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A NEW MAXIMAL INEQUALITY AND INVARIANCE PRINCIPLE
FOR STATIONARY SEQUENCES

BY MAGDA PELIGRAD! AND SERGEY UTEV
University of Cincinnati and University of Nottingham

We derive a new maximal inequality for stationary sequences under
a martingale-type condition introduced by Maxwell and Woodrodfen|
Probab. 28 (2000) 713-724]. Then, we apply it to establish the Donsker
invariance principle for this class of stationary sequences. A Markov chain
example is given in order to show the optimality of the conditions imposed.

1. Results. Let(X;);cz be a stationary sequence of centered random variables
with finite second momenE([Xf] < oo andE[X1] = 0). Denote byF; theo -field
generated by; with indicesi < k, and define

Sint]
v

where[x] denotes the integer part af Finally, let W = {W((#):0<r <1} be
a standard Brownian motion. In the sequaed denotes the weak convergence and

I Xl = vE(X?).
THEOREM1.1. Assume that
(0,0)
I E(Sq|Fo)ll
(1) >

n=1

n
Se=)_Xi,  Walt)= 0<r<1,
i=1

Then, {max;<x<x S,f/n :n > 1} is uniformly integrable and W, (1) = /nW (1),
where n is a nonnegative random variable with finite mean E[n] = o2 and
independent of {W(¢); ¢t > 0}. Moreover, condition (1) allows to identify the
variable n from the existence of the following limit

2
(2) lim EGID =7

n— 00 n

inLq,

where J isthe invariant sigma field. In particular, lim,_, « E(52)/n = o.

Received May 2003; revised April 2004.

1supported in part by a Taft grant.

AMS 2000 subject classifications. 60F05, 60F17.

Key words and phrases. Asymptotic normality, ergodic theorem, functional central limit theorem,
invariance principle, martingale, maximal inequality, Markov chains, renewal sequences.

798



A NEW MAXIMAL INEQUALITY 799

In the next theorem we show that, in its generality, condition (1) is optimal in
the following sense.

THEOREM 1.2. For any nonnegative sequence a, — 0, there exists a
stationary ergodic discrete Markov chain (Yx)x>0 and a functional g such that
X; =g(¥);i >0, E[X1] =0, E[X?] < o0 and
— ES, Yol

Sn. .
(3) nX::lanT <oo  but NG is not stochastically bounded.

In the ergodic case, Theorem 1.1 improves upon the corresponding results of
Maxwell and Woodroofe (2000) [see also Derriennic and Lin (2003) and Wu and
Woodroofe (2002)].

Our method of proof is based on the martingale approximation originated in
Gordin (1969). Rather then considering and analyzing a perturbed solution of the
Poisson equation, as it was suggested in Maxwell and Woodroofe (2000) [see
also Liverani (1996)], we analyze small blocks and apply maximal inequalities to
show that the sums of variables in these blocks can be approximated by stationary
martingale differences.

In the proof of our key inequalities, we use a variety of techniques. The starting
point is the diadic induction found to be useful in the analysispehixing
sequences. This method goes back to Ibragimov (1975), and was further developed
by many authors including Peligrad (1982), Shao (1989), Bradley and Utev
(1994) and Peligrad and Utev (1997). The second tool is the modification of
the Garsia (1965) telescoping sums approach to maximal inequalities as used by
Peligrad (1999) and Dedecker and Rio (2000). Our maximal inequality, stated in
Proposition 2.3, is new and has interest in itself. Finally, we use the subadditivity
of the conditional sums of random variables.

In order to show the optimality of our results, we construct an example which is
motivated by the well-known counterexample stating that, in the general ergodic
case, unlike the i.i.d. case (the Kolmogorov strong law of the large numbers),
E|X| = oo does not imply that the averages/n diverge almost surely [see
Halmos (1956), page 32; he has attributed this example to M. Gerstenhaber].
The discrete version of the example was probably introduced in Chung [(1960),
Markov chains, page 92]. For the modern development and connection with
Pomeau—Manneville type 1 intermittency model, we mention Isola (1999) whose
detailed analysis was inspirational.

Theorem 1.1 is proved in Sections 2.1-2.4. Theorem 1.2 is proved in Sections
3.1-3.3.

2. Proof of Theorem 1. Throughout the section we will use the notation

E(Sy | %
(4) A, —ZH =2
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2.1. Analysis of second-order moments of partial sums.

