF. The assertion follows from the fact that, for a set � and ψn :�→R,
n ∈N, we have supω∈� lim infn→∞ψn(ω)≤ lim infn→∞ supω∈� ψn(ω). �

PROPOSITION 5.8. Let l ∈ Z+, p ∈ [2,∞), and κ ∈ (0,∞). Let (fn)n∈N be a
bounded sequence in Lipl,p,κ . Then there exists a subsequence (fnk

)k∈N converg-
ing pointwise to some f ∈ Lipl,p,κ .

If l > 0, then f is sequentially weakly continuous on Xp .

PROOF. Let Y ⊂ Xp be countable such that Y ∩ {Vp,κ < n} is | · |p-dense in
{Vp,κ < n} for all n ∈N, and let (fnk

)k∈N be a subsequence converging pointwise
on Y . Since fnk

, k ∈ N, are bounded in Lipl,p,κ , they are | · |p-equicontinuous on
the | · |p-open sets {Vp,κ < n} for all n ∈N. Hence, there exists a | · |p-continuous
function f :Xp → R such that fnk

(x) → f (x) as k →∞ for all x ∈ Xp . By
Lemma 5.7, we have f ∈ Lipl,p,κ .

Since fnk
, k ∈ N, are |(−�)−l/2 · |2-equicontinuous, f is |(−�)−l/2 · |2-conti-

nuous, in particular, sequentially weakly continuous on Xp . �

6. Construction of resolvents and semigroups. In this section we construct
the resolvent and semigroup in the spaces WCp,κ associated with the differential
operator L defined in (1.2) with F satisfying (F2).

PROPOSITION 6.1. Let F :H 1
0 → X satisfying (F2a) and (F2c), and let κ0,

Qreg and λq,κ , mq,κ for q ∈Qreg be as in (F2a). Assume that Vκ1F
(k) ∈W1Cq,κ

for all k ∈N for some q ∈Qreg and κ ∈ (0, κ0), κ1 ∈ [0, κ). Then we have

‖u‖q,κ ≤ 1

mq,κ

‖λu−Lu‖1,q,κ ∀u ∈Dκ1, λ≥ λq,κ .(6.1)

For the the proof of this proposition, we need the following two results.

LEMMA 6.2. Let q ∈ [2,∞), κ ∈ (0,∞).
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(i) Vq,κ is Gâteaux differentiable on Lq(0,1) with derivative given by

DVq,κ(x)= Vq,κ(x)

(
2κx + q

1+ |x|qq x|x|q−2
) (∈ Lq/(q−1)(0,1)

)
.(6.2)

(ii) On H 1
0 the function Vq,κ is twice Gâteaux differentiable. Moreover,

DVq,κ :H 1
0 →H 1

0 [⊂H−1, see (2.1)], D2Vq,κ :H 1
0 →L(L2(0,1)) [:= bounded

linear operators on L2(0,1)]. Furthermore, both maps are continuous and, for
x, ξ, η ∈H 1

0 ,

(
ξ,D2Vq,κ(x)η

)= Vq,κ(x)

[(
2κ(ξ, x)+ q

(ξ, x|x|q−2)

1+ |x|qq
)

×
(

2κ(η, x)+ q
(η, x|x|q−2)

1+ |x|qq
)

(6.3)

+ 2κ(ξ, η)+ q(q − 1)
(ξ, η|x|q−2)

1+ |x|qq

− q2 (ξ, x|x|q−2)(η, x|x|q−2)

(1+ |x|qq)2

]
.

PROOF. Identities (6.2) and (6.3) follow from the formulas

∂

∂η
|x|qq = q(η, x|x|q−2),

∂

∂ξ
(x|x|q−2, η)= (q − 1)(|x|q−2, ξη) and

∂2

∂ξ ∂η
|x|qq = q(q − 1)(ξ, η|x|q−2), x, ξ, η ∈H 1

0 .

The continuity of DVq,κ and D2Vq,κ in the mentioned topologies follows from the
fact that, given xn → x in H 1

0 as n→∞, then x′n → x′ in L2(0,1) and xn → x

in C0[0,1] as n→∞. �

LEMMA 6.3. Let q ∈ [2,∞) and κ ∈ (0,∞). Let u ∈ WCq,κ be such that
u = u ◦ PN for some N ∈ N. Then there exists x0 ∈ (C0 ∩ C1

b)(0,1) such that
‖u‖q,κ = |u|

Vq,κ
(x0).

PROOF. We may assume u �≡ 0. Since V −1
q,κ |u| is weakly upper semi-

continuous on X and Vq,κ has weakly compact level sets, there exists x0 ∈ Xq

such that ‖u‖q,κ = |u|(x0)V
−1
q,κ (x0). Set x1 := PNx0 and x2 := x0 − x1. Since

u(x0)= u(PNx0), we conclude that

Vq,κ(x0)=min{Vq,κ(x)|x ∈X,PNx = PNx0}.
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Hence, by Lemma 6.2(i), we have that (DVq,κ(x0), η)= 0 for all η ∈ Lq(0,1) ∩
E⊥N . Since {ηk|k ∈ N} is a Schauder basis of Ls(0,1) for all s ∈ (1,∞) (cf. [40],
Section 2c16), it follows that DVq,κ(x0) ∈EN ⊂ (C0 ∩C1

b)(0,1).
Consider h ∈ C1(R), h(s) := 2κs + q

1+|x0|qq s|s|q−2, s ∈ R. By (6.2),

DVq,κ(x0) = Vq,κ(x0)h ◦ x0. Hence, h ◦ x0 ∈ (C0 ∩ C1
b)(0,1). Since, for s ∈ R,

h′(s)= 2κ+ q(q−1)

1+|x0|qq |s|
q−2 ≥ 2κ > 0, the assertion follows, by the inverse function

theorem. �

PROOF OF PROPOSITION 6.1. For N ∈ N, we introduce a differential opera-
tor L(N) on the space of all continuous functions v :H 1

0 → R having continuous
partial derivatives up to second order in all directions ηk , k ∈N, defined by

L(N)v(x)≡ 1
2

N∑
i=1

Aii∂
2
iiv(x)+

N∑
k=1

(
(x, η′′k )+

(
F(x), ηk

))
∂kv(x), x ∈H 1

0 .

Let λ ≥ λq,κ , u ∈ Dκ1 , u = u ◦ PN for some N ∈ N. Then, for m ≥ N and
x ∈H 1

0 ,

(λ−L)u= (
λ−L(m))u=−Vq,κL(m)(uV −1

q,κ )− 2
(
AmDVq,κ ,D(uV −1

q,κ )
)

+ uV −1
q,κ

(
λ−L(m))Vq,κ .

Since u ∈ Dκ1 ⊂ WCq,κ , Lemma 6.3 implies that there exists x0 ∈ (C0 ∩
C1

b)(0,1) such that ‖u‖q,κ = |u|
Vq,κ

(x0). We may assume, without loss of gener-

ality, that u(x0) ≥ 0. Then x0 is a point, where the function uV −1
q,κ achieves its

maximum. Hence,

D(uV −1
q,κ )(x0)= 0 and L(m)(uV −1

q,κ )(x0)≤ 0.

Therefore,

(λ−L)u(x0)≥ ‖u‖q,κ lim inf
m→∞

(
λ−L(m))Vq,κ(x0).

For m ∈N, let now Lm be as in (4.1). Note that∣∣Lm

(
Vq,κ�Em

) ◦ Pm −L(m)Vq,κ

∣∣(x)→ 0 as m→∞, x ∈H 1
0 .

This is so since A is of trace class, (F2c) holds and, for x ∈H 1
0 , Pmx → x in H 1

0
as m→∞ and hence, by Lemma 6.2(ii), DVq,κ(Pmx)→ DVq,κ(x) in H 1

0 and
D2Vq,κ(Pmx)→D2Vq,κ(x) in L(L2(0,1)) as m→∞. Hence, by (F2a),

(λ−L)u(x0)≥ ‖u‖q,x lim inf
m→∞ (λ−Lm)

(
Vq,κ�Em

)
(Pmx0)

≥mq,κ‖u‖q,x lim inf
m→∞ �q,κ(Pmx0)=mq,κ‖u‖q,x�q,κ(x0).

Since, by assumption, Vκ1F
(k) ∈W1Cq,κ , k ∈N, it follows that Lu ∈W1Cq,κ . So,

the assertion follows. �
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Now we can prove our main existence result on resolvents and semigroups (see
also Proposition 6.7 below).

