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CRITICALITY FOR BRANCHING PROCESSES
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University Frankfurt/Main and Steklov Institute

We study branching processes in an i.i.d. random environment, where
the associated random walk is of the oscillating type. This class of processes
generalizes the classical notion of criticality. The main properties of such
branching processes are developed under a general assumption, known
as Spitzer's condition in fluctuation theory of random walks, and some
additional moment condition. We determine the exact asymptotic behavior of
the survival probability and prove conditional functional limit theorems for
the generation size process and the associated random walk. The results rely
on a stimulating interplay between branching process theory and fluctuation
theory of random walks.

1. Introduction and main results. In this paper fundamental properties of
branching processes in a critical random environment are developed. In such a
process individuals reproduce independently of each other according to random
offspring distributions which vary from one generation to the other. To give a
formal definition letA be the space of probability measuresNg:= {0, 1, ...}.
Equipped with the metric of total variation, becomes a Polish space. L@the a
random variable taking values k. Then, an infinite sequendé = (Q1, 0>, ...)
of i.i.d. copies of Q is said to form arandom ervironment. A sequence of
Np-valued random variable&o, Z1, ... is called abranching process in the
random environment I, if Zg is independent offl and givenIl the process
Z =(Zo, Z1,...) is a Markov chain with

(1.1) L(ZoZuor =2, T = (q1.q2....)) = LEL+ - + &)

for everyn > 1,z € Ng and g1, g2, ... € A, whereéy, &, ... are i.i.d. random
variables with distributiony,,. In the language of branching processgsis the
nth generation size of the population agg is the distribution of the number of
children of an individual at generation— 1.

Received November 2003; revised April 2004.

1supported in part by the German Research Foundation (DFG) and the Russian Foundation of
Basic Research Grant 436 Rus 113/683 and in part by Grant 02-01-00266.

AMS 2000 subject classifications. Primary 60J80; secondary 60G50, 60F17.

Key words and phrases. Branching process, random environment, random walk, conditioned
random walk, Spitzer's condition, Tanaka decomposition, functional limit theorem.

645



646 V. 1. AFANASYEYV, J. GEIGER, G. KERSTING AND V. A. VATUTIN

We will denote the corresponding probability measure on the underlying
probability space byP. (If we refer to other probability spaces, then we use
notation P and E for the respective probability measures and expectations.)
Property (1.1) can be equivalently expressed as

(1.2) P{(Za, ..., Zn) € B|Zo=z0, I} = kn,o(Q1, ..., On; B), P-a.s,

whereB C Njj andk, ;, is the kernel

knzo@i - qni B = Y qr Uz an " (2,

(21,--,2n)€B

built from thez-fold convolutionsg“ of theg;. In the theorems below we assume
Zo=1a.s. for convenience. Sometimes it will be necessary to allow other values
for Zo. Then, as usual we write,{-} andE,[-] for the corresponding probabilities
and expectations. For further details and background we refer the reader to Athreya
and Karlin (1971), Athreya and Ney (1972) and Smith and Wilkinson (1969).

As it turns out the properties & are first of all determined by its associated
random walkS = (Sg, S1,...). This random walk has initial statéy = 0 and
incrementsX,, = S, — S,—1, n > 1, defined as

X, =logm(Q,),

which are i.i.d. copies of the logarithmic mean offspring humkiee logm (Q)
with

m(Q) =Y y0Q({y).

y=0

We assume thaX is a.s. finite. In view of (1.1) the conditional expectationzyf
given the environmeril,

wn :=E[Z,|Zo, IT]
can be expressed by meansSodis
pn = Zoe>", P-a.s.

According to fluctuation theory of random walks [cf. Chapter Xll in Feller (1971)],
one may distinguish three different types of branching processes in a random
environment. FirstS can be a random walk with positive drift, which means that
lim,_, o S, = oo a.s. In this case one hag — oo a.s., providedZp > 1, andZ is

called asupercritical branching process. Secortican have negative drift, that is,
lim,—~ S, = —oco a.s. Thenu, — 0 a.s. andZ is called subcritical. Finally,

S may be an oscillating random walk, meaning that limsup S, = oo a.s. and,

at the same time, limipt, », S, = —oo a.s., which implies limsuyp, ., 1, = oo

a.s. and liminf_ - u, = 0 a.s. Then we calf acritical branching process. Our
classification extends the classical distinction of branching processes in random
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environment introduced in Athreya and Karlin (1971) and Smith and Wilkinson
(1969). There it is assumed that the random walk has finite mean. In this case
the branching procesg is supercritical, subcritical or critical, depending on
whetherEX > 0, EX < 0 orEX = 0. Here we do not require that the expectation
of X exists.

In this paper we focus on the critical case, where the population eventually
becomes extinct with probability 1. Indeed, note that the estimate

P(Z, > 0| Zo, TT} = minP{Z,, > 0| Zo, I}
m=<n
(1.3) -
< mingum = Zo exp(ﬂqgg Sm)

implies P{Z,, > 0|Zg, IT} — 0 a.s. in critical (as well as subcritical) cases and,
consequently,

P{Z,>0}—-0 asn — 00.

A main task in the investigation of critical branching processes consists in
determining the asymptotic probability of the evdi, > 0} of nonextinction
at generatiom and the asymptotic behavior & on this event. To this end,
we impose an assumption on the random w&Jkwhich is known asSpitzer’s
condition. This condition says that the expected proportion of time, which the
random walk spends within the positive real half line up to timestabilizes as
n — oo at some value other than 0 or 1.

ASSUMPTIONAL. There exists a numberfp < 1 such that

1 n
—ZP{Sm>O}—>p asn — oo.
n

m=1

This condition plays an important role in fluctuation theory of random walks.
The summand<sP{S,, > 0} may likewise be replaced b¥y{S,, > 0}, since
Yo —1P{Sn = 0} = o(n) for every nondegenerate random wallkcf. XII.9(c)
in Feller (1971)]. In fact, Doney (1995) proved that Assumption Al is equivalent
to the convergence d?{S, > 0} to p. It is well known that any random walk
satisfying Assumption Al is of the oscillating type [see, e.g., Section XII.7 in
Feller (1971)]. We note that Assumptions Al covers nondegenerate random walks
with zero mean and finite variance increments, as well as all nondegenerate
symmetric random walks. In these cages 1/2. Other examples are provided by
random walks in the domain of attraction of some stable law, see Assumption B1.

Our second assumption on the environment concerns the standardized truncated
second moment of,

ta) =Y y?0(y)/m(Q?%  aeNo.

y=a



648 V. 1. AFANASYEYV, J. GEIGER, G. KERSTING AND V. A. VATUTIN

To formulate the assumption let us introduce the renewal function

1 PiS, > —xli, if x>0,

(1.4) v(x) = + Z 18y = —x} t=
0, else,

where 0=: yp < y1 < - - - are the strict descending ladder epochs of

yir=min{n >y_1:5, < Sy, .}, i>1.
The fundamental property ofis
(1.5 Evix + X) =v(x), x>0,

which holds for any oscillating random walk [cf. Bertoin and Doney (1994) and
Kozlov (1976)].

