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EXTREMES ON TREES

BY TAILEN HSING! AND HOLGER ROOTZEN?
Ohio State University and Chalmers University of Technology

This paper considers the asymptotic distribution of the longest edge of
the minimal spanning tree and nearest neighbor graptyon. ., Xy, where

X1, Xo, ... are i.i.d. in%2 with distribution F and N,, is independent of
the X; and satisfiesv, /n — , 1. A new approach based on spatial blocking
and a locally orthogonal coordinate system is developed to treat cases for
which F has unbounded support. The general results are applied to a number
of special cases, including elliptically contoured distributions, distributions
with independent Weibull-like margins and distributions with parallel level
curves.

1. Introduction. Recall that the (Euclidean) minimal spanning tree (MST)
on a finite set of point$X1, X», ..., X) in %2 is the connected graph with these
points as vertices and with the minimum total edge length. The (Euclidean) nearest
neighbor graph (NNG) o0KiX1, Xo, ..., Xu) is the graph on which each poiK
is connected to its nearest neighbor in the set. In this papef tlage assumed to
be random and we are interested in the asymptotic distribution of the longest edge
on these graphs @ — oc.

Penrose (1997, 1998) considered these problems by assuming thgt dne
uniformly distributed in a unit cube or symmetrically normally distributedith
The essential ideas are that (a) the lengths of the edges at any location in space
depend primarily on theé; in the vicinity of that location and as a result are
asymptotically independent of the edges in other parts of the space and (b) the
presence of an extremely long edge is a rare event and hence the likelihood of
having multiple extremely long edges at any location is asymptotically negligible
compared with the likelihood of having one such edge there. Clearly (a) is also
essential in proving central limit theorems for the total edge lengths; see Kesten
and Lee (1996), Lee (1997) and Penrose (2000). In view of (a) and (b), the
asymptotic distribution of the longest edge of MST or NNG can be established
through a Poisson convergence of the number of extreme edges, which in Penrose
(1997, 1998) is achieved through the Chen—Stein method.
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414 T. HSING AND H. ROOTZEN

Specifically, we will consider the case where the random graphs are based on
X1,..., XN, WhereXq, Xo, ... are i.i.d. with distributionF” and N, is independent

of the X; with N,,/n £ 1. We are primarily interested in the case wheérbas an
unbounded support (although our methodology works rather generally atso if
has bounded support). In particular, we will focus on thBsehose density is of
the form

Foo=e7V%,

where U (x) is regularly varying in some sense and satisfies suitable regularity
conditions. This covers many elliptically contoured distributions, and in particular
correlated normal distributions and distributions with independent Weibull-like
marginals as special cases but also large classes of other distributions. Poisson
approximation is the key idea. However, we use a direct approach of spatial
blocking as opposed to the Chen—Stein method. Computations of integrals of the
type [, e "FS®N) g F(x), whereS(x; r) = {y: |y — x| < r} is the sphere centered

at x with radiusr, are a key part of the solution for the problem on hand. One of
the novelties of our approach is the introduction of a locally orthogonal coordinate
system with respect to the level curvestdpf which enables particularly effective
handling of such integrals.

This paper is structured as follows. Section 2 introduces the notation and
a spatial blocking argument, as well as other preliminaries. The development of
a locally orthogonal system is made in Section 3. The main results are given in
Section 4. Sections 5 and 6 consider homogeneous level curves and parallel level
curves, respectively, and most of the proofs are given in Sections 7 and 8.

Possible extensions of the results in this paper include (a) allowing the
dimensiond to be general, (b) allowing the distance measure to be more general
(e.g., considering weighted edges on the graphs), (c) considerinkrrirarest
neighbor graph in which each point is connected tditsearest neighbors. The
solutions for these involve additional technical details but probably few new
important ideas.

2. Fundamentals. For convenience of notation, denote by M3
and NNQN), respectively, the MST and NNG on two-dimensional random vari-
ablesX1, ..., Xy for any random variabley defined on the same space asXhe
Also let M be the longest edge df, where in this pape will be either a MST
or NNG.

As outlined in Section 1, the graphs of interest will be based on the points
X1, ..., Xy, whereXy, Xo, ... arei.i.d. with distribution¥', N, is positive, integer-
valued with

Nn/n—p> 1,

and N,, and theX; are independent. This assumption will hold throughout the
paper. The random quantities whose asymptotic distributions we study in this paper
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are Must(n,) and Mnngw,)- We will first assume thaw, is Poisson distributed

with meann, in which case the pointX4,..., Xy, can be thought of as the
points of a Poisson process with intensity measureThe independent-increment
property of the Poisson process offers an obvious advantage in proving Poisson
convergence. We will later show how the result based on the Poisson assumption
can be extended to the general class of point processes described here.

Temporal blocking is a common technique for proving limit theorems for
weakly dependent random variables. See Ibragimov and Linnik (1971) and
Leadbetter, Lindgren and Rootzén (1983). Our first theorem, which basically is a
Poisson convergence result ffiyngw,), for the casev, ~ Poissong), is based
on a spatial blocking argument. For= 0 and measurable sdt, define

1) uVA, )y =n / e MESK) g F(x).
A

Now, let us say that points with their nearest neighbor at leaaivay are
r-separate. With this terminology,u,(ll)(A, r) is the expected number sfseparate

points inA. Similarly, let

w2 =2 [ [ Tooeyizane TSI aF 0o aF )

be the expected number of pairsrefeparate points such that the distance between
the points is larger thanand smaller than/2 Here and elsewherg, | denotes the
Euclidean norm.

In the theorem, for each, A, ;,1<i <k,, are suitably large and suitably
separated spatial blocks. The separation has to be large enough to make the
occurrences of,-separate points independent from block to block. This is ensured
by condition (a). Condition (c) says that nothing of importance happens on the
leftover parts between the blocks. Uniform asymptotic negligibility of the number
of r,-separate points in the individual blocks follows from (d). Condition (e)
prevents clustering af,-separate points. Finally, condition (b) is the basic norming
condition of convergence of the expected numbet, edeparate points to the mean
of the limiting Poisson distribution.

THEOREM1. Let N, have a Poisson distribution with mean n and let {k,} be
a seguence of positive constants tending to co. Suppose that {r,,} is a sequence
of positive constants and for each n, A, 1, ..., An k, are digoint measurable sets
in 912 such that:

(@) mim<;zj<, iNf(IX—y|:Xe€ A,y €Ay, ;) > 2r, forallargen,
(b) 1My o0 P (N2, 7)) = somet e (0, 00),

(©) 1My o0 i (Ufq Ani)¢,rn) =0,

(d) 1My o0 MaXi<j<k, 145" (An,is 1) =0,

(€) 1My o0 MaXi<i<k, (482 (An iy ) /1052 (A )] = O.
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Then the number of r,,-separate points asymptotically has a Poisson distribution
with mean 7, and thusin particular,

(2) P(MNNG(N,) <tn) > € ".