PROPOSITION2.1. Letn, r beintegerssuchthat 2°~1 <n < 2". Then

(5) E(S3) <n[lX1]l + 3A,1%
Assume Y225 277/2|| E(S,;] Fo) || < oo. Then, the following limit existsin Ly:
o E(S3) 2 o E[S2i (Spi+1 — Spi14)]
(6) ni= lim == = E(XE) + X%) 5 :
]:

where J isthe invariant sigma field. In particular,

o?:= Ell = E(X% + 3 252 (SZ; —%2)),

Jj=0

ProOOF The last statement is an immediate consequence of (6). In order to
prove (5), we shall use an induction argument. It is easy to see that (5) is true for
r =0andn = 1. Assume (5) holds for al <2"~1. Fixn, 21 <n < 2’. Starting
with S, =S, _»-1+ S, — S,_»-1 and using the Cauchy-Schwarz inequality and
stationarity, we derive

10012 < 1S, _or-111% =+ | Sgr-11I% + 211, _or-1 Il E(Spr-1| Fo) |-

Now, by induction assumption, singe (Sy—1|Fo)|| = 2" ~9/2(A, — A,_1), and
4(n — 27~1H2r—1 < 42, we obtain

_ 2 _ 2
18,117 < (2 — 2" H[I1Xall + 3A,-1]" + 271Xl + $A,-4]
+2(n =27 HY2IXN + 3A,1]2" DA, — A1)

<n[I1X,0 + 381+ 3(Ar — AP = 01X, 1 + 34, )%
This establishes (5).
To prove (6) for the subsequenee= 2", we use the notatio&;(Y) = E(Y|{)

and|Y|; =./E(Y?|4) for the corresponding norm. By recurrence, we can easily
establish the representation

E[(83)=2"E/(X?) + > 2 E[Sy-i(Sy-i+1— Spr-i)]
i=1

1 B (S (Syi1 — Syp)
2 '

()

=2 (E,(Xf) +
Jj=0

We observe that
E[S5) (Spj+1 — Soj) 4] = E{E[Sy) (Spj+1 — S2i) | Foi 114}
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[see, e.g., Proposition (2.2) in Bradley (2002), page 54]. Thus, by the Jensen
inequality,

E|E[S5; (Spj+1 — Spi) ]| < E|E[Sp; (Spis1 — Spi)| Fi]|
so that the Cauchy—Schwarz inequality and stationarity imply
E|E[S5 (Sgi+1 — Sp) 41| < 1180 1 E(S2i | Fo) Il
In addition, by the first part of the proposition and the summability of the series in
the right-hand side of (4), we obtain
E(Sy| %o)
2j/2

Z [1S2: 11 E(Spi [Fo)l <c ZH

Ji
Jj=0 2

which proves the convergencein of the series

E[Sy; (Spi+1 — Spnld]
2J o

E(X3|0) + Z

j=0

This relation and (7) show that the convergence in (6) holds along the subsequence
n=2" thatis,
E[S3 |4
jim £
r— 00 2r

To treat the whole sequencs,, for 1 <n < 2", we start with the binary
expansion

.
n=Y 2'a,  wherea,_;=1anda € {0,1}.

Then, we apply the following representation:

r— nj J
S, = ZTZ-faj whereT,; = Z Xi,nj :szak,n,lzo.
= i=n;_1+1 —0

Clearly, fora; =0, T,; = 0. Fora; = 1, the conditional distribution df,; given
4 is equally distributed as the conditional distributionSgf given J.
To prove (6), we start with the representation

r—1
E[S?|4] = (ZalE[S )+< > aiajE[TZ;szll])EIn—f—Jn.

i#j=1
By the above convergencE{Sé,. |41/2/ — 5, which implies the convergence

I, .
— =7 in Lj.
n
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It remains to prove that % — 0. Leti < j <r. Then, as before,
E|E[Ty Ty |4]| < E|E[Ty E(T5; | F.)]| < 1S | E(Sq; | Fo) |

E(S5i1¥0)
i/2 2
<2 n| 22 0
and, thus,
E(S5]%0)
2 2
E|J,| <2 Z E|E[Ty Ty 1] <ch22l/ ZH 2|
l=i<j=<r-1 i=1 j=i+1
which impliesE|J,|/n — 0 because
E (S| ¥0) .
ZH i/ H asi — oo.