THEOREM 6.4. Let (A), (F2) hold, and let κ0, Qreg be as in (F2a), κ ∈ (0, κ0)

and p ∈ Qreg be as in (F2d). Let κ∗ ∈ (κ, κ0), κ1 ∈ (0, κ∗ − κ], and let
λp,κ∗ and λ′2,κ1

be as in Corollary 4.2, with κ∗ and κ1, respectively, replacing κ .
Then for λ > λp,κ∗ ∨ λ′2,κ1

, ((λ − L),Dκ1) is one-to-one and has a dense

range in W1Cp,κ∗ . Its inverse (λ − L)−1 has a unique bounded linear extension
Gλ :W1Cp,κ∗ →WCp,κ∗ , defined by the following limit:

λGλf := lim
m→∞λG

(m)
λ f, f ∈ Lip0,2,κ1

, f bounded, λ > λp,κ∗ ∨ λ′2,κ1
,

weakly in WCp,κ∗ (hence, pointwise on Xp), uniformly in λ ∈ [λ∗,∞) for all λ∗ >

λp,κ∗ ∨ λ′2,κ . Furthermore,

lim
m→∞λ(λ−L)G

(m)
λ f = λf

weakly in W1Cp,κ∗ uniformly in λ ∈ [λ∗,∞). Gλ, λ > λp,κ∗ ∨ λ′2,κ1
, is a Markov-

ian pseudo-resolvent on W1Cp,κ∗ and a strongly continuous quasi-contractive re-
solvent on WCp,κ∗ with ‖Gλ‖WCp,κ∗→WCp,κ∗ ≤ (λ− λp,κ∗)−1. Gλ is associated
with a Markovian quasi-contractive C0-semigroup Pt on WCp,κ∗ satisfying

‖Pt‖WCp,κ∗→WCp,κ∗ ≤ eλp,κ∗ t , t > 0.

For the proof of the theorem, we need the following lemma.

LEMMA 6.5. Let Gλ, λ > λ0, be a pseudo-resolvent on a Banach space F,
such that ‖λGλ‖F→F ≤M for all λ > λ0. Then the set FG of strong continuity
of G,

FG := {f ∈ F|λGλf → f as λ→∞},
is the (weak) closure of GλF.

PROOF. First observe that FG is a closed linear subspace of F. Indeed, let
f ∈ F, fn ∈ FG, n ∈N, such that fn→ f as n→∞. Then

λGλf − f = (λGλfn − fn)+ (λGλ − id)(f − fn).

The first term in the right-hand side vanishes as λ→∞ for all n ∈ N and the
second term vanishes as n→∞ uniformly in λ > λ0, since ‖λGλ − id‖F→F ≤
M + 1. So, we conclude that λGλf → f as λ→∞.

By the resolvent identity, for f ∈ F and λ,µ > λ0, we have

λGλGµf = λ

λ−µ
Gµf − 1

λ−µ
λGλf →Gµf
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as λ →∞ since ‖λGλf ‖F ≤ M‖f ‖F. Thus, GλF ⊂ FG. On the other hand,
FG ⊂GλF by definition. Finally, since GλF is linear, its weak and strong closures
coincide, by the Mazur theorem. �

PROOF OF THEOREM 6.4. We have that (F2d) holds with κ∗ replacing κ ,
and for all k ∈ N, that F (k) ∈W1Cp,κ by (F2c) and (F2d), so Vκ1F

(k) ∈W1Cp,κ∗ .
Therefore, Proposition 6.1 implies that (λ − L) :Dκ1 → W1Cp,κ∗ is one-to-one
with bounded left inverse from W1Cp,κ∗ ⊃ (λ − L)(Dκ1) to WCp,κ∗ for all
λ > λp,κ∗ .

Now we prove that (λ−L)(Dκ1) is dense in W1Cp,κ∗ for λ > λ′2,κ1
. Let m ∈N,

f ∈ Lip0,2,κ1
(⊂W1Cp,κ∗), f bounded, and λ > λ′2,κ1

. By Corollary 4.2, G
(m)
λ f ∈⋂

ε>0 Dκ1+ε and, by (4.6), (λ− L)G
(m)
λ f (x)→ f (x) as m→∞ for all x ∈H 1

0 ,
and by (4.5) and (F2d),

∣∣(λ−L)G
(m)
λ f (x)− (f ◦ Pm)(x)

∣∣ ≤ 2

λ− λ′2,κ1

�p,κ∗(x)V2,κ1(x)(f )0,2,κ1

= 2

λ− λ′2,κ1

�p,κ∗(x)(f )0,2,κ1 .

Hence, |λ(λ−L)G
(m)
λ f − λf | → 0 as m→∞ weakly in W1Cp,κ∗ , uniformly in

λ ∈ [λ∗,∞) for all λ∗ > λ′2,κ1
, by Theorem 5.1. By Corollary 5.3, D(⊂ Lip0,2,κ1

)

is dense in W1Cp,κ∗ . So, taking f ∈D and recalling that G
(m)
λ f ∈Dκ1 by Corol-

lary 4.2, we conclude that (λ−L)(Dκ1) is of (weakly) dense range. Therefore, for
λ > λ′2,κ1

∨ λp,κ∗ , the left inverse (λ− L)−1 can be extended to a bounded linear

operator Gλ :W1Cp,κ∗ →WCp,κ∗ . Then one has λG
(m)
λ f → λGλf as m→∞

weakly in WCp,κ∗ (in particular, pointwise on Xp) for all λ > λ′2,κ1
∨λp,κ∗ and all

f ∈ Lip0,2,κ1
∩Bb(X). So, λGλ is Markovian and λ 	→Gλf is decreasing if f ≥ 0

for such λ, since G
(m)
λ f has the same properties. In addition, for ν ∈ WC′p,κ∗ ,

ν ≥ 0 (cf. Theorem 5.1), and λ > λ∗ > λ′2,κ1
∨ λp,κ∗ ,∫ ∣∣λG

(m)
λ f − λGλf

∣∣dν ≤
∫

Gλ∗
∣∣λ(λ−L)G

(m)
λ f − λf

∣∣dν.

Therefore, the weak convergence of (λG
(m)
λ f )m∈N to λGλf in WCp,κ∗ is, in

fact, uniformly in λ ∈ [λ∗,∞). Furthermore, by (4.3), (λ − λp,κ∗)‖Gλf ‖p,κ∗ ≤
‖f ‖p,κ∗ , since PN → idXp strongly as N →∞ by [40], Section 2c16. Because
D is dense in WCp,κ∗ , it follows that

‖Gλ‖WCp,κ∗→WCp,κ∗ ≤ (λ− λp,κ∗)
−1

by continuity. Note that, for u ∈Dκ1 , λ,µ > λ′2,κ1
∨ λp,κ∗ , one has u−Gµ(λ−

L)u = (µ − λ)Gµu since Gµ is the left inverse to (µ − L). Hence, for f ∈
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(λ−L)(Dκ1), we have, by substituting u :=Gλf , Gλf −Gµf = (µ−λ)GµGλf ,
which is the resolvent identity. Since (λ − L)(Dκ1) is dense in W1Cp,κ∗ for
λ > λ′2,κ1

, we conclude that Gλ, λ > λ′2,κ1
∨ λp,κ∗ is a pseudo-resolvent on

W1Cp,κ∗ , quasi-contractive in WCp,κ∗ .
Now we are left to prove that Gλ is strongly continuous on WCp,κ∗ . Then the

last assertion will follow by the Hille–Yoshida theorem. Let f ∈D and let N ∈N

be such that f = f ◦ PN . Then, for all x ∈Xp , m≥N , λ≥ λ∗ > λ′2,κ1
∨ λp,κ∗ ,

|λGλf (x)− f (x)| ≤ ∣∣λGλf − λG
(m)
λ f

∣∣(x)+ ∣∣λG
(m)
λ f (PNx)− f (PNx)

∣∣.
As we have seen above, the first term in the right-hand side vanishes as

m→∞ uniformly in λ ∈ [λ∗,∞). The second term in the right-hand side van-
ishes as λ→∞ for each m≥N , by Corollary 4.2. Since (λ− λp,κ∗)Gλ is quasi-
contractive on WCp,κ∗ , it follows that λGλf → f weakly in WCp,κ∗ as λ→∞,
by Theorem 5.1. Hence, by Lemma 6.5, Gλ is strongly continuous on the clo-
sure of D in WCp,κ∗ . However, by Corollary 5.3, this closure is the whole
space WCp,κ∗ . �

REMARK 6.6. Since by (5.3) condition (F2d) holds with p′ ∈ [p,∞)∩Qreg,
κ ′ ≥ κ , if it holds with p ∈ [2,∞), κ ∈ (0,∞), the above theorem (and, corre-
spondingly, any of the results below) holds for any κ∗ ∈ (κ, κ0) and with p replaced
by any p′ ∈ [p,∞)∩Qreg. We note that the corresponding resolvents, hence, also
the semigroups, are consistent when applied to functions in D . In particular, the
resolvents and semigroups of kernels constructed in the following proposition co-
incide for any κ∗ ∈ (κ, κ0) and p′ ∈ [p,∞)∩Qreg.