PROOF  For convenience writ®, = {X1, ..., Xy, }. For any setA, define
N, A)=inf(Ix —y|:y € A\ {x}),

namely, the distance fromto its nearest neighbor iAa. We will show the stronger
resultthaty "y » I(v(x.#,)>r,) CONverges in distribution to the Poisson distribution
with meant, from which (2) follows at once. Let

DA, ) = nzfA/AI(lx_y|>r)e—nF(S(x;r)u5(y;r)) dF(X)dF(y)

be the expected number of pairsre§eparate points iA with the points at least a
distancer apart. It is easy to check that

) E ( > 1(N<x.ﬂ>>r)) =u{P(A,r)
XeP,NA
and
(4) E( Z I(N(x,?n)AMy,fn)w)) =P (A,r).
X,YEP,NA, XAY
Write
kn
Z I(N(X’J)n)>rn) = Z Z I(N(X,J)n)>rn) + Z I(N(X9<7)n)>rn)‘
XeP, i=1XeP,NA,,i XEt(an(Uf'(ilAn.i)c

Roughly speaking, in the following we will establish that the second sum is
negligible and for the first sum that its expectation tends,tthe summands are
infinitesimal and the probability that any summand is bigger than 1 is negligible
compared with that of it being bigger than 0. More precisely, we will show that

Z I(N(X7€7jll)>rn)’ 15 i Sk}’la

XePyNAy,i
(5) _ _
are independent random variables for each
(6) P( > IN& P >ra) > 0) -0,
X€PuN(U"y An i)
@)  max P( Y I > 0) -0,
XEPuNAy i
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kn
(8) ZP< > INxPr) > 0) — T,
i=1

XEPNA, i

P xepunan; INx2)>r) > 1)

9 max ‘
<i<ky P(Xxep,na,; LN >r) > 0)

It is straightforward to see [cf. Corollary 7.5 of Kallenberg (1983)] that (5)—(9)

imply that} "y » I(n(x,#,)>r,) CONVerges in distribution to the Poisson distribution

with meant.

We now show (5)—(9). First, it is clear thatycp na, , INx.P)>r) 1S
completely determined by the s, N (A,.;),, Where(A)s = {x:d(x, A) < §}.
Hence, by the independent-increment property of the Poisson process and
condition (a) of Theorem 1, we conclude that (5) holds. To show (6)—(9), we first
note the Bonferroni inequality:

10) uMA, ) — 3P A, ) < P( S Inper > 0) <uP(A, ).

XeP,NA

Using the rightmost inequality witd = (Ufil A,i)¢andA = A, ;, respectively,
(6) and (7) follow from conditions (c) and (d), respectively.

Next, note that sincd (S(X; r,) U S(Y; 1)) = F(S(X; ry)) + F(S(y; ry)) for
IX =yl > 2ry,

210 = w2 Ao =2 [ [ Ky OB a0 dr )

< (P (A, ).
Hence, by conditions (d) and (e),

~(2)
. A,
(11) lim max M —

| T =0.
nO0Lsi=kn 1, (Apis Tn)

By (10) and (11), conditions (b) and (c) now imply
kn ky
n”_)moo Z P( Z LN, P)>r) > 0) = n”_[noo Z 1P (Ani, )
i=1 XEPNAy i i=1
— i ) —
= nll_)moo Wy (M, ) =1
Finally, since

P( > NP > 1) < P( Y NG PIANY. P> > 0)

xeP,NA X,yePnNA XAY

<iP (A, ry),
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(9) follows from (10) and (11). O

As a simple example, it’ is the uniform distribution ori0, 1] x [0, 1], then
it is straightforward to verify (a)—(e) of Theorem 1 by taking= (W)V 2
[cf. (1) of Penrose (1997)] and th&, ; to be the set§(j — yn~Y/4, jn=1/4 —
n 3 x [(k — Dn= Y4 kn=V4 —n=Y3), j k=1,..., [n¥*]. The advantage of
this approach will be more obvious for more complicated distributions.
The next result shows how to generalize Theorem 1 by removing the Poisson
assumption om,,.

THEOREM2. Suppose that
(12) sypn/F"(S(x; ) dF(X) < 00
and for some§ < 1,
(13) supi? [ F(S06 1) P (S0 1) dF () < o0,

where F =1— F. Then
P(MNNG(N,) < Tn < MNNG(n)) + P(MNNG(m) < n < MNNG(N,)) — O

for any sequence of positive, integer-valued random variables N,, with N, /n £1.

PrROOF First for any positive constast,,

P(MNNG(N,) < Tn < MNNG(m)) + P(MNNGm) < n < MNNG(N,))
<P(N,—n|>ne)+ Y. PNy=))

|j—n|<neg,
x (P(MNNG(J') <ry < MNNG™))
+ P(MNNG() <Tn < MNNG(j)))-

Pick e, to tend to O slowly enough so that the first term tends to 0 and so we only
have to deal with the second term. It suffices to show that

14 max P(M, N<r <M 0
( ) jen(l—egy),n(14¢,)] ( NNG(j) =Tn NNG(”))

and

(15) max P(MNNG(n) <r, < MNNG(j)) 0.

Jjeln(l—e,),n(1+en)]
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To show (14), suppose first that € [n(1 — ¢,),n — 1]. Observe that if
MNNG(j) < rn < MnnG), then there exists € {j + 1,...,n — 1} such that
/\lgsfn,s;éi |Xi - Xsl >ry. Hence

max  P(MnNG(j) <7n < MNNG()) < nén / F'Y(S(x; 1)) dF(x) — 0O
jeln(d—e,),n—1]

by (12). Next, letj € [n + 1, n(1 4+ &,)]. Suppose thaMnng(j) < 7n < MNNG(»)
and that the longest edge on NN initiates fromX so that/\1<, <, s Xk —
Xs| > ry. Since the longest edge becomes, by adding points<,, 11, ..., X; to
the graph, one of those additional points must be within a distangefadm Xj.
Thus,

P(MNNG(j) < Fn < MNNG(n))

5P(forsomeke{1,...,n}andee{n—i—l,...,j},

N\ Xk — Xl > ry but| X — X < rn)
1<s<n,s#k

< n%, f F(S( ra)) " X(S(X: ) dF(X) = 0

uniformly for j € [n + 1, n(1+ &,)] by (13). This proves (14). The proof of (15)
is similar, where the main difference is that fpe [n(1 — ¢&,), n — 1],

P(MNNG() < n < MnG(j)) < n%en / F(SO ) FI7H(S(x; 1)) dF (%),
which, again by (13), tends to 0 uniformly fgre [n(1 —¢&,),n —1]. O

We note that (12) follows readily from (b) of Theorem 1 Sin€es(x; r,))" <
e "F85m)) Indeed, for the cases that we will consider, the conditions (12) and
(13) are both naturally satisfied. Thus, once we have the asymptotic distribution of
the extreme edge length for the Poisson NNG, we can extend that at once to a more
general class of NNGs.

The following result gives an argument for deriving the asymptotic distribution
of Mwmstv,) from that of Mnngw,), In light of the fact thatMmstv,) >
Mnne(w,) (see proof below).

THEOREM 3. Suppose that for any sequence of positive constants m,, with
my/n — 1, we have

(16) n/[ﬁ’"" (SO 72) N S(O; X)) — F™ (S(x; ra) I (IX| > r,/2)dF (X) — O.
Then

P(MNNGN,) < Tn < MumsT(N,)) = O
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for any sequence of positive, integer-valued random variables N,, with N, /n £1.