O
2.2. Maximal inequalities. We start by establishing first an auxiliary lemma:

LEMMA 2.2. Let (Y;)1<i<, be arandom vector of square integrable random
variables such that for each i, 1 <i < n, Y; is measurable with respect to
Fi=0(X;, j <i), where (X;) is a stationary sequence introduced before. Let
n <2 . Ifforal l<a<b<n,anda positive constant C,

b 2
E(Z Y1> <C(kh-a+1)  then
I=a

n—1

EY Y, (S, —5)

=1

< %CnAr.

PrROOE We shall prove this lemma by induction. It is easy to see the result of
this lemma is true forn = 2. Assume the lemma holds for all< 2" 1. Fix nown,
2'-1 < n <2, and begin by writing
n—2r-1_1

n—1
YV Si=SD= > Y(S, 21—
=1 =1

n—1 n—2r"1-1
+ Z Y,(Su — S + Z Y, (Sy— S, _2-1).
—or—1
=h+h+b

By using the Cauchy—Schwarz inequality, along with the conditions of this lemma
and stationarity, we easily obtain

[ET3 < C[27Hn = 277 H1Y2(Ar — Ar1) < 5Cn[A, — Ap_ql.

By the induction assumptionE /1| < 3C(n — 2" A,_1 and|ED| < €271 x
Ar—l; SO

|EN|+ |ED| + |El3] < 3CnA,—1 4 5CnlA, — Ar—1] = 3CnA,,
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proving the lemma. O
We are ready to state and prove our key maximal inequality.

PROPOSITION 2.3. Let {X;:i € Z} be a stationary sequence of random
variables. Let n, r beintegers such that 2"~ < n < 2". Then we have

E[ max Slz] <n(2IX1] + 1+ v2)A,)%

1<i<n
PrRoOOF Denote by
1 2
M, = max|S;|] and K, = max —E| maxS; |.
1<i<n l<j=m j |l=i=j
We first prove that, for any positive integer
8) E[lrggx S,-Z] <n[2K}2A, + 41 X1l + 3A.)7].
<i<n

By the fact thatk; is nondecreasing il from (8), we derive

K, <2KY2A, +4[1X10 + 34,75

which impliesl(,}/2 <2 X1/l + 1+ +/2)A,, hence, the resullt.

To prove (8), we denote h§y =0,
M} = max ST =max0, S1,...,Sy)

1<j=<n /
and
M = max(—Sj_) =maxQ0, —S51,...,—S,).

"o1<j<n

We shall use the following simplified version of an interesting inequality in
Dedecker and Rio (2000) [see (3.4) in Dedecker and Rio (2000) or (3.5) in Rio
(2000)], which was obtained by using Garsia’s (1965) telescoping sum approach
to the maximal inequality

9 (M2 <4(SHZ—4)" M Xy
k=1
By adding to this relation the similar one faf,, we obtain

(M) < 4(S)? =4 (M — Mi_)(Xp).
k=1

We now writeX; = (S,, — Sik—1) — (S, — Sr) and derive

n—1
(10) (M) < 4(8)* — 4> Di(Su — Sp),
k=1
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whereDy = (M;" — M ) — (M, — M;_,).
It is easy to see that
b

>

k=a+1

<max{(M; — M;), (M, — M,)]

< max|S; — Sq|.

a<i<b

Taking the expectation, we get, by stationarity,

b 2
E( 3 Dk> §E( max Sf):(b—a)Kb_ag(b—a)K,,.

k=a+1 1=izb—a
Next, by Lemma 2.2 applied with, = Dy fork > 1,C = K,}/Z, we obtain
n—1
E) " Di(Sy = So)| < gnlK,/2A].
k=1

By substituting this estimate in (10) together with (S)E(S,%), we obtain (8)
and, hence, the propositionl]

REMARK 2.4. The inequality in Proposition 2.3 is an extension of the Doob
maximal inequality for martingales, giving also an alternative proof of this famous
theorem. Notice that, for the martingale case, our inequality gives the same
constant as in the Doob inequality, a constant that cannot be improved. A natural
guestion that arises is the optimality of the constant in fromt 0&nd further study
is needed to determine the best constants in this inequality.