Next we shall prove that both Gλ and Pt in Theorem 6.4 above are given by
kernels on Xp uniquely determined by L under a mild “growth condition.”

PROPOSITION 6.7 (Existence of kernels). Consider the situation of Theo-
rem 6.4, let λ > λp,κ∗ ∨ λ′2,κ1

and t > 0, and let Gλ and Pt be as constructed
there. Then:

(i) There exists a kernel gλ(x, dy) from Xp to H 1
0 such that

gλf (x) :=
∫

f (y)gλ(x, dy)=Gλf (x) for all f ∈W1Cp,κ∗, x ∈Xp,

which is extended by zero to a kernel from Xp to Xp . Furthermore, λgλ1= 1, gλ′ ,
λ′ > λp,κ∗ ∨ λ′2,κ1

, is a resolvent of kernels and

gλ�p,κ∗(x)≤ 1

mp,κ∗
Vp,κ∗(x) for all x ∈Xp,

with mp,κ∗ as in (F2a).
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(ii) There exists a kernel pt(x, dy) from Xp to Xp such that

ptf (x) :=
∫

f (y)pt (x, dy)= Ptf (x) for all f ∈WCp,κ∗, x ∈Xp.

Furthermore, pt1 = 1 [i.e., pt(x, dy) is Markovian], pτ , τ > 0, is a measurable
semigroup and

ptVp,κ∗(x)≤ eλp,κ∗ tVp,κ∗(x) for all x ∈Xp.

(iii) We have

gλf (x)=
∫ ∞

0
e−λτpτf (x) dτ

(6.4)
for all f ∈Bb(Xp)∪B+(Xp), x ∈Xp.

[We extend gλ for all λ ∈ (0,∞) using (6.4) as a definition.]
(iv) Let x ∈Xp . Then ∫ t

0
pτ (x,Xp \H 1

0 ) dτ = 0.

(v) For x ∈Xp , ∫ t

0
pτ�p,κ∗(x) dτ <∞,

so ∫ t

0
pτ |f |(x) dτ <∞ for all f ∈W1Cp,κ∗ .

In particular, if u ∈Dκ1 , then τ 	→ pτ (|Lu|)(x) is in L1(0, t). Furthermore,

ptu(x)− u(x)=
∫ t

0
pτ (Lu)(x) dτ for all u ∈Dκ1, x ∈Xp.(6.5)

PROOF. (i) and (ii) are immediate consequences of Theorem 6.4, Corollary 5.2
and standard monotone class arguments. Equation (6.4) in (iii) holds by Theo-
rem 6.4 for f ∈WCp,κ∗ . Hence, (iii) follows by a monotone class argument. Now
let us prove (iv). For all f ∈B+(Xp), by (iii), we have∫ t

0
pτf (x) dτ ≤ eλt

∫ ∞
0

e−λτpτf (x) dτ = eλtgλf (x), x ∈Xp.(6.6)

Hence, (iv) follows with f := 1Xp\H 1
0

since gλ(x,Xp \H 1
0 )= 0 for all x ∈Xp . To

prove (v), we just apply (6.6) to f :=�p,κ∗ and the first two parts of the assertion
follow by (i) and (iv). Now let u ∈Dκ1(⊂W1Cp,κ∗). Recall that, by Theorem 6.4,
λu−Lu ∈W1Cp,κ∗ , hence, Lu ∈W1Cp,κ∗ , so∫ t

0
pτ (|Lu|)(x) dτ <∞ for all x ∈Xp.
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Finally, to prove (6.5), first note that, for u ∈ Dκ1(⊂ WCp,κ∗), we have
Gλu ∈D(L̃), where L̃ is the generator of Pt on WCp,κ∗ , and

L̃(Gλu)=−u+ λGλu=Gλ(Lu),(6.7)

since Gλ is the left inverse of (λ−L) :Dκ1 →W1Cp,κ∗ . Therefore,∫ t

0
pτ (gλ(Lu)) dτ =

∫ t

0
PτGλ(Lu)dτ =

∫ t

0
Pτ L̃(Gλu)dτ

(6.8)
= PtGλu−Gλu= pt(gλu)− gλu.

But integrating by parts with respect to dτ , we obtain, for all x ∈Xp ,∫ t

0
pτ (Lu)(x) dτ

= eλt
∫ t

0
e−λτpτ (Lu)(x) dτ − λ

∫ t

0
eλr

∫ r

0
e−λτpτ (Lu)(x) dτ dr

= eλt

[
gλ(Lu)(x)−

∫ ∞
t

e−λτpτ (Lu)(x) dτ

]

− λ

∫ t

0
eλr

[
gλ(Lu)(x)−

∫ ∞
r

e−λτpτ (Lu)(x) dτ

]
dr

= eλtgλ(Lu)(x)− pt(gλ(Lu))(x)

− (eλt − 1)gλ(Lu)(x)+ λ

∫ t

0
pr(gλ(Lu))(x) dr

= ptu(x)− λpt(gλu)(x)− u(x)+ λgλu(x)

+ λpt(gλu)(x)− λgλu(x)

= ptu(x)− u(x),

where in the second to last step we used (6.8) and that, by the second equality
in (6.7),

gλ(Lu)=−u+ λgλu. �

Before we prove our uniqueness result, we need the following:

LEMMA 6.8. Consider the situation of Theorem 6.4 and let λ > λ′2,κ1
∨λp,κ∗ .

Then (λ−L)(D) is dense in W1Cp,κ∗ .

PROOF. Let u ∈Dκ1 and N ∈N be such that u= u ◦PN . Choose ϕ ∈C∞(R)

such that ϕ′ ≤ 0, 0 ≤ ϕ ≤ 1, ϕ = 1 on [0,1] and ϕ = 0 on (2,∞). For n ∈ N, let

ϕn(x) := ϕ(
|PNx|22

n2 ), x ∈X, un := ϕnu. Then un ∈D and

Lun = ϕnLu+ uLϕn + 2(Du,ANDϕn).



KOLMOGOROV EQUATIONS IN INFINITE DIMENSIONS 709

Note that, for i, j = 1, . . . ,N , there are cj , cij ∈ (0,∞) such that

|∂jϕn| ≤ cj

n
1{|PNx|2<2n}, |∂2

ij ϕn| ≤ cij

n2 1{|PNx|2<2n}.

Then 0 ≤ ϕn ↑ 1 as n → ∞, |ANDϕn| ≤ max cj

n
, and |Lϕn(x)| ≤ c

n
(|x′|2 +

|PNF |2)≤ 2c
n

�p,κ∗(x) for all x ∈H 1
0 and some c ∈ (0,∞) independent of x and n

by (F2c) and (F2d). So un → u and Lun → Lu pointwise on H 1
0 and bounded

in W1Cp,κ∗ . Hence, by Theorems 5.1 and 6.4, it follows that (λ−L)(D) is weakly,
hence, strongly, dense in W1Cp,κ∗ . �

PROPOSITION 6.9. Consider the situation of Theorem 6.4 and let (pt )t>0 be
as in Proposition 6.7. Let (qt )t>0 be a semigroup of kernels from Xp to Xp such
that ∫ ∞

0
e−λτ qτ�p,κ∗(x) dτ <∞ for some λ ∈ (0,∞) and all x ∈Xp,(6.9)

and

qtu(x)− u(x)=
∫ t

0
qτ (Lu)(x) dτ for all x ∈Xp,u ∈D .(6.10)

[Note that the same arguments as in the proof of Proposition 6.7(iv) show that∫ t
0 qτ (x,Xp \ H 1

0 ) dτ = 0, x ∈ Xp , hence, the right-hand side of (6.10) is well-
defined.] Then qt (x, dy)= pt(x, dy) for all x ∈Xp , t > 0.