ASSUMPTIONAZ2. Forsome: > 0 and some: € Ny,

E(log* ¢(a))""*€ <00 and E[v(X)(log* ¢(a))""] < co.

ExAMPLES. Here are some instances where this assumption is fulfilled:

1. If the random offspring distributio®® has uniformly bounded support, that
is, if P{Q({0,1,...,a*}) = 1} =1 for somea™, then¢(a) = 0 P-a.s. for
all a > a*. In this case Assumption A2 is redundant and we merely require
the random walkS to satisfy Spitzer’s condition. In particular, the results to
follow hold for any binary branching process in a random environment (where
individuals have either two children or none), which satisfies Assumption Al.
2. In view of relation (1.5), we hav&v(X) = v(0) < oco. Therefore, Assump-
tion A2 is satisfied, it (a) is a.s. bounded from above for somé/Ne note that
this is the case if the value @ is a.s. a Poisson distribution or a.s. a geometric
distribution onNp (with random expectations). This follows from the estimate

==y — DOy /m(Q)?

y=0

and the observation that for Poisson distributigns 1 a.s. and for geometric
distributions orNg, one has) =2 a.s.

3. The renewal functiorv(x) always satisfiew(x) = O(x) as x — oo and
v(x) =0 for x < 0. Therefore, as follows from Holder’s inequality, Assump-
tion A2 is entailed by

E(XT)? <oo and E(log*¢(a))? < oo

for somep > 1 andg > max(p~1, p(p — D7 Y).
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If X has regular tails we can replace Assumptions Al and A2 by the following
alternative set of conditions.

AssuUMPTION B1. The distribution ofX belongs without centering to the
domain of attraction of some stable lawwith index « € (0, 2]. The limit law
A is not a one-sided stable law, that iscO.(R") < 1.

Here it is assumed that there are numbegrs- 0 such thatc, S, converges
in distribution tox and, consequentiP(S, > 0) — p := A(R™). In particular,
Assumption B1 implies Assumption Al.

The gain of the stronger regularity condition B1 is that we can further relax the
integrability condition A2.

ASSUMPTIONB2. Forsome > 0 and some € Np,
E(log™ ¢(a))** < cc.

We note that Assumption A2 is indeed stronger than Assumption B2 since
(1.6) p =< o L.

For further explanations the reader may consult Dyakonova, Geiger and Vatutin
(2004) or Chapter 8.9.2 in the monograph of Bingham, Goldie and Teugels (1987).

We now come to the main results of the paper. All our limit theorems are
under the lawP, which is what is called the annealed approach. The first theorem
describes the asymptotic behavior of the nonextinction probability at genenation

THEOREM 1.1. Assume Assumptions Al and A2 or B1 and B2. Then there
exists a positive finite number 6 such that

a.7) P{Z, > 0} ~OP{min(S1, ..., S,) > 0} asn — oo.

This theorem gives first evidence for our claim that the asymptotic behavior of
Z is primarily determined by the random waksince only the constafitdepends
on the fine structure of the random environment. The asymptotics (1.7) reflects the
following fact: If min,, <, S,, is low, then the probability of nonextinction atis
very small as follows from (1.3). In fact, it turns out that on the evegf)t > 0},
the value of mip,<, S,, is only of constant order. A detailed description of this
phenomenon is given in Theorem 1.4.

Since the asymptotic behavior of the probability on the right-hand side of (1.7)
is well known under Assumption Al (see Lemma 2.1), we obtain the following
corollary.

COROLLARY 1.2. Assume Assumptions Al and A2 or B1 and B2. Then,
P{Z, >0 ~0n~YPIm)  asn— oo,

wherel(1),1(2), ... isasequence varying owly at infinity.
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A probabilistic representation &f is contained in (4.10) and explained in the
remark thereafter. For a representation of the fundtj@ee Lemma 2.1.

The next theorem shows that conditioned on the eygpt> 0}, the gener-
ation size procesgo, Z1, ..., Z, exhibits “supercritical” behavior. Supercritical
branching processes (whether classical or in a random environment) obey the
growth law Z,,/u, — W a.s., wheré¥ is some typically nondegenerate random
variable. However, in our situation this kind of behavior can no longer be formu-
lated as a statement on a.s. convergence, since the conditional distribution of the
environmentll, given{Z, > 0}, changes with.

Instead, let us, for integers 8 r < n, consider the rescaled generation size
processX”" = (X;")o<s<1, given by

(l 8) Xr,n o Zr+|_(n—r)tj
. t . -

= , O<r<1
Mr+|(n—r)t]

THEOREM1.3. AssumeAssumptionsAl and A2 or Bland B2.Letr1, 7o, ...
be a sequence of positive integers such that r, < n and r,, — oo. Then,

LX™Z, >0 = L(Wosi<1)  aSn— oo,

where the limiting process is a stochastic process with a.s. constant paths, that is,
P{W,; = W for all ¢ € [0, 1]} = 1 for some random variable W. Furthermore,

P{O< W < oo} =1.

Here,— denotes weak convergence w.r.t. the Skorokhod topology in the space
DI0, 1] of cadlag functions on the unit interval. Again, the growthzofs in the
first place determined by the random walk [namely, the sequéngkg >o]. The
fine structure of the random environment is reflected only in the distributidi.of
Thus, first of all properties of the random walkare important for the behavior
of Z. However, one also has to take into account that the random walk changes its
properties drastically, when conditioned on the eVefit > 0}. The next theorem
illustrates this fact. Let, be the first moment, when the minimum$y, ..., S, is
attained

(1.9 T, ;= min{i <n|S; =min(So, ..., Sy}, n>0.
THEOREM 1.4. Assume Assumptions Al and A2 or B1 and B2. Then, as
n— 00,
L((ty, Min(So, ..., $p))|Z, > 0)
converges weakly to some probability measure on No x R

For a more detailed description of the conditioned random walk we confine
ourselves to the situation given in Assumption B1.
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THEOREM 1.5. Assume Assumptions B1 and B2. Then there exists a Slowly
varying sequence £(1), £(2), ... such that

LM S0 ))oey<1lZn >0) =  LULT)  asn— oo,

where LT denotes the meander of a strictly stable process with index o.

Shortly speaking, the meandet = (L, )o<,<1 is a strictly stable Lévy process
conditioned to stay positive on the time inter¢@J 1] [for details see Doney (1985)
and Durrett (1978)].

In view of Theorem 1.3, the last theorem is equivalent to the following result.

COROLLARY 1.6. Assume Assumptions B1 and B2. Then,
L((M )09 Z n)) gy 1| Zn > 0) =  L(LT)  asn—>oo

for some slowly varying sequence £(1), £(2), . ...

Starting from the seminal paper of Kozlov (1976), the topic of branching
processes in a critical random environment has gone through quite a development.
For a fairly long time research was restricted to the special case of random
offspring distributions with a linear fractional generating function (including
geometric distributions) and to random walks with zero mean, finite variance
increments. Under these restrictions, fairly explicit (albeit tedious) calculations
of certain Laplace transforms are feasible, which then allow the proof of (most of)
the results above [cf. Afanasyev (1993, 1997)]. In recent years the assumption
of linear fractional offspring distributions could be dropped [see Afanasyev
(2001), Geiger and Kersting (2000), Kozlov (1995) and Vatutin (2002)], and
first steps to overcome the assumption of a finite variance random walk were
taken [see Dyakonova, Geiger and Vatutin (2004) and Vatutin and Dyakonova
(2003)].