2.3. Analysis of certain seriesinvolving conditional sums.
(a) Key result. Let X = (X;);cz be a stationary sequence of random variables
with finite second moment. Denote by

n
Sn:ZXi, Vn:Vn(X):”E(SnLTO)”,
i=1

where as beforef;, is theo-field generated by; with indicesi < k.

The main condition (1) of Theorem 1.1 {8 V,/n%? < co. On the other
hand, various inequalities derived in Sections 2.1 and 2.2 have used the condition
3 Var /2712 < 0. In this section we show that these conditions are equivalent and,
in addition, we prove the following proposition, which is useful in establishing the
martingale approximation in Theorem 1.1.

PROPOSITION2.5. Under condition (1),

| E(Sm|F0)l 1 K| E(S,21F0)
(AT TN S 1. *
Jm Jm i 2i/2

H—)O
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asm — oQ.

PROOF In order to prove this result, we shall analyze in Lemma 2.6 the
conditional variance of sums and then, in Lemma 2.7, some related series. By
Lemma 2.6, the sequendg, = || E(S,,|Fo)| is subadditive. Then, we have only
to apply Lemma 2.8 to conclude the proof of this proposition.

(b) Conditional variances of sums form a subadditive sequence. The starting
point of our analysis is the following simple observation.

LEMMA 2.6. V, isa subadditive sequence.

PrRoOOFE First, since for alk, ¥_, C Fo, we observe that
E[E(St|F-)1? < E[E(St|F0)* = | E(Sk|Fo)[1? = V2.
Hence, by stationarity,

IE(Si+; — SilFo)ll = \/E[E(Sj|37—i)]2 <V
Thus,

Viej =IES; +[Sivj — SilIFOI S NES: |Fo)ll + |1E(Si+; — SilFo)l
<Vi+V;.

(c) Analysis of certain seriesfor subadditive sequences. Let V,, be a nonnegative
subadditive sequence. Fopa> 1, define

SV, XV,

1:—sz(p o J:=Zn—p, W= Zn P max V;.

j=0 n=1 n=1 l=izn O
The following lemma is a crucial step in deriving the result in Proposition 2.5.

LEMMA 2.7. There exists two positive absolute constants C,, and K, such
that

Col <J<W<K,I

PrROOF We shall start with the following simple representation:

2r+l 1
W=)>» n? maxV, = n~ P maxV;.
Z l<izn rX;) nXZ:’ 1l<izn

Then, by the subadditivity of the sequer{d&; n > 0}, fori <n < 2"+1,

]
Vi<) V,  sothat maxv; < Z Vi,
— 1<i<n 20
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which implies

o0 r 00 o0 00
W< 2723 Vu= VY 27D =g,y 27k Dy,
r=0 k=0 k=0  r=k =0

= K,I,

wherek , = ﬁ The last inequality is therefore proved.
The inequalityJ < W is straightforward. Now, we need the following simple
combinatorial property. Define

Ay={1<i<N:V;>Vy/2} and denote byA| the cardinal of a sed.
PROPERTY |An|> N/2,thatis, Ay containsat least N/2 elements.

PrROOFE To prove it, we denote bypy = {1,...,N} and fix 1<i < N.
Observe thatif € A, = Dy — Ay, thenN —i € Ay because
VN_i=Vn—=V,>Vy— VN/ZZ VN/Z.
Thus,Ay 2 N — A, and soN = |[Dy| =|An| + |AY | < 2|Ay| and the property
is proved. O

Now, in order to continue the proof of Lemma 2.7, we write

qr+1 1V Ar+1_1
= Z(Z ) 41724_”7(Z V)
r=0\ n=4" n=4"

We are going to apply the above property with= 4"*+1. Define
Cr={neld, . 411V, >Vy/2=Ayn{4,... .4+ 1)
Clearly,
Col = {4, HF =1 — AR | =4 — 4 — A
and, applying the above property, we obtain
IC =4t 4 — @ -4t 4 —atlp=g,
Thus,

11
J>Z= 24— "PVya|Cy

o
- 24[7 24—}’([) D V4r+1 == 22—2}’([)—1) V22r,
r:

|_241”

which implies

o o0
Q=Y 2720 Dy, =y 4+ 3 2720 Vyy <oy
r=0 r=1
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Then, by subadditivityy,z-+1 < 2V, S0 that

o0
P:= Z 2= tD(r=Dy, 4 < 2(
r=0

20D
and, as a consequence,
o0 o
Voo Vozr41
I'= Zo 2D T Z p@hpn LTS 9<2<p—1> + 1) I,

r=

and the proof of Lemma 2.7 is complete.]

