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RANDOM GROWTH MODELS WITH POLYGONAL SHAPES1

BY JANKO GRAVNER AND DAVID GRIFFEATH

University of California, Davis and University of Wisconsin

We consider discrete-time random perturbations of monotone cellular
automata (CA) in two dimensions. Under general conditions, we prove the
existence of half-space velocities, and then establish the validity of the Wulff
construction for asymptotic shapes arising from finite initial seeds. Such a
shape converges to the polygonal invariant shape of the corresponding deter-
ministic model as the perturbation decreases. In many cases, exact stability is
observed. That is, for small perturbations, the shapes of the deterministic and
random processes agree exactly. We give a complete characterization of such
cases, and show that they are prevalent among threshold growth CA with box
neighborhood. We also design a nontrivial family of CA in which the shape
is exactly computable for all values of its probability parameter.

1. Introduction. Discrete local models for random growth and deposition
have been a staple of rigorous research in probability since the Hammersley and
Welsh paper [18] on first passage percolation about 40 years ago. Apart from their
role as a testing ground for probabilistic techniques, a voluminous physics litera-
ture [26, 28] testifies to their importance in understanding the evolution of natural
systems far from equilibrium. The most basic tool, introduced in [18] and ubiqui-
tous ever since, is subadditivity: the process dominates one restarted from an al-
ready occupied point. Clearly, this imposes a monotonicity property on the model,
but, as we will see, not much more. The result is the existence of an asymptotic
shape: started from a finite seed, and scaled by time, the occupied set converges to
a deterministic convex limit. Elegant as this method is, it is nonconstructive and as
a result fails to provide any detailed information about the limiting set. Thus as-
ymptotic properties of subadditive sequences are still an active area of research [2,
34]. Are there cases when the shape can be exactly identified? Research on this
topic has so far primarily focused on growth from infinite initial states, also known
as random interfaces. Methods have ranged from hydrodynamic limits based on
explicit identification of invariant measures [30, 31], to techniques arising from
exactly solvable systems in mathematical physics [14, 20], and to perturbation ar-
guments based on supercritical oriented percolation [6, 8] which imply that some
interfaces move with the speed of their deterministic counterparts. For other related
rigorous and empirical results see [16, 22, 27].
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The main aim of this paper is to extend the perturbation approach to show that
the finite limit shape of a random growth model may also agree with that of a
deterministic one. At issue is not merely whether small random errors induce small
changes (we will see that this is always the case), but rather whether the shape
can stay exactly the same. This property, which we call exact stability, is only
valid under substantial assumptions, as the model has to have opposite structure,
in an appropriate sense, from the additive one considered in [6]. In the process, we
extend the result of [3] to obtain the Wulff characterization of the invariant shape.
We also show that exact stability is far from rare; in fact, almost all members of
arguably the most natural family of two-dimensional growth models, the threshold
growth cellular automata with square neighborhood, are exactly stable. Finally, we
show how to employ exactly solvable systems to construct one example which has
a computable shape for every value of its probability parameter. (Although they
are invaluable in suggesting universal phenomena, exactly solvable examples are
extremely difficult to come by.)

The random rules we describe below can be thought of as discrete counterparts
to the KPZ equation, which in turn is touted as a universal scaling model for any
local growth and deposition process in physics [26, 28], in particular for crystal
growth [28]. This we mention because the well-studied roughening transition in
crystallography, whereby a crystal loses its polygonal shape as the ambient temper-
ature increases, produces pictures which are strikingly similar to ours [32]. While
this transition is usually thought to be an equilibrium phenomenon, the present
results at least suggest that it may have a dynamic counterpart.

We now proceed to precise formulations. Unfortunately, these require a large
number of definitions related to our previous work. Although we do not use any of
the results from [10] explicitly, a glance at that paper’s first two sections may help
to motivate what follows.

Our basic framework consists of two-state cellular automata (CA). In general,
such a cellular automaton is specified by the following two ingredients. The first
is a finite neighborhood N ⊂ Z2 of the origin, its translate x + N then being the
neighborhood of point x. By convention, we assume that N contains the origin.
Typically, N = Bν(0, ρ) = {x :‖x‖ν ≤ ρ}, where ‖·‖ν is the �ν -norm. When ν = 1
the resulting N is called the range ρ Diamond neighborhood, while if ν = ∞ it
is referred to as the range ρ Box neighborhood. (In particular, range 1 Diamond
and Box neighborhoods are also known as von Neumann and Moore neighbor-
hoods, resp.) The second ingredient is a map π : 2N → {0,1}, which flags the suf-
ficient configurations for occupancy. More precisely, for a set A ⊂ Z2, we define
T (A) ⊂ Z2 by adjoining every x ∈ Z2 for which π((At −x)∩N ) = 1. Then, for a
given initial subset A0 ⊂ Z2 of occupied points, we define A1,A2, . . . recursively
by At+1 = T (At ). Accordingly, occupied and vacant sites will often be denoted by
1’s and 0’s, respectively. Our main focus will be starting states A0 which consist
of a possibly large, but finite set of 1’s surrounded by 0’s. However, we will also
consider other initial states, namely half-spaces and wedges.
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We restrict to two-dimensional dynamics for two main reasons. First, almost
every step in higher dimensions introduces new technical complications, some
quite serious. In fact, there are new phenomena, and the classification of Theo-
rem 2 below becomes much more complex. Second, some of our techniques are
intrinsically two-dimensional, such as the explicitly solvable example of Section 6,
the lattice geometry and analytic number theory of Section 7, and even combinato-
rial properties studied in [3]. Nevertheless, some results—notably Theorem 1—do
readily generalize to arbitrary dimension.

Our key assumption is that the CA dynamics are monotone (or attractive), that
is, S1 ⊂ S2 implies π(S1) ≤ π(S2). Note that specifying a monotone dynamics is
the same as specifying an antichain of subsets of N : the inclusion minimal sets S

with π(S) = 1 having the property that none of them is a subset of another. Surpris-
ingly, the number of possible monotone dynamics (known as a Dedekind number)
is possible to estimate for large N . Some typical properties of monotone CA are
also known [23]. Unfortunately, it turns out that for large box neighborhoods the
asymptotic proportion of supercritical rules (see the definition below) is negligible.
Other interesting properties seem to present great difficulties. In studying typical
monotone CA rules, it is therefore desirable to restrict to a simpler class.

A natural such class consists of totalistic monotone CA, those for which π(S)

depends only on the cardinality |S| of S. In other words, there exists a threshold
θ ≥ 0 such that π(S) = 0 whenever |S| < θ and π(S) = 1 whenever |S| ≥ θ . This
much studied case is also known by the name threshold growth (TG) CA.

Induced by T is a growth transformation T̄ on closed subsets of R2, given by

T̄ (B) = {
x ∈ R2 : 0 ∈ T

(
(B − x) ∩ Z2)}

.

In words, one translates the lattice so that x ∈ R2 is at the origin, and applies T to
the intersection of Euclidean set B with the translated lattice. It is easy to verify
that the two transformations are conjugate,

T (B ∩ Z2) = T̄ (B) ∩ Z2.

It will become immediately apparent why T̄ is convenient. Let S1 ⊂ R2 be the set
of unit vectors and let

H−
u = {x ∈ R2 : 〈x,u〉 ≤ 0}

be the closed half-space with outward normal u ∈ S1. Then there exists a w(u) ∈ R
so that

T̄ (H−
u ) = H−

u + w(u) · u
and consequently

T t (H−
u ∩ Z2) = (

H−
u + tw(u) · u) ∩ Z2.

If w(u) > 0 for every u we call the CA supercritical. A supercritical CA hence
enlarges every half-space. This is equivalent to existence of a finite set A0 which



184 J. GRAVNER AND D. GRIFFEATH

fills space, that is,
⋃

t≥0 At = Z2 [3, 10]. All initial sets will be assumed to fill
space from now on. Set

K1/w = ⋃{[0,1/w(u)] · u :u ∈ S1}
and let L be the polar transform of K1/w , that is,

L = K∗
1/w = {x ∈ R2 : 〈x,u〉 ≤ w(u)}.

Then one can prove the following limiting shape result for any finite A0:

lim
t→∞

At

t
= L,

where the limit is taken in the Hausdorff metric. In short, the shape L = L(π) is
obtained as the Wulff transform of the speed function w :S1 → R, which for small
neighborhoods is readily computable by hand or by computer. Furthermore, L is
always a polygon and the Hausdorff distance between At and tL is bounded in
time t [9–13, 37].

To formulate the stability properties of L under random perturbations, we begin
by introducing a general monotone random dynamics. The function π differs from
the one described above in that it has values in [0,1]. Upon seeing a set of occupied
sites x + S in its neighborhood at time t , a site becomes occupied at time t + 1
independently with probability π(S). To obtain a monotone rule we require that
π(S1) ≤ π(S2) whenever S1 ⊂ S2.

More precisely, introduce i.i.d. vectors ξx,t , x ∈ Z2, t = 0,1,2, . . . , with 2|N |
coordinates ξx,t (S), which are Bernoulli(π(S)) for every S ⊂ N . We assume that
these are coupled so that ξx,t (S1) = 1 implies that ξx,t (S2) = 1 whenever S1 ⊂ S2.
The construction of such a coupling is left as an exercise for the reader. The random
sets A1,A2, . . . are now determined by

At+1 = {
x : ξx,t

((
(x + N ) ∩ At

) − x
) = 1

}
.

To avoid some trivialities and inessential complications, we assume that 1’s only
grow by contact: π(∅) = 0, and that π is symmetric: −N = N and π(−S) =
π(S). Much more substantial is the assumption that π solidifies: π(S) = 1 when-
ever 0 ∈ S. These three properties, together with monotonicity, will be our standing
assumptions throughout the paper.

For every random π , we set p = min{π(S) :π(S) > 0}, define the associated
deterministic dynamics by its map πd(S) = 1{π(S)>0}, and label the iteration trans-
form T as before. We will say that π is a p-perturbation of the CA T . For many
purposes the standard p-perturbation, which has π(S) = p whenever π(S) > 0,
suffices.

We say that a p-perturbation of T has shape Lπ if

lim
t→∞

At

t
= Lπ
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almost surely, in the Hausdorff metric, for every finite initial set A0 which fills
space. We say that T has exactly stable shape L if there exists a p < 1 such that
Lπ = L (which of course subsumes the existence of the shape Lπ ) for the stan-
dard, and hence any, p-perturbation π . For a standard perturbation, we also write
Lp = Lπ . Thus L1 = L. Recall that the deterministic growth at time t is included
in a constant fattening of tL1; hence the same is true of any p-perturbation.

As already mentioned, such considerations are in the general direction of the
vintage Durrett–Liggett flat edge result [6]. To describe their result in our con-
text, recall that a deterministic CA is additive if π(S) equals 1 precisely when
S is nonempty. In this case K1/w = N ∗ and L = co(N ). Moreover, any standard
perturbation is a first passage percolation model, and as such has an almost sure
(deterministic) limiting shape Lp for each p > 0 [5, 29]. For the von Neumann
neighborhood, Durrett and Liggett proved that, if p is close to 1, then Lp is close
to L and in fact inherits from L flat edges in the four diagonal directions. However,
they show that Lp is not equal to L, due to the fact that its extent in the coordinate
directions is strictly less than 1.