ProoF The proofis basically the same as that of Lemma 4 of Penrose (1998).
For completeness, the essential ideas are reproduced here. Again write

P(MNNG(N,) < Tn < MMsT(N,))
(17) < P(INp/n—1] > &)
+ > P(Ny=m)P(MnNGm) < n < MVST(m)):
[m/n—1|<en

whereg,, tends to zero slowly enough so that the first term tends to 0. Now make
X1, ..., X, agraph by including an edge between each pair of points at a distance
at mostr. Denote the resulting graph b§,. Clearly, for a small enough,

G, comprises connected subgraphs, catlatusters, which are disconnected with
one another. Observe that

Mwmstm) = inf{r : G, is connectefl
MnNGm) = Inf{r : G, does not contain an-cluster which is a singletgn

Thus, MmsT(m) = MNNG(m)- SUPPOSEVINNG(m) < T'n < MmsTm)- Then it means
that G,, is disconnected and eacdf)-cluster has at least two points. Take an
rp-cluster and letx be the vertex in the cluster which is closest to 0. Write
L5 =1{X1, ..., X} \ {x}. Clearly

XNSr) £ and 45N S r) NSO; X)) =@

since S(x; r,) contains points and only points belonging to the saeluster
while S(0; |x]) \ {x} does not contain points from the samecluster. This means
that if MNNGgn) < v < MmsTm), then there are at least two points belonging to
differentr,-clusters having the described property, where one of them must have
modulus bigger than, /2. Thus,

P(MNNGm) < Fn < MMST(m))

m
< P(21(|x,-| > /2, 48N N SXi3 1) # @
i=1

and X N S(X;: 1) N S(0; |X;]) = 2) > 1)

m
< E(Zl(lxil > /2, I8 N S(XKi3 1) # @
i=1

and L N S(X;; r,) N S(0; X)) = @)>
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m
E(Zluxn > /2, 1N N S(X;; 70) N S(O; [X;]) = @))
i=1

_ E(Z[(|X,~| >rn/2, 13,(;' NSX;;ry) ZQ))

i=1
=m [ [F"(50 1) N SO 1xD) = F*X(S06 r)]1 (X1 > 7a/2) dF (),
which tends to 0 by (16). The result follows from this in view of (17[.]

While it may not be easy to make an intuitive connection between the
condition (16) and its conclusion in Theorem 3, (16) holds quite naturally for the
cases that we study in this paper.

It might also be worth noting that it is easy to find examples where the Poisson
convergence which is used for Theorem 1 does not hold. In fact, this is the
rule rather than the exception in the one-dimensional case, and for example can
be seen to be the case for the one-dimensional deasity/2. A simple two-
dimensional example is then obtained by letting the two-dimensional distribution
be concentrated on the;-axis and have this density. If this distribution is
mixed with, say, the standard bivariate normal distribution, a more genuine two-
dimensional example where Poisson convergence does not occur is obtained. This
example can also be simply modified to have a smooth density.

3. Time-varying, locally orthogonal coordinate system. In the remaining
part of the paper, we will focus on densities of the form

foo=e7"%,

where U (X) is continuous and each level curg = u) := {X:U(X) = u} is a
closed and convex curve. This guarantees thats monotonically decreasing

in some sense. We first introduce a “locally orthogonal” coordinate system
which is useful for our computations, in particular for computations of the basic
quantityu$Y (A, r) defined by (1). Let

VU (x) = (UL x), UOD (x))

be the gradient of/ (x) atx. This gradient is throughout assumed to be continuous.
For pointsx for which U (x) is large, we define the transformatign— (¢, u)

whereu = U (xX) and¢ is determined in the following manner. We use a level curve

(U = w), with w specified below, as a reference.xlfbelongs to the reference

curve (U = w), let £(x) be the arc length from an arbitrary but fixed poiat

to X, measured counterclockwise, say, on the cue= w). In general, ifx is

on the level curve(U = u), whereu # w we let £(x) = £(xX’) where X' lies

on (U(X) = w) andx andx’ are connected by a curve which is orthogonal to
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each level curve betwegiy = w) and (U = u), in the sense that the normal of
any intersecting level curve at the point of intersection is in the same direction
(modulor) as the tangent on the connecting curve at the point. The assumption
that V(x) is continuous assures that the transformakier (¢, u) is one-to-one.
The reason for this choice of the second coordingtis that it gives the Jacobian
for the transformation to the new coordinate system a relatively simple form.
The important thing to keep in mind is that this coordinate system depends on
the reference curve. In what follows we refer to the indein N, as “time.”
In the computations that follow, we see that at timevhenn is large, all the
action takes place in a neighborhood of the level cve= logn) (see proof of
Theorem 4). Hence at timeit is natural to seiw = logn and usgU = logn) as
the reference curve in definifgFor this reason we shall throughout the rest of this
paper adhere to this particular coordinate system. In doing so, here and elsewhere,
the reference of to time will be suppressed (i.e., insteadégfwe simply writef)
for convenience of notation. Also, whenever there is no ambiguity the notation
will denote the functiong(x), x(¢, u) as well as their possible values.

We now derive the Jacobian for the coordinate change fkdm(u, £). Note
that the unit normal vector aton the corresponding level curve is

VU(X)
VU ()|
By the way in which the transformation is defined,
X 1 VUX)  VU(X)

(18)

u VUM IVUX)| VU

We now derive(%, %). Clearly the unit tangent vectorabn the corresponding
level curve is

UV x), —UL0(x)).

VU (X)|
If x is such that/ (x) = logn, thent corresponds to the actual arc length and so
(19) X _ unit tangent ak = ;(U“)vl) x), —UL0(x)),
EY VU (X)|
in which case the Jacobian is equal to
LI L1 -
a(l,u) ou ¢ ¢ Ju VU (X)|

In general, the arc length fror(£1, u) to x(£2, u) is computed as

L2
(20) / X0 e, u)|de.
12
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Thus, if ¢ changes byi¢, then the arc length changes b9 (¢, u)|d¢ and
therefore

ox _ M(U@D(X) _y0 ).

i VUM
Consequently the Jacobian is
3 L0

21) ’ X _|_ X0l

A, u)l VUK, u))l|
For convenience write
(22) (¢, u) =|VUXE, u))|
and
(23) A(u) = length of the level curvéU = u).

Thus, changing variables— (¢, u) gives

P = [ TS are
A

(24) 10
:/~ oM F(SX(@u);m) —u x> (E’M)|d£du,
A E(L, u)
sinced F(x) = e"U™® dx, where A is the image ofA under the transformation
fromxto (£, u).

4. Main results. In this section we formulate conditions directly in terms
of U(x), the negative logarithm of the densitf(x) = ¢e=Y®, which lead to
convergence of the longest edges of the nearest neighbor graph and the minimal
spanning tree. As stated in the beginning of Section 3, we focus on fundfions
for which the gradient is continuous and the level curves are convex. Additional
conditions on smoothness and other aspectyofwvill be stated below in
Assumptions A1-A6. The conditions are rather technical. Some discussion of their
meaning is given after the statement of Theorem 5.

The core of the problem is to find sequenegdor which the mean number
of r,-separate points converges, that is, which satisfy, lim Mfll)(iﬁz, ) =
somer € (0, co). Denote by, = ¢, , any point for which

(25) &, =&, logn) = m@inf;‘(z, logn).

We assume that there exist finite positive constants, and a sequence,
which satisfy Assumption A5, fat, defined as

Ny —c1logn, — Iog(cz_lt«/er)
&n '
Throughout assume that is given by this expression.
For convenience write lgg= loglog and log = logloglog. The following set
of assumptions are needed:

(26) Iy =
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AssumMPTIONALl. For each large, given anys > 0O there exist$ > 0 such
that [VU (X)/|VU(X)| — VU(X)/|IVU (X)|| < ¢ for all x, X' on U = u with their
distance on the curve less théx(u).

SUR: )= | VU (X)]

ASSUMPTIONA2. limsup,_, .0 o0me VOG0T

ASSUMPTIONA3. For all largex, bothi(u) and inf. yx=. [VU (X)| belong
to the rangdu ", u”] for somep € (0, c0).

ASSUMPTIONA4.  liMyx) oo |léUj()X()X\)2‘ (logU (x))2 = 0 for anyi, j > 0 with
i+j=2.

