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MODERATE DEVIATION PROBABILITIES FOR OPEN CONVEX
SETS: NONLOGARITHMIC BEHAVIOR

By UWE EINMAHL 1 AND JAMES KUELBS?
Vrije Universiteit Brussel and University of Wisconsin

Precise asymptotics for moderate deviation probabilities are established
for open convex sets in both the finite- and infinite-dimensional settings. Our
results are based on the existence of dominating points for these sets, a related
representation formula, and asymptotics for the integral term in this formula.

1. Introduction. Let X, X1, Xo,... be independent, identically distributed
random vectors wherg(X) = u, andu is a Borel probability measure on the real
separable Banach spaBelet S, = Z’;Zl X; and assume (S, /nt/?) converges
weakly. Then the limit lawy is necessarily Gaussian with mean zero, analso
has mean zero. L¢b,} be a positive sequence such that

(1.1) by/nY? > 0o and b,/n— 0.

Here we study the asymptotic behavior @ (S, /b, € A)} under (1.1). These

probabilities are frequently called moderate deviation probabilities, and there is a

long history of such results in the finite-dimensional setting. There are also results

in the infinite-dimensional setting, but only at the logarithmic level. In particular,

the results by Borovkov and Mogul'skii [6] and by de Acosta [9] are of this type.
Let B* denote the topological dual space®find define

Af) = / W dpw),  feB,
(1.2) 5
y(f) =/Bef(x)dy(x), f € B*.

Sincey is centered Gaussiaf,(f) = explo/2}, whereo? = [, f2(x)dy (x).
Furthermore, it is well known that the rate function '

(1.3) Ay (x) = fsuBg[f(x) —logy ()1, x € B,
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is given by
IxII/2,  if xe H, CB,
~+o00, otherwise.

Here H,, is the Hilbert space generatingon B, that is, the completion o (B*)
whereS : B* — B is given by the integral

(1.5) Sf = fB xf()dy(x),  feB,

in the norm determined by the inner produdtf, Sg), = [z f(x)g(x)dy (x).
Sincey has moments of all ordeff exists as a Bochner integral. Further details
can be found in Lemma 2.1 of [14].

Let D denote theB-closure of D andd D the boundary ofd. Throughout we
assume that

(1.4) oy () = [

(i) D is an open convex subset Bf
(1.6) (i) DNH,#¢.
(i) 0 ¢ D.
Since [ ¢!l dy(x) for all + > 0, then [12], Theorem 1, implie® has a unique
dominating point with respect tp (see also [15] and [16]). That is, there exists a
unique pointzg € d D such that
(i) Ay(ag) =infrep iy (x) =inf 51, (x) <oo.
(i) Forsomeg € B* we haveD C {x:g(x) > g(ap)}.
(1.7) (i) Ay (ao) = g(ao) —logy(g) and
(iv) ao= [gxexplg(x) —logy(g)}dy(x), where the integral
exists as a Bochner integral
Furthermore, if we apply the Hahn—Banach theorem and fakeB* such that

(1.8) sup  f(@)=f(a0) < f(x) VxeD,
{z: Xy (2)<X) (a0)}
then [12], Theorem 1, implies there exists a unigge- 0 such thatg = 1o f,
satisfies (1.7)(ii)—(iv).
In [6], Borovkov and Mogul'skii prove the following result.

THEOREMA. Let X, X1, X», ... bei.i.d. B-valued with .£(S,, /n'/?) converg-
ing weakly to the Gaussian measure y and assume D is an open convex subset
of B. If {b,} satisfies(1.1) and

(1.9) E(" ) < o0, 0<|t| <tr, f € BY,
then
(1.10) nli_)moonbrjzlog P(S,/by € D) = —xig}‘) Ay (1),

where 1, isgiven by (1.3).
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Under additional integrability assumptions, a full moderate deviation principle
for open and closed sets (in the sense of Varadhan) is established(y/b,,)}
by de Acosta in [9]. In addition, the papers [8] and [17] deal with necessary and
sufficient conditions for the upper bound for closed sets in the large deviation
principle for various sequencés, }. These results are at the logarithmic level and
are quite different from what we establish in the results that follow.

Our interest here is to seek refinements of Theorem A which allow us to
study the behavior ofP(S,/b, € D) directly, not merely at the logarithmic
level. This will be done via a representation formula, which is elementary to
establish once one has dominating points, and is the analogue of a similar formula
in the large deviation setting. This representation formula becomes useful for
moderate deviation probabilities when, in additionbt;g/nl/2 — o0, we also
assume, /n%3 — 0. What we find is that is in this range, the moderate deviation
probabilities are much the same as those wii¢N) = y. This is standard iR,
but less well understood in the vector space setting.

Our results depend on the shapei»fat the dominating pointg € D, and
the difficult part of our arguments involves establishing the appropriate lower
bounds. For upper bounds, replacibdy a half-space is frequently good enough
providedD is sufficiently round at.

As usualga, ~ b, meanslima, /b, = 1.

THEOREM 1. Let X, X1, X, ..., bei.i.d. B-valued random vectors, where
B is a separable Banach space, and set S, = Y__; X;. Assume {S,/n*/?)
converges weakly to a nondegenerate probability measure y on B, and that {b,}
is a sequence of positive constants such that

(1.12) by/nY? > 0o and b,/n%®— 0.

In addition, assumethat D satisfies (1.6), (1.9)holds, ag is the unique dominating
point for (D, y),and g =1gf isasin (1.7)and (1.8). Then

P(S, /b, € D)
(1.12) 1 ,
~ exp{—n"tbZx, (a0)} E[exp|—g(T, — E(T,))} I{T, € b2D/n}],
where 7, = 2 S Znj,and Z"™, Z, 1, Zy 2. ..., Zn  areiid. with Z being
a B-valued random variable such that

(n)
(1.13) %m — explg(bux/m)} /A bug /),
and
(1.14) E(Z™) = (by/n)ag + O (b2 /n?).
Furthermore,
(1.15) limsupn=Y2b, P(S, /b, € D) expin~'b71, (a0)} < 2ro?) V2,

n—oo

whereo? = E(g%(X)).
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To establish lower bounds comparable to (1.15) we need the following
definition.

DEFINITION 1. Assume (1.6) and lefy be the unique dominating point &f
with respect toy. Then,D contains slices whose diameters neadominate the
function 7 (s) if for some f € B* satisfying (1.8) there existgy € B, ands > 0
such thatf (xg) > 0, and

(1.16) {y+sx0: f(») =0, llyl <t(5),0 <5 <8} CD—ap.
Our first lower bound result is the following theorem.

