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Recently, Williams [Bull. London Math. Soc. 34 (2002) 610-612] gave
an explicit example of a random time p associated with Brownian motion
such that p is not a stopping time but EM, = EM for every bounded
martingale M. The aim of this paper is to characterize such random times,
which we call pseudo-stopping times, and to construct further examples,
using techniques of progressive enlargements of filtrations.

1. Introduction. Let (2, ¥, (¥7):>0, P) be a filtered probability space, and
p:(R2,F)— (R4, B(R;)) be a random time. We recall that the space # I is the
Banach space of (cadlag) (¥;)-martingales (M;) such that

| M| 1 =E[sup |Mt|} < 00.
t>0

DEFINITION 1. We say that p is a (¥;)-pseudo-stopping time if, for every
(#7)-martingale (M;) in H', we have

(1.1) EM, = EM.

REMARK 1. It is equivalent to assume that (1.1) holds for bounded martin-
gales, since these are dense in .

We indicate immediately that a class of pseudo-stopping times with respect to a
filtration (¥;), which are not in general (¥;)-stopping times, may be obtained by
considering stopping times with respect to a larger filtration (4;) such that (¥3) is
immersed in (G;), that is, every (¥;)-martingale is a (§;)-martingale. This situation
is described in [3] and refered to there as the (H) hypothesis. We shall discuss this
situation in more detail in Section 3. For now, we give a well-known example: let
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B; = (Bl, R Btd) be a d-dimensional Brownian motion, and R; = |B;|, t > 0, its
radial part; it is well known that

(Rl‘ EO{RSsS St}st ZO)’

the natural filtration of R, is immersed in (B; = o{Bs, s < t},t > 0), the natural
filtration of B. Thus, an example of (R;)-pseudo-stopping time is

TV =inf{r, B! > a}.

Recently, Williams [20] showed that, with respect to the filtration (¥;) generated
by a one-dimensional Brownian motion (B;);>0, there exist pseudo-stopping
times p which are not (#;)-stopping times. Williams’ example is the following:
let

Ty =inf{t: B, =1} and o =sup{t <T1:B;=0};
then

p =sup{s <o :Bg =S5} where S; = sup B,

u<s
is a (¥;)-pseudo-stopping time. This paper has two main aims:

e to understand better the nature of pseudo-stopping times;
e to construct further examples of pseudo-stopping times.

In Section 2 with the help of the theory of progressive enlargements of
filtrations, we give some equivalent properties for p to be a pseudo-stopping time.
We also comment there on the difference between (1.1) and the property

(1.2) E[Mx|F,] =M,

for every uniformly integrable (¥;)-martingale (M;), which was shown by Knight
and Maisonneuve [12] to be equivalent to p being a (F;)-stopping time.

In Section 3 we give some other examples of pseudo-stopping times. We
associate with the end L of a given (¥;) predictable set I', that is,

L =sup{t:(t,w) €T},

a pseudo-stopping time p < L in a manner which generalizes Williams’ example.
We also link the pseudo-stopping times with randomized stopping times.

In Section 4 we give a discrete time analogue of the Williams random time p.
This approach is based on the analogue of Williams’ path decomposition proposed
by Le Gall for the standard random walk [13].
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2. Some characteristic properties of pseudo-stopping times.

2.1. Basic facts about progressive enlargements. We recall here some basic
results about the progressive enlargement of a filtration (#;) by a random time p.
All these results may be found in [4, 9, 11, 17, 21].

We enlarge the initial filtration (¥;) with the process (o A t);>0, so that the new
enlarged filtration (?’,p )s>0 is the smallest filtration containing (¥;) and making p
a stopping time. A few processes will play a crucial role in our discussion:

e the (#;)-supermartingale
@2.1) z{ =Plp > 1|F]

chosen to be cadlag, associated to p by Azéma (see [9] for detailed references);
e the (F;)-dual optional and predictable projections of the process 1,<,
denoted, respectively, by A? and a?;
o the cadlag martingale

nt =E[AL|F]= AP + 77,

which is in BMO(%;) (see [4] or [21]). We recall that the space of BMO
martingales (see [6] for more details and references) is the Banach space of
(cadlag) square integrable (¥;)-martingales (Y;) which satisfy

1Y o = essupr [ (Yoo — Y7-)*|F7] < 00,
where T ranges over all (£;)-stopping times.