AsSSUMPTION A5. There exist positive constantg,c2 and a sequence
of constantsn, — oo with n, = O(log,n) such that [with £(¢,logn) =
VU (x(¢, logn))|, as before]:

(@) limy oo ™ it 2 7RI lEElogm—Etolognln (£ (¢, logn) & (L,
logn)1Y2de = c»,

(b) lim, o0 €™ ny
logn)1Y2dr =0.

1/2 Ctry _
1 / SUQ fl‘z—;r e [E([,log}’l) S(eml()gn)]rn [S(I, Iogn) S(ﬁ()v

ASSUMPTIONAG. |im,_ o infx: yo=u(X/IX], VUX)/|IVU(X)|) > 0

In the following theorems leN, be a positive integer-valued random variable
such thatV, /n > 1. Also define
_ np —c1logn, — |Ogc£1\/ 2
a &n

(27) HKn

and denote by

and o, =1/&,,

A(x) =exp(—e "}, —00 <X < 00,

the Gumbel distribution function.

THEOREM 4. Assume that for each t > 0, Assumptions A1-A5 hold with 7,
defined by (26). Then

d
(MNNG(N,) — 1n)/0n — A.

THEOREMS5. Assume that for each t > 0, Assumptions A1-A6 hold with 7,
defined by (26). Then

d
(MMST(N,) — tn)/on — A.
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Clearly, if the conclusions of the theorems hold, then by weak convergence one
has some flexibility in choosing the normalization; indeed, &ngndé,, with

M —1Mn— 0 and gﬂ/énﬁl

can replacey, ands,.

Assumptions A1-A6 are designed to meet not only analytic but also geometric
considerations in the proofs, but still are quite general. Assumption A1 means that
the normalized gradient df on a level curvel (X) = u, whereu is large, will
change gradually when the location changes gradually relative to the total length
of the level curve. Assumptions A2 and A6 imply that the level curves are not
highly asymmetrically shaped. Assumption A3 says that Baih and |V (u)]
are O-regularly varying functions [cf. Bingham, Goldie and Teugels (1987)].
Assumption A4 is a very weak technical condition on the smoothness.of
Assumption A5 is the most significant condition in this group, which is aimed
at connecting the normalizations for the longest edges on the graphs to the second-
order Taylor expansion of (¢, logn) in areas where (¢, logn) is close to its
minimum valuet (¢, logn). To further illustrate what these conditions mean and
how to verify them, we proceed to examples in the next two sections.

5. Homogeneous exponents. The first general example considers distribu-
tions with exponents which are homogeneous in the senseftiai= ¢V =
e~ V0=c with V (kx) = k2 V (x), where the level curves fdr are convex. In this
case it is far more natural to use polar coordinates than the time-varying, lo-
cally orthogonal coordinate system in the general theory. In polar coordinates,
X = (r c0s9, r sind); we may then write/ (x) = r*g(#), so that

(28) f) =e VO =778

Straightforward computations show that

_a-1 cosd
00 VUKX)=r A(Q)[sine]’
IVUX)| =r*"1A©6) Y2 = r*"1h(0),
where
aw) =[50 L] and a@)=ate0)? + £ 02

Defining v.(n) = logn — ¢, we have thatU(x) = logn is equivalent to
V(X) =v.(n). Hence, writingr (6, logn) for the solution toU(x) = r¥g(0) +
¢ = logn and x(@, logn) for the corresponding, we have thatr (0, logn) =
ve(m)Y%g(6)~%, and

0 £(6,logn) = |VU (x(8, logn))|
30
= v () Vg(0) " n(0) = v.(m) "k (9).
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The final ingredient needed to treat distributions of the form (28) is to note that

3O _ | ax(®)
g~ = |75 and use

x(0,logn) = r (6, logn)(cost, sind) = v.(n)*g(©) % (cosv, sinb)
to obtain
30(0)

(31) Wzvcm)l/“g(erl/“[(

g'©®)
ag(0)

THEOREM 6. Assume that the density is of the form (28) with « > 1 and
g(0) bounded away from zero and three times continuously differentiable on
the torus [0, 2]. Suppose further that k(6) assumes its minimum value at d
distinct points 6o, ..., 64_1. Then Assumptions A1-A6 hold with &, /&, — 1 for
g, = (logn)*Y*k(60), n, =log,n, c1 =1 and

2 1/2
>+1} =:v.(M)Y*m(0).

d-1
c2 =21k ¥ Y K" 6) "V m(®6).
i=0

ProoOFE If follows from (29) that

VUX)  A(0) [cos@]
IVUX)| ~ |A©)|Y2 | sind |°

Itis clear that Assumption Al is equivalent to the continuity of the function on the
right-hand side of (32), which follows from the assumptions. That Assumptions
A2 and A3 hold are immediate consequences of (29). It may be seen that
UGD = v@d) = pe=+ig (@) for i + j = 2 and suitable functiong; ;(9).
Assumption A4 follows from this and (30). To show Assumption A6, note that
by (32) we have

(32)

< X VUX) > ag(0)

X VU~ 1A6)[V2°

which is bounded away from zero singés.
We now verify Assumption A5. Using in order (31), (30) and Erdelyi [(1956),
page 37],

I, = /g ¢~ [E(t10gm =80 l00mrn (£ (¢ logn)& (€, logn) 1Y/ d¢
21 ~ ~ ~ ~
= f e~ 5@ I0om =5 Coloamim £ (9., logn)é (6. logm) 1Y 2ve ()M m 6) d6
0

2 1/
= ety [ e OO )k 60) 1 m(6) o
0

d-1
~ v MKk O)V2T S (rave )Yk 0) "2 m6)).

i=0
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Clearlyv.(n) ~ logn and by (25), (26) and (30),
rave(m) Y k(60) = ra& (€0, logn) ~ 1.

Hence
d—1
I, ~ /27 (logn)k(60)> %1, Y2 3~ (K" (6,))"Y/*m ;)
i=0
and Assumption A5(a) follows. Similar considerations prove Assumption A5(b).

O

We next apply the result to classes of elliptically contoured distributions and to
Weibull-type distributions.
ExaMpPLE 1. Consider elliptically contoured distributions with log density
U(x) = r%((cosd)? — 2p cosd sind + (sind)?)/d + c.

In particular, this includes the bivariate normal with standardized marginals and
correlationp € (—1, 1), butp # 0, which is obtained fo#t = 2, ¢, = — log(27 (1—
0912y andd = 2(1 — p?). These distributions are of the form (28) with

g(0) = ((cos9)? — 2p cosd sind + (sind)?) /d = (1 — 2p cosd sin)/d,
and hence with
k(©) = (1 — 2p cosd sing) 1Y/«

x \Ja2(1 = 2p COSO SING)2 + (2p — 4p COL0)2 /dY/*.

The conditions of Theorem 6 are satisfied, and hence the results of Theorems
4 and 5 hold with

_ _ -1
(33) = log,n —logzn —log(c, “v/2) and o, 1 .
(logn)=Y/«k(6o) (logn)=/*k(6o)

Computation ofk(6p) and ¢ requires computer algebra, with a slight simplifi-
cation obtained by noting that the constaptis independent of the value af.
We consider the normal case, which has 2 andd = 2(1 — p?), and present the
results for a few values g in Table 1. By symmetry, the values ferp are the
same as fop.

