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Self-normalized processes arise naturally in statistical applications.
Being unit free, they are not affected by scale changes. Moreover, self-
normalization often eliminates or weakens moment assumptions. In this
paper we present several exponentiadl anoment iequalities, particularly
those related to laws of the iterated logarithm, for self-normalized random
variables including martingales. iTarobability bounds are also derived. For
random variables3; > 0 and A;, let Y; (1) = exp{AA; — A2B?/2}. We de-
velop inequalities for the moments &f / B; or sup-.o A, /{ B; (loglog B)1/?}
and variants thereof, wheBY;(1) < 1 or whenY;(}) is a supermartin-
gale, for allx belonging to some interval. Our results are valid for a wide
class of random processes including continuous martingalesAyita M;
and B; = /{M);, and sums of conditionally symmetric variablés with
Ar=Y!_,diand B = /Y 4 diz. A sharp maximal inequality for con-
ditionally symmetric random variables and for continuous local martingales
with values inR™, m > 1, is also established. Another development in this
paper is a bounded law of the iterated logarithm for general adapted se-
quences that are centered at certain truncated conditional expectations and
self-normalized by the square root of the sum of squares. The key ingredient
in this development is a new exponential supermartingale involﬁﬁlg1 d;
and 2521 diz. A compact law of the iterated logarithm for self-normalized
martingales is also derived in this connection.

1. Introduction. A prototypical example of self-normalized random vari-
ables is Student’s-statistic which replaces the population standard deviation

in the standardized sample megf (X, — 1)/o by the sample standard devia-
tion. More generally, a self-normalized process is of the fotiB;, in which

B; is a random variable that estimates some dispersion measure Afh impor-

tant aspect of the theory of self-normalized processes is that we can often dispense
with the moment conditions that are needed ifis normalized by nonrandoin
instead, as evidenced by Shao’s (1997) large deviation theory for self-normalized

Received November 2002; revised June 2003.

1Supported in part by NSF Grants DMS-99-72237 and DMS-02-05791.

2supported in part by NSF Grants DMS-99-72417 and DMS-02-05054.

3Supported in part by NSF Grant DMS-00-72523 and NSA Grant MDA 904-00-1-0018.
AMS 2000 subject classifications. Primary 60E15, 60G42, 60G44; secondary 60G40.
Key words and phrases. Martingales, self-normalized, inequalities, iterated logarithm.

1902



SELF-NORMALIZED PROCESSES 1903

sums of i.i.d. random variables without moment conditions. The problem of mo-
ment inequalities for self-normalizedquesses was suggested to the first author in
1990 by J. L. Doob, who pointed out that a key open problem in martingale theory
was the development of inequalities for martingales that are analogous to known
results in harmonic analysis [see Bafiuelos and Moore (1999) for results in this
direction].

In recent years, there has been increasing interest in limit theorems and moment
bounds for self-normalized sums of i.i.d. zero-mean random varia¥jedn
particular, Bentkus and Gotze (1996) derive a Berry—Esseen bound for Student’s
t-statistic, and Giné, Gotze and Mason (1997) prove thatrtbitistic has a
limiting standard normal distribution if and only X1 is in the domain of attraction
of a normal law, by making use of exponential ang-bounds for the self-
normalized sum#/, = S,/ V,, whereS, = >7_, X; and V2 = ¥7_, X2. Egorov
(1998) gives exponential inequalities for a centered variant/,of To see the
connection between thestatistic 7,, and the self-normalized suii,, observe
that

B S/ Vi
Vin = (Sy/Vi)®)/(n = 1)

A recent paper of Caballero, Fernandez and Nualart (1998) contains moment

inequalities for a contiuous martingale over its quadratic variation and uses these

results to show that ifM,, r > 0} is a continuous martingale null at zero, then for

each 1< p < ¢, there exists a universal consta@ht C(p, g) such that

(12) H (gt)t %

(1.1) T,

<ol i,
p (M);""llq
Related work in Revuz and Yor [(1999), page 168] for continuous local martingales

establishes for alp > ¢ > 0 the existence of a constafi},, such that

E(SUR<OQ |M;|)P
(M)4L?

It is important to point out that neither (1.2) nor (1.3) provide bounds for what
is arguably the most important case of inequalities of this type, namelyy.
Bounds onE(|Mt|1’/(M)f’/2) are of particular interest because of their connection
with the central limit theorem, as noted earlier in the case of self-normalized
sums of i.i.d. random variables. For discrete-time martingdle$_, d;, %,

n > 1}, de la Pefia (1999) provides exponential bounds for the tail probabilities of
Sy di/(a+ BV2), whereV2 =" E(d?|Fi—1) andp > 0, > 0. In view of

the law of the iterated logarithm (LIL), it is of interest to uggor V,, /2 loglogV,
(instead oanZ) to self-normalize)_?_; d;.

Motivated by these developments, we establish in this paper analogous
exponential and. ,-bounds for a martingale divided by the square root of its
gquadratic variation or its conditional variance. We start by considering two random

pP—q
(1.3) §CpqE<sup|Ms|) .
§<O0
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variablesA and B with B > 0 such that

32
(1.4) Eexp{AA - ?BZ} <1 forallreR.

Note that if we were allwed to maximize ovek inside the expectation, then the
maximizing valuer = A/B? would give usE exp(A2/2B?) < 1, which in turn
would imply thatP(A/B > x) < exp(—x2/2). Although we cannot interchange
the order of max and E, we can integrate ovex with respect to a probability
measureF’ and interchange the order of integration with respea@ @nd F. This
approach is used in Section 2 to derive not only tail probability bounds fé but

alsoL, and exponential bounds fet// B? + (E B)?, and in Section 3 to obtain
iterated logarithm bounds for the momentsdof/ B. Section 3 further extends the
results to the case where (1.4) is replaced by

(1.5) EexppA—d(AB)} <c forall 0 < A < Ag,

in which @ is assumed to be any nonnegative, strictly convex functiofDomo)
such that®(0) = 0, limy_, o ®(x) = oo and limsup_, ., ®”(x) < co. Important
special cases of suchare®, (x) =x"/rwith 1 <r < 2.

We next replace the random variablesand B by random processef and B,
and, accordingly, replace (1.5) by

(1.6) {exp(rA, — ®,(1B,)), t € T} is a supermartingale for all @ 1 < Aq,

in which T is either{0,1,2,...} or [0,00). Section 4 proves an expectation
form of the LIL (Theorem 4.1) and develops maximal inequalities under this as-
sumption. Moreover, the cage= 2 andig = oo in (1.6) with “supermartingale”
replaced by “martingale” yields a formula for certain boundary crossing probabili-
ties of continuous local martingales taking valueRfh, as shown in Corollary 4.3.
Motivated by the LILs for self-normalized sums of certain classes of i.i.d. random
variables due to Griffin and Kuelbs (1989, 1991), Shao (1997) and Gine and Ma-
son (1998) and extensions by Jing, Shao and Wang (2003) to sums of independent
zero-mean random variables satisfying a Lindeberg-type condition, we study al-
most sure LILs for self-normalized (discrete-time) processes in Sections 5 and 6.
When a partial sum of random variablgg, X, ... is centered and normalized
by a sequence of constants, only under rather special conditions does the usual LIL
hold even if the variables are i.i.d. In contrast, we show in Section 5 that there is a
universal upper bound of LIL type for the almost sure rate at which such sums can
grow after centering by a sum of conditional expectations of suitably truncated
variables and normalizing by the square root of the sum of squares of the
Specifically, letS, = X1+---+ X, andV,? = X2+ ..+ X2, where{X;} is adapted
to an increasing sequengg;} of o-fields. In Section 5 we prove that given any
A > 0, there exist positive constants andb;, such that lim_,o5;, = +/2 and

(1.7) limsupyS, — > wi(—Avy, axvn)}/{Vn(log logV,)Y?} <b,  as.
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on {limV, = oo}, wherev, = V,(loglogV,)~2 and u;(c,d) = E{X;1(c <

X; < d)|F;_1} for ¢ < d. Note that (1.7) is “universal” in the sense that it is
applicable toany adapted sequendé;}. In particular, supposes,, ,,n > 1}

is a supermartingale such thf > —m,, a.s. for someF,,_1-measurable random
variablem,, satisfyingP{0 < m, < Av, for all largen} = 1. Then (1.7) yields

(1.8)  limsupS,/{V,(oglogV,)¥?} <b,  a.s.on{lim V, = oco}.

We derive in Section 6 the lower half counterpart of (1.8) for the case where
{Sy, Fn,n > 1} is amartingale such thX,,| < m,, a.s. for some¥,,_1-measurable

m, with v, - oo and m,/v, — 0 a.s. Combining this with (1.8) (with
lim;,_0b; = +/2) then yields

(1.9) limsups,/{V,(oglogV,)*?}=+2  as.

We end this section with various lemmas identifying a large class of random
variables satisfying (1.4), (1.5) or (1.6).