LEMMA 2.8. Assumethat >°°,; V,n~%/? < co. Then,

i
Z 22”/22 -0 asm — oo.

In particular, V,,//m — 0asm — oo.

PROOF By rewriting G,,, we obtain

oo m2k+l_1 oo m2kt1_1
=3 Y w2, =22y a2 maxy,
k=0 nmok k=0 et L=izn
_ 23/2 Z 732 max Vi,
n=m 1<i<n

which proves thatG,, — 0 asm — oo by Lemma 2.7. O

2.4. Martingale approximation and the proof of Theorem1. Letm be a fixed
integer andk = [n/m], where, as beforg¢x] denotes the integer part of We start
the proof by dividing the variables in blocks of sizeand making the sums in
each block

im
xM=mY2 3 Xx; izl
j=@{—1)m+1

Then we construct the martingale
(m) £ (m) (m), g~ (m)
M =) (X" — E(X™ 7)), 1€Z,
i=1

whereF,"™ denotes the -field generated by "™ with indicesi < .
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Notice thatM,Em) is a stationary martingale and, therefore, by the classical
invariance principle for martingales, we derive

1
(m)
M = nmw,
wheren™ is the following limit (both inL; and almost surely):
(m) L pom (m) | g ()2
H m m m
n™ = lim _E:(Xi — E(X;"1F5))"

k—o00 -1

In order to prove the invariance principle f%s[m], together with the uniform

integrability of the sequence max. <, S,f/n, by the Doob maximal inequality and
Theorem 4.2 in Billingsley (1968), we have only to establish that

(11) [ynm — . /n|—0 asm — oo
and

1 1
12 lim lim | sup|—=Siq — —=M"™ ‘:o.
( ) m— 00 n—> 00 Oftfpl ﬁ e \/% (k]

Notice first that by the convergence in Proposition 2.5,
1
lim —E[E(Su|F0)]?=0.
m—oo m
On the other hand, by the ergodic theorem (both almost surely ahg)jn

1k E[S2]4]
lim _Z(X(m)) ZnII_)mOO_Z(SHrm_S')Z: nr: ™

koo ki3 i=1

wherel is theo -field of invariant sets.
Therefore, by Proposition 2.1, we obtain the following convergende in

. . E(S?%)4
lim U(m): lim M=ﬂ»

m—o0 m—00 m
which implies (11).
To prove (12), we first notice that

1 1
Nzl 5( )”I D7 )
Jn y=0

By taking into account Proposition 2.3 and the fact that,lim, ( N
the right-hand side of the above inequality tends to 0. Therefore, we have only

sup
O<r<1
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to estimate
1 1
(m)
Sup |[——3Siu — —=M ‘
o<r<1lv/km ] NI
[nt] 1 [kt] ) -
sup Xi|+——=| sup Y E(X;"|F"
v O<t<1;_ I%H—l l Vk O<t<llzl l)
which leads to the estimate
1 1w ‘
Sup | ——=3Si — —=M
ostfl Nl el
(m) (m)
max X max E(X;" 7"
«/ 1<i<n l‘ 1<]<kz l ”

Since for every > 0,

‘EnmXX2<e+§:X%ﬂX|>e)

1<i<n -1

by stationarity, for any fixz, lim,_, o 3m| maxi<;<, Xi||/vkm =
On the other hand, by Propositions 2.3 and 2.5, we derive

IESnlFo) E(S,2/|%0)
<250l 14 v2) ZH r2 0|

asm — oo, uniformly inn, which completes the proof of Theorem 1.1.

J

Jk

max
1=j<k

E(X™17")
1

i=

3. Proof of Theorem 2.

3.1. Thecountable Markov chain anditspreliminary analysis. Let{Y;; k > 0}
be a discrete Markov chain with the state spAceand transition matri® = (p;;)
given by pr—1p =1fork>1andp; = poj—yy =Pt =j), j=212 ... (i.e,
whenever the chain hits @; = 0, it then regenerates with the probabil'yby)
Whenp, p2 > 0, and, in additionp,,; > 0 alongn; — oo, the chain is irreducible
and aperiodic. The stationary dlstnbutlon exists if and onlg[it] < co and it is
given by

o0
Tp=m0 Y Pi, J=12...,
i=j+1
whererg = 1/E[1].
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Let us consider now an arbitrary nonnegative sequence> 0 as in our
Theorem 1.2. Notice that, without loss of generality, it is enough to assume that
ay is a strictly decreasing sequence of real positive numbers.

