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ASYMPTOTICS FOR HITTING TIMES

By M. KuPsSA AND Y. LACROIX
Charles University and Université de Toulon et du Var

In this paper we characterize possible asymptotics for hitting times
in aperiodic ergodic dynamical systems: asymptotics are proved to be the
distribution functions of subprobability measures on the line belonging to the
functional class

F is increasing, null of—oo, 0];
(A) F = [F ‘R—[0,1]: {F is continuous and concave;
F(t) <tfort>0.

Note that all possible asymptotics are absolutely continuous.

1. Introduction. Throughout(X, 8B, 1) is aprobability spaceT : X — X is
measurable and preserves We also assume thdynamical systemiX, T, u) to
beergodic

For U c X with ©(U) > 0, Poincarés recurrence theorenstates that the
variable

y(x) =inflk > 1:T*x € U}

is n-a.s. well defined. Ik € U, ty(x) denotes theeturn timeof x to U, and for
arbitrary x € X, 1y (x) is the hitting time of x to U (also often called entrance
time). The return time theoreriKac (1947)] reads

E(wW)ty) =Y tpU N{z, =1) =1,

t>1

where the expectation is computed with respect to the induced probability measure
onU, uy = %

Finer statistical properties of the variahl€U )ty have been investigated; for
instance, Chazottes (2003) states conditions for the existence of higher-order
moments, in connection with mixing properties of the system.

Another approach, rapidly developing in the last decade, relevant to the study
of recurrence to rare events in dynamical systeiggo describe asymptotics for
hitting or return times.

We say a sequence of distribution functiofg,) converges weakly to a
function F (which might not be a distribution function itself)  is increasing
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(not necessarily strictly) and at any point of continuity Bf sayr, F;, (o) —
F(t0). Notice that we assume increasing a priori. We will writeF,, = F if (F;,)
converges weakly t@'.

ForU c X measurable withw(U) > 0, we define

- 1
Fy(r) = mu(U N{tyu(U) <t})

and

Fy(t) = n({n@)ty <t}).

Let (U,),>1 denote a sequencedd with 1 (U,) — 0. The question of asymptotics
asks for weak convergence (cﬁUn)nzl or (Fy,)n>1, and in the case it does, asks
for the nature of the limit. The latter concerns hitting times, and the former return
times.

Weak limits (for both hitting and return times) have been shown to exist for
suitably chosenU,),>1 (essentially decreasing sequences of balls in a metric
spaceX) and identified to be the distribution function of the positive exponential
law with parameter 1, in many classes of mixing systems, in Abadi and Galves
(2001), Collet and Galves (1993), Hirata, Saussol and Vaienti (1999), Saussol
(1998) and Young (1999). Nonexponential asymptotics have been obtained in
Coelho and de Faria (1990), for instance. The literature on the subject is rather
important and our list is incomplete. For further information we refer the reader to
the surveys Abadi (2004) or Coelho (2000).

There exists a connection between return time asymptotics and hitting time
asymptotics, indeed, as shown in Hirata, Saussol and Vaienti (1999), when the
asymptotics for return times is exponential with parameter 1, then so is the one for
hitting times.

Possible asymptotics for return times, that is, weak Iimits(@”)nzl, were
determined in Lacroix (2002). These a'es in [0, 1], null on]—o0, 0], increasing,
such that/g™(1 — F(t))dt < 1.

Though asymptotics for hitting times have been studied in many papers in the
literature, the question of the nature of possible asymptotics is still completely
open.

We answer this question from probability theory. Let

F is increasing, null of—o0, 0];
F:R—[0,1]:| F iscontinuous, concave df, +oo[;
F(@t)<tforr=>0.

Notice that¥ contains only absolutely continuous distributions, some of which
are associated to subprobability measures.
We say the systenX, T, w) is aperiodicif forany m > 1,

w{x:T"x =x}) =0.

A F

We prove:



612 M. KUPSA AND Y. LACROIX

THEOREM1. Let(X, T, u) be an ergodic aperiodic dynamical syste@iven
F:R — R increasing there existgU,),>o with u(U,) — 0 and Fy, = F if and
onlyif Fe ¥.

Hence possible asymptotics for hitting times are exactly the elemefts of

We stress that the clas’ is rather restricted, which is unexpected.

Let us remark that the continuous parameter case has been studied in this
journal, namely in Geman (1973). The characteristics of possible asymptotics in
that case differ from ours, in that, for instance, asymptotics for the continuous
parameter case may have a discontinuity jump at the origin. The proof technique
is quite different, too.

A SHORT SKETCH OF THE(ELEMENTARY) PROOF OFTHEOREM 1. Our
proof uses the same techniques as those developed in Lacroix (2002). We provide,
however, a few simplifications. We think that once the spirit of the proof is
understood, details are easy to follow.