The existence of a limiting shape Lπ for general random dynamics does not
immediately follow from standard subadditivity arguments. A sufficient condition
is a property of T we call local regularity. Namely, for every initial state A0 there
exists a constant C so that the following is true for every fixed (deterministic)
assignment of ξx,t : every x ∈ At at distance at least C from A0 has an occupied set
G ⊂ At entirely within distance C of x such that G fills space.

Note that local regularity is a combinatorial condition involving every possi-
ble way At can evolve, and thus has nothing to do with probability. At first it
seems a condition not likely to be often satisfied, but the opposite appears true.
One can easily check local regularity directly for many cases with small N , and
it holds generally for box neighborhood TG CA. All known counterexamples in-
volve “strange” neighborhoods [3]. Under this condition, it can readily be shown
that Lπ exists.

Besides finite shapes, limiting profiles from half-spaces are of considerable in-
terest. The first reason is that their Monte Carlo approximations can be computed
much more efficiently (see Remark 2 in Section 8). The second is that they are
important for shapes from other infinite sets, such as wedges and holes [13]. For
finite seeds also, the Wulff transform (see Corollary 1.1 below), which expresses
the asymptotic shape in terms of half-space velocities, is very handy. However, the
limit theorem in [3] does not extend to infinite seeds, as restarting requires an a
priori upper bound on fluctuations. Here we provide the missing step, which es-
tablishes the following large deviations bound, referred to as the Kesten property
in [13]. (See [21] for a similar result in the first passage context.)

THEOREM 1. Let π be a p-perturbation of a locally regular supercritical CA
and let the initial set be A0 = H−

u ∩Z2 for u ∈ S1. Then there exists a deterministic
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wπ(u) > 0 such that

H−
u + t

(
wπ(u) − ε

) · u ⊂ At ⊂ H−
u + t

(
wπ(u) + ε

) · u
within the lattice ball of radius t2 with probability at least 1 − exp(−cεt). Here
cε > 0 as soon as ε > 0.

COROLLARY 1.1. For a p-perturbation π of a locally regular CA and finite
initial sets which fill space,

At

t
→ Lp = K∗

1/wπ
,

in the Hausdorff metric, almost surely.

Next is a generalization of the flat edge result [6]. In particular this implies that
Lp → L1 when p → 1, as promised.

PROPOSITION 1.2. Given a standard p-perturbation of a locally regular CA
and any ε > 0, there exists a p < 1 close enough to 1 that Lp agrees with L1
outside the ε-neighborhood of the set of corners of L1.

Our second theorem provides necessary and sufficient conditions for exact sta-
bility. Before its statement, it is instructive to look at the three supercritical Moore
TG CA. The θ = 1 case is additive and exact stability cannot hold. (This can be
proved by the methods of [6] or [25], but we give a different argument in Sec-
tion 3.) For θ = 2 one finds that K1/w = co(N ) and hence this is a quasi-additive
case, that is, a CA with convex K1/w . Quasi-additive CA share many properties
with additive ones [10, 11, 13], and lack of exact stability turns out to be among
them. Finally, in the θ = 3 case K1/w has 16 vertices, of which three successive
ones are (0,1), (1,2), (1,1), and the remaining 13 are then continued by sym-
metry. (This set, which the reader is invited to compute, is the innermost region
of Figure 7.) Eight of these are the only points that K1/w shares with the bound-
ary of its convex hull. In a sense, the fact that these eight vertices form a discrete
set makes this CA as unlike a quasi-additive one as possible. This turns out to be
precisely the condition needed for exact stability.

Accordingly, we denote

∂K ′ = ∂(K1/w) ∩ ∂(co(K1/w)),

and describe the relevance of properties of this set in our main result.

THEOREM 2. Consider a supercritical locally regular CA (which also satisfies
our standing assumptions) given by T , with limiting shape L1, and its standard
p-perturbation. There are three possibilities:

Case 1. ∂K ′ consists of isolated points, no three of which are collinear.
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Then the following hold for p < 1 close enough to 1:
(S1) Lp = L1.
(S2) Convergence to L1 is tight: for any ε > 0, there exists an M so that,

for any t and x ∈ tL1, P(x is within M of At) ≥ 1 − ε.
(S3) There exists a large C so that, with probability 1, (t − C log t)L1 ∩

Z2 ⊂ At eventually.
Case 2. ∂K ′ consists of isolated points, three of which are collinear.

Then (S1) and (S3) still hold for p < 1 close enough to 1, but tightness
(S2) no longer does. Instead, for any p < 1 there exists a c > 0 so that a
corner of tL1 is eventually at distance at least c log t from At , a.s.

Case 3. ∂K ′ includes a line segment.
Then (S1) no longer holds. Instead, for any p < 1 there exists a c > 0

so that a corner of tL1 is at distance at least ct from At , a.s.

Figure 1 shows a box neighborhood TG example for each of the three cases,
from left to right, with periodic shading of updates: Case 1 (range 1, θ = 3,
p = 0.9), Case 2 (range 2, θ = 7, p = 0.95) and Case 3 (range 2, θ = 8, p = 0.95).

The fundamental difference between Moore θ = 2 and θ = 3 TG CA is their
mistake-fixing ability, which we now illustrate. Suppose we start each case with
a large copy of the invariant shape and remove a finite chunk of occupied sites at
the boundary. Regardless of the location of such a hole, the θ = 3 case eventu-
ally repairs (or “erodes”) it and thus the hole’s effect is bounded in time. Figure 2
provides a demonstration. This eroding property can be used to favorably com-
pare the random dynamics on infinite wedges, determined by the corners of L1, to
Toom rules [35]. The corners are then patched together by an oriented percolation
comparison in the middles of the edges. In Case 2, mistakes are still fixed, but for
wider wedges than in Case 1, and corners must be rounded off accordingly.

By contrast, the θ = 2 TG CA can only repair holes away from the corners,
while those at the corners have a lasting effect, as also seen in Figure 2. In a random
dynamics, such mistakes pile up and induce a linear slowdown.

FIG. 1. The three cases of Theorem 2.
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FIG. 2. Error correcting for θ = 2 and θ = 3.

Given the exact stability criterion of Theorem 2, it is natural to ask whether a
typical supercritical CA has an exactly stable shape or not. As already mentioned,
properties of typical monotone CA seem difficult to characterize. We will thus re-
strict our attention to a special family, TG CA with range ρ box neighborhoods Nρ .
These are supercritical for θ ≤ ρ(2ρ + 1) [10]. The smallest examples are already
illuminative. As N1 has already been discussed, N2 is next in line and turns out to
have θ = 1,2,3,5,8 in Case 3, θ = 7,9,10 in Case 2, and θ = 4,6 in Case 1. For
very large ranges, θ ’s in Case 3 form a small minority, as the following theorem
demonstrates.

THEOREM 3. Fix an arbitrary ε > 0. Among all supercritical range ρ box
neighborhood TG CA, the proportion of those which are not exactly stable
is for large ρ between 1/ logh+ε ρ and 1/ logh ρ. Here h = 2(1 − 1/ log 2 −
log log 2/ log 2) ≈ 0.172.

The proof of Theorem 3 connects the number of θ ’s which lack exact stability
to the number of distinct products of pairs of natural numbers between 1 and ρ.
This latter is known as the Linnik–Vinogradov–Erdős problem, for which sharp
asymptotic bounds were given by Hall and Tenenbaum [17]. We have no result
on the division between Cases 1 and 2, but conjecture that Case 2 is much more
prevalent.

The rest of the paper is organized as follows. Section 2 contains the proof of a
slightly weaker version of Theorem 1 and its Corollary 1.1. Section 3 deals with
Case 3, while Section 4 lays the geometric groundwork for the remaining cases and
proves Proposition 1.3. In Section 5 we introduce Toom’s method and complete
the proof of Theorem 2. Section 6 is devoted to a single example for which we can
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compute the shape for all values of the probability parameter p. In Section 7 we
take a closer look at the collection of K1/w’s for fixed-range box neighborhoods,
an analysis which culminates with the proof of Theorem 3. Finally, in Section 8
we finish the proof of Theorem 1 and discuss other related issues in lesser detail.

2. Proof of Theorem 1. Recall that Theorem 1 deals with supercritical locally
regular CA and their p-perturbations. These will be our context throughout this
section. We will allow all constants C and c to depend on T and p in addition to
their explicitly stated dependencies. (We emphasize that these constants will not,
however, depend on the direction u.) In this section we only obtain a lower bound
of the form 1 − exp(−cεt/ log2 t) on the probability of the event in Theorem 1.

Many times below we will restart the random dynamics at a deterministic time
or a random stopping time τ . This simply means that only ξx,t with t ≥ τ are used,
with an initial state at time τ which will be specified.

LEMMA 2.1. Assume that a finite A0 � 0 fills the plane. Assume that x is at
distance n from the origin. Then there exist constants c,C > 0 (depending on A0)
so that P(x /∈ T k(A0)) ≤ e−ck for k ≥ Cn.

PROOF. Call x surrounded at time t if x + A0 ⊂ At . By supercriticality,
there exists a time t0 at which ±e1 and ±e2 are all surrounded in the deter-
ministic dynamics. Let C0 = |T t0(A0)|. If p0 = pC0 , then ±e1 and ±e2 are all
surrounded at time t0 with probability at least p0. Take a shortest lattice path
℘ : 0 = x0, x1, . . . , xn = x. We now define i.i.d. geometric(p0) random variables
T1, . . . , Tn as follows. Run the dynamics for time t0. If x1 is surrounded at this time,
T1 = 1, otherwise restart the dynamics with A0 at time t0. Now run the restarted
dynamics for time t0; if it surrounds x1 at this time, T1 = 2, otherwise restart again
with A0, and so on. In general, on the event {Ti = k}, Ti+1 is the minimal � ≥ 1 for
which the dynamics restarted at time k + (� − 1)t0 with xi + A0 surrounds xi+1 at
time t0.

By monotonicity and exponential Chebyshev,

P
(
x /∈ T kt0(A0)

) ≤ P(T1 + · · · + Tn ≥ k) ≤ e−λkE(exp(λT1))
n,

for any λ > 0. To conclude the proof, choose λ small enough that E(exp(λ ×
T1)) < ∞. �

Note that this lemma implies that wπ(u), if it indeed exists, is bounded away
from 0 uniformly in u, for any p > 0.

LEMMA 2.2. Assume that |T (A0) \ A0| = n, and start the p-perturbation
from the same initial set A0. If τ = inf{t :T (A0) ⊂ At }, then E(τ) ≤ p−1 ×
(logn + 3).
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PROOF. Note that all such sites attempt to get occupied simultaneously, each
of them at each time with probability p. Hence τ is geometric(p) for n = 1.
For n ≥ 2, write a = − log(1 − p) and divide the sum below into terms with
k ≤ a−1 logn and with k > a−1 logn to obtain

E(τ) =
∞∑

k=0

(
1 − (1 − e−ak)n

)

≤ a−1 logn + 1 +
∞∑
i=0

(
1 − (1 − e−ain−1)n

)

≤ a−1 logn + 1 −
∞∑
i=0

n · log(1 − e−ain−1)

≤ a−1 logn + 1 + 2
∞∑
i=0

e−ai

= a−1 logn + 1 + 2(1 − e−a)−1,

and p = 1 − e−a < a. �

PROOF OF THEOREM 1 WITH WEAKER PROBABILITY ESTIMATE. Without
loss of generality, we can assume that u lies on or above y = |x|, that is, 〈u, e2〉 ≥
1/

√
2. Let Ft = σ {ξx,s : s ≤ t − 1, x ∈ Z2}, t = 1,2, . . . .