Yet the significance of Spitzer’s condition as a suitable regularity condition for
branching processes in an i.i.d. random environment has not been recognized so
far. The use of Laplace transforms and generating functions is still indispensable
for our purposes (see Section 3), however, in our general situation it is to
be supported by other devices. In particular, we point out to the change
of measure, which is discussed in Section 2. It enables us to make use of
Tanaka’s path decomposition for conditioned random walks [Tanaka (1989)]. This
decomposition turns out to be an essential tool in the proof of Theorem 1.3. In
particular, it is used to establish the fact that the mean gives the right growth of
the population up to a random factor, which was an open problem [see Afanasyev
(2001)]. Tanaka’s decomposition also allows to substantially weaken the required
moment conditions to Assumption A2, respectively, Assumption B2.
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2. Auxiliary results for random walks. The proofs of our theorems rely
strongly on various results from the theory of random walks. In this section we
collect these results.

2.1. Results from fluctuation theory of randomwalks. The minima
L, :=min(Sq,...,Sy), n>1,

play an important role in the fluctuation theory of random walks. Recall the
definition of the functiorv(x) introduced in (1.4).

LEMMA 2.1. Assume Assumption Al. Then, for every x > 0,
(2.1) P(L,> —x}~v@)n T PIn)  asn— oo,

where the slowly varying function  isgiven by I(n) :== h(1 — n~1)/ T'(p) with

o0

h(s) := exp(Z %(P{Sn >0} — ,0)), O0<s<1

n=1
Furthermore, there exists a constant O < ¢1 < oo such that for all x > 0 and

n eN,

(2.2) P{L, > —x} < crv@)n~ TP @m).

Smilarly, for all » and some 0 < ¢2 < oo, we have

(2.3) P{max(S1, ..., Sy) <0} < conPl(n)~ ™.

PROOFE For the asymptotics (2.1) apply Theorem 8.9.12 in Bingham, Goldie
and Teugels (1987) to the random walk= —S and note that therg has to be
replaced byp :=1— p.

For the second claim [which has been established already by Kozlov (1976) for
finite variance random walks] we use the inequality

[ee) o0 n

Y S"P{Ly > —x} < v(x) exp( S PS> 0}>

m=0 n=1 n

=v(x)(A —5)""h(s)

following from Lemma 8.9.11 and a formula contained in the proof of Theo-
rem 8.9.12 in Bingham, Goldie and Teugels (1987). SiREE,, > —x} is non-
increasing with, it follows that

E(l— %)nP{Ln >—xj< ¥ <1— r—ll)mP{Lm > _x})

2 n/2<m<n

<v(x)n’h(l—n"1),
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which implies the bound (2.2). Finally, (2.3) follows by applying (2.2) to the
random walkS. Thenp has to be replaced hy=1— p, andh(s) by

(s) = exp( > (PIs, <0) - ﬁ)) - exp( > -Pis, > 0})).
n=1 n=1

Ass 1 1, we obtain

h(s)h(s) = exp( > %P{Sn = 0}) — exp( > %P{Sn = 0}> =:y.

n=1 n=1

Sincey is positive and finite [see XI1.9(c) in Feller (1971)], we have)l(n) ~
y /(T (p)T'(1— p)), and the upper bound (2.3) follows

Next we study the random time, defined in (1.9). The following technical
lemma will be used at various places.

LEMMA 2.2. Letu(x), x > 0, be a nonnegative, nonincreasing function with

fooo u(x)dx < oo. Then, under Assumption Al, for every ¢ > 0, there exists a
positive integer [ such that for all n >,

> Elu(=58)); o = kIP{L,—« > 0} < P{L, > O}.
k=l

PRoOOE We first show

(2.4) > E[u(=S0); e = k] < oo.
k=0

Letx > 0. Since [recall (1.4) and note thats,, > —x} =1 forx > 0]

v(x) =Y Y PS> —x.yi =k}

k=0i=0
(2.5) N
= Z P{—Si <x, T =k},
k=0
we have

> Elu(—58k); e =k] = /Ooo u(x)dv(x).

k=0

In view of the fact thab (x) = O(x) asx — oo, assertion (2.4) now follows from
the integrability and monotonicity assumptionsmarNext we prove

(2.6) Elu(—S,); 7w =nl=0@n™1).
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Clearly, t, = n implies S, < 0. Hence,
Elu(=Sn); T =n]

<Y u@ -DP{—2M -1 <S8, < —(2 - 1.7, =n}

0
< Zu(Zk —DP{So,...,S|n2 = okt
k=0

Sm = Sln+172 = Sn — S|n+1)/2)5 Lt +1)/2] <m < n}

_Zu(zk 1)P Linp = 2k+1}P{So,...,SLn/2J,12SLn/ZJ}.

By duality, P{So, ..., Su_1 > S} = P{max(S1, ..., S») < 0}. Therefore, using
the upper bounds (2.2) and (2.3), we deduce

Elu(=Sn); T =n]

<cic2[n/2)P (/2] (/2] P 1(1n/2) 7Y w2t — Do@ .
k=0

Since v(x) = O(x), the series is convergent by the assumption wnand
assertion (2.6) follows. Now observe that, by (2.6) and monotonicit gfwe
have forany 0< § < 1,

Y Elu(=5S1); o = kIP{L,— > 0}
k=l

<P{Lisny=0} Y Elu(=S):u=kl+
[<k<(1-68)n

2 PlLjz

a- 8) <o

wherec is some positive finite constant. By Lemma 2% L,, > 0} is regularly
varying with exponent-(1— p) € (—1, 0). An application of Karamata’s theorem
[see, e.g., Theorem 1.5.11 in Bingham, Goldie and Teugels (1987)] gives

8P

> PL; >O}~—P{LL5nJ>O}~—nP{L >0} asn— oo.
P

j<én

Consequently,

> Efu(—5Sk): 7 = kIP{L,_ > 0}
k=1

5P
(1-p)
<cP{L, >O}<6 kElE[u( Sk); T = k]+ 8)
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for sufficiently largec. By (2.4), the sum on the right-hand side above is finite.
Hence, the claim of the lemma follows by a suitable choicé afid/. O

As an application of Lemma 2.2 we generalize a functional limit theorem
for random walks satisfying Assumption B1, which is due to Doney (1985) and
Durrett (1978).

LEMMA 2.3. AssumeAssumption Bl andlet x > 0. Then, thereexistsa slowly
varying sequence £(1), £(2), ... such that

LM S nt))oeyealln = —x) =  L(LT)  asn— oo,

where LT isthe meander of a strictly stable Lévy process.