We also consider the Doob—Meyer decomposition of (2.1):
7\ =ml —af.

If p avoids any (&;)-stopping time, that is, to say P[p =T > 0] = 0 for any
stopping time T, then A? = a? is continuous.
Finally, we recall that every (&;)-local martingale (M;), stopped at p,

is a (F,”)-semimartingale, with canonical decomposition:

AP d(M, )y
zy

9’

(2.2) M, =M, + fo
where (1\7,) is an (j’-',p )-local martingale.

REMARK 2. We also recall that, in a filtration (¥;) where all martingales

are continuous, A? = a since optional processes are predictable (see [18],

Chapter IV).
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2.2. A characterization of pseudo-stopping times. We now discuss some
characteristic properties of pseudo-stopping times. We assume throughout that
Plp =00] =0.

THEOREM 1. The following four properties are equivalent:

(1) p is a (F)-pseudo-stopping time, that is, (1.1) is satisfied,
2) nuy =1, a.s.,

(3) A% =1,as.,

(4) every (F1)-local martingale (M;) satisfies

(Mipp)i>0 is a local (fF,p)-martingale.

If, furthermore, all (¥;)-martingales are continuous, then each of the preceding
properties is equivalent to

&)

(z? )i>0 is a decreasing (¥;) predictable process.
PROOF. (1) = (2). For every square integrable (¥;)-martingale (M;), we have
o0
E[M,] = E[/ M, dAf} =E[MsAS 1 =E[Msouf,].
0

Since EM, = EMy =EMy,, we have
E[Moo] = E[Moo AL | = E[Moo i, .

Consequently, Mgo =1, a.s., hence, Mf = 1, a.s., which is equivalent to A =1,
a.s. Hence, (2) and (3) are equivalent.

(2) = (4). This is a consequence of the decomposition formula (2.2).

(4) = (1). It suffices to consider any #'-martingale (M;), which, assuming (4),
satisfies (M;xp);>0 1S a martingale in the enlarged filtration (?’,p ). Then, as a
consequence of the optional stopping theorem applied in (F;”) at time p, we get

E[M,]=E[Mo],

hence, p is a pseudo-stopping time.
Finally, in the case where all (¥;)-martingales are continuous, we show the
following:

(@) (2) = (5). If p is a pseudo-stopping time, then Z/ decomposes as
7P =1- A7

As all (¥;)-martingales are continuous, optional processes are, in fact, predictable,
and so (Z?) is a predictable decreasing process.

(b) (5) = (2). Conversely, if (Zf ) is a predictable decreasing process, then,
from the unicity in the Doob—Meyer decomposition, the martingale part u/ is
constant, that is, Mf =1, a.s. Thus, (2) is satisfied. [
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In the next proposition, we deal with uniformly integrable martingales (M;)
instead of martingales in Uor #2,...).
PROPOSITION 1. The following properties are equivalent:

(1) p is a (¥;)-pseudo-stopping time;
(2) for every uniformly integrable martingale,

E[IM,|] < E[|[Mol].

REMARK 3. In fact, we shall further show in the next proof that, for p a

pseudo-stopping time and for (M;) any uniformly integrable martingale,
E[IMy|] <oo and E[M,]=E[My].

PROOF OF PROPOSITION 1. (1) = (2). If (M) is uniformly integrable, it may
be decomposed as
2.3) My =M — M,
where

M =E[mz d M7 =E[MmZ
P =EMLIF] and M =E[M3|F].