Let Tn be the first time (0, n) becomes occupied started from H−
u and set T̄n =

Tn ∧ Cn. By Lemma 2.1, P(Tn �= T̄n) ≤ e−cn, for a large enough C and some
c > 0. The crucial step is this L∞ bound:

|E(T̄n|Fs+1) − E(T̄n|Fs)| ≤ C′ logn,(2.1)

for any s ≤ Cn and some constant C′.
Recall that T̄n is a deterministic function of ξx,t where (x, t) ranges over all

space-time sites. As N is finite, T̄n depends only on a small subset of these
variables. To be more precise, let Ln comprise the sites (x, t) for which T̄n de-
pends on ξx,t . Then |Ln| ≤ Cn3 and we can assume that the filtration ignores
all other sites. At time s ≤ Cn, let ∂As consist of all the sites outside As which
would become occupied if the deterministic dynamics were applied to As . Triv-
ially, |∂As | ≤ |Ln|.

Restart the dynamics at time s + 1 with As . Let τs be the waiting time after
this at which all sites in ∂As are occupied, that is, τs = inf{k : ∂As ⊂ As+1+k}. By
Lemma 2.2, E(τs |Fs) ≤ C′′ logn.

We now prove (2.1). We will repeatedly use the strong Markov property and
monotonicity of the dynamics. To get the lower bound in (2.1), assume the worst
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case: no sites outside As (i.e., in ∂As ) get occupied, and therefore the dynamics
faces an unchanged situation at time s + 1. Therefore,

E(T̄n|Fs+1) ≤ E(T̄n|Fs) + 1.

For the upper bound, assume that Fs+1 reveals that all sites in ∂As get occupied.
Before we know Fs+1, we can only assume this happens after time τs , and so the
dynamics with the additional information is dominated by the one restarted at time
s + τs from the occupied set As ∪ ∂As . It follows that

E(T̄n|Fs) ≤ E(T̄n|Fs+1) + E(τs |Fs) ≤ E(T̄n|Fs+1) + C′′ logn.

This proves (2.1).
Now let an = E(Tn), ān = E(T̄n). By (2.1) and Azuma’s inequality [19, 33],

P(|T̄n − ān| > s) ≤ 2 exp
(−cs2/(n log2 n)

)
.(2.2)

However,

|an − ān| ≤ E
(
Tn1{Tn≥Cn}

)
,

which is bounded by Lemma 2.1. From this it follows that

P(|Tn − an| > s) ≤ P(|T̄n − ān| > s/2 − C) + P(Tn − T̄n > s/2),

and after another application of Lemma 2.1 and suitable redefinition of c,

P(|Tn − an| > s) ≤ 2 exp
(−cs2/(n log2 n)

) + e−cs .(2.3)

For an integer i, let yi be the largest j for which (i, j) ∈ H−
u . Then let T ′

n

be the first time at which all sites in B ′ = {(i, yi + n) : |i| ≤ n2} are occupied.
Moreover, let T ′′

n be the first time at which all the sites B ′′ = {(i, j) : |i| ≤ n2, yi +
n−C ≤ j ≤ yi +n} are occupied, where C is the diameter of the neighborhood N .
Restart the dynamics at time T ′

n with the occupied set at this time. Note that local
regularity implies that within a constant time the deterministic dynamics occupies
a large ball within a constant distance of any occupied point. By monotonicity, the
deterministic dynamics would occupy B ′′ in t1 additional time steps, where t1 is a
constant which only depends on T . Applying Lemma 2.2 t1 times one thus obtains

E(T ′′
n − T ′

n) ≤ C logn.

Furthermore, let T ′
n(i) be the time the dynamics reaches (i, n + yi) and let

Tn(i) be the first time (i, n + yi) becomes occupied from the modified initial set
yie2 + H−

u . The reason for this convoluted condition is that Tn(i) with the same n

are identically distributed, but this is not true for T ′
n(i).

To deal with different starting sets for T ′
n(i), let Sn be the time the random

dynamics fills H−
u ∩ B(0, n2) from −e2 + H−

u (which is contained in all starting
sets). By a similar argument as in the previous paragraph

E(Sn) ≤ C logn.
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Therefore, with a′
n(i) = E(T ′

n(i)),

0 ≤ a′
n(i) − an ≤ E(Sn) ≤ C logn.

Furthermore, the argument leading to (2.3) can be carried out with Tn replaced by
T ′

n(i) and an by a′
n(i).

Therefore, for s > C logn,

P(Tn − T ′
n ≥ s) ≤ P(|Tn − an| > s/4) + ∑

|i|≤n2

P
(|T ′

n(i) − an(i)| > s/4
)

≤ Cn2 exp(−cs2/n log2 n) + Cn2e−cs .

It follows that

E(Tn − T ′
n) ≤ C

√
n log2 n +

∫ ∞
C

√
n log2 n

P (Tn − T ′
n ≥ s) ds,

which after a short computation implies that E(Tn − T ′
n) ≤ C

√
n log2 n.

We are almost done, but need an estimate for yet another approximation to Tn.
Let T ′′′

n be the first occupation time of (0, n) started from B ′′ − ne2 = {(i, j) :
|i| ≤ n2, yi − C ≤ j ≤ yi}. Then, for 0 < k < Cn,

P(T ′′′
n − Tn > k) ≤ P(T ′′′

n �= Tn) ≤ P(Tn > Cn) ≤ e−cn,

while for k ≥ Cn,

P(T ′′′
n − Tn > k) ≤ P(T ′′′

n ≥ k) ≤ e−ck

by Lemma 2.1. Hence E(T ′′′
n − Tn) is bounded above by a constant.

Now assume that 0 ≤ m ≤ n. Restarting the growth process at time Tn, we get

am+n ≤ am + an + E(T ′′
n − Tn) + E(T ′′′

m − Tm) ≤ am + an + C
√

n log2 n.

By the deBruijn–Erdős subadditive theorem [33], an/n converges to a finite pos-
itive number a, which of course depends on p and u. We declare wπ(u) =
〈u, e2〉/a.

To finish the proof, take first an (i, j) outside H−
u + twπ(u)(1 + ε) · u. Let

n = j − yi ≥ twπ(u)(1 + ε)/〈u, e2〉 = t (1 + ε)/a. Then

P
(
(i, j) ∈ At

) = P
(
T ′

n(i) ≤ t
)

≤ P
(
T ′

n(i) ≤ na/(1 + ε)
)

≤ P
(|T ′

n(i) − a′
n(i)| ≥ naε/2

)
≤ exp(−cn/ log2 n),

for a large enough n. This proves the weaker version of the upper bound in Theo-
rem 1. The lower bound is proved similarly. �
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Several remarks are in order. First, note that the proof avoids the subadditive
ergodic theorem altogether, by combining properties of subadditive sequences with
large deviation estimates.

Second, it is in fact possible, by the same methods, to obtain a superadditive
relation for an of the same order, namely,

am+n ≥ am + an − C
√

n log2 n.

A closer look at the proof of the deBruijn–Erdős theorem (from [33]) then gives a
rate of convergence for an: |an − a| = O(log2 n/

√
n ), which can be used to show

that, within a lattice ball of radius t2, At is a.s. between (t ± C
√

t log3 t) · wπ(u) ·
u + H−

u .
Third, the proof uses supercriticality and regularity only to “fill in.” For any

monotone, local, interface solidification with automatic coherence the proof re-
mains valid. While we will not attempt to precisely define the concept, automatic
coherence certainly holds when the interface moves upward (i.e., u = e2) and the
growth is such that an empty site can never have an occupied site directly above
it. Perhaps the simplest example is the random dynamics in which a site becomes
occupied for sure with two or more occupied neighbors in its von Neumann neigh-
borhood and with probability p with an occupied site directly below. Another class
of examples are the K-exclusion processes [31]. For some of these examples, the
fluctuation estimates mentioned above may be new.

Finally, and curiously, there seems no way to make the proof work for general
monotone dynamics which do not solidify. Such cases thus remain an intriguing
challenge.

LEMMA 2.3. Fix an a > 0 and ε > 0. Then there exist constants c,C so
that the following holds. Start the dynamics from A0 consisting of sites inside
(H−

u \ (−Cu + H−
u )) ∩ B(0,Cn). Then, An includes all sites inside B = ((H−

u +
nwπ(u)(1 − ε)u) \ H−

u ) ∩ B(0,Cn) with probability at least 1 − e−cn/ log2 n.

PROOF. Let T ′(x) [resp. T (x)] be the first occupation time of x ∈ B started
from the stated A0 (resp. from H−

u ). By Lemma 2.1, P(supx∈B T (x) > Cn) ≤
e−cn. However, by a “speed of light” argument, on {supx∈B T (x) ≤ Cn} the equal-
ity T (x) = T ′(x) holds for all x ∈ B . The claim now follows from Theorem 1.

�

LEMMA 2.4. The function wπ :S1 → R is continuous.

PROOF. Again assume that 〈u, e2〉 ≥ 1/
√

2. For a fixed large C and small
ε > 0, H−

v − Ctεe2 ⊂ H−
u ⊂ H−

v + Ctεe2, within the lattice ball of radius Ct ,
provided ‖u − v‖2 < ε/2. Let Ev(k, t) be the event that all sites on the y-axis up
to k are occupied at time t started from H−

v .
By Lemma 2.3 and Theorem 1, both the events Ev((1 − Cε)wπ(u)t/〈v, e2〉, t)

and Ev((1 + ε)wπ(v)t/〈v, e2〉, t)c happen with probability (very) close to 1. This
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is only possible if (1−Cε)wπ(u) ≤ (1+ε)wπ(v). An analogous reverse inequality
is proved similarly. �

PROOF OF COROLLARY 1.1. An ε > 0 will be fixed throughout this proof.
For any direction u, Theorem 1 implies that with probability exponentially close

to 1

At ⊂ H−
u + twπ(u)(1 + ε) · u.

It follows that with probability 1
At

t
⊂ H−

u + wπ(u)(1 + ε) · u,

eventually. This is therefore true simultaneously for any finite collection of u’s and
then by Lemma 2.4,

At

t
⊂ ⋂

u∈S1

H−
u + wπ(u)(1 + ε)2 · u = (1 + ε)2K∗

1/wπ

eventually.
For the lower bound, take a bounded, strictly convex, C2 set Kε ⊃ K1/wπ (1+ε).

Then Lε = K∗
ε is C2 and has for small enough δ > 0 the property described in the

next paragraph.
Start with A0 consisting of sites inside nLε . Take k = n2/δ Euclidean points

x0, . . . , xk−1 on the boundary of nLε , chosen so their directions are equidistant
vectors in S1, and let u0, . . . , uk−1 be the outside normals to nLε at the chosen
points. The enlarged set

Ln(δ) =
k−1⋂
i=0

xi + (1 − δ)
√

nwπ(ui)ui + H−
ui

includes (n + √
n )Lε .