PROOF. Let u ∈D , x ∈Xp , t > 0, and λ as in (6.9). Integrating by parts with
respect to dτ and then using (6.10), we obtain∫ t

0
e−λτ qτ (Lu)(x) dτ

=
∫ t

0
λe−λs

∫ s

0
qτ (Lu)(x) dτ ds + e−λt

∫ t

0
qτ (Lu)(x) dτ

=
∫ t

0
λe−λsqs(u)(x) ds −

∫ t

0
λe−λsu(x) ds + e−λt (qt (u)(x)− u(x)

)
,

so, ∫ t

0
e−λsqs(λu−Lu)(x) ds = u(x)− e−λtqt (u)(x).

Since (6.9) holds also with λ′ > λ instead of λ, we can let λ↗∞ to obtain that the
resolvent g

q
λ :=

∫∞
0 e−λsqs ds, λ > 0, of (qt )t>0 is the left inverse of (λ− L)�D .

Hence, gλ and g
q
λ coincide on (λ−L)D which is dense in W1Cp,κ∗ . But by (6.9)

and Theorem 5.1, g
q
λ(x, dy) ∈ (W1Cp,κ∗)′ [and so is gλ(x, dy)] for all x ∈ Xp .

Hence, g
q
λ = gλ. Since t 	→ qtu(x) by (6.10) is continuous for all u ∈D , x ∈Xp ,
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the assertion follows by the uniqueness of the Laplace transform and a monotone
class argument. �

Another consequence of Lemma 6.8 is the following characterization of the
generator domain of the C0-semigroup Pt on WCp,κ∗ . The second part of the fol-
lowing corollary will be crucial to prove the weak sample path continuity of the
corresponding Markov process in the next section.

COROLLARY 6.10. Consider the situation of Theorem 6.4. Let L̄ denote the
generator of Pt as a C0-semigroup on WCp,κ∗ .

(i) Then v ∈WCp,κ∗ belongs to Dom(L̄) if and only if there exist f ∈WCp,κ∗
and (un) ⊂ D such that un → v and Lun → f strongly, equivalently, weakly,
in W1Cp,κ∗ as n →∞, that is, un → v and Lun → f pointwise on H 1

0 , and
supn(‖un‖1,p,κ∗ + ‖Lun‖1,p,κ∗) <∞. In this case, L̄v = f and un → v weakly
in WCp,κ∗ as n→∞.

(ii) If v ∈ Dom(L̄) and v, L̄v are bounded, then the sequence (un) ⊂ D
from (i) can be chosen uniformly bounded.

(iii) Let λ > λp,κ∗ ∨ λ′2,κ1
and v ∈D(L) such that v, L̄v are bounded, and let

x ∈ Xp . Then there exists a Borel-measurable map D̄x
A1/2v :Xp → X such that,

for any sequence (un)⊂Dκ1 such that un→ v, Lun→ L̄v weakly in W1Cp,κ∗ as
n→∞ with supn ‖un‖∞ <∞, we have

lim
n→∞gλ(|D̄x

A1/2v −A1/2Dun|2)(x)= 0.

Furthermore, for all χ ∈ C2(R) and t > 0,

pt(χ ◦ v)(x)− (χ ◦ v)(x)

=
∫ t

0
pτ (χ

′ ◦ vL̄v)(x) dτ +
∫ t

0
pτ

(
χ ′′ ◦ v(D̄x

A1/2v, D̄x
A1/2v)

)
(x) dτ.

If, in particular, v = gλf for some f ∈D , then, in addition, for all κ ′ ∈ (0, κ1],
|D̄x

A1/2v|(y)≤ 1

λ− λ′2,κ ′
(f )0,2,κ ′Vκ ′(y) for gλ(x, dy)-a.e. y ∈Xp.

PROOF. (i) Note that v ∈Dom(L̄) if and only if v =Gλg for some g ∈WCp,κ∗ ,
λ > λp,κ∗ ∨ λ′2,κ1

. Given such v, by Lemma 6.8, there exist un ∈D , n ∈N, such
that (λ−L)un→ g in W1Cp,κ∗ as n→∞. Then un =Gλ(λ−L)un→Gλg = v

in WCp,κ∗ by Theorem 6.4, consequently,

Lun→ λv − g =: f ∈WCp,κ∗,

as n→∞ in WCp,κ∗ , hence, by Corollary 5.6 in W1Cp,κ∗ . On the other hand, let
v,f ∈WCp,κ∗ be such that, for some (un) ⊂D , un → v and Lun → f weakly
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in W1Cp,κ∗ . Then, for λ > λ′2,κ1
∨ λp,κ∗ ,

v = lim
n

un = lim
n

Gλ(λ−L)un =Gλ(λv − f ),

weakly in WCp,κ∗ , since, by Theorem 6.4, the latter equality holds as a weak limit
in WCp,κ∗ (hence, as a weak limit in W1Cp,κ∗ by Corollary 5.6).

(ii) By assumption, g := λv − L̄v is bounded. By Corollary 5.3, there exist
gn ∈ D , n ∈ N, which we can choose such that supn |gn| ≤ ‖g‖∞, converging
to g in WCp,κ∗ . Let λ > λp,κ∗ ∨ λ′2,κ1

and consider vn,m :=G
(m)
λ gn, m ∈N. Then

vn,m ∈Dκ1 by Corollary 4.2, and by Theorem 6.4,

lim
m→∞vn,m =Gλgn weakly in WCp,κ∗ , hence, weakly in W1Cp,κ∗ ,(6.11)

and

lim
m→∞(λ−L)vn,m = gn weakly in W1Cp,κ∗ .(6.12)

Therefore,

lim
m→∞Lvn,m =−gn + λGλgn→−g+ λGλg = L̄v(6.13)

weakly in W1Cp,κ∗ , as n→∞. Since λG
(m)
λ is Markov, vn,m, n,m ∈ N, is uni-

formly bounded. Consequently, the pair (v, L̄v) lies in the weak closure of the
convex set {

(u,Lu)|u ∈Dκ1,‖u‖∞ ≤ ‖g‖∞
}

(6.14)

in W1Cp,κ∗ ×W1Cp,κ∗ , hence, also in its strong closure. Repeating the same argu-
ments as in Lemma 6.8, it follows that, in (6.14), Dκ1 can be replaced by D and
assertion (ii) follows.

(iii) If (un)⊂D is a sequence as in the assertion, then, since (un − um)2 ∈D ,

(λ−L)(un − um)2 + 2|A1/2D(un − um)|2 = 2(un − um)(λ−L)(un − um).

Hence, applying gλ(x, dy), we obtain

(un − um)2(x)+ 2gλ

(|A1/2D(un − um)|2)
(x)

= 2gλ

(
(un − um)(λ−L)(un − um)

)
(x).

Hence, the first assertion follows by Theorem 6.4 and Proposition 6.7(i) by
Lebesgue’s dominated convergence theorem. Furthermore,∫ t

0
pτ (x, dy) dτ ≤ etλgλ(x, dy),

χ(un) ∈D , and by (6.5),

pt(χ ◦ un)(x)− (χ ◦ un)(x)

=
∫ t

0
pτ (χ

′ ◦ unLun)(x) dτ +
∫ t

0
pτ (χ

′′ ◦ un|A1/2Dun|22)(x) dτ.
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Hence, the second assertion again follows by dominated convergence, since
un→ u weakly in WCp,κ∗ as n→∞ by the last assertion of (i). To prove the
final part of (iii), define

un :=G
(n)
λ f, n ∈N.

Then by Theorem 6.4, (un) has all properties above so that (A1/2Dun) ap-
proximates D̄x

A1/2v in the above sense. But by (4.4), with q := p, κ := κ ′, and
Lemma 3.6,

|Dun|(y)≤ 1

λ− λ′2,κ ′
(f )0,2,κ ′V (y) for all y ∈X (⊃Xp).

�

Next we want further regularity properties. We emphasize that these results will
not be used in the next section. We extend both gλ(x, dy), pt(x, dy) by zero to
kernels from Xp to X.

PROPOSITION 6.11. Consider the situation of Theorem 6.4 and let gλ, pt

be as in Proposition 6.7. Let q ∈ Qreg ∩ [2,p] and κ ∈ [κ1, κ
∗] with λq,κ , λ′q,κ

and λ′′q,κ as in Corollary 4.2. Let λ > λq,κ ∨ λp,κ∗ ∨ λ′2,κ1
.