[Note that M Oio indicate the positive and negative parts of M., whereas (M t(i)) are
the martingales with terminal values M .] Thus, to prove (2), it suffices to prove

E[M,]=E[Mx],

under the further assumption that M > 0. In this latter case, we have M, =
E[My| F:], with Mo, > 0. Now let

M" =E[(Mos A )| F).
(M, ,(")) is a bounded martingale, hence, we have
E[M{)]=E[M"].
Doob’s maximal inequality yields
p[sup(, — (") > ] < LE[Mo — M)

so that (Ml(,")) converges to (M,) in probability; but the sequence (M/()"))
is increasing, so it, in fact, converges almost surely. Hence, the monotone
convergence theorem yields

E[Mo] =E[M)].
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Finally, going back to (2.3) in the general case, we obtain
E[|M,1 <E[MSD + M)
=E[ME + M ]
=E[|Mcl].
Hence, (2) holds. Further, we may now write
BIM,1 = E[M{" — M)
=E[ME — M]
=E[Mx].

(2) = (1). We need only apply property (2) to any martingale (M;) taking values
in [0, 1]. Thus,

E[M,] = E[Mx],
E[1 - M,] <E[l — Mx].
But, since the sums on both sides add up to 1, we must have
E[M)] =E[Mx].
Hence, p is a (¥;)-pseudo-stopping time. [l
As an application of the theorem, we can check that in Williams’ example, his
time p associated with a Brownian motion is a pseudo-stopping time. Indeed, the

dual predictable (= optional) projection Af of 1<) is maxs<;a7; By [19, 20] and
Al =1.

2.3. Around the result of Knight and Maisonneuve. We now comment on the
statement of the third property in Theorem 1.

For the properties of the different sigma fields F,, ,, ¥,_, associated with
a general random time p, the reader can consult [19] or [21]. Here, we just recall
their definitions:

DEFINITION 2. Three classical o-fields associated with a filtration (¥;) and
any random time p are the following:
Fpt+ =0{zp, (z;) any (F;) progressively measurable process};
Fp =0{zyp, (z;) any (F;) optional process};
Fo— =0{zp, (z;) any (F;) predictable process}.

The result of Knight and Maisonneuve which was recalled in the Introduction
may be stated as follows:
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THEOREM 2. [f for all uniformly integrable (¥;)-martingales (M;), one has
E[Muxo|Fpl =M, on {p < oo},

then p is a (F;)-stopping time (the converse is Doob’s optional stopping theorem).
Refining slightly the argument in [12], we obtain the following:
THEOREM 3. [ffor all bounded (¥;)-martingales (M;), one has

E[Moolo{M,, p}] = M, on {p < oo},

then p is a (F;)-stopping time.
PROOF. Fort > 0, we have
E[Moolp<n] =E[Mplp<n] = E[/Ot M dAé’} =E[MoA7].
Comparing the two extreme terms, we get

Lip<n) = A7,
that is, p is a (¥3)-stopping time. [J
An interesting open question in view of what has been proved for pseudo-
stopping times is whether E[My|M,] = M, on {p < oo} is equivalent to p being
a stopping time.
To illustrate the result of Knight and Maisonneuve, we show explicitly how, in
the framework of Williams’ example, M, and E[M|¥,] differ, for

)\’2
M; = exp()»B,AT1 — E(I A T1)>, A > 0.
We write
)\42
My = exp(k — 7T1>
2.4)
)\42
=exp(A) exp(—;(p + (o —p)+(T1 — o))>.

We now recall Williams’ path decomposition results for (B,),<r, on the
intervals (0, p), (p,0), (o, T1):

® (Bstu)u<1,—0o 1s a BES(3) process, independent of F; ; hence, we have

E[exp(—%z(Tl — a))‘?g} = E[exp(—%z(Tl — cr))] = sinl);()n)‘

e S,, where S; = sup, ; By, is uniformly distributed on (0, 1);
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e Conditionally on S, = h, the processes (By)u<p and (Bs_y)u<oc—p are two

independent Brownian motions considered up to their first hitting time of A.
Consequently, we have

E[exp(—k—;(a — p))‘?p] =exp(—AS,).