Now run the random dynamics from A0 for
√

n time steps. Since Lε has C2

boundary, we need to go just a constant distance inside to “see” the relevant por-
tion of H−

ui
. To be more precise, ((−Cui + H−

ui
) \ (−2Cui + H−

ui
)) ∩ B(xi,C

√
n )

is included in nLε , for all i. By Lemma 2.3, with probability at least 1 −
exp(−c

√
n/ log2 n), all the sites in (n + √

n )Lε become occupied.
Repeat the above procedure (running the random dynamics for

√
n time steps)

3
√

n times. As a result, (n+j
√

n )Lε ⊂ An+j
√

n for j = 1, . . . ,3
√

n (in particular,

4nLε ⊂ A4n), with probability at least pn = 1 − exp(−c
√

n/ log2 n).
Now fix an a < 1 and find a large k0 so that

∏
n≥22k0 pn > a. Let T0 be the first

time 22k0Lε ⊂ At . By what we proved so far,

P
(
(22k + j2k)Lε ⊂ A22k+j2k−T0

for j = 0, . . . ,3 · 2k, k = 1,2, . . .
)
> a.

We thus have a strictly increasing sequence of integers bm with bm+1 − bm =
o(bm), such that

bm(1 − ε)Lε ⊂ Abm
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eventually, with probability at least a, thus a.s., as a was arbitrary. For any t be-
tween bm and bm+1,

t (1 − ε)2Lε ⊂ bm(1 − ε)Lε ⊂ Abm ⊂ At

eventually, finishing the proof of the lower bound. �

3. Lack of exact stability in Case 3. Fix a u ∈ S1. Let �u be the boundary
line of −w(u) · u + H−

u . Note that w(u) is the largest number h > 0 for which
π((−h · u + H−

u ) ∩ N ) = 1. Therefore, N ∩ �u must contain at least one site.
In general, for any line � in the plane which does not go through the origin, let its

open (resp. closed) lower cut Lo(�) [resp. L−(�)] be the set of points in N which
lie in the open (resp. closed) half-space of �c which does not contain the origin.
We emphasize here (as this convention will be used extensively) that the points
in Lo(�) will be called below the line �, and that left and right on the line are from
the perspective of an observer who stands on � and looks toward the origin.

We will make good use of duality between lines in K1/w and points of N in
the sequel. The next lemma is our first example of this duality. To illustrate its
statement (as well as the introduced terminology), let us consider an example.
Assume that we are dealing with a TG CA and fix a direction u. Suppose also
that �u contains an xu ∈ N such that a line � obtained by a small rotation of �u

around xu has exactly θ −1 sites in Lo(�). Note that for a sufficiently small rotation
no other site but xu is in �∩N . (An example for the range 2 Box TG CA with θ = 8
is depicted on the right-hand side of Figure 3.) Therefore, for v close enough to u,

FIG. 3. Illustration of Lemma 3.1 and its proof.
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�v is obtained by rotation of �u around xu. A little geometric argument involving
polar coordinates then shows that the boundary of K1/w must be flat at u/w(u).
The lemma makes a stronger and more general statement and is illustrated by the
left-hand side of Figure 3.

LEMMA 3.1. The following are equivalent for a u ∈ S1.

(1) There exists a line through u/w(u) which in a small neighborhood of u/w(u)

lies in K1/w .
(2) There exists a point xu ∈ �u ∩ N so that if � is a line through xu and is a

rotation of �u by a small enough angle, π(Lo(�)) = 0.

In case ∂K1/w is locally a line at u/w(u), xu in (2) is unique. In fact, the smaller
angle between ∂K1/w and u/w(u) is the same as the smaller angle between the
vector xu and �u.

PROOF. Note that a short line segment through u/w(u) perpendicular to the
vector u0 ∈ S1 is given in polar coordinates (with the angle represented by a unit
vector v) by the collection of vectors{ 〈u,u0〉

w(u)
· v

〈v,u0〉 :‖v − u‖ < α

}
,

for a small α > 0.
Assume first that the statement (2) holds. Let u0 = −xu/‖xu‖ be the unit vector

pointing from xu to the origin. Then (2) says that for v close enough to u, w(v) ≤
w(u)〈v,u0〉/〈u,u0〉. It follows that

1

w(v)
≥ 1

w(u)

〈u,u0〉
〈v,u0〉 .(3.1)

The polar representation of a line mentioned above immediately demonstrates the
implication (2) ⇒ (1).

To prove the reverse implication, note that (1) implies that (3.1) holds for
some u0, and let x′

u = −w(u)u0/〈u,u0〉. Then x′
u has the properties required of xu,

except it may not lie in N . However, we can let xu be the closest site in �u ∩ N .
(We can in fact go in either direction from xu.) The fact that N is discrete ensures
that a parallel translation from x′

u to xu of any line � close to �u does not pass
through any site of N . Thus (2) is satisfied.

To prove the last statement, note that two different xu would, by (3.1), produce
two distinct open line segments, which would meet at u/w(u) and which would
both be included K1/w . But then a flat portion of ∂K1/w near u/w(u) would be
impossible. �

LEMMA 3.2. Fix a u ∈ S1 which satisfies the condition of Lemma 3.1 and pick
a corresponding xu. For v close enough to u, the concave wedge Q = H−

u ∪ H−
v

satisfies T̄ (Q) ⊂ −xu + Q. When ∂K1/w is locally a line at u/w(u), Q is invari-
ant: T̄ (Q) = −xu + Q.
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PROOF. The first part follows from Lemma 3.1: a point in T̄ (Q)∩(−xu +Q)c

would imply that a point on the boundary of −xu + Q sees a sufficient con-
figuration in the interior of Q, but clearly −xu is in the most advantageous
position for this. This would translate, for � as in (2) of Lemma 2.1, into
π(Lo(�) ∪ Lo(�u)) = 1, but if the rotation is sufficiently small (by discreteness
of N ) (Lo(�) ∪ Lo(�u)) ∩ N = Lo(�) ∩ N , a contradiction.

The second part also follows because in this case π(L−(�)) = 1. For, other-
wise xu could be moved to the next point in �u ∩ N for which π(L−(�)) = 1.
[Again, such a point must exist or else w(u) could be decreased.] This would con-
tradict uniqueness. �

When u satisfies the assumption of Lemma 3.2 there exists an invariant wedge
of the following form:

Q′ = (−Mv1 + H−
v1

) ∪ (−Mv2 + H−
v2

) ∪ H−
u ,

where v1 and v2 are close to, but on different sides of, u and M is large enough.
In particular, a hole of shape Q′ dug into H−

u may be translated by the dynamics,
but is never filled. If the creation of such holes is random they pile up and, as
we will demonstrate by the comparison process we now introduce, slow down the
interface.

The following randomly growing surface will be useful here and in Section 8.
At every time t = 0,1,2, . . . a site x ∈ Z has a height η′

t (x) ∈ Z+, with η′
0 ≡ 0.

We will use two versions, which we call fast and slow, of the rule for increase in
heights. Let b(x, t) be Bernoulli random variables with P(b(x, t) = 1) = p′. The
slow version evolves according to the following rule:

η′
t+1(x) =




η′
t (x) + 1, if b(x, t) = 1 and

η′
t (y) ≥ η′

t (x) for all y with |y − x| ≤ 1,

ηt (x), otherwise,

while the fast version updates as follows:

η′
t+1(x) =




η′
t (x) + 1, if b(x, t) = 1 or

η′
t (y) > η′

t (x) for some y with |y − x| ≤ 1,

ηt (x), otherwise.

Note that the reverse dynamics, ηt (x) = t − η′
t (x) changes the version and re-

places p′ by 1 − p′. We will assume that b(x, t) are not necessarily independent,
but have finite range dependence in space: if either t1 �= t2 or |x1 − x2| > r , then
b(x1, t1) and b(x2, t2) are independent.

LEMMA 3.3.

(1) For the slow version: Given any p′ > 0, there exist an α > 0 and c > 0 so that

P
(
η′

t (x) ≤ αt
) ≤ e−ct .
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(2) For the slow version: Given any ε > 0, there exist a large enough p′ and a
c > 0 so that

P
(
η′

t (x) ≤ (1 − ε)t
) ≤ e−ct .

(3) For the fast version: Given any ε > 0, there exist a small enough p′ and a
c > 0 so that

P
(
η′

t (x) ≥ εt
) ≤ e−ct .

PROOF. The proof of (1) and (2) is a last passage percolation argument.
By [24] we can in fact assume that the random variables b(x, t) are independent.
Once the neighborhood condition (η′

t (y) ≥ η′
t (x) for all y with |y − x| ≤ 1) is sat-

isfied, a site x has to wait a geometric(p′) number of time steps before it increases.
Accordingly, let g(x, s) be i.i.d. geometric with success probability p′. By a sim-
ple inductive argument, it follows that the first time Tn(x) when η′

s(x) = n ≥ 1
equals

max

{
n−1∑
i=0

g(xi, i) :xn−1 = x, xi+1 ∈ {xi − 1, xi, xi + 1} for 0 ≤ i < n − 1

}
.

Hence

P
(
η′

s(x) ≤ n
) = P

(
Tn(x) > s

) ≤ 3nP

(
n−1∑
i=0

g(0, i) > s

)
.

By an elementary large deviation computation, we get, for a fixed p′ > 0 and
a small enough α > 0, P(η′

s(x) ≤ αs) ≤ exp(−cs), which implies (1). Another
large deviation computation gives P(η′

s(x) ≤ (1 − ε)s) ≤ exp(−cs) for a fixed
ε > 0 and p′ close enough to 1. Finally, (3) follows from (2) by reversal. �

PROOF OF THEOREM 2 IN CASE 3. Let u ∈ S1 be a direction of an interior
point in a line segment of ∂K ′. Then u/w(u) belongs to the interior of a line seg-
ment of ∂K1/w (satisfying the condition of Lemma 3.1) and the corner of L which
corresponds to the edge of co(K1/w) containing u/w(u) moves, in the determinis-
tic case, with speed w(u) in direction u. The following claim will therefore finish
the proof. Start the random dynamics from A0 = H−

u ∩ Zd . Then, for some α > 0,

P
(
At ⊂ (1 − α)w(u)tu + H−

u

) ≥ 1 − e−ct .(3.2)

For simplicity, rotate the space so that u = e2. Recall that 2M is the width of
the bottom edge of Q′. Assign η̃1(i) = 0 if A1 ∩ (iMe1 + Q′) = ∅, and η̃1(i) = 1
otherwise. In general, let ηt (i) be the smallest k for which At ∩ (iMe1 − kxu +
Q′) = ∅. It is clear that η̃t is for M large enough dominated by ηt = t − η′

t where
η′

t is the slow version from Lemma 3.3 and p′ = (1 − p)k , for some appropriately
large k. The range of dependence r depends on M and angles between v1 and u

and v2 and u, but is clearly finite. Therefore, (3.2) follows from Lemma 3.3(1).
�
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4. Flat edges of shapes for p close to 1. The setup is the same as in the
previous section. In Lemma 4.1 below, the direction of a rotation of a line � is
determined by the direction of motion of the outward normal to the half-space
in �c which does not contain the origin.