THEOREM2. Let{b,} satisfy(1.11)andassume X, X1, X», ..., and {S,} sat-
isfy the assumptions of Theorem 1. Also assume

(1.17) E(I1X]3V N < 0o, O<|t| <ts, f€B*

and that D satisfies (1.6). Let ag be the unique dominating point for (D, y) and
g =1of beasin (1.7)and (1.8).1f {¥}_1(Z,.; — E(Zn,;))/n"/?} is bounded in
probability, where Z,, 1, Z,, 2, ..., Z, , areasin Theorem1 and D contains slices
whose diameters near ag dominate the function = (s) = B(s|logs|)¥/2, g > 0, then

(1.18) lim inf n~Y2p, P(S, /b, € D) expin"1b?1, (ag)} > 0.

We note that ifB is a Hilbert space or more generally a type 2 Banach space,
then the condition on stoelstic boundedness follows dggrom (1.17). Moreover
in the Hilbert space case, Theorem 2 can be improved as follows.

THEOREM3. Let{b,} satisfy(1.11)and assumethat X, X1, Xo, ..., arei.i.d.
random vectors taking values in a separable Hilbert space H with (1.17)holding
and E(X) = 0. Let D satisfy (1.6) and assume ay is the unique dominating point
for (D,y). If D contains slices whose diameter near ap dominate the power
function 7 (s) = Bs¥/2, 8 > 0, then (1.18)holds.

We note that Theorem 3, in particular, appliedifis a ball in a Hilbert space
satisfying (1.6). (This follows, for instance, from the proof of Theorem 3, [16].)

If H is R¢, then we can obtain more precise estimates of these moderate
deviation probabilities. This is our next result.

THEOREM 4. Let {b,} satisfy (1.11) and assume X, X1, Xo, ..., arei.i.d.
R?-valued with £(S,,/n'/2) converging weakly to a Gaussian measure y on R4
with the support of y all of R¢. Also assume

(1.19) E@EVX) <00,  O<t<ty, feRY,
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and let D beasin Theorem 3. Then

(1.20) lim_P(S, €b,D)/P(G € n~Y2p,D) =1,
where L(G) =y.

If D is a ball we can extend the last result to infinite-dimensional Hilbert space
valued random vectors.

THEOREM 5. Let H be a separable Hilbert space and let X, X1, Xo, ...,
bei.i.d. H-valued random vectors asin Theorem 3. Let G be a Gaussian random
vector on H with L(G)=y.If D={x:||x —a| < R} isaball in H satisfying

(1.6.ii) and (1.6.iii), where || - || isthe Hilbert space normon H, then we have, for
any sequence {b, } satisfying (1.11),
(1.21) lim_P(S, € b,D)/P(G € n~Y2p, D) = 1.

Furthermore, both probabilities are asymptotically equivalent to the quantity

o0
(1.22) 2roZbZ/n)~?expi—n""b21, (ao)) /0 e P(||G2|I? < 2sbR?) ds,

where ag is the unique dominating point for (D,y) and ¢ = rof is as in
(1.7)and (1.8), ¥b = g(a —ap), 0 = E(g*(X)),and G2 = G — G1 isa centered
Gaussian randomvector on H with G1 = ¢(G)E(Gg(G))/oZ.

The remaining part of the paper is organized as follows: We prove Theorem 1
in Section 2. Then we prove Theorem 2 in Section 3, where we use modifications
of arguments from [12] wheh, = n. The proof of Theorem 3 appears in Sections
4 and 5, and follows from Proposition 1, which depends on a Berry—Esseen result
for U-statistics from [1]. Wherb,, = n, the analogue of Proposition 1 in [12] was
proved via a Berry—Esseen result forstatistics due to van Zwet [19], but this
result is no longer applicable when lih, /n = 0. Hence, we developed a direct
approach (independent &f-statistics) for proving Proposition 1 in this setting.

A refinement of this method allowed us also to eventually prove Proposition 2,
which is crucial for obtaining the precise results for balls in Hilbert space given
in Theorem 5. Subsequent discussions with V. Bentkus made us aware of some
recentimprovements of van Zwet's Berry—Esseen inequalitiyfstatistics which
appear in [1] and [2]. Once we had these results at our disposal, the proof of
Proposition 1 now follows along lines similar to the companion result in [12].
However, the exact asymptotics given in Proposition 2 do not follow in this manner
and our “direct” method is still needed for obtaining Theorem 5. Theorem 4 is
proved in Section 6, and Theorem 5 in Sections 7 and 8. Both of these theorems
provide exact asymptotics for certain open convex sets. In view of relation (1.12)
this requires a precise comparison of

E[exp{—¢&(T,, — E(Ty))}I{T, € b2D/n})]
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with a corresponding expectation involving Gaussian random vectors.

To that end, we use, in the finite-dimensional case, an estimate of the
convergence speed in the multivariate central limit theorem due to Zaitsev [20]
among other tools.

The proof of Theorem 5 (open balls in Hilbert space) is based on Proposition 2
in Section 7. One can rewrite the above expectation as an integral with respect to
the two-dimensional distribution af|S,, /nY/2||2, £(S,/n%?)), wheref: H — R
is a continuous linear functional. We then show that this distribution is close
to that of (| ¥, 112, f(Y»)), whereY, is an appropriate Gaussian random vector.
To accomplish this we need, among other things, a local limit result for a smoothed
and truncated version @f|S, /nY/2|2, £(S,/n/?)), see Lemma 18. To prove this
result we use an adaptation of the characteristic function method for proving
Berry—Esseen type results in Hilbert space. For a nice account of this method
refer to [3].

2. Proof of Theorem 1. The proof of Theorem 1 proceeds with a sequence of
lemmas. Throughout this section the conditions of Theorem 1 are assumed. Also
note that sinceD satisfies (1.6), ang = 7o f relates toag as in (1.7) and (1.8),
we haves? = E (g%(X)) > 0.

LEMMA 1. Let Z( bedefined asin (1.13),whereu = L(X) and g =tof €
B* isrelated to the dominating point ag isin (1.7)and (1.8). Then

b b?
(n)y — 2n n
(2.1) E(2) = a0+ 0<n2)’
2 . 2(—~(n) (n) _ 2 b”l
(22) Og,ﬂ'_ E(g (Z — E(Z ))) = Gg + 0(7) al’ld
(2.3) ao = E(Xg(X)).