PrROOF  Doney and Durrett proved this theorem fo« 0. To treat the general
case let us consider the processég andS*" 0 < k < n, given by

St = Yl Sy ks
(2.7) k1

S =0Tl (S i) — Spneak) O<r<1l
Then §" := sk 4+ Sk is the process under consideration. Fox @ < n, we
define

(2.8) Lin:=_min (Sgtj — Sk).
0<j<n—k

Let ¢ be a bounded continuous function on the spB¢@, 1] of cadlag functions
equipped with the Skorokhod metric. Since

(2.9) {tn =k} ={m =k} N {Lin =0},
a decomposition according tQ gives

(2.10) E[@(5"): Ly = —x]= Y E[$(S"); i =k, Sk = —x, Liy = Ol.
k=0

Observe that, for & k < n, we have

Elg(S"); tx =k, Sk > —x, Li,, > 0]

(2.11) N
= E[E[¢(SE" + 5%™); Ly, = 01X1, ..., X3 l: e =k, S > —x].

For k > 0O fixed the result of Doney and Durrett implies that, givep, > 0,

the processS¥" converges in distribution to the specified meander. Also,
given Xu, ..., X, the processs*" vanishes asymptoticallf-a.s. Hence, by
independence and the dominated convergence theorem, we have

(212) El¢(S"); tx =k, Sk = —x, Li,, > 0]
2.12
=P{L, > O}P{ty =k, Sk > —x}(Ed (L") + 0(1))
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for everyk > 0. Now lete > 0. Takingu = 1j0 .7 in Lemma 2.2 gives

> E[¢(S"): =k, Sk = —x, Liy = 0]
(2.13)

<supl@| Y E[u(—Sk); t = kIP{L,—x > 0} < €P{L, > 0},
k=I

if only [ is large enough. Combining formulas (2.10), (2.12) and (2.13) with (2.5)
gives

E[¢(S"); Ly = —x] = P{L, > Obu(x)(E¢(LT) + o(1)).
In particular, choosing = 1, we obtain the asymptotics f&{L, > —x} and the
claim of the lemma follows. O

2.2. Achange of measure. Following Geiger and Kersting (2000), it is helpful
to consider, besideB, another probability measui@™. In order to define this
measure le#,, n > 0, be thes-field of events generated by the random variables
01,...,0,andZy, ..., Z,. Theses-fields form a filtrationF .

LEMMA 2.4. The random variables v(S,)I{z,>0, n = 0,1,... form a
martingale with respect to & under P.

PROOF Let B and D be Borel sets inNj and A", respectively. Recall
identities (1.2) and (1.5) and the fact thak) = 0 for x < 0. Conditioning first on
the environmenII and then or#;, and using the independence@®i, Qo, ..., we
obtain

Elv(Snt+1); Ln+1>0,Zo=12,(Q1,..., On) € D, (Z1, ..., Zy) € B]
=E[v(Xnt1+ Sp)kn (01, ..., Qn; B);
(2.14) L,>0,Zo=2z,(Q1,...,0n) € D]
=E[v(Sp)kn (01, ..., On; B); Ln >0, Zo=12,(Q1, ..., On) € D]
=E[v(Sn); Ln >0, Zo=2,(01,-.., OQn) € D, (21, ..., Zy) € B].
By definition of conditional expectation, (2.14) implies
E[v(SutD (1,120 Fn] = v(S) [11,>0}, P-a.s.,
which is the desired martingale property.]
Taking into accounw(0) = 1, we may introduce probability measuri@s on
theo -fields #, by means of the densities
dP} = v(S,)I{L,>0y dP.
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Because of the martingale property, the measures are consistent,ﬂj@ﬁlfn =
P;". Therefore (choosing a suitable underlying probability space), there exists a
probability measur®™ on theo -field #,, := \/,, , such that

(2.15) PT|F, =P/, n>0.
We note that (2.15) can be rewritten as
(2.16) E*Y, = E[Y,v(S); Ly = 0]

for every #,-measurable nonnegative random varial)leThis change of measure
is the well-known Doobx-transform from the theory of Markov processes. In
particular, undeP™, the process becomes a Markov chain with state sp&‘@
and transition kernel

Pt (x;dy) := iP{x—l—Xedy}v(y), x> 0.
v(x)

In our contextP™ arises from conditioning:

LEMMA 2.5. Assume Assumption Al. For k € N, let Y, be a bounded real-
valued F;.-measurable random variable. Then, asn — oo,

E[Yk|L, > 0] - ETYy.

More generally, let Yy, Yo, ... be a uniformly bounded sequence of real-valued
random variables adapted to the filtration &, which converges P*-a.s. to some
randomvariable Y5,. Then, asn — oo,

E[Y,|L,>0] > E" Y.

ProOR Forx > 0, writem,(x) := P{L, > —x}. Then, fork < n, condition-
ing on % gives
My i (Sk)
my (0)
The first claim now follows from the asymptotics (2.1) and (2.2), the dominated

convergence theorem and relation (2.16). For the second claimsel. Using
again (2.1), (2.2) and (2.16), we obtain, fox n,

E[Yk|anO]:E[Yk ;LkzO].

(S
|E[Yy — Yi|L{yn) = 0]| < E[m IS TSN 0]
mLynJ(O)

IA

— 1\~ @-0)
c(y ) ElY, — Yelv(Sy); Ly = O]
Y

— 1\ @-»
c(Vy ) E*|Y, — Yil,
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where ¢ is some positive constant. Letting first— oo and thenk — oo, the
right-hand side vanishes by the dominated convergence theorem. Thus, using the
first part of the lemma, we conclude

E[Yy; Liyn) > 0] = (E" Yoo +0(1))P{L |, n; > 0O}.
Consequently, for some> 0,
[E[Yy; L, = 0] — ETYoP{L, > O}
< [E[¥a; Liyny = 0] = E*YooP{Lyn) = O} |+ ¢P{Ly 2 0, L{yn) <O}
< (0@ +c(1—y TP)P(L, >0},

where for the last inequality we also used (2.1) again. Singaay be chosen
arbitrarily close to 1, we have

E[Yy; Ly = 0] = E"YooP{L, > 0} = o(P{L, > 0}),

which is the second claim of the lemma

The change of measure has a natural interpretation, as is known from Bertoin
and Doney (1994) and others: Undet, the chainS can be viewed as a random
walk conditioned to never hit the strictly negative half line. Thergains an
important renewal property, which is a consequence offéimeka decomposition
for oscillating random walks. We recall only those aspects of the decomposition,
which will be needed in the sequel and which, in our context, have to be extended
to the entire environment. The original decomposition in Tanaka (1989) is not fully
suitable for our purposes, since it concerns random works conditioned to never
leave the strictly (!) positive real half line, meaning that it is based on a somewhat
different harmonic function than(x). For these reasons, as well as for the readers
convenience, we briefly recall the decomposition and its proof.