LEMMA 1.1. Let W, be a standard Brownian motion. Assume that T is a
stopping time such that 7' < oo a.s. Then E expAWy — A2T/2} < 1for all » € R.

LEMMA 1.2. Let M, be a continuous, square-integrable martingale, with
Mo =0.Then

(1.10) expAM, — A%(M),/2}, t > 0, isa supermartingalefor all 1 € R.

If M, isonly assumed to be a continuouslocal martingale, then (1.10)isalso valid
(by application of Fatou’'s lemma).

LEmMmA 1.3. Let {M;:t > 0} be a locally sguare-integrable martingale,
with Mg = 0. Let {V;} be an increasing process, which is adapted, purely
discontinuous and locally integrable; let V(») be its dual predictable projection.
Set Xi =M, +V, C = Y,o,(AX)M2, Dy = (L, (AX) ), H, =
(M) + C; + D;. Thenexp{X; — V,(p) - %Ht} is a supermartingale and, hence,

(1.11) Eexp{A(X, — V") =32H,/2) <1  forall A eR.

Lemma 1.3 is taken from Proposition 4.2.1 of Barlow, Jacka and Yor (1986).
A related bound can be found in Lemma 1.5, due to Stout (1973), in which
A, is a discrete-time martingale with bounded increments Bfds a multiple
of its conditional variance; see also Kubilius and Mémin (1994). The following
lemma holds without any integbility conditions on the variables involved. It is a
generalization of the fact that K is any symmetric random variable, than= X
and B = X2 satisfy condition (1.4). It has ahg history, inaiding Wang (1989)
and Hitczenko (1990). Hitczenko (1990) proved it for conditionally symmetric
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martingale difference sequences, and de la Pefia (1999) pointed out that the same
result still holds without the martingale difference assumption and, hence, without
any integrability assumptions.

LEMMA 1.4. Let {d;} be a sequence of variables adapted to an increasing
sequence of o -fields {F;}. Assume that the d;’s are conditionally symmetric [i.e.,
L(di|Fi-1) = L(=d;|Fi-1)]. Then expir Y/ di — A237_1d?/2}, n > 1,isa
supermartingalewith mean < 1, for all A € R.

Note that any sequence of real-valued random varialflexan be “sym-
metrized” to produce an exponential supermartingale satisfying (1.8) by
introducing random variable¥; such that

and setting/, = X,, — X,; see Section 6.1 of de la Pefia and Giné (1999). The next
two lemmas are related to (1.6).

LEMMA 1.5. Let {d,} be a sequence of random variables adapted to an
increasing sequence of o -fields {#,,} such that E(d,|¥,-1) <0andd, < M as.
for all » and some nonrandom positive constant M. Let 0 < Ag < M1 A, =
Y idi, B2 = (1+ 300M) X'y E(d?|Fi—1), Ao = Bo = 0. Then {exp(A 4, —
$12B2), %,, n >0} isasupermartingale for every 0 < < Ao.

LEMMA 1.6. Let {d,} be a sequence of random variables adapted to an
increasing sequence of o-fields {#,} such that E(d,|¥,-1) = 0 and an =
E(d3|}‘n_1) < o0o. Assume that there exists a positive constant M such that
E(|d,[¥|Fp-1) < (k!/2)02M*=2 as. or P(|d,| < M|%,_1) =1 as. for all
n>1k>2 Let Ay =Y"_,d;, V? =" E(d?|Fi_1), Ao = Vo = 0. Then

(exp(A, — =y A2V,D), Fas n = 0} is a supermartingale for every 0 < 4 <
M.

Fix any O< p < 1. Then Lemma 1.6 implies that (1.4) holds wih= A, and
B=V,//p forevery 0< i < (1— p)/M. The supermartingale in Lemma 1.6 is
closely related to martingale extensions of the classical inequalities of Bernstein
and Bennett; see Section 8.3 of de la Pefla and Giné (1999) for a unified
approach to developing such inequalities from corresponding results for sums of
independent random variables via decoupling.

2. Someexponential inequalities. In this section we present a simple method
to derive exponential antl,,-bounds ford // B2 + (E B)? under assumption (1.4).
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THEOREMZ2.1. Let B> 0and A betwo randomvariables satisfying (1.4)for
all L € R. Thenfor all y > 0,

(2.1)

y A? }
E ex <1
VB2 1?2 p{2(32+y2) -
Consequently, if EB > 0, then E exp(A2/[4(B? + (EB)?]) < +/2 and
(2.2) Eexp(xA/vVB%+ (EB)?) <+/2exux?  forallx>0.

Moreover, for all p > 0,
(2.3) E(A|/VB®+ (EB)*)" <2¢"Y2pI(p/2).

PROOF  Multiplying both sides of (1.4) by2r)~1/2y exp(—12y2/2) (with
y > 0) and integrating over, we obtain by using Fubini’s theorem that

A )\2 2
1>/ E—exp(/\A——B )exp(——y)d/\
N 2 2
y A?
VB? 4 y? 2(B=+ y9)

Bz+y B24y2/ , A A2
—exXp — AE—=2 A dr
/ 2 ( B2t (Bz+y2)2)} ]

Wl b

== E ex ’

[ BZ + 2 p{ 2(B2 +y?)

proving (2.1). By Schwarz’s inequality and (2.1),

A2
Een| g4, |
<{(Eyexp{AZ/<2<BZ+y2>>})<E BZ+y2>}”2
= VB1 2 7

1/2
B2 B 1/2

§<E,/—2+1) S(E(— )) <+v2 fory=EB.
y y

To prove (2.2) and (2.3), we assume without loss of generality Bt oo.
Using the inequality|ab| < ¢ ”’ : Wlth a= JZ_cA/ B2+ (EB)2 and b =

x/v/2c, we getxA//B2 + (EB < 32+(EB)2 + 2 4(, which in the case = 1/4
yields

xA cA? x? -3 2
G e B P i B
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proving (2.2). Moreover, by Markov's inequalityP(|A|/v/ B2+ (EB)? >
x) < v/2exp(—x2/4) for all x > 0. Combining this with the formul&U? =
15° pxP~1P(U > x)dx for anyU > 0, we obtain

E(|A|/YB?+ (EB)?)’ < ﬁ/ooo pxPLexp(—x?/4) dx = 2P~Y?pr (p/2).
O

Another application of the basic inequality (2.1) is the following.

COROLLARY 2.2. Let B> 0and A be two random variables satisfying (1.4)
for all A € R. Thenfor all x > +/2,y > 0and p > 0,

o p1af @ (v doo( L 1)) =) <o),

2 P
2.5) E(|A|/\/(BZ +y) (1+ 1 Iog(B— 4 1))) <o/ 2<P—2>/2pr(£).
2 y 2

PrROOF Note that forx > +/2 andy > 0,

Pl =5 (1+ 3oa(2+1))]

2B2+y) — 2\ "2y
<p{A72>x_2+3|o (B—2+1)}
=M2Brry =2 7295

2 e AZ 2 BZ 2
gexp(—x—)Eﬁ XP{A“/(2(B + y))} sexp(—x—),
2 A/ B2 + y 2
in which the last inequality follows from (2.1). The proof of (2.5) makes use
of (2.4) and is similar to that of (2.3).0J

3. Iterated logarithm boundsfor momentsof self-nor malized variablesand

their generalizations. In this section we present bounds 0k (A*/B) in terms

of E{H(B)}, where H is a function that depends odn The basic results are
Theorems 3.3 and 3.6. Applications of these results are given in Examples 3.4,
3.5 and 3.8, which relate, in particular, tpéh absolute moment of*/B to that

of the iterated logarithm/loglog(B v B~1 v ¢2). A variant of Theorem 3.3 has
been derived by a different argument in Theorem 1 of de la Pefia, Klass and Lai
(2000) and Lemmas 3.1 and 3.2 below provide the proofs of Lemmas 2 and 3 of
that paper. The main objective of this section is to develop an analogous result
that requires (1.4) to hold only for the restricted range D < Ag, thereby widely
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expanding the applicability of our approach. In particular, this extension (given in

Theorem 3.6), together with Lemma 1.5, provides moment bounds for a wide class

of discrete-time martingales self-normalized by the square root of the conditional

variance, thereby connecting our results to LILs. Stout (1973) and Einmahl and

Mason (1989) have used this type of self-normalization for LILs of martingales.
Let L: (0, c0) — (0, o0) be a nondecreasing function such that

(3.1) L(cy) <3cL(y) forall ¢ > 1 andy > 0,
(3.2) L(y®) <3L(y) forall y>1,
®  dx 1
3.3 =_.
(3:3) /1 xL(x) 2

An example satisfying (3.1)—(3.3) is the function

(34)  L(y) = Bflog(y + a)}{loglog(y + )}{logloglog(y + )} 1",

where § > 0, « is chosen sufficiently large to ensure (3.1), (3.2) ghds a
normalizing constant so that (3.3) holds.