The choice ofp; further depends on this arbitrary nonnegative sequence
First, we define a sequenée;; k =1, 2, ...} of positive integers such that

up =1, U =2, uf+l<uk+1 fork >3 and
(13)
a <k2  fort>uy.
Then, fori > 1, we take
_Jesud, ifi=u,forsomej > 1,
= 1o, if i £ u; forall j > 1,
that is, for each positive integgr> 1, p,; = c/u? andp; =0foru; <i <uji1.
Clearly,
(14) E[t]<oco  butE[t?] = coc.

As a functionalg, we takel—oy — 7o, Wheremg = P, (Yo = 0) under the
stationary distribution denoted B, (E, denotes the expectations for the process
started with the stationary distribution). The stationary sequence is defined by

n n
Xj=Iy—0—m0 sothatS,=) X;=)"Iy— —nmo.
j=1 j=1

By P, and E;, we denote the probability and the expectation operator when the
Markov chain is started &t, thatis,P(Yo=k) = 1. Let

v=min{m >1:Y,, =0}, A, = EolS,], x Ay=min(x, y).

PROPOSITIONS.1.

Va = [IE(Sp|YO) | < [lv Anll+ max |A;]
1<i<n

=1, + Jy,
where [|x|% = 392 o x2my..
PrROOFE We first notice thatS, | < n and P, (v = k) = 1, so that, conditionally
onYg=k (with 0 <k <n),
E(Sp) = Ex(Sk) + Ex(Sp — Sk)-

The first term is bounded by and the second term is equal Bg(S,_x+1) Since
Y, =0. Thus,

|Ex(S)| =k An+[Ap—g41l. [
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3.2. Proving that Y a,||E(S.|Yo)lln"%/? < co. By Proposition 3.1, it is
enough to prove that

o.¢] o0
(15) Zanln/n3/2+2anjn/n3/2<oo.

n=1 n=1

The first sum is easily treated by a straightforward analysis. Indeed, to analyze
I =Y a,1,/n%?, we first notice that, for, 1 < j,

o0
2
Tj =m0 Z pi < moc1/u;.
i=j+1

Therefore, we write, fon, <n < wug1,

n o
IZ=E;(vAn?=Yj%mj+n* Y x;

j=1 j=n+1
k ur n oo Uy
.2 .2 2
t=1\j=u,_1+1 Jj=ur+1 t=k+1 \j=u;_1+1

| 2o (%)

3,2 2
< ca(ug +n”/uj g +n"/urs1).

+(Z j>+C3n22—

j=up+1 r=k+1 U1

Next, write
o0 Uk+1 o0 l Ug+1 3/2
3/2 Z Z Z_z > I
n= l k=1n= uk+1 k=1 n=up+1
Ug+1 o0 Uk+1
1
<fzvk > e yay LY
n=urp+1 k=1 "k+ n=urp+1
Uk+1
—}—fz — Z nY? < .
Vuk k n=u;+1

To prove that the second sum is finite, we need to analyyzevhich satisfies
the renewal equation

n—1
Ap=EolSprv]+ D Anjpj.
j=1

Unlike Isola (1999), we use probabilistic arguments to analyze this renewal
eqguation.
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We define
To=0, Ty =min{t > T;_1:Y; =0}, T =T — Tr_1, k=12,....