The left-hand side of Figure 4 depicts a general situation in the statement and
proof of the lemma, while the right-hand side again presents a TG CA example.
This time the range 2 Box case has θ = 7 (see Figure 6). Note that if � is a rotation
of �u around x�

u by a small negative angle, then there are exactly θ − 1 = 6 sites
below �. The same is true for rotations around xr

u by a small positive angle. This
translates to two line segments on the boundary of K1/w which meet at u/w(u) at
a convex angle, of 45° in this case.

LEMMA 4.1. For a u ∈ S1, assume that near u/w(u) the boundary of K1/w

consists of two lines at interior angle below π . Then there exist x�
u, x

r
u ∈ �u ∩ N

with the following properties. If � is a small rotation of �u either through x�
u by

a negative angle, or through xr
u by a positive angle, then π(L−(�)) = 1. In fact,

the smaller angles between ∂K1/w and u/w(u) are the same as the smaller angles
between x�

u and �u and between xr
u and �u, if x�

u and xr
u are chosen to be furthest

apart.

PROOF. The argument is very similar to the one for Lemma 3.1. The lo-
cal equation for ∂K1/w to the right of u/w(u) is given by v �→ (v/w(u)) ·

FIG. 4. Illustration of Lemma 4.1.
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(〈u,u0〉/〈v,u0〉), for a suitably chosen u0. Then

1

w(v)
<

1

w(u)

〈u,u0〉
〈v,u0〉 ,(4.1)

if v is to the left of u. If x′
u = −w(u)u0/〈u,u0〉, this means that any small rota-

tion � of �u around x′
u in the positive direction has π(Lo(�)) = 1. Now simply

move x′
u rightward on �u, to the first point on �u ∩ N for which π(Lo(�)) = 0 for

small positive rotations �. Such a point must exist, or else π(Lo(�u)) = 1, which
contradicts the definition of w(u). This defines xr

u, which must be in N ∩ �, as
small rotations contain no other sites of N . The definition of x�

u is similar. �

LEMMA 4.2. Fix u ∈ S1, and x�
u, x

r
u as in Lemma 4.1, chosen as far apart

as possible. If v1 is a small positive rotation of u, then the convex wedge
W+ = H−

u ∩ H−
v1

is invariant: T̄ (W+) = −xr
u + W+. Similarly, if v2 is a small

negative rotation of u, then the convex wedge W− = H−
u ∩ H−

v2
is invariant:

T̄ (W−) = −x�
u + W−.

PROOF. This proof is completely analogous to the one for Lemma 3.2. We
omit the details. �

Note that the two wedges from Lemma 4.2 are moving toward each other. In
particular, if we now dig any finite hole in H−

u , it gets filled, as we state more
precisely in the next corollary.

COROLLARY 4.3. If v1 and v2 are as above, and

A0 = (
H−

u ∩ (−Mv1 + H−
v1

)) ∪ (
H−

u ∩ (−Mv2 + H−
v2

))
,

then

T t (A0) = tw(u)u + H−
u

for t ≥ CM .

Assume now that u1, u2 ∈ S1 are such that u1/w(u1) and u2/w(u2) are on the
boundary of co(K1/w), and that u2 is a positive (counterclockwise) rotation of u1
(by the smaller angle between them). Assume also that for small positive (resp.
negative) rotations v of u2 (resp. u1), v/w(v) is not on the boundary of co(K1/w).
This assumption always holds in Cases 2 and 3 of Theorem 2 when u1/w(u1) and
u2/w(u2) are vertices of co(K1/w), and also holds for other vectors in Case 2.
Then (

w(u1)u1 + H−
u1

) ∩ (
w(u2)u2 + H−

u2

) = z + H−
u1

∩ H−
u2

covers a vertex of L [and when u1/w(u1) and u2/w(u2) are vertices of co(K1/w)

also portions of corresponding edges of L]. The equation above defines the vector
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z = z(u1, u2). While this wedge is by itself not necessarily invariant (although
for small N it often is), a bounded perturbation with a suitably rounded corner is
superinvariant [as in (3) of Lemma 4.5 below].

LEMMA 4.4. Let u1 and u2 be as above. Apply Lemma 4.2 to u = u1 to get
the corresponding W− and x�

u. The corner of W− moves slower than H−
u2

, that is,
〈−x�

u, u2〉 < w(u2).

PROOF. The conclusion is equivalent to x�
u1

/∈ L−(�u2). But this follows be-
cause xr

u1
/∈ Lo(�u′) for any u′ between u1 and u2. [If K1/w were a straight line

between u1/w(u1) and u2/w(u2), xr
u1

would belong to �u′ for any such u′.] �

An analogous version of Lemma 4.4 of course also holds for u = u2 and the
corresponding W+.

LEMMA 4.5. Assume u1 and u2 are as in Lemma 4.4. There exists a convex
wedge Wu1,u2 which is included in, and outside a bounded neighborhood of the
corner equal to, H−

u1
∩ H−

u2
, such that the following properties hold.

(1) When the part of the edge of co(K1/w) between u1/w(u1) and u2/w(u2) is
completely included in K1/w ,

T̄
(
Wu1,u2

) = z + Wu1,u2 .

(2) When the open part of the edge of co(K1/w) between u1/w(u1) and u2/w(u2)

has empty intersection with K1/w ,

T̄
(
Wu1,u2

) ⊃ z + ((
Wu1,u2 + B2(0, α)

) ∩ Wu1,u2

)
,

for some α > 0.
(3) In every other case, T̄ (Wu1,u2) ⊃ z + Wu1,u2 .

PROOF. The condition in (2) implies that every vector v strictly between u1
and u2 has xr

u1
∈ Lo(�v) and x�

u2
∈ Lo(�v). This, together with Lemma 4.2, readily

proves (2): one simply makes Wu1,u2 start with and end with wedges considered
there, and connects them with a convex curve of small enough curvature.

The condition of (1) implies that every vector v strictly between u1 and u2
has xr

u1
∈ �v and x�

u2
∈ �v . Again, Lemma 4.2 implies that there are a succession

of invariant wedges which connect the rays with normals u1 and u2. The final
statement follows by a subdivision of the edge of co(K1/w) into subintervals of
types considered in (1) or (2). �

COROLLARY 4.6. Fix an ε > 0. There exists a convex set Lε ⊂ L, which
agrees with L outside the ε-neighborhood of its corners, so that for large
enough M ,

T̄ (M · Lε) ⊃ (M + 1)Lε.
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PROOF. The wedges from Lemma 4.5 can readily be combined to approx-
imate an arbitrarily large multiple of L, within an error confined to a constant
distance from its corners. �

Arguably, oriented percolation is the most useful comparison model in ran-
dom spatial processes. We now introduce the version we will use. While this is in
fact a random perturbation of a one-dimensional CA, it is, as the name suggests,
best to think about it as a random occupied set which tries to establish long-range
connections. Sites (m,n) ∈ Z+ × Z+ are either occupied or empty (n is often
referred to as a level). The basic ingredients are Bernoulli(p′) random variables
b(m,n), m,n ≥ 1, such that b(m1, n1) and b(m2, n2) are independent whenever
|m1 − n1| > r or n1 �= n2. (It is important that r does not depend on p′.) Pre-
scribe some occupied set in Z+ × {0}. For m ≥ 0 and n ≥ 1, (m,n) is occupied
if b(m,n) = 1 and at least one of its neighbors (m,n − 1) and (m − 1, n − 1) is
occupied.

LEMMA 4.7. Fix any α ∈ (0,1). Also fix a large integer M and let [0,M]×{0}
be occupied. If p′ is close enough to 1, then for large enough C = C(p′) the
probability of the following two events converges to 1 as M → ∞.

(1) Any (m,n) with αn ≤ m ≤ (1−α)n and n = 0,1, . . . is within distance C logn

of an occupied point.
(2) For every n there is a connection (through neighbors) of occupied points from

level n down to level 0 which stays entirely in {(m,n) : n ≥ 1, αn ≤ m ≤ αn +
M + C logn}.

PROOF. These are standard applications of contour arguments (see, e.g., [5],
so we omit the details. �

PROOF OF PROPOSITION 1.2. If yi, i = 0, . . . ,R − 1, are vectors pointing to
the R successive corners of L in a counterclockwise order, then

(M + 1)Lε =
R−1⋃
i=0

(yi + Lε).

We will now concentrate on the edge between y0 and y1. Start the random dynam-
ics from A0 = M ·Lε ∩ Z2. Say that (m,n) ∈ Z+ ×Z+ is occupied if all the lattice
sites in (n − m)y0 + my1 + MLε are at time n included in An.

If (m,n) is occupied, then both (m,n+ 1) and (m+ 1, n+ 1) are occupied with
probability at least p′ which is a power of p given by the number of lattice points
in (M + 1)Lε \ MLε . Moreover, given any configuration of occupied points on
level n, points on level n + 1 which are r apart are occupied independently. Here
r is any integer such that (ry0 + (M + 1)Lε) ∩ (ry1 + (M + 1)Lε) = ∅.
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The occupied points hence form an oriented percolation with a finite range of
dependence. For p′ close enough to 1, Lemma 4.7(1) shows that the conclusion
holds with probability which converges to 1 as M → ∞. However, this is enough
as every set is covered in almost surely finite time. �

5. Exact stability in Cases 2 and 3. We continue with the setup of the last
two sections. Let us begin with a statement of Toom’s theorem. We will only state
the version we need here (for which the proof is in [35]), although the conclusion
holds in considerably greater generality [4, 36]. A two-dimensional Toom rule is a
deterministic CA TT given by a map πT with the following property:

(T) There exists a line �T which does not go through the origin such that
πT(S) = 1 if and only if either Lo(�T) ⊂ S or N \ L−(�T) ⊂ S.

Now introduce space-time error sites, those sites (x, t) for which b(x, t) = 0.
Here b(x, t) ∈ {0,1}, x ∈ Z2, t = 1,2 . . . , are assigned before the dynamics starts.
The state of the Toom rule with errors is then given by ηt ∈ {0,1}Z2

, which satisfies
η0 ≡ 1 and

ηt+1 = TT(ηt ) ∩ {x :b(x, t + 1) = 1}, t = 0,1, . . . .

To develop some intuition, note that without errors a finite island of 0’s in a sea
of 1’s gets eroded by TT, as it is “squeezed” between two half-spaces with bound-
aries parallel to �T. (However, this island may move in the process.) Thus (T) is
often called the eroder condition. A natural question is what happens with such a
rule under persistent introduction of low-density errors.

THEOREM 5.1. If ηt (x) = 0, then there exists a Toom graph G = G(x, t),
whose vertex set is included in {(z, s) : s ≤ t, z ∈ Z2} and which satisfies the fol-
lowing properties, for some sufficiently large C > 0:

(1) The number of possible graphs G with m edges is at most Cm.
(2) For a graph with m edges there are at least m/C vertices which are error sites.
(3) For any r ≥ 0, if ηt (y) = 0 for ‖x − y‖ ≤ r , then the number of edges of G is

at least max{r/C,3}.

For the proof see [35].
In the classical application of Theorem 5.1, b(x, t) are i.i.d. Bernoulli(p). Then

P(ξt (x) = 1) converges to 1 as p → 1, uniformly in (x, t). Thus ξt has an in-
variant measure with density close to 1. This also follows when b(x, t) are not
independent, but have uniformly bounded range of dependence in spacetime.