Here is how the proof goes: first we state (conditiGns Section 2) necessary
conditions for anF to be anFy for someU in some ergodic system. We
then define rationaF’s, which are those satisfying with additional rationality
assumptions. These rationals are shown in the stamp machine lemma to be
exactly those arising from periodic ergodic systems.

Second, the concavity—continuity lemma characterizes weak limits of rational
F’s as to be exactly the elements of the cl@&sslescribed above.

Third, in a periodic system & is a finite collection of points, spaced along
the irreducible cycle that defines the ergodic periodic transformation. It defines
spacing and return times, and the ratiodd thereby produce models (that we
call stamps) that enable one to mark the levels in Rohlin towers [cf. Shields (1973)
for definitions]. Then if we call/ the union of the marked levels in the tower, it is
easy to see that the larger the tower is, the uniformly cléseand Fj; are. This
is the approximation lemma, using the classical Rohlin lemma.

Fourth, there is also an obvious observation that&nys arbitrarily uniformly
close to a rationalF. It follows at once that asymptotics in a given aperiodic
ergodic system are the same as weak limitsFgfs arising from all periodic
ergodic systems.

Let us proceed.

2. Kac's towns, stamps and Rohlin towers. Since u(U) > 0, it is a
standard construction in ergodic theory to build Kac's town abdyevhich is
a juxtaposition of skyscrapers: the groutids partitioned into set® N {ry = k},
k > 1, and above each of these the actiorf'ajoes upward along the floors of a
skyscraper of height — 1. Once reached, the top floor points go back somewhere
in U under the action of.
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The measure of the union of the floors in Kac’s town, including the ground floor,
equals 1; this is yet another expression of Kac's return time theorem.

The connection with hitting time can be made as follows: if one wants to
computeu(ty = k) for somek > 1, one has to take the measure of the union
of the floors that havé — 1 levels left above.

A closer look at anFy shows that it must have the following elementary
properties:

1. Its discontinuities are located at poinigl), 2u(U), ..., the collection of
which might be finite or not, depending on the fact that entry times tare
bounded or not.

2. The distribution functionFy is simple (it is the distribution function of a
discrete random variable), constant on intervals of lengtti) [the random
variable concerned ig (U)ty], is 0 on]—oo, u(U)[ and tends to 1 at-oco.

3. It has decreasing jumps of discontinuity; this is because the value of the jump
at pointk (U) equals the measure of the union of the floors haxirdl floors
left above in Kac’s town, which necessarily decreases iith

4. The first discontinuity jump equals(U).

The conditions enumerated above—denote them by the sy@balre neces-
sary for a distribution function to be af, for someU of positive measure and
for some ergodic systeitX, T, ().

We will need the following definition: a distribution functiaf on the real line
is rational if it satisfies®, has finitely many discontinuity points, all located at
rationals, and has rational discontinuity jumps.

STAMP MACHINE LEMMA. A distribution functionF is an Fy for some
ergodic periodic systertX, T, w) if and only if it is rational

PROOF The necessity follows from the preceding discussion, and the fact that
in a periodic ergodic system, the set of possible return times is finitel/anith
positive measure has rational measure, and for any Suahy floor in Kac’s town
has a rational measure.

Conversely, given a rational’, we will build Kac’s town with baseJ such
that F = Fy. The first thing to do is to collect the collection of decreasing
discontinuity jumps in decreasing order, and to sort out from this collection the
set of (decreasing) values of jumps, and for each value of a jump, the cardinality
of the consecutive run of jumps having the given selected value.

The first set will provide the opportunity to compute the measures of the floors
of the skyscrapers, while the second one will provide the possibility to compute
the heights of the skyscrapers.

Let us assume that the discontinuitiesfoaire located at points, 2« ..., K«,
with o € Q. We have a discontinuity jump, = F(ka™) — F(ka™) € Q, for
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1<k < K. Notice that8; = «, and that

Prt--+ Bk =1,

becausd goes from 0 to 1 upward along its discontinuity jumps.
There are some> 1 and integers ¥ k1 < k2 < --- < ky = K such that

Br.-- Br)=Br="=Prs > Bra+1="=Pip > > Pr,41="- = Pr,)-

We draw a ground floor of measuse as well as, piled vertically underneath,
downward k1 — 1 underground floors, of the same measute f, .

Next we pile rightmost, underneath, downward, consecutive floors of
measuresy,, nextks ones, the same way, and so on.