PROOF.  First observe that sincés,/n'?} converges weakly to/, then
w and y must have the same covariance functipnis a mean zero Gaussian
measureE || X ||2¢ < oo for all ¢ > 0, andE (X) = 0. Hence,

(2.4) E(Xg(0) = [ xg(dy ).

If h = Sg, S given by (1.5), and£(Y) = y, then the Cameron—Martin for-
mula implies

(2.5) h=E(Y+h)=/B(x+h)dy(x)=foeg(x>—%2/2dy(x).

Hence, (2.4), (2.5) and (1.7)(iv) imply= Sg = ag and (2.3) holds.
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To verify (2.1) we first observe that sindg X) = 0,

b
,;L( Zg) — E(e8®nX/m)

bn Lba\? 2 oGebaX/n)
(2.6) :E<1+7g(X)+§<7) g2(X)e? )

bZ
=1+ an(gZ(X)Eang(X)/n)’

where|6| < 1 by Taylor's formula. SinceE (|| X ||2¢) < oo and (1.9) is assumed,
Holder’s inequality impliesE (|| X ||e!8»X/m1y exists forn sufficiently large. Thus,
E(Xe8®nX/my exists as a Bochner integral for suehand sinceE (X) = 0, we

have that
b b,g(X
(2.7) n 2 n
< 55 E(IX11g2(X)els @),

In (2.7) we used (2.3), and if is large enough, the integral(X g2(X)e!s®»X/nly

exists as a Bochner integral by an argument similar to that mentioned prior to (2.7).
SinceE(Z™) = E(Xef®X/my/n(b,g/n), we have (2.1) because/n — 0 and

the dominated convergence theorem applies. To prove (2.2), we observe

E(g%(z™)) = E(g2(X)es /M) [ fu(bag /n)
_ 2 by 3 0gbux/n)\ [ ~(Pn8
—E(g (0 + 22X )/u( )

n

(2.8)

where 0] < 1. Hence, by (2.6), (2.1) and the dominated convergence theorem,
b,/n — 0 implies (2.2). O

LEMMA 2. If (1.1)holds, then

(2.9) lim_nb,2log E (e "n5/M) = E(f2(X)) /2

for all f € B*. Furthermore,

(2.10)  bin Y E(f3(X))/2 = nb,?log E(e! O/ ™) = O (b5 /n?).
PROOF SinceX, X1, Xo, ... are i.i.d., the argument for (2.6) implies
log E (e/ b5/ = nlog E (e/ nX/m)

b2 b3 .
=n Iog(1+ ﬁE(fz(x)) + @E(fZ(X)eef(bnx/ ))>’
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where|f| < 1 andf € B*. Hence, by the dominated convergence theorem and that
log(1+ x) =x + O(x?) asx — 0, we see

2 3
log E (e/ 0nSn/m)) = %E(fZ(X)) + o(b )

“n
n2
asn — oo. Hence, (2.9) and (2.10) hold[J
LEMMA 3. Let D satisfy (1.6) and assume ag is the dominating point
for (D, y)withg=10f € B* asin (1.7)and (1.8). Then

P(8,/by € D)
= exp{—bZn~ "%, (ag) — bin"[log (g) — nb, ?log E (ef PrS»/m)]} 1,
where
Ju = E(exp{—bZn g (S, /by — ao)}
(211) g(bnSy/n) 8(bnSn/n)
X e 1(S,/by € D))/E(e )-

Furthermore, if b, = 0(n?/3), then

(2.12) P(Sy/by € D) ~ exp{—b2n"11, (a0)} Jy
and
(2.13) Jp ~ E(e 8 T=ETD) (T, e b2D/n)),

where T, = 2(Z, 1 + -+ + Zyn) and Z, 1, Zy 2, ... arei.i.d. copies of Z™ as
defined in (1.13).

PROOF The proof of the representation formula #®cS,, /b, € D) and (2.11)
is simple algebra once one takes into account (1.7)(iii). Furthermore,
if b, =0n%?%), then (2.10) with f = g implies (2.12) since log(g) =
3 /582 dy () =3 [ 82 (1) du ().

To verify (2.13) we observe that
o= /B expl—g(x1+ -+ Xp)bn/n + bin ' g(ao)}
x I(x1+ -+ x, €byD)dp(x1)---dp(xs),
wherep = L£(Z™). Thus,
Jn = E(exp{—g(T,) + b2n g (ao)}I (T, € b’n1D))
= exp|g(b2ntao — E(T,))}E (exp{—g(T, — E(T,))}I (T, € b>n~1D)).

Now (2.1) impliesE(T,) = (b?/n)ap + O (b3/n?), and, hence, ib, = o(n?3),
(2.13) holds. O
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Combining the lemmas. Since (1.14) follows from Lemma 1 and (2.12) and
(2.13) of Lemma 3 imply (1.12), Theorem 1 will follow once (1.15) is shown to
hold. Using (1.12) we will have (1.15) provided

(2.14) limsupn=Y2p, E(e ¢~ EI) (T, e 2D /n)) < 2rol) /2.
n—oo

Now
r 2
I =E e—g(Tn—E(Tn))1<Tn c an>]
L n
— b2
(2.15) =E e_g(T"_E(T"))I<T,, — E(Ty) € (D — nb;ZE(Tn))>]
L n
i b2 b3
—E e_g(T”_E(T"))I<T,, — E(T,) € *(D — ag) + 0(—’5))}
L n n

where the last equality follows from (1.14) and tHat= 22(Z, 1 + - + Z,.).
If a%l = (b,%/n)a;n denotes the variance {7}, then

I, < E(e 8 Tn=ETD) [(o(T, — E(Ty)) oz, = O(b3/n?)for,),

sinceg(x) > 0 for all x € D — ag. Here the termO (b3/n?) may be positive or
negative and7, — oo. Therefore,

I < / =T 4 Fy (1),
]—ay,00(

where 0< a,, = O(b2/n%?) and F,, denotes the distribution function g7, —
E(Ty))/or,. Thus, with ® () the distribution function of a standard normal
random variable, we have

Iy S/ / or,e " dx dF,(u)
]—apn,00[ J[u,00[

= (Fo(x) — Fy(—ap))or,e 7" dx

]—ap,00[

< / (P (x) — ®(—ap))or,e 7" dx
]—a,00[
+ Ceee™ E(|(2™)%) / (Vino? )

[ e an + Cose (2 (i)
—0y,00

by the Berry—Esseen theorem. Taking into account éhat— oo andw, — 0
asn — oo, it follows after an elementary calculation that, for large enough

0 _ 0'2 /2
[ et vy =1 - Dfor, — )
—a, /
< e"%n/ze—(UTn—“")z/z/{((’Tn - O‘n) 2 }

e [(o1, — an).