Let v > 1 be the time of the firsprospective minimal value of S, that is,

a minimal value with respect to the future development of the walk,

v:=min{m > 1:8,,4; > S, forall i > 0}.
Moreover, let > 1 be the first weak ascending ladder epocl§ of
t:=min{m >1:S,, > 0}.
We denote
Oni=Quin and S,:=S1n—S, n>1

LEMMA 2.6. Supposethat : < co P-a.s. Then v < oo PT-a.s. and:

() (Q1,02,...) and (Q1, Oo,...) are identically distributed with respect
toPT;
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(i) (v, Q1,...,0,) and (01, O, ...) areindependent with respect to P*;
(i) PH{v=k,S, edx}=P{=k, S, €dx)forall k> 1.

PROOF By monotonicity ofv and relation (2.16), we have

o o
E [ > I{SnSX}i| < U(X)E[ > I{OSSnSx,ano}}
n=0 n=0

for everyx > 0. The Markov property of the random wa(lk, ),>o implies that the
random sum on the right-hand side above has a geometrically decaying tail. Hence,
its expectation is finite, which shows that undket the Markov chain(s,),>o is
transient. Consequentlp;" {v < oo} = 1.

To prove assertions (i) and (ii), we will first establish the corresponding
statements fof. Forz > 0, let

) X =
v(x) -
Note that O< h, <1, h,(x) =0 for x < z andh (x) — 1 asx — oo [since the
renewal functionv(x) satisfiew(x) — co andv(x) —v(x —z) = O(1) asx — .
Moreover, from (1.5) we see that is harmonic with respect to the transition
kernel P

f P dyh:() = h-(x), x>z

Since o, = min{fn > k:S, < z},k > 0 is a stopping time, the process
(hz(Snno,,))n=k is @ martingale. Consequently, for> k, we have

EF[h:(Snnc. )|k = x] = h(x).
SinceS, — oo P*-a.s. asi — oo, the dominated convergence theorem entails
P (S St 2 218 =) = E¥| M ho(Suna )15k =3 | = o).

It follows (with xg = yo = 0)

PHv=k,S1€dx1,...,Sc €dxi, S1e€dy1, ..., Sn € dym}
k

i=1

m
X (l_[ PH(yj_1+xi:dy; +xk))hxk(ym + xk)
j=1

k m
=Lyt ox0) ( []P* iz dx»)hxk o) [[ PT(vj-1:dy))
i=1 Jj=1

= P+{v =k,S1€dxq,...,S; € dxk}P+{Sl edyt,...,Sm €dyn}.
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Thus,(S1, So, ...) and(Sy, S, ...) are identical in distribution and, S1, ..., S,)
and(S1, So, ...) are independent (both with respectb).

Now we show that these properties carry over to the entire environment. By
independence under the original measure, we have

(2.17) P{Q1€dqn, ..., Qr€dqi|S} =k(X1;dq1) - - - k(Xi; dgi), P-a.s.,

with k(x;dq) := P{Q € dg|X = x}. By definition of conditional expectation,
using (2.16), we may conclude from (2.17) that

PT™{Q1€dq1, ..., Qk €dgi|S} = k(X1 dq1) - - - k(Xi: dgr), PT-a.s.
For Borel setsB; C A, the properties of established above imply

P {v=k,Q1€B1,..., 0k € By, 01 € Bis1, ..., Om € Bism)

k m
= E+[1‘[k<x,-; B) [ k(X Bigj)iv= k}

i=1 j=1
k m
= E+|:1_[k(Xi; Bi); v :k}E“L[ [Tk Bkﬂ')]
i=1 j=t
=P {v=k Q1€ B1,..., Ok € BIP{Q1 € Bis1, ..., Om € Biym).

Thus, we have proved (i) and (ii). As to (iii), using duality of random walks, we
conclude

PH{v=k, S, €dx)
=P {Syedx, Sy —Sk—1<0,..., S —S1 <0}, (x)
=P{S; €dx, Sy —Si_1<0,...,5% — 51 <0}
=P{S; €dx,51<0,...,8_1<0}
=Pli=k, S, edx}.

This completes the proof of Lemma 2.6.]
2.3. A convergent series theorem. As an application of Tanaka’s decomposi-
tion, we now prove a result, which previously had been obtained only under con-

siderably stronger moment conditions [see Geiger and Kersting (2000), Kozlov
(1976) and Vatutin and Dyakonova (2003)]. Let

o0 o0 2
Tk 3=Z)’()’_1)Qk({y})/<Zka({y})> . k=1
y=0 y=0
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LEMMA 2.7. Assume Assumptions Al and A2 or B1 and B2. Then

o0
Z M1 5 < 00, PT-as.
k=0

Proor We will first estimate theS; from below. To this end, let 8= v(0) <
v(1) < --- be the times of prospective minima &f

(2.18) v(j):=min{m >v(j —1):S,4i > S, foralli > 0}, Jj=>1
Clearly,
(2.19) Sk = Su(j) if k>v(j).

By Lemma 2.6(i) and (ii), the random variab$g ;) is the sum ofj nonnegative
i.i.d. random variables with positive mean. Thus, there exists gom@ such that

(2.20) Sw(jy>cj  eventuallyP-as.

To get a lower bound on( j), observe that, by Lemma 2.6(i) and (ii); j) is also
the sum ofj nonnegative i.i.d. random variables, each with distributieav(1).
Lemma 2.6(iii) and (2.3) imply

PT{v>k}=P{ >k} <P{maxSi, ..., Sx) <0} = ok "7
for every§ > 0. Therefore, we have
EfvP? <o foralls > 0.
Hence, an application of Theorem 13 in Chapter 1X.3 in Petrov (1975) gives
(2.21) v(H=0(j""1), Pras.
for everyé > 0. Combining (2.19) and (2.20) with (2.21) gives
Sk = Syo—s]) = ck 7 eventuallyP'-a.s.
for everyé > 0, which implies
(2.22) S =0( "), Ptras,

for all § > 0. To obtain this estimate, we have only used Assumption Al. Thus, it
also holds under the stronger condition B1. However, under Assumption B1 it can
be improved to

ail—
(2.23) eSS =0 "),  Pras.
for all § > 0. Recall from (1.6) thap < 1. Hence, in view of (2.22), we may
for the proof of (2.23) assume O ap < 1. For this case Rogozin proved [cf.
Chapter 8.9.2 in Bingham, Goldie and Teugels (1987), see also Doney (1995)] that
the distribution ofS, underP belongs to the domain of attraction of a stable law
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with indexap. (We note that this holds for strict increasing ladder heights, as well
as for weak increasing ladder heights, since the tails of both are identical up to a
multiplicative constant.) Consequently, by Lemma 2.6(iii), for &ny 0, we have

PT(S, > x} = P{S, > x} > x~1+%),

if only x is chosen large enough. Singe:= S, — Svi-1), i > 1, are independent
nonnegative random variables with the same distributiof, as/e have

PH(Su(jy < j /@)

< P+{ max Y; < j<l—5>/<aﬂ>} =PT{s, < jA-D/ @}

l<i<j

< exp(—jPT{s, > jAD/@ly < exp(— 5%,
if only j is large enough. The Borel-Cantelli lemma implies
Sy jy = jAD/@) eventuallyPt-as.