TABLE 1

p 0.1 0.3 0.5 0.7 0.9
k(6p) 1.348837 1240718 1153867 1084742 1026251
c2 192383720 P460116 40933240 19501568 (6414317




428 T. HSING AND H. ROOTZEN

TABLE 2
o 5 6 7 8
k(6g) 0.769 Q472 Q280 Q162
c2 0.631 Q307 Q151 Q072

ExAMPLE 2. In this example we consider independent marginals with
Weibull-type densities const e~ 11* =21 The log density then is

UX) =r*(cosf|“ +|sing|%) + ¢
and is of the form (28) with
g(0) = (|cosh|* 4 |sing|¥).
Hence,
k(0) = a(|cos0|* + | sing|*)11/e
x {(|cosf|* 4| sing|%)?
x (—sign(cosd) sind| cosd|*~ + sign(sing) cosd| sing|* 1)} /2,

To assure three times differentiability we assume &hat4.

Again the conditions of Theorem 6 are satisfied, and hence the results of
Theorems 4 and 5 hold with,,, o, given by (33) in the previous example. A few
examples of values @f(6p), c2, obtained with Maple, are given in Table 2.

It might be noted that even if the result requites- 4, it can be shown to hold
also for 2< o < 4.

6. Parallel level curves. Consider the situation where the level curves are
parallel, namely they are given by

B4) X:UX)=u}={c@)+w@)n():tel0,L)}, u > someu, > 0,

where L is a finite positive constant;(¢z) is a closed, strictly convex curve
parameterized clockwise by length(x) is an increasing function witty () =0
and w(co) = oo, andn(¢) is the unit normal ofc at the parameter. Assume
that w(u) is differentiable andc(z) is twice continuously differentiable with
|€(2)| € (0, 00), where “” refers to differentiation with respect te. Since
|C(t)| =1, itis easy to see that

(35) n(r) = [E@)|C().

Also it is clear that

(36) E(C,u) = VU XL, u))| = for all ¢,

o' (u
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so that the asymptotic results here are different in nature from what was considered
in Theorem 6. Sinceé (¢, u) does not depend on we will denote it byé&(u)
henceforth. Define(¢) to be the inverse function of

£(t) = arc length of the level curve: = logn)

from c(0) + w(logn)n(0) to c(¢) + w(logr)n(z)

t t
:/0 |c':(v)—|—w(logn)r'1(v)|dv:/o[1+a)(|0gn)|é(v)|]dv,

where the rightmost equality follows from (35) in conjunction wjttiv)| = 1.
Hence,

X0, u) = [&( (£)) + w @) (z ()] (£)
(37) = [1+ w @) [ (€)1 ()& (£))

- 1+ w(u)lé(.{(ﬁ))l & (0)).
+ w(logn)|E(z (£))|

Also

L
A<u>=/ [1+ w(@)|&0)|1dr
(38) °

L L
=L+a)(u)/0 |é(t)|dt~w(u)/0 &) dt.

THEOREM 7. Assume that (34) holds, where c(¢) is twice continuously
differentiable, and w(u) = u® exp(/}, “(}—,y)dy) for some o > 0, a(y) — 0 and
ya'(y) — 0 as y — oo. Then Assumptions A1-A6 hold with n,, = log[& (logn) x
r(logn)],cr=1/2and co = 1.

PROOF SinceVU (X)/|VU (X)| = n(¢), it is not difficult to see that Assump-
tion Al follows from the continuity oh(z). Both Assumptions A2 and A3 hold
trivially in view of (36) and the assumption @i We next verify Assumption A5.
By (36) again,

Ar(logn)

e~ ,7’621—1/2/ e~ 16t logn)—£ (€, logn)lry [£(¢, logn)E (L, |Ogn)]1/2 de

£=0
= e M nt=Y2) (logn)& (logn).

Hence, Assumption A5(a) is satisfied for the choice of constants in this theorem.

The verification of Assumption A5(b) is entirely similar and therefore omitted. To
verify Assumption A6, note that

<L VU () >_< c(t) + w(u)n(r)
X" VU] \le@) + o@)n()|’

n(t)> ~InnP=1  asu— .
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Hence Assumption A6 holds.
We finally verify Assumption A4. Solvmgax1 3xz) and (ax1 3xz) in the
following in terms ofxq, x2:

0x1 ot ou
l=— (Cl+wn1)—+a)n1—
0x1 ax1 ax1
0x ou
0=—= ! (c1+a)n1)—+ )
0x2 3x
ox Bt ou
O=—2 (cz—l-wnz)—-i-a)nz—
0x1 0x1
0x 8t ou
l:—2 (cz+a)n2)—+a)n2—
0x2 0x2 0x2
we get
ou ou 1 ar ot 1
PO :__.,. and P = o .7. .
<8x1 sz> a)/( €2, ¢1) <8x1 axz) 1+ w|¢ (c1, ¢2)
Hence
u 0@ éa(dufdx1) — w'E2(dt/0x1) @S é162
axy (@)? (@) oA+l
%u  wPé1(du/dxg) — 'é1(91/0x2) P2 é1éo
x5 (w')? T ()3 A+ eld)’
Pu_ 0Pé@u/dx) —Ea@t/dx1)  0Pééy  ad
dx10x2 (@')? ()8 o' (1+wlt])’

To show Assumption A4, by the computations above and the fact{¢hand|c|
are bounded, it suffices to show that

(|w<2>(u)|
[ @)]P oW (u)
The assumption of the theorem implies that betlnd«’ are regularly varying

and in fact
_ “a(y)
") = (a +a(y, “lex( a—d),
o' (u) = (a +a(yo))u p/y S

(39) lim

u—0oo

)(w’(u) logu)? = 0.

where

a(y)=a(y) + ety ) -0 asy — oo.
a+a(y)
It is easily seen that
’ (2 _ a
w(u)=a+a(u) and w (u):a 1+a(u)
w(u) u o' (u) u




EXTREMES ON TREES 431

from which (39) is straightforward. O

ExamMPLE 3. An example of such a distribution is the bivariate normal
distribution with independent standard normal marginals, in which case we can
takec(t) = n(r) = (cost, sint), t € [0, 27), and

o) =v2u—logmr)] -1,  u=log@2r)+1/2.
The conditions of Theorem 7 are satisfied and so Assumptions A1-A6 hold with
& = (2logn)l/2, nn =log4r + log, n, c1=1/2, cr =1
Hence the results of Theorems 4 and 5 hold with

__logyn — (1/2)logzn + log(2v/ 2 ) and _ 1
N (2logn)1/2 on = (2logn)1/2

This is consistent with the normalization obtained in Penrose (1998).

n

7. Technical lemmas. In this section we present three technical lemmas
which are essential for Theorems 4 and 5. No significant continuity will be lost
if a reader postpones the details in the proofs of these lemmas during the first
reading.

The first one, Lemma 8, deduces three consequences of Assumption A4
which are more directly usable in the proofs of the theorems. Lemma 10
takes one step toward evaluating integrals like (1) and the last one, Lemma 9,
approximates F'(S(x; r;)), and in particular shows that appropriate sectors
of S(x; r,) may be neglected asymptotically.

In addition to previous notation, we will use in the proofs

(40)  up—p=Ilogn —blog,n, unp =logn +blog,n, b>0.

LEMMA 8. Assumethat Assumption A4 holds, namely lim x)— oo (|U @ (X)|/
VU (x)|?) (logU (x))? = 0 for any i, j > Owithi + j = 2, and consider the coor-
dinate system based on the level curve U (x) = logn. Then, for any finite constant
b=>0,

_ UG
lim sup %‘(Iogzn)2 =0
(Ada) n=>00 - \U(x)—logn|<blogyn | VU (X)]
a
foranyi, j withi + j =2.
. Z,
(A4b) lim sup sy 1‘ log,n = 0.
n=>0%0 |, _logn|<blog,n! § (€, l0gn)
(A4c) lim sup  |[x%9, v)| -1 =0.