(i) Let f ∈WCq,κ . Then gλf uniquely extends to a continuous function on Xq ,
again denoted by gλf such that

‖gλf ‖q,κ ≤ 1

λ− λq,κ

‖f ‖q,κ .(6.15)

If f ∈ Lip0,2,κ1
∩Bb(X), then gλf extends uniquely to a continuous function

on X, again denoted by gλf such that gλf ∈ Lip0,2,κ1
∩Bb(X) and for λ > λ′q,κ

satisfying (6.15) and

(gλf )0,q,κ ≤ 1

λ− λ′q,κ

(f )0,q,κ .(6.16)

If, in addition, (F2e) holds, then, for λ > λ′′q,κ and f ∈ Lip1,2,κ1
∩Bb(X),

(gλf )1,q,κ ≤ 1

λ− λ′′q,κ

(f )1,q,κ .(6.17)

(ii) Let t > 0 and f ∈ Lip0,2,κ1
∩Bb(X) ∩Wp,κ∗(⊃ D). Then ptf uniquely

extends to a continuous function on X, again denoted by ptf , which is in
Lip0,2,κ1

∩Bb(X), such that

‖ptf ‖q,κ ≤ etλq,κ‖f ‖q,κ ,(6.18)

(ptf )0,q,κ ≤ etλ′q,κ (f )0,q,κ .(6.19)

If, in addition, (F2e) holds, then, for f ∈ Lip1,2,κ1
∩Bb(X),

(ptf )1,q,κ ≤ etλ′′q,κ (f )1,q,κ .(6.20)
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REMARK 6.12. (i) Because of Remark 6.6, the restriction q ≤ p and
κ ∈ [κ1, κ

∗] in the above proposition are irrelevant since, for given q ∈Qreg and
κ ∈ (0, κ0), we can always choose p, κ1, κ∗ suitably.

(ii) If (F2e) holds, by similar techniques, as in the following proof of Propo-
sition 6.11 and by the last part of Proposition 5.8, one can prove that pt from
Proposition 6.7 can be extended to a semigroup of kernels from X to X such that

lim
t→0

ptu(x)= u(x) for all u ∈D, x ∈X.

Then the proof of the first part of Theorem 7.1 in the next section implies the
existence of a corresponding cadlag Markov process on X. However, we do not
know whether this process solves our desired martingale problem, since it is not
clear whether identity (6.5) holds for the above extended semigroup for all x ∈X.
As is well known and will become clear in the proof of Theorem 7.1 below, (6.5) is
crucial for the martingale problem.

(iii) We emphasize that, in Proposition 6.11, it is not claimed that the exten-
sions of gλ and pt satisfy the resolvent equation, have the semigroup property
respectively on the larger spaces Xq or X. It is also far from being clear whether
limt→0 ptu(x) = u(x) for u ∈D and all x ∈ X. Furthermore, it is also not clear
whether gλf ∈WCq,κ if f ∈WCq,κ .

PROOF OF PROPOSITION 6.11. (i) Let f ∈ Lip0,2,κ1
∩Bb(X). Hence, by

(4.3) and (4.4) [together with (2.8)] applied with q = 2, κ = κ1, it follows
by Proposition 5.8 that (G

(m)
λ f )m∈N has subsequences converging to functions

in Lip0,2,κ1
. Since we know by Theorem 6.4 that (G

(m)
λ f )m∈N converges to the

continuous function Gλf [= gλf by Proposition 6.7(i)] on Xp and since Xp is
dense in X, we conclude that all these limits must coincide. Hence, gλf has a
continuous extension in Lip0,2,κ1

, which we denote by the same symbol. Since
PN → idXq strongly on Xq as N →∞, by (4.3), (4.4) and Lemma 5.7, we ob-
tain (6.15) and, provided λ > λq,κ ∨ λ′q,κ , (6.16) for such f , since Lip0,2,κ1

⊂
Lip0,q,κ . If, in addition, (F2e) holds, (4.7) and Lemma 5.7 imply (6.17), provided
f ∈ Lip1,2,κ1

∩Bb(X) and λ > λ′′q,κ . Considering (6.15) for f ∈ D , since D is
dense in WCq,κ , (6.15) extends to all of WCq,κ by continuity. For f ∈WCq,κ , the
resulting function, lets call it gλf on Xq , is equal to gλf on Xp , since by The-
orem 5.1, for un ∈D , n ∈ N, with un → f as n→∞ in WCq,κ , it follows that
gλun(x)→ gλf (x) as n→∞ for all x ∈Xp . So, gλf coincides with gλf on Xp

and gλf is the desired extension. Since Xp is dense in Xq ⊂ X continuously, it
follows that, for f ∈WCq,κ ∩ Lip0,2,κ1

∩Bb(X), the two constructed extensions
of gλf coincide on Xq by continuity. So, (i) is completely proved.

(ii) First, we recall that, by Theorem 6.4 and Proposition 6.7(ii), since
f ∈WCp,κ∗ , ptf ∈Wp,κ∗ and

ptf = lim
n→∞

(
n

t
gn/t

)n

f in WCp,κ∗,(6.21)
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in particular, pointwise on Xp . But by (i), for (large enough) n ∈N, (gn/t )
nf have

continuous extensions which belong to Lip0,2,κ1
∩Bb(X) and satisfy (6.15), (6.16)

and, provided (F2e) holds, also (6.17) with λ replaced by n
t
. So, by Proposition 5.8,

Lemma 5.7 and the same arguments as in the proof of (i), the assertion follows,
since by Euler’s formula, for λ0 > 0,

lim
n→∞

(
n/t

n/t − λ0

)n

= etλ0 . �

7. Solution of the martingale problem and of SPDE (1.1). This section is
devoted to the proof of the following theorem which is more general than Theo-
rem 2.3.

THEOREM 7.1. Assume that (A), (F2) hold and let κ0 be as in (F2a),
κ ∈ (0, κ0) and p ∈ Qreg as in (F2d). Let κ∗ ∈ (κ, κ0), κ1 ∈ (0, κ∗ − κ] and let
λp,κ∗ be as in Corollary 4.2 (with κ∗ replacing κ there). Let (pt )t>0 be as in
Proposition 6.7(ii).

(i) There exists a conservative strong Markov process M := (�,F , (Ft )t≥0,

(xt )t≥0, (Px)x∈Xp) on Xp with continuous sample paths in the weak topology
whose transition semigroup is given by (pt )t>0, that is, Exf (xt ) = ptf (x),
x ∈Xp , t > 0, for all f ∈ Bb(Xp), where Ex denotes expectation with respect
to Px . In particular,

Ex

[∫ ∞
0

e−λp,κ∗ s�p,κ∗(xs) ds

]
<∞ for all x ∈Xp .

(ii) (“Existence”) The assertion of Theorem 2.3(ii) holds for M.
(iii) (“Uniqueness”) The assertion of Theorem 2.3(iii) holds with κ , λκ replaced

by κ∗, λp,κ∗ respectively.
(iv) If there exist p′ ∈ [p,∞), κ ′ ∈ [κ∗, κ0) such that

sup
y∈H 1

0

�−1
p′,κ ′(y)

∣∣(F(y), ηm

)∣∣2 <∞ for all m ∈N,(7.1)

then M from assertion (i) weakly solves SPDE (1.1) for x ∈ Xp′ as initial condi-
tion.

REMARK 7.2. (i) Due to Theorem 7.1(iv), it suffices to show that (F1) im-
plies (7.1) to prove Theorem 2.3(iv). It follows from (F1) that, for all m ∈ N and
y ∈H 1

0 , ∣∣(F(y), ηm

)∣∣≤ |(y, η′′m)| + ∣∣(�(y), η′m
)∣∣+ ∣∣(�(y), ηm

)∣∣
≤√2π2m2(|y|1 + |�(y)|1 + |�(y)|1)

.
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Proceeding exactly as in the proof of Lemma 4.9, we find that, for all p′ ∈ [2,∞),
κ ′ ∈ (0,∞) up to a constant (which is independent of y) which is dominated by

�
(q2−2+2/q1)/(p

′+2)

p′,κ ′ (y)+�
1/(2(p′+2))

p′,κ ′ (y).