< ——/0e
2m
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Recalling (1.1) and (2.2), we see thaf,«, — 0. Moreover, it follows that
o1, ~ 0gb,//n asn — oco. Thus, we have for alf > 0 if n > n(9),

Iy < o) Y2 2h (14 8)[1+ o(D)].
The last inequality follows sinc& (|g(Z™)|3) ~ E(|g(X)[3), 0,.» — 0, and
l;l—" — 0. Sincesd > 0 is arbitrary, we have (2.14) and Theorem 1 is proved.
3. Proof of Theorem 2. Applying (1.12), relation (1.18) and, consequently,

Theorem 2 will follow if we show
(3.0) liminf n=Y/2p, E(e=8 "= *T (T, € biD/n) > 0.
Since 0¢ D and D contains slices neatg whose diameters dominatgs) =
B(s|logs)2for 0 < s <8, we have
(B1) M;N(D—ao) D{y+sxoiye Mo, llyl <z(s)} O0<s <y,
where

M; ={x:g(x) =sg(x0)}, x0€ B, g(x0)>0,6>0,8>0.

Hereg =10 f € B* is related to the dominating poing of D with respect toy as
in (1.7) and (1.8). Thus, by rescaling (3.1) witk= 57,0 < s < §, we have

M, Nt(D — ag)
= M Nt (D — ao)
(3.2) =1(Ms N D —ao) D{t(y+sxo):y € Mo, |yl =7(s)}

={w+rxo:w/t € Mo, |lw/t|| <t(r/1)}
= {w 4 rxo:w € Mo, [|w]| < BrY/%(r|logr/t))V/?}.
Hence,
t1(D—ag) D{x=w+rxo:we My, 0<r<ts,
(3.3)
lwll < BtY%(r|logr/t))¥?).
Settingr, (x) = g(x)/g(x0), we seex — m, (x)xg € Mo, and, thus, (3.3) implies

1(D —ag) D {x =x — wy(x)x0 + 7y (x)x0:0 < g (x) <18,
(3.4)

e = 7o (e)xoll < B2(|mg (x) log (e (x) /1)) V2.

Recall thatl,, = T, — E(T},). Now (1.14) implies thak (T,,) = b2ao/n + A, where
Anll = O(b3/n?), and, therefore, we have

b2 - b2
(3.5) E(e_g(T"_E(T"))I<T,, € 7”D)> = E(e_g(T")I(T,, € ;"(D — ag) +/\n)>.
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Then, for 0O< A < B,
Op = (|7Tg(’fn An)log (ng(T - }Vn)n/bz)“l/z

p2\L2, 4 1/2I opn |12
=2 o]
v <n) <2g(XO)) 9 o2

andr = b2/n in (3.4) implies forn sufficiently large that

e2BE(e~ T [(T, € nb2(D — ag) + 1))
A ~ - 1,2
> P §<g(T,,)<ZB,Tn—)L,,en by, (D — ap)
A b%
2P<§ <g(T ) < 2B, 0<7'rg(T —Ap) < —
(3.6) "

B 3 p2\ 1/2
1Ty = ) — 71 (T — A)xoll < ﬁ(;") 9n)
> P(A < g(T,) < B, | Ty — wg(T)xoll < BYn — 1A — 74 () x0l])
> P(A < (T < B, Ty — g (Ta)xoll < 2«//)

The third inequality in (3.6) requires suff|C|entIy Iarge so thatt < g(T},) < B
implies A/(2g(xg)) < ng(fn An) < 2B/g(x0) < < b9 and this is immediate since
An = 0,74 (x) = £(x) andb?/n — oco. The last mequallty requiressufficiently

g(x0)’
large so that
2Bn
(z07)
g(x0)bj;

ﬁ b2 1/2 A 1/2
lin =7 Groll < 5(2) (5255 ) o
and this is trivial sincé/1,,|| — O andb,zl/n — o0. Thus, forn sufficiently large,

1/2

2 2g(x0)

e2BE(es T [(T, € n™1b2(D — ag) + An))
> P(A < g(T,) < B)
(3.7)
= P(1T, = me(Toyxol

Bp\Y2, A \V2 opn 112
-5(0) Gag) o9l )
2\ n 2g(xo0) g(x0)b7

Defining agauna2 E(gz(X)) ando?2, = E(¢%(Z™ — E(Z™M))), it is evident

thato? = U;(T) = 7 g’n and the Berry—Esseen theorem implies that uniformly in
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u<vandn>1,

|P(u/oy < g(Ty)/on <v/on) — P(ujo, <G < v/ay)|

< CeeE(|3(2™)%) /(02 /1),

whereG is standard normal. Now& (|g(Z™)[3) ~ E(|g(X)I®) andog , ~ 04 > 0
asn — oo. We thus have for large,

P(u/on < g(Tp)/on < v/on)
> P(u/on <G <v/o,) — 2CeeE (1g(X)13) /(o 3v/n).
Sinceos,, — oo, we have
P(u/o, <G <v/o,)~ (v —u)/(2rc?)l/?

and, therefore, itv — u)/(27)Y/2 > 4CgeE(|g(X)[3) /02 we have

P(u/on <G <v/on) = (1D —u)/@rbio/mY?
becaus#?/n < n. TakingA = u, B = v, we have
(3.8) P(A <g(T,) < B) > (1/2(B — A)n*/?/ (2w o 2b2)"/2,

for all n sufficiently large.
We now need an upper bound for

P(IT, — 7o (T)xoll > (B/2)¥) < P(ITull = (B/2K) ),

where K = ||Q]| < o0 and Q:B — B is the continuous operator given by
O(x)=x —mg(x)x0, x € B.

To that end we first derive an upper bound ¢ 7,,||) where the following
lemma comes in handy.