Plugging this information in (2.4), we obtain

22 A
]E[MOO|5~'p]:exp(k(1 —Bp)——p)( )

2 sinh(A)
while
)\’2
(2.5) M, = exp(ABp — ?p>

and these two quantities are obviously different.

2.4. Further properties of pseudo-stopping times. Besides the assumption that
p is a (F;)-pseudo-stopping time, we also make the hypothesis that p avoids all
(F7)-stopping times. We saw that, in this case,

al =AY =1-2¢

1S continuous.
For simplicity, we shall write (Z,,) instead of (z5).

PROPOSITION 2. Under the previous hypotheses, for all uniformly inte-
grable (¥;)-martingales (M;), and all bounded Borel measurable functions f,
one has

1
E[M, f(Z,)] = E[Mo] /O Fx)dx

1
= IE[MP]/0 f(x)dx.

REMARK 4. On the other hand, it is not true that

(2.6) E[Moo f(Zp)] =E[M), f(Z))],

for every bounded Borel function f. Indeed, from Proposition 2, the right-hand
side of (2.6) is equal to

E[Moo/(;] f(x)dx]

Thus, our hypothesis (2.6) would imply the absurd equality between f(Z,) and
Jo Fx)dx.
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PROOF OF PROPOSITION 2. Under our assumptions, we have

ELM, /(2 =E [ ” Muf<zu)dA5]

:E—/OoMuf(l —Aﬁ)dAﬁ}
LJO

—E MOO/OO % —Ag)dAﬁ}
L 0

r 1
=E MOO/O f(l—x)dx}

r 1
=K MOO/O f(x)dx] 0

Taking M; = 1, we find that (Z,) is uniformly distributed on (0, 1), which is
already known [11, 21] since (recalling that Z,, is decreasing)

Zp = inf Zu.

u=<p

In fact, we have a stronger result: under all changes of probability on F,, of the
form

dQ =M, dP,

where (M;) is a positive uniformly integrable (F;)-martingale such that
E[My] =1, the law of Z, (is unchanged and) is uniform.

COROLLARY 1. Under the assumptions of Proposition 2, we have
E[M,|Z,] =E[M,] =E[Mo].

On the other hand, the quantity E[M|Z,] is not easy to evaluate, as is seen with
Williams’ example, and is different from E[M,|Z . Indeed, in this framework and
with the already used notation,

)\’2
E[Moo|Z,] = exp(k)E[exp(—?ﬂ) }BP}.

Decomposing again Ty as Ty = p + (0 — p) + (T1 — o), and using Williams path
decomposition, we obtain

A 22
E[Mx|Z,] = exp(A) (sinh(k)) exp(—kBp)E[exp<—7p> ‘BP]

(2 2B
- (1 - exp(—zx)> exp(=215,).
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COROLLARY 2. The family {M,; M uniformly integrable (¥;)-martingale} is
not dense in L' (Fp).

This negative result led us to look for some representation of the generic element
of Ll(ff'p) in terms of (%;)-martingales taken at time p on one hand, and the
variable Z,, on the other hand.

PROPOSITION 3. (i) Let K:[0,1] x Ry x Q — Ry be a Bjo,11 ® P (Fe)
measurable process, where P (F,) denotes the (¥;) predictable o -field on R4 x Q.
Then

1
@7 BIK(1~ 2, ) =E| [ dvK(r.a)|
where

oy =inf{u: Af > y}.

(i1) Let (H,,u > 0) be a bounded predictable process. Define a measurable
family (M}"),>0 of martingales through their terminal values

M, = H,,.
Then
H,= M,}_Z’J a.s.