LEMMA 3.1. Lety >1.ThenyL(y/BVv B/y) <3y{L(y)Vv L(Bv B™1)} for
any0 < y <y and B > 0. Consequently, for any A > B > 0 and any—% <x =<0,

(3.5) (x+ %)L(x +;/B \% x+i/B) 53%{L(%) \/L(B\/ %)}

PROOF.  First consider the case < 1. From (3.1) and the fact thal is
nondecreasing, it follows that

il ) n(i(Een) oo 1)

For the remaining case<d y < y, sinceL is nondecreasing, we have

(3 2) il (o)

(3.6)
<ylLodvi((sv %)2)} =3r{Lorve(sv %)}

where the last inequality follows from (3.2)J

LEMMA 3.2. Let B > 0 and A be random variables satisfying (1.4) for all
A > 0. Define

(3.7) g(x)
Then

2
= 7eXp{j§ /2}]1(x >1).

g(A/B) - 3
L(A/B)VL(BV1/B) ™ [fexp—x2/2)dx
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PROOF By achange of variablegg (AL (1/4)) "tdA = [{°(AL(3))tdr = 1.
Let

1
(3.8) f) = LM 1) A >0.

Then [° f(X)dr = folf(k) dr+ [1° f(M)dr =1, sof is a density function on
(0, 0). Therefore, integrating (1.4) with respect to this probability measure yields

00 _ 2.2
1> E/ exp{Ax — (Bx /2)}dx
0 xL(x v 1/x)

_E /00 explAy/B — (*/2)} |
o yLO/BVB/y)

AZ
E _
= {ex 232)}

X /OO expl—(*/2)) ]l(é > 1) dx
-A/B (x +A/B)L({(x+ A/B)/B}V{B(x +A/B)}) \B ™

. A
(Iettlngx =y— E)

A2 0 exp{—(x2/2)} dx A
= E{ex ﬁ) } /_1 3(A/B)(L(A/B)V L(B vV 1/B))]l<§ = 1)
[by (3.5)
(1t x? g(A/B)
_{5/0 eXp(_E)dx}EL(A/B)vL(Bvl/B)' O

We next derive a bound oh(A*/B) by making use of Lemma 3.2 for
nondecreasing functioristhat do not grow faster thagy L.

(letting y = Bx)

THEOREM 3.3. Let L:(0,00) — (0, 0c0) be a nondecreasing function satis-
fying (3.1)—(3.3).Define g by (3.7). Let & be a nondecreasing function on [0, oo)
such that for some xg > 1and ¢ > 0,

3.9 O<h(x)<cg(x)/L(x) for all x > xo.
Let g be a dtrictly increasing, continuous function on [0, oo) such that for some
c>c,

cg(x)

(3.10) Lix)<qgkx) < W for all x > xq.

X
Let B > 0 and A berandomvariables satisfying (1.4)for all » > 0. Then
(3.11) Eh(AT/B) <4¢ + h(xo) + Eh(¢ 1(L(B v B™Y))).

Consequently, EA(A"/B) < oo if Eh(¢g~Y(L(B v B™1))) < oc.
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PROOF ByLemma 3.2,

g(A"/B)
L(A/B)VL(BV1/B)~

LetQ ={L(BV %) < q(%)}. Then,Eh(A™/B) is majorized by

h(A™/B)L(Q)1(A/B > xo)
g(A/B)/(L(A/B) Vv L(B Vv 1/B))

SuL en(A oo (4 >
< h(xo) + suph(y)(L(y) v q(y)
y=xo gy

E(L A Bg\(/AL/l;)\/l B >+Eh<q_1<L<Bv%>))
(A/B)V L( /B)

<h(xg)+4 suph(y)Q(y) + Eh(q‘1<L<B \Y, i)))
y=xo &) B

h(xo) + E

g

To apply Theorem 3.3, one can takeas given by (3.4) and chooge! that
grows as slowly as possible (or equivalentlythat grows as rapidly as possible)
subject to the constraint (3.10).

ExXAMPLE 3.4. DefineL by (3.4) and leth(x) = x? for x > 0, with p > 0.
Then (3.9) clearly holds with = 1 andxg sufficiently large, for which (3.10) also
holds withg (x) = g(x)/h(x) = exp(x2/2)/xPT1. In this case,

g y) = {2logy + (p + 1+ o(1)) log Iogy}l/2

SinceL (x) ~ B(logx)(loglogx)(logloglogx)*? asx — oo, Theorem 3.3 yields

asy — oo.

(312) E(A*/B)’ <oo  if E{log(|log(B v B™H|ve)}"/? <o,

for random variable® > 0 andA satisfying (1.4) for ali > 0.

EXAMPLE 3.5. Let 0< 6 < 1 andh(x) = exp#x2/2) for x > 0. Define
L by (3.4). Then (3.9) holds witlk = 1 and xq sufficiently large, for which
(3.10) also holds withy (x) = g(x)/h(x) = x Lexp((1 — 8)x2/2}. In this case,
h(g~1(y)) = 0({y(logy)¥/2}¢/1=9) Therefore, ifB > 0 and (1.4) holds for all
A > 0, then by Theorem 3.3,

ron(3 (4 ))<=

(3.13) g ) )
if E{(logB)(loglogB)*?(logloglogB)¥**}?/1=9 < oo
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for somes > 0, whereB = Bv B~ 1 v ¢3.

The following theorem modifies and broadly extends Theorem 3.3 by requiring
(1.4) to hold only for the restricted range<0A < Xg. An example where this
appears naturally can be found in Lemma 1.5, whérés a martingale and
B? is a multiple of its conditional varianc&heorem 3.6 also generalizes (1.4)
by replacing the quadratic functiorfB2/2 and the upper bound 1 in (1.4) by a
convex functiond (1 B) and a finite positive constant Unlike Theorem 3.3 that
involves a single functiog to give the bound (3.11), Theorem 3.6 uses a family
of functionsg;. The wider range of applications that will be explored in Section 4
justifies the additional technical work required for the theorem. The proof employs
different analyses ol / B for small and largeB, incorporating a Taylor expansion
of ® for large B. In addition, as before, Fubini’s theorem allows us to treat the
random variables involved as though they were constants.

THEOREM3.6. Supposethat @ (-) isa continuous function with @’ (x) strictly
increasing, continuous and positive for x > 0, with lim,_, . ®(x) = co and
sSup,.o®”(x) < co. Suppose B > 0 and A are random variables such that there
exists ¢ > 0 for which

(3.14) EexprA—d(AB)} <c for all 0 < A < Xp.
For w > ®'(1), define y,, by the equation ®’(y,,) = w, and let

(3.15) go(w) = y, expwy, — O ().

Let n > 7 > 0.Let h:[0, 00) — (0, o0) be a nondecreasing function. For b > 7,
let g, be a strictly increasing, continuous function on (0, oo) such that for some
¢ > 0and wg > 9'(2),

ap(w) < & go W)Ly < Aob) + T 1(y,, > Aob)}/ h(w)

(3.16)
for all w > wp.

Let L: (0, 00) — (0, o0) be a hondecreasing function satisfying (3.1)—(3.3).Then
there exists a constant C depending only on Ag, 1, 17, ¢, ¢ and ® such that

(3.17) Eh(A™ /(B Vv 1)) < C + h(wo) + Eh(q5e,(L(B V ))).

PROOF Note that Lemma 3.2 transforms the inequality constraints (1.4) for
all » > 0 into a single expectation inequality primarily involving a rather rapidly
growing function ofA /B and a slowly varying functioi. of B v %. This result is
employed in the proof of Theorem 3.3 to bound a quantity of the fB/naA ™ /B)
by a constant pluBh (g (L(B Vv %)). To duplicate this approach when (1.4) holds
only for 0 < A < A, we first derive an analog of Lemma 3.2 by splittiagB > wq
into two casesys,p > AoB andy,,p < AgB. Moreover, we need to replade
by B v 5. Since®(x) is increasing ik > 0, (3.14) also holds wittB replaced
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by B v n and, therefore, we shall assume without loss of generality Bhaty.
Integrating (3.14) with respect to the probability measure defined by the density
function (3.8) yields

2o exp{AA — ® (LB 2B exp{xA/B — ®
(3.18) CZE/ A ( )}dA:E/ Ped/ O}
0 AL(L VAL 0 xL(x/BV B/x)

Ouir first variant of Lemma 3.2, given in (3.19), provides an exponential bound
for A/B whenioB < ys,p. Observe that using the definition of,, we have
thatx% — ®(x) increases inx for x < y,,p, and decreases in for x > y4,3.
Take any O< #j < n, and leth; = Ag Vv Aal Vv 1. SinceB > n > 7, it follows from
(3.18) and (3.1) that

ron explxA/B — (x)} A
c> —/Aoﬁ xL(:/BV B/x) dx]l(g > w0>]l(yA/B > AoB)
ron exp{ronA/B — ®(Aon)} dx (A
(3.19) >F . Lo B/ Gon) 71<E > w0>]l(yA/B > AoB)

o— 00 N\ _eMiA/B /A
> — Iog(t)E ]1(— > wo)]l(yA/B > AoB).
3r1/1 1 L(B) \B

Our second variant of Lemma 3.2, given in (3.21), bouAd® whenioB >
ya/B- Sincewg > ®'(2), yy, > 2. Define
(3.20) a, =supla <1 :a?®"(x) < 1forallx > Ywo — @}