Here we also used Remark 2.1(i). Note that (2(p′ + 2))−1 ≤ 1
2 and (q2 − 2 +

2
q1

)/(p′ + 2) ≤ 1
2 if and only if p′ ≥ 2q2 − 6 + 4

q1
. Hence, in the latter case,

(7.1) holds and, therefore, M weakly solves (1.1), by Theorem 7.1(iv).
(ii) Since by Remark 6.6 we can always increase p as long as it is in Qreg, which

is equal to [2,∞) if (F1) holds, Theorem 7.1, in particular, implies that, for p̃ ≥ p,
p̃ ∈ Qreg, Xp̃ is an invariant subset for the process M and the sample paths are
even weakly continuous in Xp̃ .

PROOF OF THEOREM 7.1. (i) and (ii): We mostly follow the lines of the proof
of [7], Theorem I.9.4.

Let �0 :=X
[0,∞)
p equipped with the product Borel σ -algebra M, xt (ω) := ω(t)

for t > 0, ω ∈ � and, for t ≥ 0, let M0
t be the σ -algebra generated by the func-

tions x0
s , 0 ≤ s ≤ t . By Kolmogorov’s theorem, for each x ∈ Xp , there exists a

probability measure Px on (�0,M
0) such that M0 := (�0,M

0, (M0
t )t≥0, (x

0
t )t≥0,

(Px)x∈Xp) is a conservative time homogeneous Markov process with Px{x0
0 =

x} = 1 and pt as (probability) transition semigroup.
Now we show that, for all x ∈Xp , the trajectory x0

t is locally bounded Px -a.s.,
that is,

Px

{
sup

t∈[0,T ]∩Q

|x0
t |p <∞ ∀T > 0

}
= 1 ∀x ∈Xp.(7.2)

Let g := Vp,κ∗ . Then by Proposition 6.7(iii),

e−λp,κ∗ tptg(x)≤ g(x) for all x ∈Xp , t > 0.(7.3)

Hence, for all x ∈ Xp , the family e−λp,κ∗ t g(x0
t ) is a super-martingale over

(�0,M
0,M0

t ,Px) since, given 0≤ s < t and Q ∈M0
s , by the Markov property,

Ex{e−λp,κ∗ t g(x0
t ),Q} = e−λp,κ∗ sEx

{
e−λp,κ∗ (t−s)pt−sg(x0

s ),Q
}

≤ Ex{e−λp,κ∗ sg(x0
s ),Q}.

Then, by [7], Theorem 0.1.5(b)

Px

{
∃ lim

Q�s↑t |x
0
s |p and lim

Q�s↓t |x
0
s |p ∀ t ≥ 0

}
= 1 ∀x ∈Xp.

In particular, (7.2) holds.
Now we show that x0

t can be modified to become weakly cadlag on Xp , that is,
that

Px

{
∃w- lim

Q�s↑t x
0
s and w- lim

Q�s↓t x
0
s ∀ t ≥ 0

}
= 1 ∀x ∈Xp.(7.4)
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For a positive f ∈D and λ > 0, we have e−λtptgλf ≤ gλf for all x ∈ Xp and
t ≥ 0. Hence, by the preceding argument, the family e−λtgλf (x0

t ) is a super-
martingale over (�0,M

0,M0
t ,Px) for all x ∈Xp and

Px

{
∃ lim

Q�s↑t gλf (x0
s ) and lim

Q�s↓t gλf (x0
s ) ∀ t ≥ 0

}
= 1 ∀x ∈Xp.

By Proposition 6.7(i) and Theorem 6.4, we know that λgλf → f as λ→∞ uni-
formly on balls in Xp . Since (x0

t )t∈Q is locally bounded in Xp Px-a.s. for all
x ∈Xp , we conclude that

Px

{
∃ lim

Q�s↑t f (x0
s ) and lim

Q�s↓t f (x0
s ) ∀ t ≥ 0

}
= 1 ∀x ∈Xp.

Now let f run through the countable set

D̃ := {cos(ηk, ·)+ 1, sin(ηk, ·)+ 1|k ∈N} ⊂D,(7.5)

which separates the points in Xp . Then we get

Px

{
∃ lim

Q�s↑t f (x0
s ) and lim

Q�s↓t f (x0
s ) ∀ t ≥ 0, f ∈ D̃

}
= 1 ∀x ∈Xp.

Now (7.4) follows from the fact that (x0
t )t∈Q is locally in t weakly relatively com-

pact in Xp Px -a.s. for all x ∈Xp .
Let now

� :=
{
∃w- lim

Q�s↑t x
0
s and w- lim

Q�s↓t x
0
s ∀ t ≥ 0

}
,

M := {Q∩�′|Q ∈M0},
Mt := {Q∩�′|Q ∈M0

t }, t ≥ 0,

xt := w- lim
Q�s↓t x

0
s , t ≥ 0.

Then for all x ∈Xp and f ∈ D̃ , t > 0,

Ex[|f (x0
t )− f (xt )|2] = lim

s↓t
s∈Q

Ex[|f (x0
t )− f (x0

s )|2]

= lim
s↓t
s∈Q

(
ptf

2(x)− 2pt(fps−t f )(x)+ psf
2(x)

)

= 0,

since by (6.5), t 	→ ptf (x) is continuous. Hence, Px[x0
t = xt ] = 1. Therefore,

M := (�,M, (Mt+)t≥0, (xt )t≥0, (Px)x∈Xp) is a weakly cadlag Markov process
with Px{x0 = x} = 1 and pt as transition semigroup.
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Below, F , Ft shall denote the usual completions of M, Mt+. Then it fol-
lows from [7], Theorem I.8.11. and Proposition I.8.11, that M := (�,F , (Ft )t≥0,

(xt )t≥0, (Px)x∈Xp) is a strong Markov cadlag process with Px{x0 = x} = 1 and pt

as transition semigroup.
To prove that M even has weakly continuous sample paths, we first need to

show that it solves the martingale problem. So, fix x ∈Xp and u ∈Dκ1 . It follows
by Proposition 6.7(v), that for all t ≥ 0,

|Lu|(x·) ∈ L1(�× [0, t],Px ⊗ ds).(7.6)

Furthermore, by (6.5) and the Markov property, it then follows in the standard way
that, under Px ,

u(xt )− u(x)−
∫ t

0
Lu(xs) ds, t ≥ 0,(7.7)

is an (Ft )t≥0-martingale starting at 0.
Now we show weak continuity of the sample paths. Fix x ∈ Xp and f ∈ D .

Let λ > λp,κ∗ ∨ λ′2,κ1
, u := gλf (∈ D(L̄) ⊂ Wp,κ∗) and u ∈ Lip0,2,κ ′ for all

κ ′ ∈ (0,∞). Then u and Lu are bounded, and trivially,

[u(xt )− u(xs)]4 = [u4(xt )− u4(xs)] − 4[u3(xt )− u3(xs)]u(xs)

+ 6[u2(xt )− u2(xs)]u2(xs)− 4[u(xt )− u(xs)]u3(xs).

Since the martingale property is stable under L1(Px)-limits, by (7.7) and (the
proof of ) Corollary 6.10(iii), the following processes are right continuous mar-
tingales under Px :

u(xt )− u(x0)−
∫ t

0
L̄u(xτ ) dτ,

u2(xt )− u2(x0)−
∫ t

0
(2uL̄u)(xτ )+ |D̄x

A1/2u|22(xτ ) dτ,

u3(xt )− u3(x0)−
∫ t

0
(3u2L̄u)(xτ )+ (3u|D̄x

A1/2u|22)(xτ ) dτ,

u4(xt )− u4(x0)−
∫ t

0
(4u3L̄u)(xτ )+ (6u2|D̄x

A1/2u|22)(xτ ) dτ,

t ≥ 0. Hence, we obtain, for t ≥ s,

Ex[u(xt )− u(xs)]4

= 4Ex

∫ t

s
L̄u(xτ )[u(xτ )− u(xs)]3 dτ

+ 6Ex

∫ t

s
|D̄x

A1/2u|22(xτ )[u(xτ )− u(xs)]2 dτ
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≤ 4‖L̄u‖∞(t − s)1/4
(

Ex

∫ t

s
[u(xτ )− u(xs)]4 dτ

)3/4

+ 6eλt/3(
gλ(|D̄x

A1/2u|6)(x)
)1/3

(
Ex

∫ t

s
|u(xτ )− u(xs)|3 dτ

)2/3

.