LEMMA 4. LetYy,...,Y, bei.i.d. randomvariables. Assume that

n
Y

j=1

P

> to} <104

Then we have

d

PROOF Using inequality (1.2.4) on page 10 in [10] with=1r = u, it

follows that
n 2
P[ >y, > s})

j=1

DY ) <122E (lmax IY; ||) +10%.
<j<n

j=1

> 61s} < P{lmax 1Y, >s} +81<P{
=j=n

n
DY
j=1



1328 U. EINMAHL AND J. KUELBS
from which the moment inequality readily follows after integration by paris.

Since T, = T, — E(T,) with T, = 2(Z,1 + --- + Z,,), we have that

{T,,/(b2/n)*/?} is bounded in probability and Lemma 4, in conjunction with the
Holder inequality, implies for some > 0,

(3.9) limsupE||T, ||/(b?/n)Y? < 10%,

using thatE (Mmax <<, | Z, ;133 < n3E(| 20313 ~ nBE (| X313,
Thus, the Fuk—Nagaev inequality as given in [11], page 338, and that
|log(n/b?)| — oo implies
P(ITll > (B/2K)ym)
<9243 (|2 /Y2 + expl —12/ (96E | 27|}

wherer = (B/2K)(A/(2g(x0))"/?|log(2Bn/g(x0)b2)|*/>.
SinceE||Z™|® - E|X||® and E(]|Z™|?) — E||X||?, we see that by taking
B = 2A andA sufficiently large so tha?A4/(8g(xo)) > 192K %E || X ||?, then this
last probability iso((b,/nY?)~1) asn — oo. Recalling (3.7) and (3.8), we can
conclude that
e*PE(e 8™ (T, e n™'bF(D — ao) + M) = A/ (4270 2b]/n)/?)
for n sufficiently large. Thus, (3.0) holds and Theorem 2 is established.

4. Proof of Theorem 3. Letag be the unique dominating point ¢D, y) and
g =tof € B* be related tap as in (1.7) and (1.8). L&k, = 22(Z, 1+ - + Zy.n)
and7, =T, — E(T;,) as before. As in the previous section we have to prove that
pie —1/2 —g(T, 2
(4.1) liminf n /2b, E(e 8T [ (T, € b2D/n)) > 0.
Under the present assumption on the Bate obtain by the same argument as in
Section 3 that
1(D —ag) D {x =x — mg(x)x0 + 74 (x)x0:

(4.2)

0 < 7 (x) <18, [lx — 7y (x)x0ll < BrY/?|me (x)|Y2).

Using again the fact tha 7, = b%ag/n + A,, wherer, € H, A, — 0, we have for
any A > 0 that

E(e * T [(T, € b2D/n))
= E(e T [(T, e n ™ b2(D — ag) + An))
(4.3) > e 2 P{A < g(T,) < 24,0 < 1o(T,, — hp) < b28/n,
(T — M) — 7 (T — An)xo|
< Bba/nY Py (T, — M) M2},
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which is forn sufficiently large, greater than or equal to

e AP{A < g(T,) <24,
(T = An) = 7o (T — A)xoll < Bbn/n YD)y (T — 1) Y2}

This follows sincer,(1,) — 0 andb,zl/n — oo Imply eventually
{A < g(T,) < 24} C {0 < 7y (T, — An) < bZ8/n}.
Next, observe that also eventually
{8(Ty) < 24} C {lIxolllg (T)IM? < (B/4ba/n 3},
which along with the fact thatx,, || — 0 implies for largen

PlA < g(T,) <24,
(T = 2n) = 7o (T — M) xoll < B(bn/n D) e (T — An)|Y?)
> P{A < g(T,) < 2A, IT, |l < (B/2)(bn/nY?) 7o (T, — 1) 1Y?).

Moreover, we have on the everg(7,) > A} eventually, |y (T, — An)| >
|ng(fn)|/2, hence, the last probability is, for large

> P{A < g(Ty) < 2A, | Tl < (B/3)(bu/nY?) e (T) M2},

Recalling (4.3), we see that for large enough
E(e 2T (T, e b2D/n))
(4.4) > e ?A[P{A < g(T;) < 2A}
—P{IT,ll > (B/3)(bu/nY A g (T)1Y?, g (T,) = O}].
In view of (3.8) we have iA > 4Cgev/27 E(1g(X)[3) /02 for largen,
P(A < g(T,) < 2A) > (1/2An'?/ 2r o 2b2)/2.

Hence, by takingA sufficiently large we will have (4.1), provided we show

- bu w2 B2 1o = -
(4.5)  limsup—5P(IT,)1° > —=(n""bime(T)), me(T,) > 0) < oo.

n—o00 I’ll/2 9

This will follow from the proposition below. Therefore, by combining
(4.4) and (4.5) we have (4.1), and Theorem 3 is provéd.
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5. Proof of (4.5). We will obtain a slightly more general result than needed.

PrRoPOSITION1. Let X,.1,..., X, 0, n > 1, be a triangular array of row-
wise i.i.d. random vectors with values in the Hilbert space H such that
E(X,1) =0 and sup,.-, E(|X,1/1% < M. Let p, — oo such that p, =
0(n'?), |la|l =1, f(x) = (x,a), and assume that inf,~1 E(f?(X,.1)) > 8% > 0.
If S, = Z?:]_Xn,i’ then

(5.1) M o, P12/ 02112 > 0 £ (Su/n*?), f(Sa) 2 0) < 0.

REMARK 1. Itis easily checked that we can apply the above proposition with
Xni=2Zni—EZ,;, 1<i <n,n>1, so that this result indeed implies (4.4).
[Recall thatT, = (b,/n) Yt 1(Zni — EZ,;).] The linear functionabr,(x) =
g(x)/g(xo) can, of course, be normalized to have norm one without loss
of generality.

REMARK 2. In the special casg, = n'/?, Proposition 1 above follows from
Proposition 1 in [12] since

P(1S2/nY?112 > pu £ (Su/nY?), £(S4) = 0)

5.2
2 = P(f(S) = 0) — P(I1Su/nY?112 < pu £ (Su/n*?), £(Sy) > 0).

REMARK 3. If p, = 0(Y?/(logn)®), Proposition 1 also follows from
Proposition 2 below (see Remark 6). Given that we consider in this paper only
sequences, of order o(n'/®), this is more than sufficient for the proof of
Theorem 3. We chose to include the proof WUastatistics as it allows a slightly
larger p, which may be of future use.

PROOF OFPROPOSITIONL. Inview of (5.2) it suffices to show that under the
assumptions of Proposition 1 we have

|P(11Sn /02117 < pu f (Sa/n"?) — 1/2] = O(p, .

This follows by applying the version of Theorem 1 of Alberink appearing on
page 522 of [1]. Applying this result exactly as in the proof of Proposition 1in [12],
one obtains after some obvious modifications Proposition 1 abave.