Note thata, > 0 andy,,, — a, > 1. Since®’(y,)) — w =0, a two-term Taylor
expansion fotw > wg andx € (y,, — ax, yy) yields

82

wx — B (x) = wyy — B () — wﬂb”(s*)
2
> Wy — () — %

in which &* lies betweenx and y,. The last inequality follows from (3.16)
and (3.20), noting tha* > x > y,, — a4 > yy, — ax. It then follows from (3.18)
that

A
c> E[Jl(yA/B <XoB, 7 > wo)

5 /yA/B expl(A/B)ya/p — ®(vasp) — (x — ya,p)?%/(2a2)} dx:|
S xL(x/BV B/x)

A
> E|:1<YA/B < AioB, B > wo)

. EXR(A/B)ya/p — ®(ya/p)} /yA/B ox _w}dx},
Y

ya/B{L(AoV B)} A/B—Gx 2a2
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usingx > ya/p — asx > Yo — asx > 1 S0 thatg < B. From Lemma 3.1 and the fact
that B > n, we haveL(Ao vV B) <3(1V %)L(B). Hence,

A
c= E|:1<YA/B < AoB, Bz wo)

exp(A/B)yasp — ®(ya/B)} 1 p(_z_z)
(3:21) ) 3ya/B(1V (Ao/n))L(B) a*./o ex 2 dz

- Qs Egcp(yA/B)]l(yA/B <ioB,A/B > wp)
T4V (ro/1) L(B) '

Let Q ={L(B) <¢gp(A/B)}. Then rewriting (3.16) as an upper bound foand
using the definition of2, we can majorizé€h(A*/B) by

go(A/B) (A )
S22 = > wy, < oB
LB 7 = Wo.Ya/s = Ao

e)\oﬁA/B A
i

2 "
LB \p="oraE="0 )”

LS CRPE)
5)UN9 M5 =m0
< h(wo) + C + Eh(g5 (L(B))),
in which the inequality follows from (3.16), (3.21) and (3.19)]

h(wo) + EE[]l(Q){

+

REMARK 3.7. In the case.g = oo [as in Theorem 3.3 for whichlb (x) =
x2/2], the bounds (3.18) and (3.19) are not needed and the result for génisral
similar to (3.11) in Theorem 3.3. The main difference between (3.11) and (3.17)
lies ing—1 in (3.11) versus the more elabora]tgén in (3.17) to incorporate both
(3.19) and (3.21).

The next example is designed to exploit the fornggfw) of Theorem 3.6 [see
(3.16)].

ExamMPLE 3.8. Lemmas 1.5 and 1.6 give examples#f B) satisfying (1.4)
only for 0< A < . Thus, (3.14) holds withb (x) = x?/2 andge reduces to the
function g defined by (3.7) in this case, noting that = w. Define L by (3.4).
First leth(x) = x? for x > 0, with p > 0. Forb > n > 5 > 0, letg,; be a strictly
increasing function o0, co) such that for all largé,

ap(w) = "2 JwPttif w < 20(ib)Y2,
(3.22) < e 2/wP+L i ao(7b)Y2 < w < Agh,

= M0 /P if w> Agb.
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Then (3.16) holds witls = 1. From (3.4) and (3.22), it follows thqgl(L(b)) ~
(2loglogh)Y/2 asb — co. Therefore, (3.12) still holds witt® replaced byB v 5
even though (1.4) holds only for 8 A < Ag. Similarly, letting z2(x) = ¢** with
0 < ¢ < Ao7, it follows from Theorem 3.6 that

(3.23) Eexp(AT/(BVn)) < oo
' if Eexp{c[2(loglogB)(logloglogB)iti]1/2)

for somes > 0, whereB = B Vv 2. One such choice af, that satisfies (3.22) for
sufficiently largeb is to letgy,(w) = w=? exp( f2(w)) for Ag(7b)/2 < w < Agb,
where f is linear on[rq(7b)Y/2, 1ob] and is uniquely determined by requiring
g» to be continuous. In this case, it can be shown th&tw) < w?/2 — logw
for xo(iib)Y/2 < w < Agb if b is sufficiently large, noting that the slope gfis
{1+ 0(1) — 1/+/2}/7i/b and, therefore3w? — logw — f2(w) is an increasing
function ofw € [Ao(7ib)Y/2, Aob] for all largeb.

Another application of Theorem 3.6 involves the more general cagg.of =
x"/r (L <r < 2), for which

(324) y,=w¥"V gew)=w Y Vexp{(1 - rHu/ Y.

In view of (3.24), it follows from Theorem 3.6, by arguments similar to
Example 3.8, that under (3.14) with(x) = x" /r, we have for any > 0,

(3.25) E(At/(Bvm)’ <oo if Eflogh(log(B v m)}"" V" < cc.

Moreover, (3.23) still holds if we replace 2 and2lthere byr/(r — 1) and its
reciprocal, respectively. The following lemma, which provides an analogue of
Lemma 1.5 for more generald r < 2 and which self-normalizes, by the square
root of the square functioh__; dl?, gives an exponential supermartingale when
the summands; of A,, are bounded from below rather than from above.

LEMMA 3.9. LetO<y <1<r <2.Definec,, = max(c,, ¢}, where
¢, =inf{c > 0:expx —cx") <1+ x for all x >0},

¢ =inf{c > 0:expix —clx|") <1l+xforal —y <x <0}

(i) Forallx > —y, expix —c, |x|"} < 1+ x. Moreover, ¢, < (r — 1) ~1(2 -
2" /r and

' =—{y +logd -}y =) Vj_r/j'
j=2
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(i) Let {d,} be a sequence of random variables adapted to an increasing
sequence of o-fields {#,} such that E(d,|¥,-1) <0 and 4, > —M a.s. for
all n and some nonrandom positive constant M. Let A, = > ! ,d;, B, =
reyr P ldil”, Ag = Bo = 0. Then {exp(AA, — (AB,)"/r), Fu,n > 0} is a
supermartingalefor every0 < i <y ML

ProOF.  The first assertion of (i) follows from the definition of .. Forc > 0,
defineg. (x) = log(1+x) — x +c|x|" for x > —1. Theng’.(x) = x| ~1{|x|>" (1 -
Ix)~1 — ¢r} for —1 < x < 0. Sincelx|2~" /(1 — |x]|) is decreasing ir-1 < x < 0,
g. has at most one zero belonging@el, 0). Let ¢* = —{y + log(1 — y)}/y".
Then g+ (—y) = 0 = g+(0). It then follows thatg.(x) > 0 for all —y <
x < 0 and, thereforec* > ¢ If ¢* > ¢, then 8, (=y) < ge(-y) = 0,

contradicting the definition af.”’. Hencec”’ = ¢*. Take anye > (r — 1)’ 12—

r)2~" /r. Then for allx > 0,
1

1 x
! — -1 r=1o {_1 inf r—2 r—=1 }
8c(x) Tox LTex =17 +cryl>o(y +y )

X cr
— —1 O-
1+x{ o= 1)’—1(2—r)2—’} =

Since g.(0) = 0, it then follows thatg.(x) > 0 for all x > 0. Hence,c, <
r—1""t2-r%"/r.

To prove (ii), note that sinced, > —AM > —y a.s. for 0< A < yM—l,
(i) yields

E[exp{)\dn - cy,r|}‘dn|r}|\(Fn—l] = E[1+ )\dnlj:’n—l] <1 a.s. O

4. An expectation version of the LIL and maximal inequalities for self-
normalized martingales. In this section we first prove a theorem that provides
an expectation form of the upper LIL under the assumption

exp(AA; — ®,(AB;)),t €T
(4.1) { t ) }
is a supermartingale with meanl for 0 < A < Ag,

where T is either{0, 1, 2,...} (discrete-time case) df, co) (continuous-time
case) andb, (x) = x"/r for 1 < r < 2. Applications of the theorem will be given

in (4.9)—(4.12). Important special cases of (4.1) have been given in Lemmas 1.5,
1.6 and 3.9. We then develop maximal inequalities for self-normalized processes
under (4.1), yielding an almost sure upper LIL in Corollary 4.2 that generalizes
a corresponding result of Giné and Mason (1998) for i.i.d. symmetric random
variables.
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THEOREM4.1l. LetT ={0,1,2,...}or T =[0,00),1<r <2,and ®,(x) =
x"/r for x > 0. Let A;, B, be stochastic processes (on the same probability
space) satisfying (4.1) and such that B; is positive and nondecreasing in ¢ > 0,
with Ag = 0. In the case T = [0, oo), assume furthermore that A; and B; are
right-continuous. Let L :[1, oo) — (0, co0) be a nondecreasing function satisfying
(3.1)—(3.3).Letn > 0, Aon > e > 0,and i : [0, co) — [0, co) be a nondecreasing
function such that 4(x) < ¢** for all large x. Then there exists a constant C
depending only on Aq, n, r, &, h and L such that

(4.2) Eh <sur{At(B, v H1vlogt L(B, v n)]‘("l)/’}) <C.
>0

PrROOF. It suffices to prove (4.2) with sy, replaced by sup - for every
s > 0. Given any > 0, there exists a sequence of nonnegative random times
(in general, not stopping times) such that

i Az
im n
n—oc (B, v ){lvlog" L(By, v n)}r—b/r

Ar
su ’
05tsps (B, v ){1Vlogt L(B, v n)}r—D/r

(4.3)

sinceAg = 0. As in the proof of Theorem 3.6, we shall assume without loss of
generality thatB; > n. Take anyy < 1 such thayign > ¢.