LEMMA 5.2. Assume u1 and u2 are as in Lemma 4.5, with corresponding
wedge W = Wu1,u2 . Start a p-perturbation of T from A0 = W ∩ Z2. Consider the
following two events:
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(1) Ex,t,M = {x is within distance M of At }.
(2) F = {there is a C so that, within the lattice ball of radius t2, (t − C log t)z +

W ⊂ At }.
Then for any ε > 0, there exists an M so that for any point x ∈ tz + W the

event Ex,t,M happens with probability 1 − ε (uniformly in x and t). Moreover,
P(F) = 1.

PROOF. It is convenient to translate the dynamics so that W is fixed, that is,
consider A′

t = (At − tz) ∩ W . Also, rotate the lattice so that W has its maximum
at the origin and u1 and u2 are situated symmetrically with respect to the y-axis.
It then follows from Corollary 4.3, Lemmas 4.4 and 4.5 that there are finite con-
stants C and t0 (which again only depend on T ) so that the construction in the
following paragraphs is possible.

Cut a finite neighborhood of the origin with a horizontal line y = −C, and
let t0 be the time the deterministic dynamics needs to fill W again if sites above
the cut are removed. Run the random system in multiples of time t0, with the
proviso that if any site at time nt0 is 0 above the cut, then all sites above the cut
are set to 0 immediately. Also make all the sites above the cut 0 if during the time
interval [(n − 1)t0 + 1, nt0] a site within C of the sites of the cut does not become
occupied because of a bad coin flip, that is, although the deterministic dynamics
would make it occupied the random one does not. The resulting set of occupied
points at time nt0 is called A′

n.
If an integer site x ∈ W is not in A′

n, then either an integer site in W strictly
below the horizontal line through x must be 0 in An−1 and a site on or above the
horizontal line through x must also be 0 in An−1, or else a site within distance C

of x does not become occupied although the deterministic dynamics would make
it occupied. In the latter case we call x an error site. It is clear that error sites have
finite range of dependence in spacetime and occur with probability p′ which is
above a fixed power of p and thus can be made arbitrarily close to 1.

By Theorem 5.1, uniformly for sites x ∈ W and n,

P(x is at distance at least M from A′
n) ≤ ∑

m≥M/C

Cm(p′)m/C ≤ (Cp)M/C.(5.1)

Now the claim concerning the event (1) readily follows. To prove that P(F) = 1,
note that we can choose M = C logn (this C does depend on p), so that the prob-
ability in (5.1) is below 1/n4 and thus

P
(
some x ∈ W ∩ B(0, n2) is at distance at least C logn from A′

n

) ≤ C/n2.

From local regularity and Lemma 2.1, it now follows that

P
(
(tz + W) ∩ B(0, t2) �⊂ At+C log t

) ≤ C/t2,

and Borel–Cantelli completes the proof. �
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PROOF OF THEOREM 2 IN CASES 1 AND 2. Construct a convex set L̃n in the
following manner:

Step 1. Start from nL, a multiple of the shape of the deterministic model.
Step 2. Every corner of nL whose corresponding open edge of K1/w contains

directions u such that u/w(u) ∈ ∂K ′ is “logarithmically rounded off” by
introducing for each such u an edge with normal u and length C logn

(where C is some large constant whose value will become clear below),
and ensuring that the resulting set is a convex subset of nL.

Step 3. Round off every corner of the set obtained in Step 2 to produce locally a
translate of W = Wu1,u2 of Lemma 4.5.

If R is the number of directions u for which u/w(u) ∈ ∂(co(K1/w)), then
Step 3 has produced R wedges W , which we label W0, . . . ,WR−1. Start with some
large L̃M and couple (by using the same ξx,t ) the resulting R + 1 dynamics: one
started from integer sites in each wedge, and the last one started from those in-
side tLM .

If the percolation model introduced in the proof of Proposition 1.2 survives for
all time on each edge of L̃t , then we call the coupling successful. This means that
the state of each site is exactly the same as the state of the same site in one of the
wedges.

Fix an x ∈ L̃t . By the FKG inequality and Lemma 4.7, the following three events
simultaneously happen with probability at least 1 − ε if M is large enough:

(1) The coupling is successful.
(2) Ex,t,M happens for a suitable wedge Wi guaranteed by (1).
(3) F happens for every wedge Wi , i = 0, . . . ,R − 1.

For an arbitrary initial set which fills space, we once again use the fact that L̃M

is covered in finite time to get (S1) (2) (3) in Case 1, and (S1) (3) in Case 2.
It remains to show that the a.s. deviations from a corner in Case 2 are at least

logarithmic. Pick a corner σ ∈ L whose corresponding open edge of co(K1/w)

contains u/w(u), for some direction u. Note that the boundaries of nL and
nw(u)u + H−

u intersect at exactly tσ . Finally, consider the infinite wedge W de-
fined by the corner and locate its vertex at the origin.

The number of sites in

Sk = W ∩ ((−kw(u)u + H−
u

) \ (−(k − 1)w(u)u + H−
u

))
is bounded above by Ck. Let Tk be a geometric random variable with success
probability qk = (1 − p)|Sk |.

Start the dynamics from sites in ML, where M is arbitrary. It is clear that

P
(
tσ is at distance at least ck from At

) ≥ P(T1 + · · · + Tk ≤ t)
(5.2)

≥ P
(
T

(1)
k + · · · + T

(k)
k ≤ t

)
,
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where T
(i)
k are i.i.d. copies of Tk . Now by Chebyshev

P
(
T

(1)
k + · · · + T

(k)
k ≥ t

) ≤ k Var(Tk)

(t − kE(Tk))2 = k

qk(tqk − k)2 ,(5.3)

and it is easy to check that when k = c log t for a sufficiently small c = c(p) the
upper bound in (5.3) is O(t−3/2). The desired result now follows from (5.2) and
Borel–Cantelli. �

We note that logarithmic a.s. fluctuations (S3) are optimal in Case 1 of Theo-
rem 2 as well, as any of the sites in (t +1)L\ tL can stay unoccupied for time c log t

as a result of bad coin flips. This happens independently for each such site with
probability t−1/2 if c = c(p) is small enough. Since the number of such sites is lin-
ear in t , a large deviation computation shows that the probability that this happens
for at least one site is at least 1 − exp (−c

√
t ) [19].

6. An example. In this section we present an example of a one-parameter
family of random rules πp , p ∈ [0,1], for which we can compute the half-space
velocities explicitly. Every such example seems to be similarly based on the mod-
els introduced in [14] and [30]. Apart from the exactly stable cases, the exam-
ple which follows therefore seems to be the only nontrivial instance of a random
growth model with known shape.

The best way to think about this model is on the hexagonal lattice, but we will
describe it so that it fits into our Z2 setup. The model’s neighborhood N consists of
seven sites, the von Neumann neighborhood with two added diagonal sites: (1,−1)

and (−1,1). Then πp(S) = 1 when at least one of the following four conditions
is satisfied: (−1,0) ∈ S, (0,1) ∈ S, {(1,−1), (0,−1)} ⊂ S, {(−1,1), (1,0)} ⊂ S.
On all other nonempty sets S, πp(S) = p. This is a p-perturbation of the additive
model, but not a standard one. Nevertheless we will denote the half-space veloci-
ties by wp and the shapes by Lp . Supercriticality and local regularity are trivial.

Note that πp interpolates between two supercritical growth models. When
p = 1, the CA is additive with neighborhood N , which thus has K1/w1 = N ∗
[which is co(N ) rotated by 90°], and L1 = co(N ). When p = 0, the vertices
of K1/w0 are (0,±1), (−1,1), (1,−1), (1,2) and (−1,−2), while L0 is a parallel-
ogram with vertices at (±1,0), (−1/3,2/3) and (1/3,−2/3). What sets this model
apart from a generic example is that certain initial sets make it exactly solvable for
every p, in the sense that P(x ∈ At) can be expressed as a Fredholm determinant of
an explicitly known operator on �2 [14]. These initial sets are four wedges, which
together cover the plane: W1 = H−

e2
∩ H−−e1

, W2 = H−
e2

∩ H−
ed

, W3 = H−−e2
∩ H−

e1
,

W4 = H−−e2
∩ H−−ed

, where ed = (1,1)/
√

2.
Assume that A0 = W1 ∩ Z2. The first observation is that At = {(x, y) :y ≤

gt (x)}, where gt : Z → [−∞, t] is a nondecreasing function. This is easily proved
by induction. As a consequence, whenever x has its east (i.e., right) neighbor in At ,
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it also has its southeast diagonal neighbor in At . On this initial set, the rule is
therefore symmetric across the line y = −x. Now let, for every positive integer n,
ht (n) = gt (−t + n) − n. Then ht (n) = −∞ for n < 0, ht (0) is a random walk
which jumps by +1 (resp. stays put) with probability p (resp. 1−p), and for n > 0
ht+1(n) equals ht (n) + 1 = ht (n − 1) automatically whenever ht (n − 1) > ht (n).
Finally, when ht (n − 1) ≤ ht (n), ht+1(n) = ht (n) + 1 with probability p and oth-
erwise ht+1(n) = ht (n) + 1. This establishes the equivalence. It follows that there
exists a self-invertible function φ : [p,1] → [p,1], so that At/t converges to the
region LW1 = {(x, y) ∈ R2 :y ≤ 1, −φ(y) ≤ x for p ≤ y, and −1 ≤ x for y ≤ p}.
The function φ has the following explicit form [14]:

φ(y) = 1 − p − (1 − 2p)y + 2
√

p(1 − p)y(1 − y).

The argument is similar when A0 = W2 ∩ Z2. (In fact, that this case is equivalent
to the above can be seen by mapping the model onto the hexagonal lattice, where it
has fourfold symmetry.) If gt (x) = sup{−y + x ∈ At :y ∈ Z} (with sup ∅ = −∞),
then ht (n) = gt (t − n) − n has the same evolution as the ht from the previous
paragraph. It follows that this time At/t converges to LW2 = {(x, y) ∈ R2 :y ≤ 1,
x ≤ φ(y) − y for p ≤ y, and x ≤ 1 − y for y ≤ p}. The remaining two wedge
shapes are obtained by symmetry: LW3 = −LW1 and LW4 = −LW2 .

The proof of the next proposition is very similar to the proof of Corollary 1.1,
and hence omitted. (See also [10].)

PROPOSITION 6.1. Assume that a perturbation of a locally regular supercrit-
ical CA is given by π . Assume that its initial set is a wedge: A0 = W ∩ Z2, where
W = H−

u1
∩ H−

u2
and u1 and u2 form an angle in (0, π). Then

At

t
→ ⋂{wπ(u)u + H−

u :W ⊂ H−
u } = (

K1/wπ ∩ W ∗)∗
,

almost surely and in Hausdorff metric within any large ball of radius C.

This proposition, together with Corollary 1.1, immediately implies that in the
present example,

Lp = LW1 ∩ LW2 ∩ LW3 ∩ LW4

and therefore its top half comprises points (x, y) which satisfy

−φ(y) ≤ x ≤ φ(y) − y, if p ≤ y ≤ y0,

−1 ≤ x ≤ 1 − y, if 0 ≤ y ≤ p,

where

y0 = y0(p) =



1, p ≥ 1/2,
2(1 − p)

3 − √
8p

, p < 1/2.
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FIG. 5. Shapes Lp for p = 0,0.1, . . . ,1.