for all § > 0. Replacing (2.20) by this estimate assertion, (2.23) follows in much
the same way as we derived (2.22).
The other part of the proof consists in estimatingtheFirst note that

a—1 00 2
M = G@+ Y ay Oy / ( > ka({y}))
y=0 y=0

< &k(a) + aexp(—Xx)

for everya € Ng, where¢(a) is the analogue of (a) defined in terms ofQy.
Hence,

o0 o0 o

Y o mrre” <Y Gqal@e S +a )y e

k=0 k=0 k=0
(2.24)

o0
<> (Gk+1(@) +a)e 5k,
k=0
and we are left with estimating the tail ¢gf(a) underP* for a suitable choice
of a. Now note that the zero-delayed renewal functign) satisfies the inequality
v(x +y) < v(x) + v(y). Therefore, by independence of tig@; underP and
repeatedly using (2.16), we get

P™{¢k(a) > x}
= E[v(Sk); &k (a) > x, L > 0]
< E[v(Sk-1) + v(Xk); ¢k(@) > x, L1 > 0]
= E[v(Sk-1); Lk—1 > OIP{¢k(a) > x}
+ E[v(Xy); ¢k (a) > x]P{Lk-1 > O}
= P{¢(a) > x} + E[v(X); ¢ (a) > x]P{L-1 > O}.

(2.25)
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Now let a € Ng ande > 0 be such that Assumption A2 is satisfied. By means
of (2.25) and the Markov inequality, it follows that, for every- 1,

P{Li—1>0}

c c
(226)  PHae@ > x} < oo arre t ogn e

for some finite constant From the first part of Lemma 2.1 we see that

PH{ci(@) > e )
= O(k—@—‘?/)(l//)ﬁ)) + O (k= P=9)A+e k—(l—p)w)

=0k 17?),
if only 8’ > 0 is chosen small enough. The Borel-Cantelli lemma implies

o (a) = O(ekp*y), Pt-a.s.

for suché’. Combining this estimate with (2.22) and (2.24), the claim of the lemma
follows under Assumptions Al and A2.

Under Assumptions B1 and B2, the last estimate can again be further elaborated.
Then, asc — oo,

(2.27) v(x) = O(Xa(l—p)-i-a)

for any § > 0. For the proof of (2.27) note that in analogy to (1.6) we have
a(l— p) < 1. Since in any case(x) = O(x), we may assume @ «(1— p) < 1.
Then, by Rogozin’s result, the distribution &f, belongs to the domain of
attraction of a stable law with index(1 — p). This implies that (x) is a regularly
varying function with indexx (1 — p) [see Chapter 8.6.2 in Bingham, Goldie and
Teugels (1987)], and (2.27) follows. MoreovEtX|*~% < oo for all § > 0, since

by Assumption B1 the distribution of belongs to the domain of attraction of a
stable law with indexx. Combining these two estimates gives

Ev(X)Y/1=973 -
for all § > 0. By means of Assumption B2 and Hoélder’s inequality, we obtain
E[v(X)(log" ¢(a))* €] < oo,

if only ¢ > 0 is small enough and € Ny is sufficiently large. In view of
Assumption B1, (2.25) and the Markov inequality, we get
p+ < ° P{Li1>0
{Ck(a) > x} < (Togx)e+e + (logx)@e {Lk-1=0},

replacing the upper bound (2.26). Proceeding as above, we conclude

1

P k(@) > & )
= O(k_(l/a—s/)(a‘i‘f)) + 0(k—(1/0{—5,)(ap+e)k_(1_p)+8/)

_ okl @),
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if 8 > 0 is small enough. The Borel-Cantelli lemma implies

—1_y

L@ =0 ), PT-a.s.

for suché’. The claim of the lemma under Assumptions B1 and B2 follows from
this estimate combined with (2.23) and (2.24])]]

3. Branching in conditioned environment. Property (1.1) is unaffected
under the change of measure, that is,

Pt{(Z1,....Zn) € BlZo=1z20, 11} =&y ;,(Q1, ..., On; B), Pt-a.s.

This is an easy consequence of (1.2) and (2.16). ThylsZ1, . .. is still a branch-

ing process in a randomly fluctuating environment, however, the environment
01, Qo, ... is no longer built up from i.i.d. components. Let us call thisgranch-

ing process in conditioned environment. Such processes exhibit a behavior, which

is typical for supercritical branching processes. The following theorem states that,
with respect tdP™, the population has positive probability to survive forever. The
statement holds for any initial distribution as longzs> 1 with positive proba-
bility.

PROPOSITION3.1. Assume Assumptions Al and A2 or B1 and B2. Then
P*t{Z, > Ofor all n|I1} > 0, Pt-as.
In particular,
PT{Z, > Ofor all n} > 0.
Moreover, asn — oo,
ez, - W, Pfas,
where the random variable W has the property
(Wt >0}={Z, > 0for all n}, Pt-as.
PrROOFE In view of property (1.1),Z, is stochastically increasing witAy.

Hence, for the proof of the first claim we may assufge= 1 P™-a.s. with no loss
of generality. Consider the (random) generating functions

(0.0]
fi(s):=>_s"Q;({i}), O<s=<1,
i=0
j=1,2,...and their compositions

(3.1) Jen(8) := frr(frr2(- - fu(s) ), O<k<n.
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We note that the distributional identity (1.1) can be expressed as
(3.2) ETLs” |, Zi]1 = fin()™,  PT-as.

We shall use an estimate ¢fa,, due to Agresti (1975) (see his Lemma 2), which
was originally obtained through a comparison argument with linear fractional
generating functions. A more direct proof may be given using the elementary
identity

1 e (51—50) :12—:1 : o550
= + ) gj+1([fi+1n(s))e I 0,
1= fea(s)  1—s =g HTRT

(3.3)

O0<s <1,
with
1 B 1
1-fi(s)  fiIDA—s)

and g;(1) :=lim,_1¢;(s) = n;/2. Apparently, identity (3.3) has first been
utilized by Jirina (1976). The coefficients possess the favorable property

O0<s <1,

gj(s) =

0<g;(s) <nj, 0<s<1,

which has been noticed by Geiger and Kersting (2000) (see their Lemma 2.6).
Combining these formulas, we obtain Agresti’'s estimate

o~ (Su—S0  n=l -1
(34) fk’n(S) < 1-— (ﬁ —+ Z T]j+]_€_(sj_Sk)) .
j=k

From (3.2) it follows that under the assumptiBh{Zo = 1} = 1, we have
PT{Z, > 0|TT} =1— fo..(0), PT-a.s.
Recall thatS,, — oo PT-a.s. Hence, if we let — oo, then (3.4) implies

1
o

PT{Z, > 0 for all n|IT} > (Z nj+1e_5f) , P-a.s.
=0

Applying Lemma 2.7, we obtain
P*{Z, > 0 for all n|T1} > O, P™-a.s.

This is the first claim of the proposition. The second claim is a well-known
consequence of the martingale convergence theorem: Given the envirofiment
(Zn/un)n=0 is @ martingale with respect @" and the filtrationf .