The procedure ends up with something looking like Kac’s town, but mirrored
downward. Never mind; we reverse direction, and get the picture of something
looking much like Kac's town. The union of the floors has measure 1 since
B1+ .-+ Bk = 1. It now remains to find a periodic ergodic system, together
with a U, for which this construction is the construction of Kac’s town associated
to U. We can writex = p/q andf; = pj/q, 1< j <s, for some denominatay.

We denote by(X, T, u) the periodic ergodic system with elements and
periodg. We will constructU c X with p elements: we seX ={1,2,3,...,q},
andTx =x+1if x <g, Tq = 1. The measurg is the equidistribution. We set

U={1,1+ky,....14 (p1— p2)ka,
1+ (p1— p2)k1+ ko, ..., 1+ (p1— p2)k1+ (p2 — p3)ka,
1+ (p1—pa)ka+ -+ (ps—1 — ps)ks—1,
1+ (pr—p2ki+--+ (ps—1— ps)ks—1+ks, ...,
1+ (Pl - p2)kl +---+ (ps—l - ps)ks—l + psks}-

ThenU containsp = p1 =14 (p1— p2) + -+ (ps—1 — ps) + ps — 1 elements,
henceu(U) = a.
Also notice that since

g=qB1+--+ Bk)
= (kl(Pl —p2)+-+ks_1(ps—1— ps) +ks(ps — 1) + ks)’

possible return times to' are exactlyk, ..., kg, and exactlyp; — p2 elements of
U return toU attimek1, p2> — p3 of them do so for timé,, and so on.

We think that now the best thing to convince the reader that such system with
suchU makesF = Fy is to let him work out a handmade example along with the
above guidelines, maybe also using the example developed belbw.
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DEFINITION 1. Given rationalF, with parameter’, « = p/q, Bx; = p;/q.
we can construatX, T, u) periodic andU as in the proof of the preceding lemma.

A stamp forF marks the levels in a tower of a given width and a height equal
to g by marking those that have the same heights (counting from the stamps base)
as those of the floors corresponding to height& im the preceding lemma.

AN EXAMPLE OF A STAMP CONSTRUCTION With the above notation
let F be rational with parameters = 5/27 and (81 > o > --- > B7) =
(5/27,5/27,5/27,3/27,3/27,3/27,3/27).

In Figure 1, for a finite periodic system with 27 points, we show Kac'’s town
with baseU consisting of five points, where each floor in the town consists of a
single point in the space. Each level in the town corresponds to a measure equal to
the corresponding;, which reads, for our example, successivel$,%, 3, 3, 3,3
points. We also figure how this town produces stampgfowve mark the bas#,
and unmark the floors above, then we pile the skyscrapers right above left from left
to right. We obtain a vertical tower, in which marked floors (thickened in Figure 1)
have a union equal tt.

THE 8T AMPF
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FIG. 1. From F to the town to its stamp
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3. Weak limits and the class &. The proof of the following lemma is left
to the reader; it may look very much like the one of the last statement of the
concavity—continuity lemma below.

WEAK LIMITS LEMMA . Given anye > 0, any ergodic aperiodic system
(X, T, ) and anyU c X with u(U) > 0, there exists a rationaF such that for
anyt > 0, there exists an > 0 with

s —t|<e and |F(s)— Fy(t)| <e.
Next we have:

CONCAVITY—CONTINUITY LEMMA. Any weak limit of a sequence&y,)
arising from a systeniX, T, u) and some sequence of sets of positive measures
init, (U,), with u(U,) — 0, must be in¥ [cf. (A)].

Any F € ¥ is the weak limit of a sequence of rationals.

PrROOF AssumeFy, = F. ThenF must be increasing, hence has an at most
countable set of discontinuity points. It has a dense set of continuity points whence
F must be zero of— oo, O] and must take its values [0, 1].

Recall thatFy, satisfies condition®. In particular, if 0<s < ¢, the increase
Fy,(t) — Fy, (s) is at most equal to the maximal discontinuity jump#f, , that
is, u(U,), times the number of intervals of length(U,,) needed to go from to ¢,
plus 1. This means we have an inequality

t—s

n o< FU,,(I)—FUn(S)SM(Un)<—+1> — 1 — s+ u(Uy).
(U

We haveu (U,) — 0, and the continuity modulus @, is
8(Fy,) :=limsup sup |Fy,(x) — Fy,(»)| = nUp,).
el0t  |x—yl<e

Let us supposé’ has a discontinuity point aty > 0; becauser increases, there
exists F(xy) = limy<x, + F(y) < F(xg) = limy-y, | F(y). Let us put§ =
8(F, xg) := F(xar) — F(xy). There existsig — % < X1 <Xx0<X2<xQ+ % such
that F is continuous at1 andx,. ThenFy, (x1) — F(x1) and Fy, (x2) = F(x2).