Hence the top half of the shape Lp is convex and C1, but not strictly convex,
for p > 1/2; is strictly convex and C1 only at p = 1/2; and for p < 1/2 is strictly
convex with a corner at its highest point (−y0/2, y0) above the x-axis. See Figure 5
for a plot.

We note that fluctuations from the limiting shape in every direction, except
±(−1/2,1) when p ≤ 1/2, can be obtained from [14]. For example, consider
α ∈ (−1, (−y0/2) ∧ (−p)) and let gt (x) = inf{y ∈ Z : (x, y) ∈ At }. (It is easy to
see that sites in At with a fixed x-coordinate always form an interval if they do so at
t = 0.) Then (gt (�αt�) − φ(−α)t)/t1/3 converges in distribution to a nondegener-
ate random variable. This follows from the fact that for such α the evolution of At

starting from a finite set and from W1 ∩ Z2 can be coupled so that the difference
of respective gt (�αt�) is stochastically bounded.

7. Exact stability for box neighborhood TG CA. The TG CA with box
neighborhood of radius ρ has ρ(2ρ + 1) supercritical thresholds θ [10], and the
same number of corresponding K1/w which we label K1, . . . ,Kρ(2ρ+1), and su-

perimposed with different shades in Figure 6. Let E = Eρ = ⋃ρ(2ρ+1)
θ=1 ∂Kθ . At

first this set appears to be of bewildering complexity (cf. the range 5 example on
the right-hand side of Figure 6). However, perhaps the first feature revealed upon
closer inspection is that E consists entirely of straight lines, called K-lines, which
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FIG. 6. The 10 (resp. 55) supercritical K1/w’s for range 2 (resp. range 5).

extend through the entire picture. [In fact, if we were to include the critical K1/w

for θ = ρ(2ρ + 1) + 1, . . . , ρ(2ρ + 1) + ρ all these lines would continue indefi-
nitely.] There is one-to-one correspondence between the K-lines and the points of
N \ {0}, as we now explain.

For any of the (2ρ + 1)2 − 1 sites x ∈ N \ {0}, start with a line through x and 0.
Then rotate this line in the positive direction until it hits 0 again. Call all such
rotations �x,φ , 0 < φ < 2π . The set of all cardinalities �(x,φ) = |L−(�x,φ)| is
exactly the set of θ for which x ∈ �u, for some u. Moreover, by Lemma 3.1, when-
ever x is the only site in �x,φ ∩N , this line determines a direction pointing toward
the interior of an edge of K�(x,φ), namely the direction of the normal to �x,φ which
points toward the origin. When the number of points in �x,φ ∩ N to the left and
to the right of x are equal, the direction points to the interior of an edge in Kθ for
θ = �(x,φ) − |{points to the left of x}|.

Similarly, a line containing exactly two sites in N \ {0} determines a direc-
tion in which exactly two ∂Kθ meet (at a point which is a vertex of both, for
one a convex vertex, for the other a concave one). A line containing exactly three
points in N \ {0} determines a direction in which exactly three ∂Kθ meet (but this
point is a vertex of only two of them). And so on. We are now ready to prove the
next proposition, which in particular allows unambiguous reconstruction of all Kθ

from E .

PROPOSITION 7.1. Two different ∂Kθ intersect only in a discrete set of points.
Moreover, all finite tiles of E are triangles or quadrilaterals.

PROOF. The first statement follows since for all but a discrete set of rota-
tions φ, x is the only site in �x,φ ∩ N and so the corresponding edge lies only
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in K�(x,φ). Fix a θ0 and assume �x,φ = �u for some direction u. If �u contains
two or more points in N , then ∂Kθ0 does not intersect ∂Kθ0+1 if and only if
|L−(�u)| = θ0. Let x be the rightmost point in �u ∩ N such that �x,φ = �u for
some φ. Decrease φ to the largest φ′ such that �x,φ′ ∩ N contains at least two
points. Clearly �x,φ′ ∩ N is a line �u for θ = θ0 + 1 (and perhaps some larger θ ’s).
A similar argument holds in the other direction, proving that, among two consecu-
tive vertices of ∂Kθ0 , at least one belongs to ∂Kθ0+1. This is clearly enough. �

For any x, let �∗(x) = infφ |�(x,φ)|.
PROPOSITION 7.2. ∂K ′ includes a line segment if and only if θ = �∗(x),

for some x. Moreover, for every x, �∗(x) = |�(x,φ)| for some φ such that �x,φ

exits Ñ = B∞(0, ρ) ⊂ R2 through the neighboring (rather than opposite) sides.
Finally, each K-line includes exactly one line segment on ∂K ′, for some θ .

PROOF. Pick an x and φ0 so that x is the only site in �x,φ0 ∩ N , and let
θ = �(x,φ0). For this θ and normal u to �x,φ0 , �u = �x,φ0 . For the first assertion,
it suffices to show that if θ > �∗(x), then u/w(u) cannot lie on ∂(co(Kθ)). But if
it would lie there, all of K1/w would have to lie on one side of the line of K1/w

determined by x and φ0 (see Lemma 3.1), meaning that �(x,φ) ≥ θ for every φ,
a contradiction.

For the second assertion, assume the said line exits the left- and right-hand sides
of the square. We can also assume that x lies either strictly inside the third quad-
rant, or on the negative y-axis. In both cases, rotate the line around x to angle φ′
in the negative direction just past the southeast corner of the square; this results in
�(x,φ′) ≤ �(x,φ) (with equality in the second case).

For the final claim, assume that x is as in the above paragraph and that the
line �x,φ produces �∗(x). Now rotate it in the negative direction to the smallest
angle φ′ for which the number of points on the left of x on �x,φ′ ∩N is larger than
the number of points on the right. If a and b are the lengths of the line segments
on �x,φ′ from the left and bottom edges of Ñ , respectively, then a > b. This re-
mains the case for any φ′′ < φ′ and thus further rotations in the negative direction
only lose more points. An analogous argument works for positive rotations. �

Therefore, each K-line contributes exactly one edge on exactly one ∂K ′. What
produces a prevalence of exactly stable cases are those ∂K ′ which have more than
their share of edges. For example, it is immediate by symmetry that the number
of edges on any ∂K ′ is either 0 or at least 4. The number of θ with lack of exact
stability hence does not exceed ((2ρ + 1)2 − 1)/4 = ρ2 + ρ, and therefore the
number of exactly stable ones is at least ρ2. This argument is quite simple, yet it
fails to produce any way to identify a single exactly stable case. Our next result
remedies this somewhat. However, we do not have an algorithm which lists more
than O(ρ) cases of either type.
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PROPOSITION 7.3. All θ ≥ 2ρ2 + 1 are exactly stable cases. On the other
hand, all θ ≤ ρ and θ = ρ + 1 + i(2ρ + 1), i = 0, . . . , ρ − 1, are not exactly
stable.

PROOF. For the second assertion, consider first θ ≤ ρ and take x = (−ρ +
θ − 1,−ρ). For any angle φ, �(x,φ) ≥ θ . This immediately implies that the
edges in K1/w adjacent to the positive y-axis lie in ∂K ′. If θ = ρ + 1 + i(2ρ + 1),
i = 0, . . . , ρ, there is instead a single edge, perpendicular to the y-axis.

For the first assertion, it is enough to prove that all first-quadrant boundary edges
of such Kθ have slopes in [1,∞]. Equivalently, take x ∈ N in the third quadrant
strictly above the line through the origin with slope 1, and a line � through x with
normal a negative rotation of e2 by angle at most π/4 and such that x is the only
point in �∩N . Then |L−(�)| < θ . This is certainly true when u is close to vertical,
and further rotations can only decrease |L−(�)|. �

Note that the proof of the above proposition shows that the θ = 2, . . . , ρ thresh-
olds have at least eight edges in ∂K ′, which improves the lower bound on the
number of exactly stable cases to ρ2 + ρ − 1. This is a good lower bound for
small ρ, although the exact enumerations are taxing.

PROOF OF THEOREM 3. By Proposition 7.2, we can reformulate the prob-
lem as follows. Consider all integer points (a, b), 1 ≤ a, b ≤ ρ. Take a line �

through (a, b) which intersects the positive halves of both axes. For each such
line, let �(�) be the number of integer points in the closed triangle T (�) ⊂ R2

bounded by � and the positive halves of the axes. Finally, let �∗ = �∗(a, b) be a
line which minimizes T (�). We need to find an upper bound for the number of
different T (�) over all (a, b). In the following computations, O(1) refers to a term
of arbitrary sign whose absolute value can be bounded by a constant independent
of ρ.

Let �∗
x and �∗

y be the line segments on �∗ from (a, b) to the x- and y-axes,
respectively. The first observation is that �∗ can be chosen so that the lengths of
�∗
x and �∗

y differ by O(1). (In fact, these lengths can be made arbitrarily close,
although not necessarily equal.) In particular, the area of T (�) is 2ab + O(1). We
will assume, without loss of generality, that the length of �∗

y is not larger than the
length of �∗

x .
Now find an integer point (0, y0) on the y-axis immediately below where �∗

intersects the y-axis. Reflect (0, y0) through (a, b) to get a point (x1, y1) within
O(1) of the intersection of �∗ with the x-axis. [Note that (x1, y1) lies within the
closed first quadrant.] Also, let (x0,0) be an integer point on the x-axis imme-
diately to the left of where �∗ intersects it. Form the closed polygon � ⊂ R2 by
connecting (a, b) → (0, y0) → (0,0) → (x0,0) → (x1, y1) → (a, b).

The area of � is 2ab + O(1). Most importantly, the number of integer sites in
� is �(�∗) + n∗/2 + O(1), where n∗ is the number of integers in ∂� which are
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not on the axes. This follows since one loses about half of these by a small rotation
of the line from (0, y0) to (x1, y1) around (a, b). Therefore,

T (�∗) = |{integer points in the interior of �}| + n∗

2
+ 2a + 2b + O(1),

and by Pick’s theorem [1],

area of � = |{integer points in the interior of �}| + n∗

2
+ a + b + O(1)

= T (�∗) − a − b + O(1).

It follows that

T (�∗) = 2ab + a + b + O(1) = 1
2(2a + 1)(2b + 1) + O(1).

Let MN be the number of different products mn of integers m,n ∈ [1,N]. It fol-
lows that

|{T (�∗) : 0 ≤ a, b ≤ ρ}| ≤ C · M(2ρ+1) ≤ C · ρ2

logh ρ
,

by the Hall–Tenenbaum sharpening of a theorem of Erdős ([17], Theorem 23).
This ends the proof of the upper bound. The lower bound follows because the
lower bound in [17], Theorem 23 is obtained using odd integers only. �

8. Final remarks. In this section we mention several results which are related
to the main topics of the paper, sketch their proofs, and also complete the proof of
Theorem 1 by removing log2 t from the large deviation estimate.