=0 1y—logn|<blogyn
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PROOE Equation (Ada) is an immediate consequence of Assumption A4
since logU (x)/log,n — 1 in the indicated range.
The proof of parts (Ad4b) and (A4c) uses the relation (18), tI§§lt:

VU (X)/|VU (X)|?, in two ways. First, this relation implies that
dx1(¢, v) - dx2(€, v) - 1 ’

v —|IVUX)| v —|IVUX)|
and second, it is equivalent to

(41)

v VU E,
(42) X(£, v) — X(¢,logn) = /Iogn W(J(ﬁfﬁ 5

Let
@7
M, — sup U7 (x(L, v))zl’
lv—logn|<blogyn.i+j=2 | VU XL, v))|

so thatM,, (log, n)? — 0 by (A4a). Now, to prove (A4b), note that, by straightfor-
ward differentiation,

‘35(5,1)) . ‘3|VU(X(€,U))|

av N av

0 0x1 0 0x2
= |—IVUXE, )| 7=+ ——IVU X, v))|—
0x1 v 0x2 dv

VU, (U290, ULDY)(@x1/8v) + (VU, ULD, UOCD))(3x2/9v)]
IVU| '

Using (41), forlv — logn| < blog, » we hence have that'°2%€“) | < 47, Thus,
by integration,
_ n §(L,v) n
(8 4M,,b|092 — 1) |ngn < W — 1‘ |ngl’l < (e4Mnb|ng — l) |ngn
and (A4b) follows, sinceM,, (log, n)? — O.

Next, to prove (A4c), we note that similar calculations as for (43) give that
da VUX(,v))
3L |VU (X(£, v))|2

Hence, interchanging differentiation and integration in (42), we obtain

‘ < 5M, [x0 ¢, v)|.

v
X0 (e, v) - xLO (¢, logn)| < 5M, / X9, 5)]ds.
logn

By (19), x29(¢, logn)| = 1, and hence

v
X0 e, v)] - 1] < 5M, fl (X9 5) = 1] + 1) ds.
ogn
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It then follows from a Gronvall inequality that fov — logn| < blog, n,
[x29 (e, v)| — 1| < 5M, blog, n exp(5M,,blog,n} — O,
and (A4c) follows, sincé/, (log,n) — 0. O
LEMMA 9. Suppose that U is differentiable with gradient VU and let, for
some X,

(43) &= sstlp)lU(y)—U(X)—<VU(x),y—X>|.
yes(X;r

Let ¢ € (—1,1]. Then, with &€ = |VU(X)|, there exist constants 61 = 61(X,r) €

[—1,1] and ﬁ + 3 <6, =162(x,r) < 0and such that

F(SO6r) N{y:ly =%, VUX)/IVU X)) < ¢r})
= (2rr)Y2em VO ET2E M1 4 05/ (67)].
PROOF LetB={y:(y—x,VUX)/IVUX)|) <¢r}. By (43), we can write
(44) F(SX;r)NB) = e_U(X)eglef e~ VUXY=X) gy
S(X;r)NB

Then change variables with— x = Av where
b a
=123
with (a, b) = VU (X)/|VU (X)|. It is easy to see that

/ e~ (VUKY=X) gy
S(x;r)NB

= I(vo <Cr)e $V2dv
S(:r)

—£2 / I(v2 < €Cr)e"2dv
S(0;&r)

&¢r
- 25—2/ eV [(Er)2 — v2) Y2 dy,
_ér
Next, lettingz = v + &r, the previous expression is equal to

§A+0)r
2%-—26,5}"/0 e—Z(Zi_-rZ _ Z2)1/2dZ

E(A+o)r
_ 252687 ()12 /0 e~ 2Y2(1 - 7/(26r)) 2 dz.
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Since 1- x/2 < (1 — x)¥2 < 1 forx € [0, 1], we have

1+ 1+
/5( o e Y247 — 1 /é( o e %% dz
0 4r Jo

EL+O)r
o0

< / e 7Y%dz =T(3/2).
0

The lower bound is

S 1 A+
r'(3/2) — / e % d; — — / e i7%2dz,
E(14+0)r 4sr Jo

and sincd™(3/2) = 71/2/2, we obtain that

1+
— /Oo e 2 q, — i /S( or e 27324z
EQ+O)r 4cr Jo

EL+0)r
<f =221 — 2/ 261 Y2 dz — 722 < 0.
0

Now,
00 1 00 1
/ ez <~ e2324; < =152
E(L+0)r EQA+2)r) Jea+or EA+o)r
and

1
4tr
Sincel'(5/2) = 371/2/4 and 3:1/2/8 < 1, this concludes the proof.[]

EL40)r 1
/ e 732dz < —T(5/2).
0 4sr

LEMMA 10. Assume that Assumptions A2—A5 hold. Let constants k € [0, o)
and §, € [8, 8] C (0, o0). Then for any sufficiently large fixed b € (0, 00),

(45) n / HUX) ¢ [tn,—p, unpl)e 2 ESEraD [y F(S(x; 7)) FdF (X) — 0,
X
and uniformly for ¢, 1 < ¢, 2 € [0, A(logn)],

n f 1(UX) € [tn,—b tn b, €X) € [€n.1, €n,2])

(46) x e~ ESCD 1y F(S(x; ra)) ] dF (X)
9 ;i,ezn’le—w,Iogm—&azmlogn)]rn51/2(&|ogn)dg

" f;“gg”) e~ 6(Elogm —&(Lo.logmrug1/2(¢ logn) de
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It follows from (45) and (46) that

(47) n / e E ST [y F(S(x; k) K d F(X) ~ 8711,
X

PROOF In this proof we will assume for convenience of notation that O
ands$, = 1, since the extension to the general case is straightforward. First note
that by Assumption A2, (A4b) of Lemma 8 and the definitionof

sup |E(L, u) — &(L,logn)|ry
u€lup,—p,unplt
(48) )
- sup E(L,u)

< 7—1‘000 n)—0
welior o o1.¢ E(E, 10gn) %

and

inf EW, u)ry, = E(L,, logn)r, — oo, b>0.

ue[“n,—bvun.b s
By Assumptions A4 and A2,
lim sup sup [U)—-UX) —(VUX),y—x)|=0, b>0.

O U X €Elutn, —p ity b1 YES (X 1n)

Hence, by Lemma 9 witlh = 1, (48) and (A4b) of Lemma 8, we have uniformly
for all ¢ andu € [u;,, —p, un pl,

F(S(X(£, u); rp))
~ A/ 2ne_“§_3/2(£, u)r,%/zeg(g’“)r"

49

( ) ~ 4/27-[6_“%‘_3/2(€’ |Ogn)r’}/ze$(€mlogn)rne[é(esIog”)_é(emlogn)]rn
=e " xn(0),

where

xn(0) = cot~Xe73/2(¢, Iogn)r,}/ze”" n;c‘le[é(ﬁ,|09")—$(€o,|09n)]rn‘

Now pick a larget, so that the bounds in Assumption A3 apply fot u,. By the
nonintersection of level curves, Assumption A2 and (49), for all largee have,
for some constartiy, b2 > 0,

inf F(S(X; 1))
Xiuo<UX)<up,—p
= inf F(SOX(E, un,—b); ra))
> by inf eTn—bg=32(¢, logn)rt/Zem ;L

> bon~L(logn)?&~2(¢,, logn)e™ /2=,
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It then follows from Assumption A3 that

inf F(S(X; rp)) > ban~1(logn)*

Xiuo<U(X)<up,—p

for some constantks, b4, Whereb, can be picked large provided thats large.