But by Corollary 6.10(iii) with κ ′ = κ1/6, we have, for all y ∈Xp ,

gλ(|D̄x
A1/2u|6)(y)≤

(
1

λ− λ′2,κ1/4

)6

(f )6
0,2,κ1/4gλ

(
Vκ1

)
(y),

and by the last part of Proposition 6.7(ii),

gλ

(
Vκ1

)
(x)≤ gλ(Vp,κ∗)(x)

≤ (λ− λp,κ)−1Vp,κ∗(x).

Therefore, for T ∈ [1,∞), we can find a constant C > 0 independent of s, t ∈
[0, T ], t ≥ s, such that

Ex[u(xt )− u(xs)]4
(7.8)

≤ C

[
(t − s)1/4

(
Ex

∫ t

s
[u(xτ )− u(xs)]4 dτ

)1/4

+ (t − s)1/6
]
y(t),

where, for s ≥ 0 fixed, we set

y(t) :=
(∫ t

s
Ex[u(xτ )− u(xs)]4 dτ

)1/2

, t ∈ [s, T ].(7.9)

Hence, we obtain from (7.8) that, for BT := CT 1/4,

y′(t) ≤ 1
2BT y1/2(t)+ 1

2C(t − s)1/6, t ∈ [s, T ]
y(s)= 0.

Hence, for ε > 0, t ∈ (s, T ],
y′(t)≤ ε

4
y(t)+ 1

4ε
B2

T +
C

2
(t − s)1/6,

so, multiplying by exp(− ε
4(t − s)) and integrating, we obtain

y(t)≤
(

1

ε2 B2
T +

3C

7
(t − s)7/6

)
eε(t−s)/4.

Choosing ε := 4(t − s)−1, we arrive at

y(t)≤ (B2
T T 5/6 + 2C)(t − s)7/6, t ∈ [s, T ].

Substituting according to (7.9) into (7.8), by the Kolmogorov–Chentsov criterion,
we conclude that t 	→ u(xt ) is continuous (since by construction xt = limQ�s↑t x0

s ).
Now we take u ∈ D̃1 := ⋃

n∈N ngn(D̃) [cf. (7.5)]. Since D̃ separates the points
of Xp , so does D̃1. It follows that the weakly cadlag path t → xt is, in fact, weakly
continuous in Xp .
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(iii) Uniqueness is now an immediate consequence of Proposition 6.9.
(iv) As in [2], Theorem 1, one derives that componentwise (xt )t≥0 under Px

weakly solves the stochastic equation (1.1) for all starting points x ∈ Xp′ . This
follows from Levy’s characterization theorem (since 〈ηk, ·〉 ∈Dκ1 ∀ k ∈N) and by
the fact that the quadratic variation of the weakly continuous martingale in (7.7) is
equal to ∫ t

0
(ADu,Du)(xs) ds, t ≥ 0.(7.10)

The latter can be shown by a little lengthy calculation, but it is well known in finite-
dimensional situations, at least if the coefficients are bounded. For the convenience
of the reader, we include a proof in our infinite-dimensional case in the Appendix
(cf. Lemma A.1). Hence, assertion (iv) is completely proved. �

REMARK 7.3. In Theorem 7.1(iv) SPDE (1.1) is solved in the sense of The-
orem 5.7 in [2], which means componentwise. To solve it in Xp′ , one needs, of
course, to make assumptions on the decay of the eigenvalues of A to have that
(
√

Awt)t≥0 takes values in Xp′ . If this is the case, by the same method as in [2],
one obtains a solution to the integrated version of (1.1) where the equality holds
in Xp′ (cf. [2], Theorem 6.6).

APPENDIX

LEMMA A.1. Consider the situation of Theorem 7.1(iv) and let u ∈D . As-
sume, without loss of generality, that p′ = p, κ = κ∗. Let x ∈ Xp , and define, for
t ≥ 0,

Mt :=
(
u(xt )− u(x0)−

∫ t

0
Lu(xr) dr

)2
−

∫ t

0
�(u)(xr) dr,

where �(u) := (ADu,Du). Then (Mt)t≥0 is an (Ft )t≥0-martingale under Px .

PROOF. Let s ∈ [0, t). We note that, by (7.1), (Mt)t≥0 is a Px -square inte-
grable martingale, so all integrals below are well defined. We have

Mt −Ms

=
(
u(xt )− u(x0)−

∫ t

0
Lu(xr) dr + u(xs)− u(x0)−

∫ s

0
Lu(xr) dr

)

×
(
u(xt )− u(xs)−

∫ t

s
Lu(xr) dr

)
− 2

∫ t

s
�(u)(xr) dr

=
(
u(xt )+ u(xs)− 2u(x0)− 2

∫ s

0
Lu(xr) dr −

∫ t

s
Lu(xr) dr

)

×
(
u(xt )− u(xs)−

∫ t

s
Lu(xr) dr

)
−

∫ t

s
�(u)(xr) dr
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= u2(xt )− u2(xs)− 2u(x0)
(
u(xt )− u(xs)

)
− 2

(
u(xt )− u(xs)

) ∫ s

0
Lu(xr) dr − (

u(xt )− u(xs)
) ∫ t−s

0
Lu(xr+s) dr

− (
u(xt )+ u(xs)

) ∫ t−s

0
Lu(xr+s) dr + 2u(x0)

∫ t−s

0
Lu(xr+s) dr

+ 2
∫ s

0
Lu(xr) dr

∫ t−s

0
Lu(xr+s) dr +

(∫ t−s

0
Lu(xr+s) dr

)2

−
∫ t

s
�(u)(xr) dr.

Now we apply Ex[·|Fs] to this equality and get by the Markov property that Px -a.s.

Ex[Mt −Ms |Fs]
= pt−su

2(xs)− u2(xs)− 2u(x)
(
pt−su(xs)− u(xs)

)
− 2

(
pt−su(xs)− u(xs)

) ∫ s

0
Lu(xr) dr

− 2
∫ t−s

0
pr(Lupt−s−ru)(xs) dr + 2u(x)

∫ t−s

0
pr(Lu)(xs) dr

+ 2
∫ s

0
Lu(xr) dr

∫ t−s

0
pr(Lu)(xs) dr

+ 2
∫ t−s

0

∫ r ′

0
Exs [Lu(xr)Lu(xr ′)]dr dr ′ −

∫ t−s

0
pr(�(u))(xs) dr.

Since on the right-hand side the second and fifth, and also the third and sixth term
add up to zero by Theorem 7.1(ii), we obtain

Ex[Mt −Ms |Fs] = pt−su
2(xs)− u2(xs)− 2

∫ t−s

0
pr(Lupt−s−ru)(xs) dr

+ 2
∫ t−s

0

∫ r ′

0
pr

(
Lupr ′−r (Lu)

)
(xs) dr ′ dr

−
∫ t−s

0
pr(L(u2))(xs)+ 2

∫ t−s

0
pr(uLu)(xs) dr.

Since on the right-hand side the first and fourth term add up to zero and the third
is, by Fubini’s theorem, equal to

2
∫ t−s

0
pr

(
Lu

∫ t−s

r
pr ′−r (Lu)dr ′

)
(xs) dr

= 2
∫ t−s

0
pr

(
Lu(pt−s−ru− u)

)
(xs) dr,



KOLMOGOROV EQUATIONS IN INFINITE DIMENSIONS 721

we see that

Ex[Mt −Ms |Fs] = 0, Px -a.s. �

Now we shall prove Theorem 2.4, even under the weaker condition (F2), but as-
suming, in addition [to (F2c)], that

lim
N→∞(k,FN)= F (k) uniformly on H 1

0 -balls for all k ∈N,(A.1)

which by Proposition 4.1 also holds under assumption (F1). So, we consider the
situation of Theorem 7.1(i) and adopt the notation from there. First we need a
lemma which is a modification of [9], Theorem 4.1.

LEMMA A.2. Let E be a finite-dimensional linear space, A :E →L(E) be
a Borel measurable function taking values in the set of symmetric nonnegative
definite linear operators on E and B :E→E be a Borel measurable vector field.
Let

LA,Bu := TrAD2u+ (B,Du), u ∈ C2(E).

Let µ be a probability measure on E such that L∗A,Bµ = 0 in the sense that

|A|E→E , |B|E ∈L1
loc(E,µ) and, for all u ∈C2

c (E),∫
LA,Budµ= 0.

Let V :E→R+ be a C2-smooth function with compact level sets and � :E→R+
be a Borel measurable function. Assume that there exists Q ∈ L1(E,µ) such that
LA,BV ≤Q−�. Then � ∈ L1(E,µ) and∫

�dµ≤
∫

Qdµ.