It follows from Lemma 1 of Shao (2000) and Fatou’s lemma that for any
nonnegative supermartingalé;,+ € T} (with right-continuousY; in the case
T =[0,00)), E(SUpcr Y7 < (1— q)"Y(EYp)?. Applying this result to (4.1) and
noting thatAg = 0, we obtain that for & A < Aq,

1-g 1> E(supexp{mz — <I>r<xBf>})q
teT

(4.4) > Eexp{g[rA,, — ©,(ABy,)]}

= EexplqrAg, — ¥, (q2By,)},

whereWw, (x) = ¢*7"x"/r.

Let f,(w) = explg(1 — r~Hw’/C=D} for w > 0. Note that in the notation of
Theorem 3.6y, (w) = y; 1 f(w) with y, = qw¥ =Y, Letting A = A,, and
B = B,,, it follows from (4.4) and (3.3) that

1—q) Z,/o Eexpigrd — W, (q1B)) 5o,
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which in turn yields the following analogues of (3.19) and (3.21), with 7:

45) 1-¢g) "> —7F— Ne—
“49) A== mvs 93 )E rmv

7l
7408 explxA/B — W, (x)}
xL(x/(gB)V (¢B)/x)

g Ir(A/B) ANV 5
=cto.q.n.1) (A/B)l/v—l)L(B)ﬂ((E) =70 )

-1
A-q) > E /0
(4.6)

with gAofl > &, A1 = Ao V Ay and the constant(ro, ¢, n, ) depending only on
10, ¢, n andr. For (4.6), recall thap,, = qw™ "D andgy, (w) = y;1 £, (w).

Take any$ < 1 such that(1 — 8)/(r — 1) > 1. Sincegion > &, there exists
x0> Ayt v 1 such that

4.7) h(x) < e /L(x) < f172(x)/xY =D forall x > xo,
noting thatZL (x) < 3xL(1) by (3.1). Let
F={f)(A/B)<L(B)V e}
= [A*/B <[(1VIogL(B))/(8q(1 —r~H)]" /")
Let k be the smallest integer such th&t2— 1) > 1. On{A/B > xqo V (AoB) 1},
L(A/B) > L(xoVv (0B Y = 1GoaD L@@V B
>3 DA L1V B),

where the last two inequalities follow from (3.1) and (3.2), respectively. From (4.7),
it then follows that

A+
Eh(B{l v log*t L(B)}(’_l)/’>
< h(xo) + h(1/[8g(X—r~H]" V") P(F)

+E1<FC N {% Zxo})

4.8) @0i1A/B ANV
1= > AoB
x {3—(k+1)(k0 AD-1L(B V1) <<B> =" )

h(x)xY/ =D f+(A/B)
* (S“p ) (A/B)Y"=DL(B)

XZ=XQ rl_(S (x)
AN /(=D
« 1((—) <x03)},
B
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noting that £3(A/B) > L(B) and, therefore,f1*(A/B) < f,(A/B)/L(B)
on F¢. The desired conclusion follows from (4.5), (4.6) and (4.8}

Consider the case of continuous local martingales We can apply Theo-
rem 4.1 withr = 2 andB; = \/(A);, in view of Lemma 1.2. Putting(x) = x”
in (4.2), with L(x) given by (3.4) in this case, yields the following extension
of (1.3) to the casg = p: There exists for every > 0 an absolute constagt,
such that
4.9) E(su AL ’ <C
' <z>§{<A>z loglog({A), v ez)}l/z) -

Since (4.1) holds for allg > 0 by Lemma 1.2, we can, in fact, sef = oo in (4.8)
with » = 2 to replace it by

A+
Eh(B{l\/ log™ L(B)}l/Z)
< h(xo) +h([2/8q1"/%) P (F)
1/2 2
sup__ M0 . ]l(FC - { A Zxo})exno{(q/Z)(A/B) )
x>x0 €XP(g/2)(1 — §)x?} B (A/B)L(B)

so we only requiré:(x) < exp(ex?) for somee < % and all largex in this case.
Putting/(x) = expax?), with 0 < o < % in the preceding argument then yields
an absolute constant(«) such that

’

aA?
4.10 ! i| ,
(4.10) E [f;é)e Xp(<A>,|og|og(<A>,Vez)) =Cl)

which can be regarded as an extensiop te 0 of the following result of Kikuchi
(1991): For everyp > 0 and O< a < % there exists an absolute constant,
such that

E[AZ? expa A2/ (A) )] < Co p E(AZD),

whereA’ = sup-qlA;|.

By Lemma 1.5 or 1.6, (4.9) (with > O replaced by: > 1) also holds for
discrete-time supermartingales or martingales whose difference sequences
satisfy the assumptions in these lemmas. Similarly, for conditionally symmetric
random variabled;, it follows from Lemma 1.4 and Theorem 4.1 that for every
p > 0, there exists an absolute constaptsuch that

g d)”t )P
411 E '
) <§§f{<z;;1 d?)loglog(Y, d? v e2)}1/2 =Cp

In view of Lemma 3.9(iii), Theorem 4.1 can be applied also whgn %, n > 1}
is a supermartingale difference sequence suchdhat —M a.s. for alln and
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some nonrandomM > 0. In this case, we have more generally thatfos 0 and
1 <r <2, there exist€, , such that

(4.12) E(sup Cig &)™ )p <C

' n=1 {QCfoq i I v Dlloglog(Yi_y Idy|" v e —y3/r ) = ="

The remainder of this section considers maximal inequalities for self-normalized
processes under condition (4.1) by using an extension of the method of mixtures
introduced by Robbins and Siegmund (1970) for Brownian motion.FLbe any
finite measure o0, 1g) with F (0, o) > 0 and define the function

A
(4.13) ¥ (u, v) :/O

Given anyc > 0 andv > 0, the equationy (1, v) = ¢ has a unique solution

u = Br(v,c). For the case = 2, the functionv — B¢ (v, ¢) is called aRobbins—
Segmund boundaryin Lai (1976), in which such boundaries are shown to have the
following properties:

Oexp{ku —AMv/r}dF()).

(&) Br(v,c) is a concave function af.

(b) limy_ oo Br(v,c)/v = br/2, where b = supy > 0:F(0,b) = 0}
(supz =0).

() If dF(A) = f(M)dxr for 0 < & < A and inboy<y, f(A) > O while
SURy-). <5 f (M) < 00, thenBr(v, ¢) ~ (vlogv)Y/? asv — oo.

(d) IfdF (L) = f(A)dxfor 0 < A < e 2, and= 0 elsewhere, where

(4.14) () =1/{rx(logr~H(logloga™1)1*?},
for somes > 0, then a3y — oo,

(4.15) Br(,c)= {Zv [Iogzv + (g + 8) logz v + Iog(%) + 0(1)] }1/2.

As in Robbins and Siegmund (1970), we write J@g= log(log,_; v) for k > 2,
log; v = logv. For general 1< r < 2, (a) still holds, (b) holds withbr/2
replaced byb’;l/r and (c) can be generalized g (v, ¢) ~ v¥/"{(logv)/(r —
1)}=D/" asy — co. Moreover, if f is given by (4.14) as in (d), then

(4.15)  Br(v,c) ~vY"{r(loglogv)/(r — D} V" asy — oo,

as can be shown by a modification of the arguments in Section 5 of Robbins and
Siegmund (1970) for the case= 2.
It follows from (4.1) that{vy(A,, B),t > 0} is a nonnegative supermartingale
with mean< F (0, Ag) and, therefore,
P{A; > Br(B;, c) for somer > 0}
(4.16)
= P{y(A;, B]) > c for somer > 0} < F (0, »0)/c,
for everyc > 0. In particular, by choosing in (4.16) arbitrarily large, we obtain
from (4.15) and (4.16) the following:
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COROLLARY 4.2. Letl<r <2,®,.(x)=x"/r for x > 0 and suppose that
(4.1) holds for the process (A, B;),t € T. Then

|' A, . =D/r
imsu =
,_mpB,(Iog logB,)r=b/r — {r - 1}

(4.17)
a.s. on { lim B; =oo}.
—00

Note that Theorem 4.1 already implies the a.s. finiteness of the above lim sup
on {lim B, = oo}, but (4.17) gives a sharp nonrandom upper bound that reduces
to the familiar /2 whenr = 2. In view of Lemma 1.4, Corollary 4.2 with
r = 2 is applicable to conditionally symmetric random variabdgs yielding
(4.17) with A, = 3! _, d; and B, = (X!_, d»¥/2. The special case of this result
for independent symmetri¢; has been derived via an independent Rademacher
sequencég;} by Griffin and Kuelbs (1991) and also by Giné and Mason (1998),
who show that loglod; in (4.17) (withr = 2) can be replaced by log legvhen
thed; are i.i.d. symmetric.