Now for x for which U (x) < u,, itis clear thatF (S(x; r,,)) can be bounded below

by the same bound, since the density there is bounded away from 0. Combining the
two cases we conclude thatifis large enough, we can piéls andb4 such that

(50) n'/ e*nF(S(XH’n)) dF(X) < nefb3(|ogn)b4 N O
X:UX)<up,—p -

Next, by (20) and Assumption A3, there exists a conskgrauch that

A(Iogn) |X(1 0)(g uw)|
n/ dF(X)=n / ————dldu
X: UX)>unp Uiy, p b= El,u)

—u M)
= Vl/ e du
U>Un b S(EO? u)

(51)
< b5n/ e “u?l du
U>uy p
~ b5ne_””~”u3f)b — 0.
Hence
(52) n / e MFS®r) gF(x) — 0
X:UX)>uy, p

for a sufficiently largeb. Now, (50) and (52) imply (45).
It follows from (24), (49), and (A4b) and (A4c) of Lemma 8 that

n f LU X) € [tn,—p, unpl, €(X) € [£y.1, €y 2])e TS g F(x)

~n / b / oo (O pmu Ly
U=y, _p Jb=, 1 S(E’Iogn)

Make a change of variables in the above integral with
v=u—logn —log x,(£).

By Assumptions A2, A3 and the assumption that= log,(n) in Assumption A5,
we conclude that log,(¢) = O(log,n). As a result, it is possible to choose
large enouglb such that, _, — —oo andv, , — oo, wherev, 1, corresponds
to u, +p With respect to the above variable change. Since

0 —v
/ e ¢ e Vdv=1,
—o0
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we have

n [ LU X) € [tn,—b, unpl, €(X) € [€y.1, €y 2])e " FED) g F(x)

Un,b Ln2 T4o(1))e—" 1
’V/ / P A O L P — J 7 Y
v=v,,_p Jl=Ly 1 &L, |09”)Xn )

Ln2
~ Cz_lfrn_l/ze_n" ngl f
=ty 1

e—[é(&|09n)—€(ﬁo,|09n)]rn51/2(5’ logn) d¢

~ Cz_lre_"” nzl—l/z

Z11,2
x [ etectiogn=kolognin g(¢, logmg L, logm M2 de
gz@n.l

enf e~ [Elogm—E(Lo.logmm £1/2(¢ logn) d

=tn,1

~T
f;:('ggm e—l&(Elogn)—&(¢o.logmrug1/2(¢ logn) d e

by Assumption A5. This proves (46) far=0 ands, =1. O

8. Proofs of Theorems 4 and 5. We continue to use below the notation
of u, 4+, defined in (40).

PROOF OFTHEOREM4. First consider the cagé, ~ Poissong). We start by
defining the sets\,, 1, ..., Ay k, In Theorem 1. For convenience write

-L—ftzzoe—[f(fs|09")—5(Zm|09”)]rngl/z(t, |Ogl’l)dt

ft?»:(g)gn) e—[g(r,Iogn)—g(ea,logn)]rns1/2(1‘, logn) dt ’

I,(8) = ¢ € [0, A(logn)).

Thus, by (46) of Lemma 10 withk = 0 and§, = 1, for someb > 0 we have
uniformly for 0< ¢, 1 < ¢, 2 < A(logn),

(53) V(X ) € € a1, €n2), 1t € g, thn b1}, 1) ~ Tn(ln 2) = Iy (€n,1)
Whereuf,l) is defined in (1). In the following we will continue to work with this
choice ofb. By Assumptions A5(a) and A5(b),

en:=Sudl, (& +r,) —I,(£)] - 0.
12

Let k, be a sequence of integers such that
k, — oo and ks, — 0;

let jo=0 and, fori =1,...,k,, let j; be the largest positive integer such
that 1, (jr,) <it/k,, where ji, is simply the largest positive integgr such
that jr, < A(logn). Note that sincee, = o(1/k,), the differences between
successivg;’s tend tooco uniformly so thatj;_1 < j; — 3 for all largen. Define

An,i = {X(Z’ M) g € [ji—lrn’ (.]l - 3)rn)» ue [ul’l,—b’ Ml’l,b]}’ 15 l S kn»
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and

Ap k1= An 1.
Also let

Api= {X(E, u): e [(]l — 3y, jirn)’ u € [uy, —p, Mn,b]}a 1<i<k,—1,

and

An,kn = {X(E, u):te [(jkn - 3)r)1a )»(|09n)), ue [Mn,—ba un,b]}-
By the choice of the sets, it follows from (53) and the definitior,pthat
(54) Vkn —den < P (Anirn) <Vkn+ 0, 1<i <k,
(55) 1 m%x l/"L;Sl)(Al’l,l'v rn) <3¢, and M;;l) (An,kn» rn) <3e, + 1/kn,
and hence that

D, x
Anis n 3 n
(56) max 1" (Aninth) ©

< — 0.
l=izk,—1 Mr(zl) (Anisrn) 1/ kn — 4en

We now proceed to verify the conditions (a)—(e) of Theorem 1.
By convexity of the level curves,

Cn,i -— |nf(|X —yl:xe Aﬂ,iv ye An,i—l—l) = |X((]L — 31y, un,—b) — X(Jjitn, un,—b)|-

By (20) and the condition (A4c) of Lemma 8, the length; of the arc that con-
nectsx((ji — 3)rn, un,—p) With X(jirn, uny,—p) oN{X:U(X) = u, —p} is asymptoti-
cally 3r,. By the same tokeri (u, ) ~ A(logn). Let 6, ; be the angle between

OO AN ey Sincer, = o(k(logm) by Assump-
tions A5(a) and A5(b), Assumption Al then guarantees that; fax— 0. Con-

sider the triangle with base equal to the line that connegts — 3)r,, u,, —p») and
X(jirn, un.—p), and with sides determined by the tangents at these two points on the
curveU (X) = u, —p; let the two base angles bg andé,, say, and the correspond-

ing two sides have lengthsg, s2, respectively. Figure 1 depicts what is described

here.

91 e2
Cn‘i

FiG. 1.
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Then
(s1+ s2) COSHy, ; . (51 + s2) co901 + 62) - 51 C0S01 + 52 COSH2 _1
Cn,i Cn,i - Cn,i '
and so

ani _S1+ 52 1
=< =
Cn,i Cn,i COSOy i

Consequently, mirc,; > 2r, for large n. Hence we have shown that adja-
centA, ;’s are at least 2, apart for large:. That nonadjacem,, ;'s are at least2,
apart for large: can also be established by the convexity of the level curves. Hence
the condition (a) of Theorem 1 is proved.

It follows from (47) of Lemma 10 witl$,, = 1 andk = 0 that the condition (b)
of Theorem 1 holds. To prove (c) of Theorem 1, note that it suffices to show that

-1 uniformly asn — oo.

kn
P, ) u ¢ [, —p,unpl} — 0 and > P (A, ) — 0.
j=1
The first convergence follows from (45) of Lemma 10 with= 1 andk = 0O,
while the second convergence follows from (55) and (56), in conjunction with the
condition (b) already proved above. Condition (d) of Theorem 1 holds by (54).
Finally we prove (e) of Theorem 1. By the simple inequality

P(AUB) > (P(A)+ P(B))/2
we have

WP (A, 1) < <nAenF(S(X;rn))/2dF(X)>2
so that
1P (A i) 3 (n [, e FEC2GF (x))2
WP Anira) 1 fa,, e T EE dF(X)
By (46) of Lemma 10 withs,, = 1/2, 1 andk = 0, and (54),
(nfy e F(S0m)/2 4 P (x))2
n fAn,i e~ F(SXr) d F(x)

uniformly in i, wherer is the constant specified in the theorem in definipg
Hence (e) of Theorem 1 is proved. Replacingy e * completes the proof for the
caseN,, ~ Poissong).