6. Proof of Theorem 4. We prove this result fo#f > 2 only, though our proof
can be modified to include the cage- 1 as well. However, in this case the result
is well known and it can be proved more directly.

First observe that{, = R? and (1.19) implies thak (¢'!X!l) < oo for some
¢t > 0, where|| - || is the usual Euclidean norm @&f. Hence, all possible moments
of X are finite, and Theorem 1 implies

(6.1) P (Su/bn € D) ~ exp—n""b31, (ao)} s,
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where

(6.2) Iy = E(e 8 W=E@D) (T, e 2D /n)).

Recalling (1.14) and that, = %"(Z,,J +---4+Z,.,), we also have
6.3) I, =E(e 8T E@D) (T, — E(T,) € b2n~X(D — ag) + ay)),

whereq,, is a deterministic vector such tha} = b,%n—lao — E(T,) and ||y, || =
O (b3/n?) = 0(1). Nown /26 (T, — E(T,)) = ¥ _1(Zy.j — E(Z,))/n*/? and,
hence, if G}, is a mean zero Gaussian random vector with value&4nand
cov(G)) = couZ™), thenn/2p-X(T,, — E(T},)) can be approximated bg’ .
In particular, if we use the main result of Zaitsev [20] we haveis large enough
for ¢ > 0 and all Borel-subsets of R?,

(6.4) P(nY?p;Y(T, — E(Ty)) € A) < P(G, € A®) + crexp(—conY?e /1),

where as usuall® = {x e R?:3y € A:|lx — y| < ¢}. Herecy, c» are positive
constants depending @h andr > 0 depends on the distribution &f. To see this
we note that fromE (e X1/7) < oo for © sufficiently large and/ £(Z™) /d u(x) =
e8bnx/m)—10gi(bug/n) \njith b, /n — 0, it follows that the distributions o ™ satisfy
the hypothesis of Theorem 1.1 of Zaitsev [20] for ng andt sufficiently large.
This requires an elementary argument which we leave for the reader.

Hence, if we assume that the underlyipgspace 2, &, P) is rich enough,
we can infer via the Strassen—Dudley theorem that for large enewmid any
givene > 0, one can construct a mean zero Gaussian random \@gtowith the
same distribution a&, so that

6.5)  P(|G,, —nY?, T, — E(Ty))| = &) < crexp(—can™%e /7).

/

To simplify our notation we set, = b, /n/2. Choosings = ¢, = %pn_g 2 and

writing G, instead ofG/, , , we thus have if: is large enough,

n,en’

66) P(IG}, = pu H(Tu — E(T)| = p, ¥?/2)
. <c exp(—cznl/z,o;?’/z/Zr) = o(n_l).

We furthermore can assume th@} = B,Z, whereZ is normal(Q I)-distributed
and B,, is a positive semi-definite, symmetric matrix so tlﬁt: cov(G)). (I'is
the identity matrix.)

Set G = BZ, where B is a positive definite, symmetric matrix so that
B?=cov(X) andZ is as above. Arguing as in the proof of (2.2), we find that

(6.7) IB2 — B?|| = |[coM(Z™) — cou(X)| = O(b,/n),

where || D|| = supj<1 I Dxll = sup, <1 /{x, Dx)| for symmetric (d, d)-mat-
ricesD.
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Using the fact thaB is positive definite, one can infer (see Lemma 11) that
(6.8) |Bn — Bll = O(bn/n),

which in turn via a standard exponential inequality for normal random vec-
tors implies

(6.9) PUIG — Gyl = p,¥%/2) < P(I1ZIl = p,;¥?/ 2l B, — BI))) = o(n 1),

and we can conclude that

(6.10) P(|G — oy YTy — E(T)| = 7 %/%) = 0(n ™.

SetC = D — ap. Returning to the integral (6.3), we can now infer that
(6.11) L <1, +1/,

where

Iy = E(e 8T E@D (o7 (T, — E(T,))) € paC + n/ P,
lpnG = Ty + E(T)Il < p, ¥?)
and
1y = E(e 8" =EID 1 (o, (T, — E(Ty)) € puC + &t/ P,
lpnG — T + E(T) > p, /?).
Using the fact thag («) > 0, u € C, we readily obtain from (6.6) that
I'< els@lom=h = o(n™1).
On the other hand, we have
I, <explligllo, YA E(e D 1(G € (p,.0)™)),

_ -3/2 _ . :
wheres, = llaxllo;t + on 72 = o(p;Y). As g = —lgll8, on (p,C)%, it easily
follows from the subsequent Lemma 10 that

E(e—/)ng(G)I(G c (pnc)sn)) < E(e_p”g(G)I(G c ,OnC)) + e l18lldn 0(5,),
which in combination with the above estimates implies that
6.12) I, <expliglio, THE(e " DI(G € paC)) + 0(p, ).

n

Changing in the proof of (6.12) the roles Gfandpn—l(Tn — E(T,)) and setting
o, = 0, we similarly get for large:,
(6.13)  E(e " 9DI(G € p,C)) < exnligllo, A Iy + 0(p, ).

n

More precisely, note that (6.10) implies that
P(p, H(Ty — E(Ty) € (paC)™) < P(G € (04C)*") + 0(n™),
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which is on account of Lemma 10 and by a second application of (6.10), less than
or equal to

P(G € (paC)™®") + 0(8y) < P(p, Ty — E(T1)) € puC) + O (3y).
As Theorem 3 implies that limipf, « I,, 0, > 0, it is now evident that as — oo,
(6.14) I, ~ E(e 89 [(G € p,0)),

where G is a mean zero Gaussian random vector with covariance equal to that
of X.

By the Cameron—Martin formula we have
(6.15)  P{G € p, D} =exp(—n"b?x, (a0)) E(e "¢ DI (G € p,0)),

which in combination with (6.1) and (6.14) implies Theorem 4.

LEMMA 10. Let G be a centered, R-valued, Gaussian random vector with
covariance V and support all of R?. If A is the minimal eigenvalue of V, then for
all ¢ > 0 and all convex sets C, there exists a constant ¢, depending only on d
such that

(6.16) P(G € CE\C™%) <2c 0 Y2,
where C¢ = J,ec B(x,e) and C~* = {x: B(x, &) C C}.