We next extend the preceding method of mixtures to derive maximal inequalities
for conditionally symmetricm x 1 vectors. An adapted sequence of random
vectors{d;} is calledconditionally symmetric if {\'d;} is an adapted sequence
of conditionally symmetric random variables for evérg R™. By Lemma 1.4,
if {d;} is a sequence of conditionally symmetric random vectors, then for any
probability distributionF on R™, the sequence

(4.18) / exp{k > di— 3 dek}dF(k) n>1,

forms a nonnegative supermartingale with mearl, noting that(1'd;)? =
/\/didlfx. In particular, if we choosé to be the multivariate normal distribution
with mean 0 and covariance matrix 1, then (4.18) reduces to

(£ (- Eee) (£

where| - | denotes the determinant of a square matrix. Hence, forcany) and
any positive definiten x m matrix vV,

P d)(V + Y did) 0y di)
og|V + X1 1 did]| + 2log(c//TV]) —
As another application of the method of mixtures, we derive a simple formula
for certain boundary crossing probabilities of multivariate continuous local

martingales. Letmin(-) denote the minimum eigenvalue of a nonnegative definite
matrix.

V+Y did
i=1

(4.19) |v|Y2

-1

(4.20) P{

> 1 for somen > 1}
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COROLLARY 4.3. Let M; be a continuous local martingale taking val-
ues in R™ such that Mg = 0, lim;_ o0 Amin({M);) = oo a.s., and such that
E exp(A'(M);\) < oo for all A € R™ and ¢t > 0. Then for any ¢ > 1 and any posi-
tive definite m x m matrix vV,

1

MV + (M)) "My > 1 for somer > 0} =c
log|V + (M)| + 2log(c/~/IV]) — - ’

PROOF  First note that an expression similar to (4.19) is equal to the integral

(4.21) P{

(4.22) / ) exp{k’Mt _ %k’(M},k} dF ().

where F is the m-variate normal distribution with mean 0 and covariance
matrix V1. Given anyx € R™ with A # 0, A’M, is a univariate local martingale
and (A'M); = M(M),» — oo a.s. sincermin({(M);) — oo a.s. Hence, by the
martingale strong law)\'M, /) (M),». — 0 a.s. and, therefore, e}pM, —
(A’M),/2} — 0 a.s. ag — oo, for everyr #0.

Since E exp((A’M),/2) < oo, it follows from Novikov’s criterion [cf. Revuz
and Yor (1999), page 332] thgexp(A’M; — (A’M),/2, t > 0} is a martingale.
Therefore,/ exp{A’ M, — (\'M),/2} d F (1) is a nonnegative continuous martingale,
and by Doob’s inequality, the probability in (4.21) isc~2, similar to (4.20).
Equality actually holds in (4.21), by Lemma 1 of Robbins and Siegmund (1970),
if it can be shown that (4.22) converges to 0 a.st as co. Since expr’M, —
(M’M),} — 0 a.s. for evenyp. # 0, we need only apply the dominated convergence
theorem and note that by Doob’s inequality,

P{/ expA’M; — (M), /2)dF()) > c for somer > 0}
IAl=a

IA

_1/
c dF ().
e O

5. A universal upper LIL. To derive (1.7) for any adapted sequerég},
one basic technigue pertains to upper-bounding the probability of an event of
the form E; = {fx_1 < w < 1} in which ¢; and t; are stopping times defined
in (5.3). Sandwichingr; betweens_; and . enables us to replace both the
random exceedance and truncation levels in (5.3) by constants. Then the event
E} can be re-expressed in terms of two simultaneous inequalities, one involving
centered sums and the other involving a sum of squares. Using these inequalities,
we derive a supermartingale that is then used to baRitE,). Apart from finite
mean constraints, Lemma 5.1 gives the basic idea underlying the construction of
this supermartingale. It will be refined in Corollary 5.3 to enable us to remove the
assumptions in Lemma 5.1 concerning both the integrability oftifi® and the
restrictions on the negative part of their support.
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LEMMA 5.1. Let0O<y < 1anddefine

oo
(5.1) Cy=—ly +logl—/r2 =Y vi7?/j

j=2
Then C, = ¢’ = ¢,2, where ¢, and ¢!’ are the same as in Lemma 3.9.
Moreover, if Y is a random variable such that ¥ > —y and E|Y| < oo, then
EexplY —EY —C, Y% <1.

PROOF As shown in Lemma 3.9(i), exp — nyz) <l+4yforally>—y.
Hence,EexplY — C, Y%} <1+ EY <expEY). O

COROLLARY 5.2. Fixany 0 <y < 1. Let {¥,} be an increasing sequence
of o-fields. Suppose Y, is F,-measurable, E|Y,| < oo and ¥, > —y as. Let
tn = E (Y| Fr—1). Thenexp(>_7_1(Y; —u; — C, Yl.z)} is a super martingalewhose
expectationis < 1.

COROLLARY 5.3. Let {#,} be an increasing sequence of o-fields and Y,
be #;,-measurable random variables. Let 0 <y, <1 and 0 < 1, < 1/C,,
be ¥,_1-measurable random variables, where C, is defined in (5.1). Let
pn = E(YaL(=yn < Yo < Aa)|Fooa). Then exp(S7_y (Y; — i — 4 VD)) isa
super martingale whose expectationis < 1.

PROOF Observe that eXp — y2/x;} <1if y>2x; orif y < —y;. Let X; =
Yil(—y; <Y < Ap). Then

E(expY; — i — 27 1YD)| Fiig)
< E{exp(X; — i — 27 1XP)| Fi 1)
< E{(1+ X;)e M |Fi_1} = A+ pi)e M

see the proof of Lemma 5.1 for the lastinequality, recalling that E (X;|F;_1).
Since(1+ x)e™* < 1 for all x, the desired conclusion follows[]

The centering constants in (1.7) involve sums of expectations conditioned on
the past which are computed as functions of the endpoints of the interval on which
the associated random variable is truncated. The actual endpoints used, however,
are neither knowable nor determined until the future. Thus the centered sums
that result are not a martingale. Nevertheless, by using certain stopping times, the
random truncation levels can be replaced by non-random ones, thereby yielding a
supermartingale structure for which Corollary 5.5 applies, enabling us to establish
the following result.
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THEOREM 5.4. Let X, be measurable with respect to ¥,, an increasing
sequence of o-fields. Let & > 0 and /(1) be the positive solution of

(5.2) h —log(1+ h) = A2,

Let by =h(A) /A, y =h(X)/{1+ h(X)} and a, = 1/(yC,), where C,, is defined
by (5.1). Then (1.7) holds on {lim,,_, o V;,, = oo} and lim,_,o by = +/2.

PrROOF Recall thatV? = X2 + ... + X2 and v, = V,(loglogV,) Y2, Let
e = exp(k/logk). Define

ti=inf{n:V, >e;},

53) " »

Tj = infin> t; DSy — Zﬂi(_)\vna a,v,) > (1+ 3¢)b, V,(loglogV,) s
i=1

letting info = co. To prove (1.7), it suffices to show that for all sufficiently small
e>0,

o0
(5.4) [JE’I)’]OO k;{ P{ty <tx41}=0.
Note thatr;, > 7 and thaty, may equaly.i, in which cas€t; < 11} becomes
the empty set. Moreover, oflim,_.» V, = oo}, t; < oo for every j and
lim;_t; = co. Since y(loglogy)~Y2 is increasing iny > e, we have the
following inequalities on{#; < 1y < 1} With k > 3:

% 1/2
(5.5) ex < (Z Xlz) < €k+1,
i=1
(5.6) dy := e (log |Ogek)_1/2 < v, < vy <diyl,

(5.7) wi(=Avg, apvy) = pi(=Adiy1,andy)  forl<i<m.

Let wix = wi(—Adr+1,axdr). We shall replaceX; (for 1 <i < ;) by
Yig = Odiy1) "ty X; and pix by g = (diy1) "ty pi(—rdiy1, ardy). Since
k‘lya)\ = C;l,

(5.8) flik = E{Yi 1(—y < Yix < C,  di/dis1) | Fi—a).