PROOF. Let ξ : R+ → R+ be a C2-smooth concave function such that
ξ(r)= r for r ∈ [0,1], ξ(r) = 2 for r ≥ 3 and 0 ≤ ξ ′ ≤ 1. For k ∈ N, let
ξk(r) := kξ( r

k
). Then ξk is a C2-smooth function, ξk(r)= 2k for r ≥ 3k, ξ ′′k ≤ 0,

0 ≤ ξ ′k(r) ↑ 1 and ξk(r)→ r for all r > 0 as k →∞. Let uk := ξk ◦ V − 2k for
x ∈EN . Then uk ∈C2

c (E) and

LA,Buk(x)= ξ ′k ◦ V LA,BV + ξ ′′k ◦ V (DV,ADV )≤ ξ ′k ◦ V LA,BV

since A is nonnegative definite and ξ ′′k ≤ 0.
Now, since

∫
LA,Buk dµ= 0, 0≤ ξ ′k ◦V ≤ 1, �≥ 0, and LA,BV ≤Q−�, we

obtain ∫
ξ ′k ◦ V �dµ≤

∫
ξ ′k ◦ V Qdµ.

Then the assertion follows from Fatou’s lemma. �
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PROOF OF THEOREM 2.4 [only assuming (F2) instead of (F1)]. (i) It follows
from (F2a) that, for

C := λ sup{Vp,κ∗(x)|x ∈H 1
0 , |x′|2 ≤ 2λp,κ∗/mp,κ∗},

which is finite since H 1
0 -balls are compact on Xp ,

LNVp,κ∗ ≤ C − mp,κ∗

2
�p,κ∗ on EN for all N ∈N.(A.2)

Let N ∈ N. Obviously, Vp,κ∗(x) → ∞ as |x|2 → ∞, x ∈ EN .
Since �p,κ∗(x) → ∞ as |x|2 → ∞, x ∈ EN , we conclude from (A.2) that
LNVp,κ∗(x)→−∞ as |x|2 →∞, x ∈ EN . Hence, a generalization of Hasmin-
skii’s theorem [8], Corollary 1.3, implies that there exists a probability measure µN

on EN such that L∗NµN = 0, that is,
∫

LNudµN = 0 for all u ∈ C2
c (EN). Below

we shall consider µN as a probability measure on Xp by setting µN(Xp \EN)= 0.
Then, by Lemma A.2, we conclude from (A.2) that∫

X
�p,κ∗ dµN ≤ C.(A.3)

Since �p,κ∗ has compact level sets in Xp , the sequence (µN) is uniformly tight
on Xp . So, it has a limit point µ (in the weak topology of measures) which is a
probability measure on Xp . Passing to a subsequence if necessary, we may assume
that µN → µ weakly. Then (2.20) follows from (A.3) since �p,κ∗ is lower semi-
continuous. In particular, µ(Xp \H 1

0 )= 0.

Now we prove (2.19). Let k ∈ N. Then it follows by (F2c), (F2d) that F
(k)
N :=

(ηk,FN) ∈W1Cp,κ∗ . In particular, F
(k)
N ∈ L1(µN) ∩ L1(µ) for all N ∈ N, due to

(A.3) and (2.20). Also, the maps x 	→ (x′′, ηk) belong to L1(µN) ∩ L1(µ) for all
N ∈ N since |(x′′, ηk)| ≤ |η′′k |∞|x|2. Thus, it follows from the dominated conver-
gence theorem that

∫
LNudµN = 0 for all u ∈ C2

b(EN). Let u ∈D . Then we have
Tr{AND2u(x)} = Tr{AD2u(x)} for large enough N . Since µN → µ weakly, it
follows that ∫

Tr{AND2u}dµN →
∫

Tr{AD2u}dµ.

So, we are left to show that∫ (
F

(k)
N + (x′′, ηk)

)
∂kudµN →

∫ (
F (k) + (x′′, ηk)

)
∂kudµ as N →∞.

Since F (k) ∈W1Cp,κ∗ , by Corollary 5.3, there exists a sequence Gk,n ∈D such
that ‖F (k) −Gk,n‖1,p,κ∗ → 0 as n→∞. Then∫

X
F (k) ∂ku(dµN − dµ)

=
∫
X

Gk,n ∂ku(dµN − dµ)+
∫
X

(
F (k) −Gk,n

)
∂ku(dµN − dµ).
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Since µN → µ weakly, we conclude that the first term vanishes as N →∞ for all
n ∈N. On the other hand, the second term vanishes as n→∞ uniformly in N ∈N

since, by (A.3), ∫
X

∣∣F (k) −Gk,n

∣∣(dµN + dµ)

≤ ∥∥F (k) −Gk,n

∥∥
1,p,κ∗

∫
�p,κ∗(dµN + dµ)

≤
(
C +

∫
�p,κ∗ dµ

)∥∥F (k) −Gk,n

∥∥
1,p,κ∗ .

Since (x′′, ηk)= (x, η′′k ), the same arguments as above can be applied to (x′′, ηk).
Furthermore, by (F2c), (F2d) for R > 0,∫ ∣∣F (k)

N − F (k)
∣∣|∂ku|dµN

≤
∫
{�p,κ∗≤R}

∣∣F (k)
N − F (k)

∣∣|∂ku|dµN

+ 2 sup
{�p,κ∗≥R}

ω(�p,κ∗)‖∂ku‖∞
∫

�p,κ∗ dµN.

By (A.1) and (A.3) first letting N →∞ and then R→∞, the left-hand side of the
above inequality goes to zero. So, (2.19) follows and (i) is completely proved.

(ii) Let µ be as in (i), u ∈D , and λ > λp,κ∗ ∨ λ′2,κ1
. Then by Proposition 6.7(i)

and Theorem 6.4,∫
λgλ

(
(λ−L)u

)
dµ= λ

∫
udµ=

∫
(λ−L)udµ,(A.4)

where we used (2.19) in the last step. By Lemma 6.8, (λ − L)(D) is dense
in W1Cp,κ∗ and by Proposition 6.7(i), for f ∈W1Cp,κ∗ ,

gλ|f | ≤ ‖f ‖1,p,κ∗gλ�p,κ∗ ≤ ‖f ‖1,p,κ∗
1

mp,κ∗
Vp,κ∗

and
∫ |f |dµ ≤ ∫

�p,κ∗ dµ‖f ‖1,p,κ∗ . So, by (2.20) and Lebesgue’s dominated
convergence theorem, we conclude that (A.4) extends to any f ∈W1Cp,κ∗ replac-
ing (λ−L)u. Hence, by (6.4) and Fubini’s theorem, for every f ∈D ⊂W1Cp,κ∗ ,

λ

∫ ∞
0

e−λt
∫

ptf dµdt =
∫

udµ= λ

∫ ∞
0

e−λt
∫

udµdt.

Since t 	→ ptf (x) is right continuous by (6.5) for all x ∈Xp and bounded, asser-
tion (ii) follows by the uniqueness of the Laplace transform and a monotone class
argument. �
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REMARK A.3. One can check that if u ∈D , u= 0 µ-a.e., then Lu= 0 µ-a.e.
(cf. [21], Lemma 3.1, where this is proved in a similar case). Hence, (L,D) can
be considered as a linear operator on Ls(X,µ), s ∈ [1,∞), where we extend µ

by zero to all of X. By [25], Appendix B, Lemma 1.8, (L,D) is dissipative
on Ls(X,µ). Then by Lemma 6.8, we know that, for large enough λ, (λ−L)(D)

is dense in W1Cp,κ∗ which, in turn, is dense in L1(X,µ). Hence, the closure of
(L,D) is maximal dissipative on Ls(X,µ), that is, strong uniqueness holds for
(L,D) on Ls(X,µ) for s = 1. In case (F1+) holds or � = 0, similar arguments
show that our results in Section 4 imply that this is true for all s ∈ [1,∞) as well.
A more refined analysis, however, gives that this is, in fact, true merely under
condition (F2). Details will be contained in a forthcoming paper. This generalizes
the main result in [16] which was proved there for s = 2 in the special situation
when F satisfies (2.15) with �(x) = 1

2x2, x ∈ R, and � ≡ 0, that is, in the case
of the classical stochastic Burgers equation. For more details on the L1-theory for
the Kolmogorov operators of stochastic generalized Burgers equations, we refer
to [49].
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