PROOF. (i) This follows from the monotone class theorem, once we have
shown

1
2.8) B = 2 ) = [ dyf ), |

for every bounded predictable process H and every Borel bounded function f.
But, this identity follows from the fact that 1 — Z, = A,; and so

E[f(Ap>Hp]=EUO dAuf<Au>Hu}

=E[/Oldyf<y)Hay]

We shall prove the second statement by showing that, for every bounded (k)
predictable process,

1-Z
Elk,H,] =E[k,M, ~"].
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From (2.7), we deduce

1
E[kpMﬂl)_Zp] - E[./o dyMg)'k“y}
1
@ f dyE[M2, ke, ]
A |

1
® fo dyE[Ho, ke, |

© Rk, H,]

[(a) follows from the optional stopping theorem for (M;); (b) follows from the
definition of M2,; (c) is another consequence of (2.7)]. Comparing the extreme
terms in the above, we get

Hy=M) . 0

3. Some systematic constructions and some examples of pseudo-stopping
times.

3.1. First constructions. Here we discuss some combinations of several
pseudo-stopping times which yield a pseudo-stopping time. Here is a first easy
result:

PROPOSITION 4. Let p be a (F;)-pseudo-stopping time and let T be
a (F,”)-stopping time. Then p A T is a (F;)-pseudo-stopping time.

PROOF. Let M be any uniformly integrable (¥;)-martingale. We know that
M, », is a uniformly integrable martingale in the enlarged filtration (%) and p is
a stopping time in this filtration. If 7 is also a (F,”)-stopping time, then so is p A T.
Hence, EMyr. =EMy. 0

EXAMPLE 1. Let p be as in Williams’ example. Let 0 <a < 1, and T, =
inf{t > 0: B; = a}. Then

Pa=p ATy, O<a<l,

is an increasing family of pseudo-stopping times.

REMARK 5. As a further comment about Proposition 4, we remark that
pseudo-stopping times do not inherit all the “nice” properties of stopping times.
As an example, a pseudo-stopping time of a given filtration does not remain, in
general, a pseudo-stopping time in a larger filtration, whereas a stopping time does.
Indeed, keep the same notation as in Section 2.3 and look at the pseudo-stopping
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time p in the larger filtration (¥,). Using the computations we have already done
in Section 2.3 and the projections formula (see [4], page 186), we get
I —maxs<;a7; By

1- B}

tATy

Plo > t|F°] =

’

which is not decreasing. In fact, any end of predictable set that avoids stopping
times is not a pseudo-stopping time. We shall see it in the next subsection.

3.2. A generalization of Williams’ example. To keep the discussion as simple
as possible, we assume that we are working with an original filtration (§;) such
that:

e All (¥;)-martingales are continuous [e.g., (¥;) is the Brownian filtration].
e Moreover, we consider L, the end of a (¥;) predictable set, such that for
every (¥;)-stopping time 7, P[L =T]=0.

Under these two conditions, the supermartingale Z; = P[L > t|%;] associated
with L is a.s. continuous, and satisfies Z; = 1. Then we let

,o=sup{t < L:Z;= inf Zu}.
u<L
The following holds:
PROPOSITION 5. (1) Ip = inf,<r Z, is uniformly distributed on [0, 1];

(see [21)).
(ii) The supermartingale Z° = P[p > t|F;] associated with p is given by

Z/ =inf Z,.

u<t

As a consequence, p is a (¥;)-pseudo-stopping time.

PROOF. (i) Let
T, = inf{t, Z; < b}, 0<b<l,
then

PlI, <b]=P[T, < L] =E[Z5,] =b.

(i) Note that, for every (F;)-stopping time 7', we have
{T <p}={T"<L},

where

T’ =inf{t >T,Z, < inf Zs}.
s<T
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Consequently, we have

E[Z71=PIT < pl=P[T' < L1=E[Zy]= E[ulng Zu],
which yields

E[Z} 17 <00)] =u«:[ inf Zul{T<oo}],
u<T

since (Z%) and (Z,) converge to 0 as u — oco. We now deduce the desired result
from the optional section theorem. [

In the literature about enlargements of filtrations ([9, 11, 21], etc.), a number
of explicit computations of supermartingales associated to various L’s have been
given. We shall use some of these computations to produce some examples of
pseudo-stopping times, with the help of the proposition.