Since ey /dy = (loglogey)Y? and d/di+1 — 1 ask — oo, it follows from
(5.5)—(5.7) that for all sufficiently largek, the event{r <t <41} iS a
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subset of

Tk
{Z(deﬂ)_l(Xi — uix) = (14 2e)2 b, logloger, o < OO}
i1

Tk
C {Zmdm)—lwx,- — wik) = Cy (diy1/di) iy 1) "2y X
i=1

> (14 2e)y 2~ 1b; logloger — Cy (dit1/di) (v /2)?loglogers1, T < OO}

n
C {supeXP[Z(Yi,k — ik — Cydk_ldkHYi,Zk)}

nzl i=1

> exp(1+ &) (yr "1, — nyzx_z)(logk)]}.

In view of (5.8), we can apply Corollary 5.3 to conclude that the last event
above involves the supremum of a nonnegative supermartingale with sméan
Therefore, application of Doob’s inequality to this event yields

Pt < tiy1) < expl—(L+ &) (A", — C y*2 %) (logh)},
which implies (5.4) since
(5.9) yA by —27%p2C, =272 {yh(0) + y +log(l — )} = 1.
The first equality in (5.9) follows from (5.1) ank, = 4#(1)/A, and the second

equality fromy = h(X)/(1 + h(A)) and (5.2). Moreover, (5.2) implies that
h2(%) ~ 222 and, thereforeh, — ~/2 asx — 0. O

REMARK 5.5. The choice ofy in Theorem 5.4 actually comes from
minimizing y A ~1b, — 272y 2C, over 0< y < 1, wherea®, is employed to make
this minimizing value equal to 1, leading to the equation (5.2) defihiiig.

As pointed out in Section 1, an immediate consequence of Theorem 5.4 is the
upper half (1.7) of the LIL for any supermartingale whose difference sequence
X, is bounded below by-Av,. The following example shows that we cannot
dispense with this boundedness assumption.

EXAMPLE 5.6. LetX; = X2 =0, X3, X4, ... be independent random vari-
ables such that
P{X,=-n"Y?=1/2—n"Y2(ogn)*’? — n"1(logn) =2,

P{X, =—my,} =n"Y(logn)~?, P{X,=n"Y?=1/2+n"Y?(logn)*/?

for n > 3, wherem, ~ 2(logn)®? is chosen so thaEX, = 0. ThenP{X, =
—m, i.0.} = 0. Hence, with probability V2 = >""_ i~ + 0(1) =logn + O (1).
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SinceX; := X 1(X;1 <1 — EX;1(1X;| < 1) are independent bounded random
variables with zero means and V&§) ~ i ~1, Kolmogorov’s LIL yields

(5.10) lim sup(Z 551') /{2(Iog n)(logloglogn)}¥?=1  a.s.

Since Y1_1 EX;1(1X;| < 1) ~ 2" ;i Y(logi)/? ~ 4(logn)®/2, this implies
that with probability 1,

i1 Xi N i Xil(Xi| <D
Vu(loglogV,)1/2  {(logn)(logloglogn)}/2
4(logn)®/?

- 3{(logn)(logloglogn)}1/2 -

Note thatm, (loglogV,)/2/V, — co. This shows that without the boundedness
condition X,, > —V,,(loglogV,)~%?2, the upper LIL need not hold for martin-
gales self-normalized by, . It also shows the importance of the centering in
Theorem 5.4 because subtractiigf; 1(| X;| < 1) from X; gives the LIL in view
of (5.10).

Note that Corollary 5.3, which leads to Theorem 5.4, only uses the special case
r = 2 of Lemma 3.9(i). More generally, for & r < 2, we can use Lemma 3.9(i)
and the same arguments as those in Lemma 5.1 and Corollary 5.3 to show that

n
expl Y (Vi — E[Yil(—y; < ¥i <2/ 7V) Fia] — AW |
(5.11) i=1
n > 1, is a supermartingale

for any ; _1-measurable random variablesQ; < 1 and O< A; < 1/c, ,, where
cy,r is defined in Lemma 3.9. Therefore, Theorem 5.4 can be extended to the
following:

THEOREM 5.7. Let X, be measurable with respect to #,, an increas
ing sequence of o-fields. For 1 < r <2, let V,, = (X 1X: DY, v, =
V,.-{loglog(V,.., v ¢2)}~Y". Then for any 0 < y < 1, there exists a positive con-
stant b, such that

lim supy S, — Zuz AL A )}/ {V,.-(loglogV,, )" ~Y/7}

n—oo
<by,, a.s.

on{lim,_, . V, , = oo}, wherec, , isgivenin Lemma 3.9.
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6. Compact LIL for self-normalized martingales and applicationsto sums
of independent random variables. Although Theorem 5.4 gives an upper LIL
for any adapted sequenég&;}, the upper bound in (1.7) may not be attained.
A simple example isS, = >_"_; w;Y;, wherew; =i! and Y1, Y>, ... are i.i.d.
with P{Y; =1} = 3 = P{¥; = —1}. Here V, = (X1, w?Y?Y2 ~nl, S,/ V, =
sgnY,) + o(1) and >4 wi(—Av,, a)v,) = o(V,) a.s. Thus, the norming term
V,(loglogV,)¥2 is too large in this case. In this section we consider the case
of martingales(S,,, #,, n > 1} self-normalized byV,, and prove the lower half
counterpart of (1.8) when the increments $f do not grow too fast, thereby
establishing (1.9). This is the content of Theorem 6.1, which is further strengthened
into a compact LIL in Corollary 6.2. We end this section with an application to
weighted sums (with random weights) of i.i.d. random variables, a remark on
Theorem 5.4 and an example highlighting the difference between this LIL and an
analogous LIL of Stout (1970) in which? is replaced by? = Y°7_; E(X?|Fi_1).

THEOREM 6.1. Let {X,} be a martingale difference sequence with re-
spect to an increasing sequence of o-fields %, such that |X,| < m, as.
for some #,_1-measurable random variable m,, with V, — oo and m,/
{V.(loglogV,)~12} - 0 a.s. Then (1.9) holds.

PROOF Take O< b < B < B < +/2. Since 1- ®(x) = exp(—(3 + o(1))x?}
asx — oo, we can choosg sufficiently large such that

(6.1) [1— BV = exp(—f2/2),

where® is the standard normal distribution function. Take- 1 and define for
j>2andk=0,1,...,[x tlog /],

ajr=a’ + k(@ —al)/[x"tlog ], t; (k) =inf{n:V2=>aj).

Let ¢; = inf{n: V2 > a’}, so0t;(0) = t;, t;((x"tlogj]) = tj11. Since X2 =
o(V2(loglogV,)™1) a.s. andi; ; < V,f(k) <ajr+ X,zj(k),

(6.2) Vi =ax{l+o(log)H Y}  as.
It will be shown that

>, Xi Y EXAF, ) -1
(6.3) tj(k)<n<t;(k+1) tj(k)y<n<t;(k+1)

in probability underP (-| ;; x))

asj — oo, uniformly in 0< k < [A~log j].
Let Sy = Y mei<n Xis V2, = Ymei<n X2. In view of (6.2),

64)  Visiasn ~@' @@=/ togjl,  VZ,  ~al@a—Das.

Ljitj+1
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Since X2 is bounded by thef,_i-measurable random variabie2, which is
o(VnZ(Iog logV,)~1) a.s., the conditional Lindeberg condition holds and, in view of
(6.3) and (6.4), the martingale central limit theorem [cf. Durrett (1996), page 414]
can be applied to yield

(6.5) P{Sy;m.1;0041) = BVAV ;00| Fryao } > 1— @(BVA)  ass.
asj — oo, uniformly in 0< k < [»tlog j]. Since
Stjtiy = Z St ().t (k+1)
O<k<[r~tlog ]

and

Vi 41009 HY2 = (VA +0(D)) > Viiajk+1 @S,
O<k<[r"1log ]

by (6.4), it follows from (6.5) that ag — oo,
P{Sfjml z thij+1(|09j)1/2|‘(Ffj}

> P{Stj(k),,j(kﬂ) > ﬂ\/thj(k),,j(kH) forall0<k < [A‘llogj]|ff‘,j}

= (1— ®(BVR) + o)l 109!

>exp{—(B%/2+0(1)logj}  as,

in view of (6.1). Since8?/2 < 1, the conditional Borel-Cantelli lemma then yields
(6.6) lim supS,j,th/{th,tm(logj)l/z} >b  as.
]—>00
Recalling thatV, — oo and m, = o(V,(loglogV,)~1?) a.s., we obtain
from (1.8) that
(6.7) lim supSn/{Vn(Iog logv,)¥?} <v2  as,
n—o0
and the same conclusion still holds witf), replaced by—S, (which is a
martingale). Combining this with (6.4) and (6.6) yields
. 2
lim supS,Hl/{V,Hl(Iog log VtHl)l/ }
j—o00
(6.8) -1/2 1/2 -1/2
> ba Y2(a — 1)Y2 — 24~V a.s.