Then,{z;} are independent variables equally distributed aSee, e.g., Breiman
(1968), page 146.] Leét; = 1 — nor; and introduce the stopping time

v, =min{j >1:T; > n}.
Clearly, S7, = Z’]‘.Zl £j, Eol£1] = 0, v, <n and, thus, by the Wald identity,

EolSt,,1= [ZS,}

Hence, sinceéS, — Sp| < |a — b|, by the definition ofA,,, we obtain
|An| = |Eo[ST,, — Su]| < Eo[m,] < Eo[ max n]-
1<i<n

Let us denote by

M, = maxr;.
1<i<n

Then,
Jo = max|A;| < E[M,].
1<i<n

To analyzeE[M,], we notice that

o
E[M,]1=> uP(My =u,)
=1
and
P(M, =u,) <min(1, nP(t =u,)) < cymin(l, n/u?).
Fix n, uy < n < urs1. Notice first that, forr < k — 1, we haveu; < up_1 <

uy* < n¥4. Also, ¥° % k+11/uj < c3/ury1 and, thus, splitting the sum into three
parts according te: t <k—1,t =k andr > k + 1, we obtain the bound

E[M,] < C4<nl/4 + —— + u min(d, ”/”k)>
Uk+1

Finally, by the construction af,, and its relation ta,, we derive

o0 1 1 Uk41

0 [e.e]
Zaan/n3/2505Zn_5/4+csz Z n-1/2

n=1 n=1 Ukl = u+1
2
o] 1 1 Uy 1/2 Uk+1 .
oY e X e} g Y o
k p= up+1 n= u2+1
< 00,

proving (15).
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3.3. Sochastic unboundedness of S,, /./n and the proof of Theorem2. We pro-
ceed by contradiction; that is, we assume that
{Sn/~/n;n>1} is stochastically bounded

and show thaE 12 < oo, which is in contradiction with (14).
Let {r;} be independent variables equally distributed aBefine

Tir=t1+ -+, M =maxi > 1:T; <n},
T(i,nl=T,—T, mE)=maxi>1:5+T(,i] <n}
(where maycgz a; = 0). Then,S, = n,(v) — na, wherea = 1/ E[11] = mp.
The following proposition will provide a slightly more general result which has
interest in itself.
PROPOSITION3.2. Assume that, for a nonnegative integer valued variable &,

{nn(é)—an

(16) NG

in > 1} is stochastically bounded.
Then, E[t2] < co.

PROOF.  First, letn,, be a copy of the renewal procegg, : n > 1} which does
not depend or§. Then,n,(&) is equally distributed aa;l_g and so, any finite
number of renewals do not affect the stochastic boundedness of the normalized
renewal processes. As a consequence, condition (16) implies that

P([an —/nM] <n, <[an+/nM]) > 1—ey,

wheregy; — 0 asM — oco.
Next, we apply the standard relationship > k} = {T; < n}, yielding

P([an — /nM] < ny < [an +/nM]) = P(Tgn_ i) <1 Tant yumy > 1)
=P(T, <n,Tr>n)=1>1—¢y,
where
L=L[n, M]=[an — /nM], R =R[n, M]=[an+ /nM].

Now, we takek = R — L. SinceT (i,n] = T, — T; is equally distributed a%,,_;,
we can write

I:P(TLSH,TL+T(L,R]>I1)
=P(TL§n—kN,TL+T(L,R]>n)
+P(n—kN <Tp <n,Tp +T(L,R]>n)
<P(T(L,R]>kN)+ P(n—kN <Tp <n)
=PIy, >kN)+ P(n—kN < T <n).
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By the law of the large numbers,
P(Ti/k > N) <N,
whereéy — 0 asN — oo. Thus,
Pn—kN <T;, <n)>1—¢epy —n.
Since 2/nM — 1<k <2,/nM + 1, we derive
P(ITy —nl/v/n <M +1N)>1— ey —by.

Now we use the symmetrization argument. We consider an independent copy
of {r;}, namely,{z;} and denote by = 7; +--- + 7, T = Tx — T;. Clearly,

P(IT/|/~/n>2(2M +1)N) < ep + SN
Here
lim L(n,M)/n=a.
n—oo

By standards arguments involving an application of the Lévy maximal inequality
for sums of symmetric independent random variables, we easily derive that the
sequencgT?; /./n} is stochastically bounded. By Theorem 3 in Esseen and Janson
(1985), the fact tha7s / /n } is stochastically bounded implig&(t1 — 71)? < oc.
Thus,Etl2 <oo. O

PROOF OFTHEOREM1.2. By combining Proposition 3.1 with the bound (15),
we obtain the first part of (3). To prove the second part, we proceed by absurd
and notice that if{S,//n} is stochastically bounded, then by Proposition 3.2,
E[7?] < oo, which is in contradiction with (14).

The proof of Theorem 1.2 is completel]
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