(1) First let us check again that we recover the example of Williams from the
proposition. With the notation of the Introduction (L = o), it is not hard to see
that (see [19])

Z,=1—B"

tATy"
Hence,
o =sup{s <o:Bs;=5}.

(2) Consider (R;);>0 a three-dimensional Bessel process, starting from zero, its
filtration (%), and

L=L;=sup{t:R, =1}.
Then
3.1 p=sup{t<L:R;=supRu}
u<L
is a (¥7)-pseudo-stopping time. This follows from the fact that
1
ZtL =1A—,
Ry
hence, (3.1) is equivalent to
— 7L _ L
,o_sup{t <L:Z _ulgtiZu },
and from the above proposition,

ZP =1 A (7)
Sup, < R,
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We can generalize further this example by noticing that, for n > 2, we have
for (R;);>0 a BES(n), ZE=1nh (Rit)”_z. More generally, let us consider a
transient diffusion (X;). Let s be a scale function such that s(—oc) = 0 and
s(x) > 0. Let

L, =sup{t; X; =a},
the last passage time at level a. We have (see [16])

s(Xy)

Z,L” =1A .
s(a)

Thus,
Pa = sup{t < Lg:s(Xy) = inf s(XM)}
u<L,

is a pseudo-stopping time in the natural filtration of (X;). For example,
consider the case of a Brownian motion with a negative drift:

X;=x+ut+oBy, n<0.

In this case, the scale function is

2
s(x) =exp<—L2x>.
o
Hence,
Pa = sup{t <Lg:ut+0oB; = ian (uu + oBu)}
U=<Lg

is a pseudo-stopping time in the natural filtration of (B;).
(3) Consider (By),>0 a one-dimensional Brownian motion, (¥;) its filtration, and

g =sup{s <t:B; =0},

then

= su
JE—S u<gl?, JE—u

is a F;-pseudo-stopping time. Again, this follows from the fact that p; is, in
fact, defined from g;(= L), as in the framework preceding the proposition,
since

B B
3.2) p,:sup{s<g,: By | Bl }

25 =o( L)
t—u

with ®(x) =P(|N| > x), where N is a standard Gaussian variable.
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(4) We can reinterpret the previous example via a deterministic time-change. We
remark that we can write

L=V -
log(1/(1—u))>
T—u og(1/(1—u))

where (Ys)s>0 is an Ornstein—Uhlenbeck process satisfying

N
Ys=,3s+%/0 duy,.

We then deduce form Example 3 that

,o/zsup{s < Lgy:|Ys| = sup |Yu|}

/
u§L0

is a (F;)-pseudo-stopping time, where
1
Ly= 10g<—> =sup{s >0, ¥y =0}
1 =g

and (}‘I/) is the natural filtration of (¥;).

As for Williams’ example, none of these pseudo-stopping times remains a
pseudo-stopping time in the larger filtration (thL). This is a consequence of a
result of Azéma [1].

PROPOSITION 6. Let L be the end of a predictable set such that P[L =T]=0.
Then L is not a pseudo-stopping time.

PROOF. From aresult of Azéma [1], as AF = al is continuous, the law of AL
is the exponential law of parameter 1, while for pseudo-stopping times, the law of
Ago is 1, the Dirac mass at one. Hence, L cannot be a pseudo-stopping time. [

3.3. Further examples. In this section we shall link pseudo-stopping times
with other random times that appear in the literature. In particular, we will see that
the random times allowing the (H) hypothesis (see [7]) to hold are special cases of
pseudo-stopping times.

3.3.1. The hypothesis (H). First, we give the following obvious result:

PROPOSITION 7. If p is a random time that is independent from ¥, then it
is a pseudo-stopping time.

EXAMPLE 2. If p is an exponential time of parameter A that is independent
from ¥, then it is a pseudo-stopping time.
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EXAMPLE 3. Another example is given by what Williams [20] calls a “silly”
time:
1

P 1B - B

which is independent from ¥7.