Passing to the limit and applying inequality (1), we obtain

0<8 =< F(x2) — F(x1) =lim(Fy, (x2) — Fy, (x1))

<limsup(xz — x1) + u(Uy) = x2 — x1 < >
n
a contradiction. Sd& is continuous.
The fact that the weak limit is continuous makes it a simple limit. EAgh
clearly satisfiesFy, (r) <t for t > 0 (cf. conditionsC). So the simple limitF
satisfiesF(t) <t fort > 0, too.
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The concavity ofF is a consequence of the fact th&f,'s have decreasing
discontinuity jumps.

To prove that anFp € F is the weak limit of a sequence of rationAls, it
is enough, becausEy is continuous, to prove that for any> 0, there exists a
rational F such that for an)% >t > 0, there exists an> 0 with

(%) s —t|<e and |Fo(t) — F(s)| <e.

This can be done about the same way we would be proving the weak limits
lemma, except we have a more complicated situation with a truncation, because
Fo might not grow up to 1 at-oo.

Never mind; pick an integeV > % and divide the intervdl0, N] into intervals
of equal Iengths%. This produces a sequence of decreasing jumé’;—l) —
Fo(4),0<k < N (by concavity ofFp). We then approximate eadfy(%), k > 0,
from above, by a positive rational at distance at mgsand less than 1, call
it F(%), in such a way that the new sequence of junipé;) — F(X) still
decreases, witlr' (0) = 0.

Then we putF (s) = F(U}’V—S]). Finally, we complete if necessary by growing up
from F(N) to 1 using smaller rational jumps, being still constant on intervals of
length 4.

The obtained is rational and satisfies). [

4. Stamping along Rohlin towers.

APPROXIMATION LEMMA. Given (X, T, u) ergodic and aperiodicgiven a
rational F and givene > 0, there existsU C X measurable withu(U) > 0
and such that for any > 0, there exists as > 0 with both |s — 7| < ¢ and
|F(t) — Fy(s)| <e.

PrROOF The rationalF may be realized in a periodic system of peripd 0O,
and produces stamps of arbitrary widths and heighby the stamp machine
lemma. We assumg comes along with its rational parametets81 > - - - > Bk,
ands > 1 such that

Br="-=PBy > Biyr1="">Pr,_1+1=""-= Bk,

(we take the notation from Section 2). We denete p/q, fi; = %, 1<j<s.
Our construction of a stamp for this in fact produces a subs@& consisting
of p points in a periodic system of periag all spaced one with the following
one by somé ;, such thatp; — p;1 such “spacings” equal; foreach 1< j <=
(ps+1 = 0). We assume the first point belongsito(as in Section 2).
By ergodicity and aperiodicity, using the Rohlin lemma, given 0 andg—L < %

there existV ¢ X andn > N with0 < gu(V) <6, V, TV, ..., T" 1disjoint, and
w(Upen TFV) =1 —6.
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We can writen = gr + s with » > 1 and 0< s < ¢, and divide the tower
V,TV,...,T"71V into r subtowers of height;, except for the topmost
remaining floors, that are left as they are.

Next each subtower is stamped with the stamp we havé faith appropriate
width 1 (V), and so we have marked with the stamp some floors along the Rohlin
tower, exactly-p of them. All floors that are marked in the Rohlin tower are spaced
by runs oft; — 1 unmarked floors, for somed j < s. There are'p; marked floors
that are at time; to the upper next marked one.

We callU the union of the marked floors in this tower. We have

W) = rpu(V) € }Lﬁu—a), 3} c}(l—aff, 3}
r+1lgq q q q

because > N, (rg +s)u(V) > 1—§ and; < %.

In each subtower that has another one aboveSgsayT Vv U...UTkita-1y,
for some O< k < r, and for anyt € ]—o0, k;], one has

M(gk)u(x € Spiaty(x) < 1)=F(1).

So if we denote by = |, _, S, we obtain that for any € ]—oo, k],

1 ~
—pnxeSiaty <t)=F().
wu(S)
From this the proof follows rather easily becays@/) is very close tax and
1 (S) can be made arbitrarily close to 1]

5. End of the proof.

PROOF OFTHEOREM1. Pick anF € % : by the concavity—continuity lemma,
there exists a sequence of ratio#ds$, (F},),>1, with F, = F.

Then pick a decreasing sequengel 0 of positive reals. By the approximation
lemma, for eacln > 1, there existd/,, ¢ X measurable such that for any- 0,
there exists am > 0, with | F,, (t) — Fy, (s)| <&, and|s — t| <&,. Then obviously
Fy, = F.

To obtain the reciprocal, assumity, = F, the concavity—continuity lemma
precisely states that must belong taF. O
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