Next,

~ AV (Ayi, ) — 0

P(MNNGN,) <)
< P(MNNG@m) < 7n) + P(MNNG(N,) < Tn < MNNG())
< P(MNNG(N,) <7n) + P(MNNG(n) < Tn < MNNG(N,))

+ P(MNNG(N,) < Fn < MNNG())-
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Using the inequality - x <e™, x <1, it follows from (47) of Lemma 10 with
k=0,8,=1andk =1,4, =38, wheres € (0, 1), that (12) and (13) hold. Taking
limits throughout the preceding inequalities, it follows from Theorem 2 and the
first part of the proof withv,, ~ Poissong) that

JNim P (MnNGy <) = lim P(MnnG,) <) =€ "
Applying the above argument again gives

: o .
Nim P (MnnG,) <) = lim P (MnNGm) <7rm) =€

for any generaNV, satisfyingN,,/n A1, Replacingr by e~ completes the proof.
O

PROOF OFTHEOREMS5. It follows from Theorems 3 and 4 that
) o o
Nim_ P (Mmstv,) <ra) = lim P(MnNG,) <) =e

provided we show (16). To do that, it suffices to show that

(57) nf Fo" (S ra) I (IX] > rp/2)d F(X) — T,
and
(58) n/F‘S""(S(X; ) N SO; IXD)I(IX] > r,/2) dF(X) — ©

for any sequencg, — 1. For any fixed > 1, it follows from Assumption A6 that
for all largen,
2IX(L, upn,—p)| = X, un,—p)| + IX(L, tn,—eb)|
(59)
> X4, un,—b) — XL, tn,—ep)|-

By (18) and (A4b) of Lemma 8,

IX(E, up,—p) =X, up,—ep)| =

/‘”n-fb VU (X(£, v)) ‘
——dv
Up,—eb |VU(X(€a v))lz

1 Up,—b
~N—_— VU (X, dv|.
52(€9logn) /L;n,—eb ( ( U)) 0
Now write
Up,—b Un,—b
/ VU (XL, v)) dv =/ VU (X(¢, logn)) dv
Up,—eb Un,—eb

+ [ VU v) = YU (e logn))] d.

Un,—eb
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Since

[ Ve, logny dv| =& (¢, logn(e — Dblogyn,

n,—eb
if we can show
VU (x(¢, — VU, lo
(60) sup VUK — VU(E logm)|
vE[un, —ebsUn,—b] E(E’ |Ogn)
then it follows at once that

0,

(e —1)blogyn
£, logn)
We now show (60). By the mean value theorem,
VU (X(£,v)) — VU (X(L, logn))|

(61) [X(€, Mn,—b) — X(¢, un,—eb)| ~

sup

ve[“n,—ébsun,—b] §(£7 Iogn)
blo 0
(62) < ﬂ( sup — U9 x(e, v))
S(Es |Ogl’L) VE[Up, —ebyln,—b] v

+  sup %U(O’l)(x(ﬁ,v))D.

Ue[un,—ebvun,—b]

As in the proof of (A4b) in Lemma 8, by (41) we have

dx1(L, dxa(L,
91V | ) g ) X260
ov v

;—UU(LO)(X(E, v))‘ = ‘U(Z’O)(X(E, v))

SR S
VU (X(¢, v))|
which, by (Ada) and (A4b), gives

([UZ0xe, o)) + [U D x(e, v))

).

0 £, lo
Sup _U(l,o) (X(Z, U))‘ — 0<€:(797;)>
VE[Up, —ep,tn,—pl v (|092n)
The same conclusion can be reached forvgwg_%b,unﬁb]|%U(0~1)(x(£,v))|.

Thus, (60) follows from (62), and (61) is proved. Singe< n, /&, for largen
wheren, = O(log, n), we conclude by (59), (60) and Assumption A2 that

liminf inf |X(€, u,,—p)|/rn > cb
n—-oo ¢

for some finite constant independent ob. Hence we can choogesufficiently
large to ensure that infx(¢, u,,—p)|/r, > 1. By this and (45) of Lemma 10 it is
the case that for a large enough

n f Fo (S ra)T(IX| < ra/2) dF(X)

< n/ Fo"(S(X; rp))dF(X) — 0
X:UX) <ty _p
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so that (57) follows from Lemma 10.
We next consider the proof of (58). We will do so by proving that fér-a 0,
sufficiently large,

(63) n/ F‘S"”(S(x; rn) N S(O; XD) I (IX| > ry/2) dF(X) — O,
X:UX)>up p

(64) n/ voo Fom(S(x; ) N S(0; X)L (IX] > 74/2) dF(X) — O
X: X)<up,—b

and

(65) FO(S(X; 1) N S(0; XD (IX| > r/2) d F(X) — T.

" '[(: un,fth(X)fun,b
Clearly (63) follows from (51) in the proof of Lemma 10. To deal with (64), first
write

n/ F‘S”"(S(X; rn) N S(O; XD) I (IX| > 1y /2) dF(X)
X:UX)<up,—p
:nf F‘S”n(S(X; rn) N S(0; |X|))I(|X| >r,/2)dF(X)
X:UX)<up,—p/2

+ I’l/ Fonn (S(X; rn) N S(0; |X|))I(|X| >rp/2) dF(X).
X: Mn,fb/sz(X)<un,fh

We will show that both terms on the right-hand side tend to 0. Sfieg = ¢~V ™,
by Assumptions A2, A3 and the mean value theorem, there existsisoa, co)
such that

Inf f(y) > e_un,fh/z_blé(emlogn)rn > e_un,fh/z_blnn.
yES(X:rn), U (X) <itn, b /2 - -

Also observe that fox such thatx| > r,/2,
aredS(x; r,) N S(0; X|)) > bomr?
for someb, € (0, 1). Hence, for all large,

inf F(S(X; r4) N S(O; [X])) = borrr2e™"n—b/2=b1m
X |X|> 1 /2.0 (X) <ty —p /2 (S r) NS (0: [XD) = barrrye

and hence

n/ Fonm(S(X; 1) N S(0; [XD)I (IX] > 74/2) dF (X)
X:UX)<up,—p/2
(66) 2 — 2-b

<nexp{—d,nbomrye Un.—b/ Uiy — Q.
By Assumption A6, there exists some constamrt (—1, 0) such that for alk with
U(X) > un,—»/2,
VU (X)

SX; rp) N {y:<y—x, VUM

> < ;rn} C S0 1) N S(O; [x]).
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Hence
F(S(X; ) N S(0; X))

n
Xy, —p/2<U(X)<up,—p

(67) > inf F(S(x; rn) N {y:<y X L(X)> < ;rn}>

X 1t/ 2<U () <ty _p - TIVU X

> ir;f F(S(X(E, Un,—b); Tn)
VU X, up,—p)) > })
m —X ea n,—bJ» 5 ri’l .
yily = G un 1] =
It follows from Lemma 9 that uniformly for € [u, —p, u, p] ande,

F(S(x(z, u); ry) N {x:<x —X(¢, u), %> = CrnD

(68)
~ F(S(x(¢, logn); ry)).

By (67) and (68), the same proof that leads to (50) in Lemma 10 now proves

n Fonm(S(x; ) N S(O; [X]))

Xty —p/25UX)<uy,—p
X I(rp/2 < |X| <up,—p)dF(X)— 0.

Hence (64) follows from (66) and (69). Making use of (68), the proof of (65)
mirrors that of (46) of Lemma 10 and is omitted.]

(69)
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