Now suppose that our probability space supports a uniform random variable ®
on (0, 1) that is independent of the sigma field ¥5,. Assume we are given an
(¥7)-adapted increasing and continuous process satisfying Ag =0 and A = 1.
Let us consider the random time defined by

p =inf{z; A; > ©}.
It is not difficult to check that
3.3) Plpo >t|F]=1— A;.

Hence, we can state the following:

PROPOSITION 8. Let (A;) be a nonincreasing, continuous and adapted
process such that

Aoo:O.

Then, if our probability space supports a uniform random variable ® on (0, 1) that
is independent of the sigma field ¥, there always exists a pseudo-stopping time p
such that Z! = A;, for t > 0.

We have thus constructed a pseudo-stopping time associated with a given
continuous process (A;). This construction is well known, see [8] for more details
and references.

But the pseudo-stopping times that are constructed in the way of (3.3) enjoy the
following noticeable property [5, 8]:

(3.4 Plp > t|1F11=Plp > 1] Fool.

Random times with this property are often used in the literature on default
modeling (see [7, 8]) and were studied in [3, 5]. There are several equivalent
formulations for (3.4). Before we mention them, let us notice that any random
time satisfying (3.4) is a pseudo-stopping time. In fact, we have a stronger result:
every (¥;)-martingale is an (37/) )-martingale (see [5]). Thus, the fourth statement
in Theorem 1 is satisfied.

Now let us consider the (H) hypothesis in our framework of progressive
enlargement with a random time p: every (¥;)-square integrable martingale is
an (¥,°)-square integrable martingale. This hypothesis was studied, in a general
framework, by Dellacherie and Meyer [5] and Brémaud and Yor [3]. It is equivalent
to one of the following hypothesis (see [7] for more references):
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(1) Vt, the o-algebras o, and F,” are conditionally independent given F;.
(2) For all bounded ¥,-measurable random variables F and all bounded
F,”-measurable random variables G,, we have

E[FG;| /] = E[F|#]E[G/|F].
(3) For all bounded }‘,p -measurable random variables Gy,
E[GFool = E[G/|F/].
(4) For all bounded ¥~,-measurable random variables F,
E[F| 7] =E[F|F].
(5) Foralls <t,
Plo <s|F]=Plp < s|Fx].

Thus, pseudo-stopping times may be considered as a generalized or a weakened
form of the (H) hypothesis, since then local martingales in the initial filtration
remain local martingales in the enlarged one up to time p. Moreover, for most of
the examples we have considered, such as Williams’, (3.4) is not satisfied.

3.3.2. Randomized stopping times and Follmer measures. Now we give
a relation between pseudo-stopping times and randomized stopping times as
presented in [15]. First we give some definitions. We always consider a given
probability space (2, &, (F7);>0, P).

DEFINITION 3. A randomized random variable on (€2, ¥, P) is a probability
measure i on ([0, oo] x 2, B([0, oc]) ® F) such that its projection on 2 is equal
to IP.

For example, let p be a random time; then 1, defined by
mp(X) =E[X,],

for all bounded measurable processes (X;), is a randomized random variable.

We know from a result of Follmer (see [6]) that there exists an increasing cadlag
process (A;) such that Ag =0 and

w(X) =1E[/O°° X, dAs},

for all nonnegative process (X;). The fact that the projection on €2 is equal to P
means that Ay, = 1, a.s.

DEFINITION 4. If the process (A;) associated with u on ([0, 00] x €,
B([0, oo]) ® F) is adapted, then we say that p is a randomized stopping time.
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__ By considering the new space Q =[0,1] x Q endowed with the o-fields

F=8(0,1D® F, Fr=B([0, 1]) ® F (augmented in the usual way) and the

probability measure P = A ® P, it is possible to show that, for every randomized

stopping time w, there exists a stopping time p in this new filtered space such that
u(X) =E[X,],

for all bounded measurable process (X;) on ([0, co] x 2, B([0, ]) @ F). We
take the convention that a random variable H on €2 can be considered as the
random variable on Q: (u, w) — H (w). Conversely, to every stopping time of ¥,
there corresponds a randomized stopping time.