Sincea can be chosen arbitrarily large aharbitrarily close tov'2 in (6.8),
lim supS,Hl/{V,Hl(Iog logV,,,)"?}=v2  as.

j—o00

Combining this with the upper half result (6.7) yields (1.9).
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It remains to prove (6.3). Let; = a’(a — 1)/[»"logj]. In view of (6.4), we
need to show that given any<0p < % ands > 0,

lim SUP[P{ > E(X2|Fu1) > (1+p)06j‘$tj(k)}
tj(k)<n<t;(k+1)

(6.9) + P[ > E(X2|F-1) < (1 - p)a; ’Jr”z,(k)” <8 as.
tj(k)y<n<t;(k+1)

Choosee > 0 such that fmax(1 + p)e?, (1 — p)e?}V/e < 5. Let X, =
X,1(m2 < ea;) and note that since,, is F,_1-measurable and2 < m?

n1
2 52 2., 2 _
0< E(X2|F,_1) — E(X2|Fm1) < mPL(m? > eaj).

Moreover, P{m3 < e forall t;(k) <n <tk + D|F;,x} — 1 a.s. Hence, it
suffices to considef (X2|#,_1) instead ofE (X2|#,_1) in (6.9). SinceX? < ea;,
we can apply Corollary 15 of Freedman (1973) to conclude that

p[ > E(X2|Fy-1) > (1+p)05j‘$tj(k)}
tj(k)y<n<t;(k+1)

+P{ Z E(ff,flfn_l)5(1—p)aj]}7,<k)}
tj(k)y<n<t;(k+1)

<A+ p)e 't 4 (L —p)e’* +0(1) <3,

completing the proof. [

COROLLARY 6.2. Wththe same notation and assumptionsasin Theorem®6.1,
the cluster set of the sequence {S,/[V,(loglog(V, v ¢2)Y2]} is the interval

[—v/2,4/2].

PROOF Replacing X,, by —X, in Theorem 6.1 yields limipf,
S, /{Va(loglogV,)¥/2} = —/2 a.s. The desired conclusion then follows from
Proposition 2.1 of Griffin and Kuelbs (1989)1

EXAMPLE 6.3. LetYy, Y, ... bei.i.d. random variables with a common dis-
tribution functionF having mean 0. LeF,, be theos -field generated by, ..., Y.
Let w, be %,_1-measurable and %, = Y/, w; ¥;, V2 = 37 w?Y?. Suppose
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V, — oo a.s. and there existg,_1-measurable:,, such that with probability 1,

(6.10) 0 < m, = o(V,(loglogV,)~%?),

ix|>m;

Zwi/ x dF(x) = o(V,(loglogV,)¥?),
i= lw
(6.11) !

n

2
Z{wi/ ‘ xdF(x)} =o(V?),

i=1
0

(6.12) Z{F(mn/lwnD+F(_mn/|wn|)} < 00,

n=1
where F(x) = P(Y; > x) =1 — F(x—). Let X, = w, Y, 1(|lw,Y,| < m,). Then
E(X,|Fn_1) = —wy, [‘wnx‘zmn xdF(x). Moreover, by (6.12) and the conditional
Borel-Cantelli lemma, with probability 1,

n
(6.13) w,Y, = X, for all largen and therefor<—f&/n2 = Z Xl-2 + 0.

i—1
Applying Corollary 6.2 to> ! {{X; — E(X;|¥i-1)} (with |X;| < m;) and
combining the result with (6.11) and (6.13), we obtgin/2, v/2] as the a.s.
cluster set of the sequents, /[V, (loglog(V,, v ¢2))1/2]}. Note in this connection
that

> (X — E(Xi|Fi—1)?
i=1

n n n
=Y XZ-2) {X; — E(X;|Fi—)}E(Xi| Ficy) — Y E*(X;|Fi—1)
i=1 i=1 i=1

n n
=Y X? -3 EXX;|Fi-1)
i=1 i=1

n 12, 5 1/2
+ 0<<Z{X,- — E(X,-m_l)}z) (Z E2<X,-|f;-_1>) )
i=1 i=1

Note that Theorems 6.1 and 6.2 pertain to martingale difference sequénces
This means that given an integrable sequdigg, one should first consider cen-
tering X,, at its conditional expectation givesy,_1 before applying the theorems
to X, = X, — E(Xy|Fn—1) andV, = (X, X?)¥/2. Although Theorem 6.1 re-
quires X,, to be bounded byF,_i-measurablen, = o(V,(loglogV,)~2), we
can often dispense with such boundedness assumption via a truncation argu-
ment, as shown in Example 6.3. In the more general context of Theorem 5.4,
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the X,, may not be even integrable, so Theorem 5.4 centersXthat certain
truncated conditional expectations. Usig’_, X?)%/2 for the norming factor,
however, may be too large since it involves uncentéfgsl To alleviate this prob-
lem, we can first centeX,, at its conditional median before applying Theorem 5.4
to X, = X, — med X, |¥,-1), as illustrated in the following:

EXAMPLE 6.4. Let O< o <1, d1 > 0,d> > 0 with di + d2 > 0. Let
Y, Y1, Yo, ... beiid. random variables such that

P{Y > y} = (d1+0o(1))y™",
(6.14)
P{Y <—y}=(d2+0Q)y ™ asy — oo.

LetS, =Y Y, V2=3Y"_, Y2, 9, = V,(loglogV,)~Y/2. Then by Theorem 5.1
of Shao (1997),

(6.15)  limsupS,/{V,(oglogn)¥?} = {B(«a,d1,d2)} Y%  a.s.

for some positive constam(a, d1, d2) which is given explicitly in his Theo-
rem 3.2. MoreoverE{Y1(—iy <Y < ayy)} = (d1ay —dor +o(1)ayl=?/(1—a)
asy — oo and

(6.16) nvi~*/{V,(loglogV,)¥?} =n/{V¥(oglogV,)?¥/2}=0(1) as.

since loglogV, ~ loglogn and
n
liminf (_X;Yiz)/{nl/“(bg logn)"=®/%} >0 a.s. withd = a/2,
1=

by the so-called delicate LIL [cf. Breiman (1968)].

Now let X,, = n" + ¥, with r > 1/a and letS, = Y"; X;, V2 = Y7 | X2,
SinceY, = o(n’) a.s. for anys > 1/, it follows thats, ~ V, ~ n"+t1/(r + 1)
andu; (—Avy, ayvy) = i" + o tDA-0y =" 4 o) a.s., recalling thata > 1.
Therefore, although (1.7) still holds in this case, it is too crude as the nonrandom
location shiftn” is the dominant term iX,, causingV,, to swamp the centeresj,.
Centering thex,, first at its median will remove this problem. Specifically, if we
apply (1.7) toX, = X, — med X,) andV? =", X?, thenX, = ¥, — medY)
and (6.15) still holds witts, replaced bys,,.

The following example shows that one cannot dispense with the assumptions of
Theorem 6.1 and highlights the difference between our result and the LIL of Stout
(1970), where the martingal; is normalized by the square root of the conditional
variancey"_; E(X?|F;_1).
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EXAMPLE 6.5. TakingX; =0, X5, X3,... andm, as in Example 5.5, let
Y, = X,1(|X,]| <1). ThenP{Y, # X, i.0.} = P{Y, = —m, i.0.} = 0. As shown
in Example 5.5, with probability 1V? = >, Y2 + 0(1) = logn + O(1) and

S X 4(logn)3/? s
V,(loglogV,)1/2  3{(logn)(logloglogn)}1/2 '

Note thatm, (loglogV,)¥2/V, — oco. This shows that without the condition
my/{Va(loglogV,)~1/2} — 0, the LIL need not hold for martingales self-
normalized byV,. On the other handX, is clearly bounded above and,
therefore, satisfies the boundedness condition of Stout (1970). Note tlo&t Var
4(logi)3/i and, therefores? := Y7, E(X?|Fi_1) ~ (logn)?, yielding

X 4A(logn)3/?

~ -0
sp(loglogs,)¥/2  3(logn)2(logloglogn)l/2
which is consistent with Stout’s (1970) upper LIL. Contrasting (6.18) with (6.17)
shows the difference between Stout’s result and ours. Notice that what is being
investigated in (6.17) is the maximal a.s. growth rateSpf To assess it we
employed a norming sequence based on the square root of its sum of squares.
This technique works properly only whe) is adequately centered, as in (1.7).
By contrast, in the approach of Stout, a norming sequence is generated from the
square root of the sum of conditional expectations of these squares. However,
in the absence of a suitable truncation of the random variables this quantity is
also inappropriate for investigating almost sure behavior whenever expectations
overinflate the impact of large values of the squares which occur too infrequently
to be relevant with respect to almost sure behavior.

(6.17)

(6.18)

a.s,
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