As to the proof of the third claim, note th&"™{W* =0} > P*{Z, — 0},
since{Z, — 0} c {W* = 0}. For the proof of the opposite inequality, we will
use Tanaka's decompaosition as an essential tool. To begin with, we show that

(3.5) PH(Z, — O[T} + PT{Z, — oo|Tl} =1, Pt-as.
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A sufficient condition for (3.5) is the following criterion [see Theorem 1 in Jagers
(2974)]:

o0

(3.6) > (1-0;(1)) = oo, PT-a.s.
j=0
To verify (3.6), note that, by Lemma 2.6, th@,x)+1({1}), k =0,1,... are

L.i.d. random variables. Also, sind&;({1}) =1} C {X; = 0} and the case of a
degenerate random walkkis excluded by Spitzer's condition Al, we have

PH{Q,0+1({1) =1} <PT{X1=0} < 1.

Hence,
S (1-0;(1)) = Y (1 - Quwr({lh) =00,  PHas.
Jj=1 k=0

Clearly, (3.5) implies

3.7) P {Z, — 0} + P {Z, — o0} =

Now observe that from (3.2) and (3.4) we get
Etlexp(—re % Z,)|Z; =1, ]

(3.8) = fin(exp(—re )
_(Sn_Sk) n—1 (5550 -1 N
<1— k , P™-a.s.
= (1 exp(—re~S1) +Z"“1e )

for everyx > 0 andk < n. Recall thatS, — oo ande=5"Z,, — W+ PT-a.s. Hence,
letting firstn — oo and them. — oo gives

-1

o0
PrWt=0Z =1 <1- (Z nj+1e—<5f—5k>> ,  Pras.

Jj=k

Since the times (k) of prospective minima are determined by the environment

only, we may replacé& by v(k) in the last estimate. Moreover, identity (1.1)

implies

P+{W+ 0Zyy=j, 11 }:P*{W+:0|Zv(k):1,l'l}j.
Combining these observations gives
PH{WT =0/IT}
=ET[PT{WT =01Zy), T}]

1 Zot)
< E+[<l — TP ) ’n]
Z?iv(k) 77j+1e_( i —Sv(k))

<P s+ (3 L) eras
- k) =2 _ - | .
v Zj.o=11(l<) nj+1€ (Sj—Svk)
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for everyz > 0. By Lemma 2.6, the law of the second term on the right-hand
side above does not depend/arHence, taking first expectations and then letting
k — oo, we see from (3.7) that

1 Z
PHW™* =0} < P*{Z, — 0} + E+<1— —) .
! Z?io 77j+1€_s-’

Finally, lettingz — oo, an application of Lemma 2.7 yields
o0
PH{WT =0} -P"{Z, >0} < P+(Z njr1e S = oo) =0,
j=0

which completes the proof of Proposition 3.1

4. Proofsof Theorems 1.1 and 1.3-1.5. The general approach of our proofs
is to replace the conditioning evefit,, > 0} by other events, which are easier to
handle. This strategy has been used before: Kozlov (1976) considered the event
that only a few descending ladder epochs of the random Wadiccur before
time n and Geiger and Kersting (2000) conditioned on the event that the random
walk has a high minimuni,. We follow the approach of Dyakonova, Geiger
and Vatutin (2004) and condition on the event tlaattains its minimal value
extraordinarily early, which is conceptually more appealing and also allows some
simplifications in the proofs. The next lemma presents a main argument, which will
be used throughout the proofs of our theorems. Recall the definitiapsofl Ly ,
from (1.9) and (2.8).

LEMMA 4.1. Assume Assumption Al and let m € Ng. Suppose Vi, Vo, ... is
a uniformly bounded sequence of real-valued random variables, which, for every
k > 0, satisfy

(4.1) E[Vi; Zism > 0, Lin > 0|Fi] = P{L,, > O}(Vi.00 + 0(1)), P-a.s.

with random variables V1 oo = V1,00(m), V2,00 = V2,00(m), .... Then

(42) E[Vn; Zt,,—l—m > O] =P{L, > O}<Z E[Vk,oo§ T =k]+ 0(1)>7
k=0

where the right-hand side series is absolutely convergent.

In our applications of Lemma 4.1, thé, will be typically of the formV,, =
U, 1;z,~0; with randomU,. Relation (4.2) then reflects the fact that, given survival
at generatiom, the history of the branching process splits into two independent
pieces. The summands display the evolution of the branching process up fo time
when 1, = k, whereas the common fact®{L, > 0} arises from the evolution
after timer,.
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PROOF OFLEMMA 4.1. Fixm € Ng. We may assume & V,, < 1 since
assumption (4.1) implies the corresponding statements for the positive and the
negative part of thé/,. Using first (2.9) and then the independence ofXheand
the estimate (1.3), we obtain

E[Va; Zey4m > 0,14 > 1] <P{Z;, > 0,1, > [}

n
= Y P{Z>01=k Li,>0}
k=I+1

< Y Ele%; u =kIP{Ly— >0}
k=I+1
for everyl € Np. Applying Lemma 2.2 withi(x) := ¢~ gives
(4.3) lim limsup(P{L, > 0)"*E[Vy; Zs,4m > 0,7, > 1] =0.
=00 n—o0

On the other hand, using (2.9) again, we have
E[Vi; Zey4m > 0, 7y = k]
(4.4) =E[Vy; Zkym >0, i =k, Ly, = O]
=E[E[Vi: Zkym > 0, Ly > O\ Fi]; 7 = k]
for everyk < n. Now observe that, by independence of thg we get
E[Vi; Zitm > 0, Lin = 0| Fi]
<P{Lin > 0|F} =P{L,—r =0}, P-a.s.

SinceP{L,_; > 0} ~ P{L, > 0} for fixed k, relation (4.4) and the dominated
convergence theorem, combined with the assumption of the lemma, imply

(4.5)  lim (P(Ly = 0N E[Vy: Zo,1m > 0, 1y = k] = E[Vi o0 Tk = K]

for everyk € Np. Consequently,

0
(4.6) > ElVioo: 7 =kl < limsup(P{L, = O) *E[Vy; Zg,4m > 0, 7 > []
k=l+1 n—oo

for everyl € Ng. By means of the triangle inequality, we obtain from (4.5) and (4.6)

o0
limsup|(P{L, > O) " E[Vy; Zz,4m > 0] = Y E[Vi o0; T4 = k]
n— o0 k=0

<2limsupP{L, > O)"*E[Vy; Zsy1m > 0,7, > ]

n—oo

(4.7)

for everyl € Np. Since the left-hand side of (4.7) does not depend, ¢ime claim
of the lemma follows from (4.3) by letting— oo in (4.7). O
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For convenience we introduce the notation
Aus :=1{Z, >0foralln >0}

for the event of ultimate survival.

PrROOF OFTHEOREM1.1. Forz, n € Ng, we write
¥(z,n):=P,{Z,>0,L, >0}

Note thaty (0, n) = 0. ChoosingY,, = I;z,~0; andYs = I4,, in Lemma 2.5, we
get, forz > 1,

(4.8) Y (z,n) ~P{L, > O}PF{Ays} asn — 0o.
Furthermore, fok < n, we have
(4.9) P{zZ, >0, Ly, > Ol F}=v(Zy,n—k), P-a.s.