This construction is always carried on the enlarged space 2. The third statement
in Theorem 1 allows us to use pseudo-stopping times to construct randomized
stopping times without enlarging the initial space.

PROPOSITION 9. Let p be a pseudo-stopping time and AY the (¥;) dual
optional projection of the process 1(,<;y. Then the Féellmer measure p associated
with A? is a randomized stopping time. Moreover, for every bounded or non-
negative (¥;) optional process (X;)

w(X) =E[X,).
3.3.3. Randomized stopping times and families of stopping times.

PROPOSITION 10. Let (T,)u>0 be a family of (¥;)-stopping times and S a
positive random variable, independent of (¥~). Then
p=Ts
is a (¥;)-pseudo-stopping time.

PROOF. Let (M;) be a bounded (¥;)-martingale;
E[Mry] = E[E[Mr,|S]] = E[Mo]. 0

The previous proposition shows that any independently time changed family
of stopping times is a pseudo-stopping time. In fact, this proposition admits a
converse: every pseudo-stopping time is, in law, a time changed family of stopping
times. More precisely:

PROPOSITION 11. Let p be a (F;)-pseudo-stopping time, which avoids all
(F)-stopping times, and Z, = P[p > t|F;] its associated supermartingale. Set

oy =inf{t >0, (1 — Z;) > u}, O<u<l,
the right-continuous generalized inverse of the increasing continuous process
(1 = Z;). Then (oty)o<u<1 is a family of (¥;)-stopping times and

law
pP=ay,

where U is a random variable with uniform law, independent of .
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PROOF. The fact «;, is a stopping time, for all u, follows from
low=t}={u<(1-2)} V=0

From (2.8), we also have
1
Blg(o)] =E| [ (e dul.
for any bounded Borel function g. This establishes: plgv ay. U

4. A discrete analogue: the coin-tossing case. Let (X,),>1 be the standard
random walk with Bernoulli increments. In his paper [13], Le Gall proved an
analogue of Williams’ path decomposition for (X},). To fix ideas, we shall consider
the canonical space 2 = ZN endowed with the product o-field. (X,) will be the
coordinate process and (P).cz the family of probability laws which make (X},)
the standard random walk with Bernoulli increments. We also denote by (Q)xen
the unique family of probability measures such that (X, Q,) is a Markov chain
with transition probabilities:

QolX1=11=1

1 1
ifx>1 Qx[X1=X+1]=—<1+—),
2 X

axi=x-n=3(1-1).
Now let p > 1 and define
op = inf(k; X = p),
n=sup{k <op:X; =0},
m = sup{Xy, k < n},
y =inf{k > 0; Xy = m]}.
Then under Py the following hold:

(1) The processes (Xi)o<k<yp and (X,7+k)0§k§0p_,7 are independent, with the
second being distributed as (X K)0<k<o, under Qp;

(2) m is uniformly distributed on {0, 1, ..., p — 1};

(3) Conditionally on {m = j}, the processes (X;)o<k<, and (X, _r)o<k<y—y are
independent, the first being distributed as (X k)oskfcj under Py, and the second
as (Xk)o<k=o;4,—1 under Qo.

PROPOSITION 12. If (My),eN is a bounded martingale, then
Eo[M, ] =Eo[Mol,

and, thus, y is a pseudo-stopping time.
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PROOF. We have

Mn:fn(XI,XZa,Xn)y

for a sequence of bounded measurable functions f,, depending only on n variables.
Thus, for any bounded function f,

But

Eo[M,, f (m)] = Eo[Eo[M,, [m] f (m)].

= Eo[M,;] = Eo[Mo].

Thus, we obtain

Eo[M,, f(m)] = Eo[M,, JEo[ f (m)]
= Eo[Moo]Eo[ f (m)]. 0

REMARK 6. Again (as in the continuous time setting), note that, in general,

(1]
(2]
(3]

(4]

(3]

(6]

(7]

(8]

(91

(10]

EO[M00|~7:)/] 5’5 M)/-
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