REMARK 1 (Continuous time). A standard continuous-time growth model Ãt

is obtained by adjoining every site x at an independent rate 1 exponential time after
the time τx at which x ∈ T (Ãτx ). This process can be constructed in the standard
way by attaching a Poisson process ξ̃x to every x. Theorem 1 is still valid in this
case. The a priori large deviation bound however has log2 t replaced by log4 t . We
now sketch the proof.

Observe Ãt in discrete time units t = 1,2, . . . . Change it to Ã′
t by making sure

that between each time t and t + 1 no site at distance more than C log t from Ã′
t

gets occupied. As is easy to see by comparison with the continuous time additive
dynamics having the same neighborhood,

P(Ãt �= Ã′
t within a lattice ball of radius t2) < t−3,

when C is large enough. Now continue the proof with Ã′
t , which of course is a

discrete-time monotone Markov process. Lemma 2.2 must be used C log t suc-
cessive times to obtain the analog of estimate (2.2), and here is where the larger
power of log originates. From this point the proof proceeds on familiar grounds,
yielding existence of the asymptotic speeds w̃, while the continuous-time version
of Corollary 1.1 establishes existence of the shape L̃.
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REMARK 2 (Approximating half-space velocities). Perhaps the most conve-
nient method for simulating a growth CA started from a half-space is to use a strip
with tilted periodic boundary. Take a vector u at angle φ ∈ [0, π/4] to e2. (By ro-
tations and reflections it is clearly enough to consider these.) Then take a large L,
and restrict the growth to the strip HM = [0,M − 1]× Z. Let κ = tanφ. Given any
configuration of occupied sites inside HM , extend it to H̄M = [−M,2M − 1] × Z,
by identifying the state of (x, y) with that of (x − M, �(y − κM)�) if x ≥ M and
with that of (x + M, �(y + κM)�) if x < 0.

Start from A0 = {(x, y) ∈ HM :y ≤ κx}. Let the dynamics update sites in HM

with the specified boundary conditions until some large time t when the inter-
face apparently equilibrates. At this point, the average height above all points in
[0,M − 1], multiplied by cosφ/t , is a good approximation to wπ(u).

Note that this is a much more efficient technique for computing the shape Lp

than merely running the dynamics from a finite seed and observing the resulting
blob. In particular, smoothness of Lp is impossible to discern that way. The method
outlined above, on the other hand, uses averaging to greatly reduce transversal
fluctuations on the interface. The theoretical underpinning is partly given in our
last theorem.

For a fixed M , and any x ∈ [0,M − 1], let

h1
t (x) = max{y : (x, �y − κx�) ∈ At }, h1

t = max{ht (x) :x ∈ [0,M − 1]},
h0

t (x) = min{y : (x, �y − κx�) /∈ At }, h0
t = min{ht (x) :x ∈ [0,M − 1]}.

THEOREM 4. Fix an ε > 0. If M is large enough, then with probability 1

wπ(u) − ε

cosφ
≤ lim inf

t→∞
h0

t

t
≤ lim sup

t→∞
h1

t

t
≤ wπ(u) + ε

cosφ
,

uniformly in u.

In fact, it is easy to show by subadditivity that h0
t /t and h1

t /t both converge a.s.
to the same number as t → ∞.

PROOF OF THEOREM 4. We start by proving the lower bound. Note that
the boundary effects spread with finite speed, as N is finite. Thus, until the
time t0 = cM , the occupied sites on any vertical line through x ∈ [0,M − 1]
are above those started from an infinite tilted half-plane through (x, �κx�) or
through (x, �κx� − 1). (We have to allow for the second possibility because there
may not be a perfect match at the boundaries.) By the weaker form of Theo-
rem 1, the probability that the lowest unoccupied site above a fixed x is below
κx + (wπ(u)(1 − ε)/ cosφ)t0 is at most exp(−ct0/ log2 t0). For n ≥ 0, define this
translation of A0:

Bn =
{
(x, y) :y ≤ κx + wπ(u) − ε

cosφ
nt0

}
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and the event

E = {
B1 ⊂ At0

}
.

It follows that

P(Ec) ≤ M exp(−ct0/ log2 t0) < ε,

if M is large enough.
Now run the dynamics until time t0. If E happens, restart the dynamics from

the set B1; otherwise restart the dynamics from B0 = A0. Then repeat from the
possibly translated A0. Let Un be the largest u for which Bu ⊂ Ant0 . We have just
proved that Un dominates an n-step random walk which at each step increases by 1
with probability 1 − ε and stays put with probability ε. Therefore Un ≥ (1 − 2ε)n

with probability at least 1 − exp(−cn). This ends the proof of the lower bound (as
uniformity in u follows because the constant cε in the weaker form of Theorem 1
does not depend on u).

The upper bound is proved similarly, except for the fact that we need an upper
bound on the extent to which At can propagate in t0 steps. The trivial bound Ct0,
where C is the diameter of N , suffices. The comparison random walk now in-
creases by 1 with probability at least 1 − ε and by C with probability ε, and so its
speed is 1 + Cε. �

Theorem 4 remains valid for continuous-time growth as well, with a similar
proof, except for two significant differences. The first is that the coupling of finite
and infinite systems only holds up to time cL with probability exponentially close
to 1 in L [15]. The second is that the trivial upper bound at end of the proof is not
available, so the forward jump of the comparison random walk is arbitrarily long,
with exponential tail probabilities. It is clear that the proof is still valid under these
conditions.

PROOF OF THEOREM 1 (CONCLUDED). We choose u, M and t0 as in the
proof of Theorem 4. Recall that t0/M is small and so during a time interval of
length t0 sites at a distance larger than M cannot interact. Define

Bn,i =
{
(x, y) : iM ≤ x ≤ (i + 1)M − 1 and y ≤ κx + wπ(u) − ε

cosφ
nt0

}

and the event

E = {
B1,0 ⊂ At0

}
.

As before, P(Ec) < ε if M is large enough. Now we define η̃n(i) to be the maxi-
mal k such that every site (x, y) with x ∈ [iM, (i+1)M −1] and y ≤ wπ(u)−ε

cosφ
kt0 +

κx is in Ant0 . We can couple η̃n and the slow version of η′
n from Lemma 3.3 (with

p′ = 1 − ε), so that η̃n(i) ≥ η′
n(i) for every i and n. (The Bernoulli random vari-

ables b are probabilities of suitable translates of the event E.) It follows that, for
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every δ > 0 we can find a small enough ε (which then dictates a large enough M),
so that

P

(
(0, y) ∈ At for all y ≤ (1 − δ)

wπ(u) − ε

cosφ
t

)
≥ 1 − e−ct .

This proves the exponential bound on the probability that At/t lags significantly
behind wπ(u). We will now show that it cannot progress significantly faster
than wπ(u) either. To this end, we redefine

Bn,i =
{
(x, y) : iM ≤ x ≤ (i + 1)M − 1 and y ≤ κx + wπ(u) + ε

cosφ
nt0

}

and

E = {
At0 ⊂ B1,0

}
,

so that again P(Ec) < ε. In case E fails, the occupied sites above the interval
[0,M − 1] cannot progress by more than the diameter of N . Furthermore, now
η̃n(i) is the maximal k such that some site (x, y) with x ∈ [iM, (i + 1)M − 1] and
y ≤ Rk + wπ(u)+ε

cosφ
nt0 + κx is in Ant0 . Here R is a suitably large multiple of the

diameter of N , which ensures that the fast version of η′
n in Lemma 3.3 (now with

p′ = ε) dominates η̃n. Thus Lemma 3.3(3) completes the proof. �

REMARK 3 (Continuity of K1/wp ). Assume a standard p-perturbation of T .
As p changes from 0 to 1, K1/wp varies continuously. To see this, assume that p′ is
close to p, p′ < p and couple the systems with the two probabilities in the obvious
way. To show that wp′(u) is close to wp(u) (uniformly in u), one needs to look at
the proof of the lower bound in Theorem 4. Between 0 and t0, the occupied sets
in the two systems will not differ at all with probability (1 − (p − p′))Ct0 , which,
as t0 is constant (albeit dependent on ε), can be made larger than 1 − ε if p − p′
is small enough. Once this observation is made, it is only necessary to follow the
rest of the lower bound proof with p replaced by p′.

Note that this continuity alone demonstrates that Lp has corners (i.e., is not dif-
ferentiable) in every case not quasi-additive when p is close enough to 1 (although
these corners may not move at the same speed, or even in the same direction, as
the corresponding corners of L1).

REMARK 4 (Shapes for small p). Again, assume a standard p-perturbation
of T . What happens as p → 0? Certainly Lp shrinks, and in fact

1

p
Lp → L̃,

the limit shape of the continuous-time growth model Ãt . To see this, let A′
t

be A�t/p�. After a site sees a sufficient configuration in A′
t (resp. Ãt ), it becomes
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occupied in a time distributed as Tg (resp. Te). It is easy to see that for small p,
distributionally, Tg ≥ Te(1 − p). Rescaling of continuous time immediately gives
L̃/(1 − p) ⊃ Lp/p for small p.

For the opposite direction, observe that Te + p ≥ Tg , in distribution. The lower
bound part of the proof of Theorem 4 for continuous time now shows that Ãt0 ⊃ B1
with probability 1 − ε. With the same probability, then, A′

t ⊃ B1 at time t = t0 +
CpLt0 < (1 + ε)t0 if p is small enough. (The added term is simply p times the
number of sites in B1 \ A0.) This easily completes the proof.

In closing, let us pose two challenging conjectures based on experiment.

CONJECTURE 8.1. If π is a standard p-perturbation of a locally regular and
supercritical CA with convex K1/w , then K1/wp is strictly convex.

This conjecture fails for nonstandard perturbations, as seen from the example
discussed in Section 6. In fact, it fails for nonstandard perturbations even if we
restrict to p very close to 1. A range 2 box counterexample is obtained by π(S)

which is 1 when |S| ≥ 9 and p when |S| = 8. A glance at Figure 6, together with
results from Section 3, confirms that K1/wπ cannot be convex for any p < 1.

Figure 7 illustrates the application of Theorem 4 to two examples. The left
frame depicts K1/wp for the Moore TG CA with θ = 3 and p = 1,0.9, . . . ,0.4,
while the right frame does the same for the range 2 box TG CA with θ = 9 and
p = 1,0.975, . . . ,0.5. As guaranteed by Theorem 2, co(K1/wp) ⊂ co(K1/w1) for p

close enough to 1. What is more, the angles at the corners of K1/wp approach
the angles of K1/w1 as p → 1. (This can in fact be proved by methods of the

FIG. 7. Two examples of TG K1/wp
’s.
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present paper.) As p decreases, ∂K1/wp separates from ∂K1/w1 , but K1/wp re-
mains nonconvex. (Whether it may become C1 before the boundaries separate is
not clear.) Upon further decrease in p one observes concavities gradually filling
in, until K1/wp becomes convex. Such observations, as well as early belief in the
asymptotic isotropy of Eden’s continuous-time random growth model [7], suggest
our final conjecture.

CONJECTURE 8.2. If p is small enough, the standard p-perturbation of T
has strictly convex and smooth K1/wp . The continuous-time version K1/w̃ is also
strictly convex and smooth.

Acknowledgments. We thank Gérald Tenenbaum for kindly sharing his ex-
pertise on intricacies of the Linnik–Vinogradov–Erdős problem with us. Thanks
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