Relations (4.8) and (4.9) show that we may apply Lemma 4.Y,te- 17, -0},
Viioo = P}_k{Au.s} andm = 0 to obtain

P{Z, > 0} ~6P{L,, = 0} asn — 00,

where

oo
(4.10) 0:=) E[P} {Aus} % =k] < o0,
k=0

For6 being strictly positive, note that Proposition 3.1 implRs{A, s } > 0 for all
z>1. O

REMARK. It is interesting to note that the sum in representation (4.10)
of 6 can be interpreted as follows: Call a strict descending ladder epoch of the
associated random walk an unfavorable generation (at such epochs the probability
of survival is particularly low). If the members of each unfavorable generation are
transfered into a conditioned random environment and branch according to this
new environment, thef is the expected number of such clans, which survive
forever.

PrROOF OFTHEOREM 1.3. Let¢ be a bounded continuous function on the
spaceD[0, 1] of cadlag functions on the unit interval. Foe R, let W* denote the
process with constant paths

W =eW*,  0=<r<l,

whereW™ is specified in Proposition 3.1. For fixeds R, Proposition 3.1 shows
that, asi, r, — oo with r,, < n, the procesa™* X'=" converges to/* in the metric
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of uniform convergence and, consequently, in the Skorokhod-metric on the space
D[0,1] PT-a.s.,

Yo i=¢ (e X" (7,0 = Yoo := ¢ (W) [jw+-0), PT-a.s.

(In fact, since the limiting proces®® has continuous paths, convergence in the
two metrics is equivalent.) Far< n andz € Ny, define

¥(z,s,r,n):=E;][¢p(*X""); Z,>0,L, >0l
Lemma 2.5 entails
¥ (z,5,rn,n) =P{Ly = O}ES[p(W*); WF > 0] +0(1)).
Now observe that, fok <r <n,
El¢(X""); Z, >0, Lk.n > O\ Fik] =¥ (Zk, Sk, v —k,n — k), P-a.s.
Thus, we may apply Lemma 4.1 to the random variables: ¢ (X"")I{z,~0y and
Voo = E}k [p(WSk); W > 0] with m = 0. Also using Theorem 1.1, we obtain

E[¢(X""")|Z, > 0] — /q)(w)k(dw) asn — oo,

where is the measure on the space of cadlag function®ofy] given by

1 o
Adw) = 5 > E[rzes(dw); Zk > 0, 7 = k]
k=0

with
)Lz,s(dw) = P;_[WS edw, wt > 0].

By Proposition 3.1, the total mass bf ; is PT{A,s}. Hence, the representation
of 6 in (4.10) shows that is a probability measure. Again using Proposition 3.1,
we see thak, ; puts its entire mass on strictly positive constant functions and,
hence, so does. This completes the proof of the theorent.]

PROOF OFTHEOREM 1.4. Note that miaSg, ..., S,) = L, A 0. We consider
Vi =¢(ta, Ly A0)1 (7,0, for some bounded measurable functiponNo x R, .
SinceLy , > 0 impliest; = 7, [cf. (2.9)], we have

E[Vy; Zk > 0, Li,n = 01 Fi] = E[¢(wk, S5,); Zn > O, Li,n = 01 F¢]
= d)(t](? ka)P{Zn > Ov Lk,l’l 2 Ol‘?:k}’ P-as

Thus, we may apply Lemma 4.1 in just the same manner as in the proof of
Theorem 1.1 withVy o = ¢ (1, Srk)P}k{Au.s_} and obtain

El¢(tn, Ln A0)|Z, > 0]

1 oo
— o )_E[ok SOPy {Aus)i e =k]  asn—oo.
k=0
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This entails the desired result]

PROOF OFTHEOREM1.5. Letk,m > 0 andk + m < n. Similar to the proof
of Lemma 2.3, we may, in view of (2.7), decompose the stochastic process under
consideration as” = Sktm.n 4 Sktm.n | et ¢ be a bounded continuous function
on D[0, 1] and define

Y (w, x) :=El¢(w + S Ly > —x]

f~or w € D[0,1] andx > 0. By Lemma 2.3, giverLi4,,., > —x, the process
Sktm.n converges in distribution té+ asn — oo for eachk andm. Hence, if
the cadlag functions” converge uniformly to the zero function, then

YW, x) =P{Ly_tm) = —x}(EP(LT) +0(1))
= v(x)P{L, > O}(Ep(L™) +0(1)),
where for the second equality we have used (2.1). Since
(4.11) {Lin > O = {Li ktm = O N {Lm.n > —(Sktm — Sk)}
and sinceskt™" converges uniformly to zero as— oo P-a.s., we obtain
El¢(S"); Zm > 0, Lin = Ol Feqm]
= Y (S Sk — SO Zim =0, L g om >0}
= U(Sk4+m — S)P{L, = 0}
X (E¢(LT) 4+ 0(D)) 7,0, Litm=0}» P-a.s.
From (2.2) and (4.11) we deduce
|E[#(S™); Zitm > O, L.y > O Fiem]|
<sup|¢|P{Lk.n > O|Fitm}
= SUP|PIP{Li+m.n = —(Sk+m — S FrtmH{Ly jm=0}
< cV(Skgm — SOP{Ln—te+m) = O} i1y 4 >0) P-a.s.

(4.12)

for somec > 0. Also, E[v(Sk4+m — Sk); Lk.k+m = 0|Fr] = v(0) < oo P-a.s.,
by (1.5). Hence, by means of the dominated convergence theorem and (2.16), we
conclude from (4.12)

El¢(S"); Zk+m > 0, Li.n > O F¢]
= (E¢(L™) 4+ o(1))P{L, > 0}
x E[v(Sk+m — Sk); Zi4m > O, Li k+m = O] Fi]
= (E¢ (L") + o(D))P{L, = O}P} {Z,, > O}, P-a.s.
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Applying Lemma 4.1 to/, = ¢ (S") gives

E[(5"); Zgytm > 0] = (E¢(LY) + 0(1)P{L, = O} ) "E[P} {Z, > O}; ox =k].
k=0

In particular, we have

e.¢]
(4.13) P{Zs,4m >0} ~P{L, >0} Y E[P} {Z, > O} tx = k],
k=0

where the right-hand side series is convergent. Now observe that
[Ep(LT)P(Z, > 0} — E[¢(S"); Z, > O]
< [E¢(LT)P{Z, > O} — E[¢(S"); Zr,+m > O]
+ suplo|E|l(z,~0 — I{z,, >0}

and

Eliz,>00 = 1{Zs, (>0}
<(P{Z, >0} —P{Zy1m >0}) + (P{Zr,,+m > 0} —P{Zyim > O})
Combining these estimates with Theorem 1.1 gives

[E¢ (L) — E[¢(S")|Z, > O]
(4.14)

< 2supg| (% Y E[Py{Zn>0hu =k — 1) +o(1).
k=0

By the dominated convergence theorem and (4.10),

o0
Y E[Py{Zn>0hu=k]|6 asm — 0o.
k=0

Since the left-hand side of (4.14) does not dependrgnthe assertion of
Theorem 1.5 follows. [
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