PROOF  If the covariance matri¥ is the identity matrix/, then this follows
from Corollary 3.2 in [5] withA = 1. Otherwise, letA be a symmetric positive

definite matrix such that? = V—1. ThenZ = AG has covariancé on R?, and
sinceA has full rank,

P(GeC*\C)=P(ZeTA(C*)\TA(C™®)),

where T, :R¢ — R? is the linear operator determined By, Noting that by an
elementary argument,

(6.17) TA(C®) C Ta(C)* %
and
(6.18) Ta(C™%) 2 (TA(0)) %,

we have by Corollary 3.2 in [5] that
P(G € C\C™®) < P(Z € (T4(C))" " E\(T4(C)) ™ )
< 2Cd)u_1/28.

Hence, the lemma follows.

We finally state a lemma from linear algebra which was needed for the
above proof.
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LEMMA 11. Let A, E be symmetric (d,d)-matrixes so that A and A + E
are positive definite. Then we have for the positive definite square root matrices

JAand VA +E,
|VA+E—VA| <C|E]|.

where C is a positive constant depending on the smallest eigenvalue of A and
A+ E.

PrROOF The lemma is very easy to provedfE = EA. In general, it follows
from relation (X.46) on page 305 of [4] setting=1/2. [

7. Proof of Theorem 5. We still need the following lemma.

LEMMA 12. Let G be a centered Gaussian random variable on a separable
Hilbert space H and D = {x: ||lx — a|| < R}, where0 < R < ||a||, is an open ball
in H satisfying (1.6.ii) and (1.6.iii). Assumethat ag € d D isthe unique dominating
point for D with respectto y (= distribution of G) and let g beasin (1.7)and (1.8).
Then we hfl\ée the following for any positive sequence {b,} satisfying (1.1) and
Pn=bp/n /2:

(i) P(G € pyD)=exp(—p2ry (ag) E(e 8D (G € p,(D — ap)) and
(i) E@ @G € po(D — ag) ~ [57eP(IG2|* < 2sbR?)ds/
(2ro2p?)Y?, asn — oo, where o2 = E(¢%(G)), G2 =G — G1,b=1/g(a — ao)
and G1=g(G)E(Gg(G))/o}.
(i) If G, is centered Gaussian with cov(G,) = cow(Z™), where Z™ is
defined asin Theorem 1, then

E(e "8G (G, € pp(D — ap)))
(7.1)

o0
~ [ e PUIGI? < 206RY ds 2o Zod M2
asn — 0o, where G1, G, oé? and b areasin (ii).

ProoF Part (i) follows directly from the definition “dominating point” and a
simplification of the representation formula whens centered Gaussian. A key
fact is that in this special case the lawof? is that of G + b,ag/n. This follows
from the Cameron—Martin formula by an argument as in (2.5).

The proof of (ii) will follow along lines similar to those for (iii), so we now turn
to the proof of (iii).

The proof of (iii) is as follows. Reca#t?, = E(¢%(G,)) = E(g%(Z™)) = o2+
O(by/n), and writeG,, = G,.1 + G, 2, whereG, 1 = g(G,,)E(G,,g(G,,))/o;n
andG, 2=G, — Gp.1.
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Note thatg(G,.1) = g(G,), S0G, 2 has support ifx : g(x) = 0}. Furthermore,
G,.1 andG, 2 are independent Gaussian random vectors and, hence, if
1,(G) = E(e %9 (G € pp(D — ap))),
then for alln sufficiently large,

Oo ~
1,(G,) = (2710—;”)—1/2[() e P h(n, u) exp—u®/207 Y du,

where

h(n,u)=P(Gn2€ pn(D — ao) —uE(G,.18(Gn.1)) /02, |8(Gn.1) = u).
Thus, for sufficiently large:,

n-g.n g.n

[e.e]
(7:2)  1(G) = @rofo2,) 2 [ e hn ) expl—s/2pfoF ) ds
0
wheres = p,u, and sinces, 2 andG, 1 are independent,

(7.3)  h(n.s)=P(Gn2€ pa(D —ao) — p, SE(Gn.18(Gn1))/02,).

Now D —ag = {x:|lx — xo|| < R}, wherexg=a — ag, and if g(xg) = 1/b, we
see thabxo — E(G,,18(Gy.1)) /02, isin {x:g(x) = 0}.

Furthermore{x : g(x) = 0} is tangent to the sphe® — ag at the origin and,
hence xo is perpendicular to the hyperplafe: g(x) = 0} asD is a ball in Hilbert
space. Thus, by the Pythogorean theorem(ify = 0, then

2
x €k(D —ag) — bsxo/k  iff |x]|> < (kR)? — (k — (%)b) R?,
iff ||x||% < 2sbR? — R2b?s?/k>.
SettingE,, = p,(D — ag) andk = p,, in the above, we therefore have
h(n,s) = P(Gn2€ En— p, 'sbxo+ py 's(bxo — E(Gn.18(Gn,1)) /0L ,))

= P(| G2 — py s (bxo — E(Gn18(Gn1)/02,)|?
< 2sbR? — R?b?sp;?).

Using the continuity of the distribution of the norm of a Gaussian random vector in
a separable Hilbert space, and thigt, converges weakly tG, on {x : g(x) = 0},
we thus see that

(7.4) lim_h(n,s) = P(|G2|)? < 25bR?)

for 0 < s < co. Combining (7.2)—(7.4), we thus have (7.1) since,ling, = o2.
Hence, part (iii) of Lemma 12 is proved.
To verify the same asymptotics fdy,(G) is quite similar withG2 and G1
replacingG, 2 and G, 1 throughout the argument. Hence, Lemma 12 is proved.
O
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Conclusion of the proof of Theorem5. We first prove that
(7.5) limsupP (S, € b,D)/P(G € p,D) <1.

n—o0
If H is finite-dimensional, this follows from Theorem 4 and the usual isometry
betweenH andR?.
If H is infinite-dimensional, takdges, o, ...} to be a complete orthonormal
sequence forH with e1 = v/||v||, wherewv is the unique vector irH so that
g()=(v,-),andg is asin (1.7). Define the orthogonal projection

d

(7.6) ma(x) = (ej,x)ej,d > 1.
j=1

Theng(x) = g(my(x)) forall x € H andd > 1.
Applying (1.12), we have

(7.7) P (S, € b, D) ~ exp(—p21, (a0)) I,
where
(7.8) In = E(exp(—g(Ty — E(T))I (T, € p2D))).

Sincern,: H — H satisfieg(x) = g(ry(x)), we easily have
I, < E(exp(—g (T — E(Ty))I(wa(Ty) € pima(D))))

(7.9)
= E(exp(—g(ma(Ty)) — E(ma(T)I (a(Ty) € pZra(D))) =: In.a.

Now by the proof of Theorem 4 [which also applies to the finite-dimensional
spacer;(H) by isometry],

(7.10) Iy ~ In(ma(G)),
where
(7.11)  Ii(ma(G)) = E(exp(—pu7a(G))I (wa(G) € pama(D — ag)))

and G is a mean zero Gaussian random vector with covariance equal to
that of X. Crucial to this last claim is the fact that;(xg) = xg, 7z iS an
orthogonal projection,

7q(D — ap) = {ma(y) :l|wa(y — x0)|| < R}
(7.12)
= {ma(y) “wa(y) — xoll < R},

wherexg = a — ag, and the Radon—Nikodym derivative of the law af(Z™)
with respect to the law af;(X) is the same as that of the law B with respect
to the law of X. [Note thatr,;(xg) = xo, since D being a ball in Hilbert space
implies thatv = Axg for somea > 0 as the hyperplang : g(x) = 0} is tangent to
D — ag at zero.]
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Hence, by Lemma 12(ii) applied t0;(G) in the subspace,(H), we have
(7.13)  I(ma(G)) ~ (2moZpl)~? /O ooe_sP(||nd(G2)||2 < 2sbR?) ds,
where g(1rq(x0)) = g(x0) = 1/b, 0f = E(g%(X)) = E(g*(ma(X))), and G =
G — G is a centered Gaussian random vectorbwith
(7.14) G1=_g(G)E(Gg(G))/a?.

[Note thatry(G1) = g(G)E (14(G)g(G)) /o 2]
Thus, whenD is a ball as indicated, for adl > 2 we have by (7.7), (7.9), (7.10),
(7.13) and Lemma 12 that

o P(Si€buD) _ 57 e P(Ima(G2)| < 25bR?)d
(715)  limsupl €D _ Jo~ e PUm(Go)I” < 25H R ds
n—oo P(GepD) ™ fg~ e P(IG2l|? < 25bR?) ds

Letting d — oo, it easily follows by the dominated convergence theorem that the
right-hand side approaches 1, which implies (7.5).
It remains to be shown that

(7.16) liminf P(S, € b, D)/ P(G € p,D) = 1.

But this follows from (1.12) in combination with Lemma 12 and the following
proposition applied when the law &, ; is equal to the law o ™ — E(Z™). To

be more specific, lett, = S,/n/2, with S, as in Proposition 2f (x) = (x, xq),

x € H and notice that then

I, = E(e_png(An)I(An € pn(D — ap) + Oln/:on))
(7.17) = E(e P8 [ (| Ay — an/ pn — paxoll® < p2llx0l1?))

= E(e /A (1A, = an/ pull? < 200 f (Ap — an/pn)))

becauseg(x) = (x,v) = A{x, xg) = Af(x). Also, recall thate, = (b,%/n)ao —
E(T,,) satisfied|ay, || = 0(2).
Similarly, it follows that

I,(Gp) = E(e "8V (G, € pu(D — ap)))
(7.18)
= E(e /O I(I|Gull? < 200 £ (G))).

Hence, if covG,) = cov(X, 1), then by Lemma 12(ii) and (iii) we havg (G,) ~
I,,(G) and by Proposition 2 (applied with= xq/| xo|| andp, replaced by xol o,,)
that liminf, 1,,/I,,(G,) > 1, so the end result is that limipf,, /I,(G) > 1, which
proves (7.16). Thus, Theorem 5 follows once Proposition 2 is proved.

PROPOSITION2. Let X, 1,...,X,.,,n>1Dbeatriangular array of row-wise
i.i.d. random vectors with values in the Hilbert space H such that E(X, 1) =0
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and sugzlE(||Xn,1||3) <M. Let A > 0 be a constant and p, — oo such
that p, = O0(n2/(logn)®), f(x) = (x,a), where ||la|| = 1 and assume that
inf,>1 E(f?(Xn.1)) > 8% > 0.1f z, is a sequence in H with ||z, = o(p; 1) and
Sn = Z?:l Xn,i; then

liminf E[exp(—on f (Sa/n* ) 1{11S0/n*? + zal|? < 200 f (Sa/n*2 + 2}/ Jn

z 17

where J, = E[eXp(—ion f Y)I{1Yall? < 20, f(Y,)}] and Y, is a Gaussian
mean zero random vector with covariance equal to that of X, 1.

REMARK 4. Itis also possible to prove that
lim SUpE [@xp(—pn f (Su/n ™) I{1Sn /0" + zulI? < 200 f (Su/n™? + z)}]/ T
n— oo
<1

so that we actually have an asymptotic equivalence. We did not work out the details
since for the upper bound part of Theorem 5, it seems much more efficient to use
the projection method as in the first part of Section 7.

REMARK 5. Given a fixed sequengs,, one can replace the third moment
assumption by some uniformity condition on the moments of ordem2where
0 < 5 <1 has to be determined dependingmn

REMARK 6. The subsequent proof also works fo& 0. Following the proof
until the inequality after (8.49), one sees that

P{11Su/nY? + 20117 < 200 f (Su/nY2 + 2,))
> P{I1Q. (YD <200 f (YD)} — 00, b,

where |0, (Y/)||? and £(Y!) are independent and/ is a Gaussian mean zero
random vector. Choosing = 0 and replacing,, by p,,/2, one readily obtains via
Lemma 13 and the Berry—Esseen inequality that lim,sup o, P{||S,/n%?|? >

pn f (Su/n"?), f(Sy) = 0} < oo provided thaio, = O (n'/?/(logn)®).

The proof of Proposition 2 is quite long. So it might be useful to give first an
outline of the basic steps. To simplify our notation let

Ly := E[exp(=1pn f (S0 /M) {1180 /0" + 2417 < 200 f (Sa /0™ + 20)}].

From the proof of Theorem 3 it follows thd}, is of orderO(pn‘l) so that it is
sufficient to derive lower bounds up to terms of ordés; 1).
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We first show in step (i) that
Iy = Iy 1 = E[@Xp(—Apn f (Su/n D) {180 /0?17 < 2= £n,1) 00 f (52/n"P)}]
+o(p, ),

where S, are sums of truncated, centered random variallles ande, 1 — O.
Note that this also shows that we can discard the vegjfors

Then we choose in step (ii) vectois, so that the variablesf(f(n,l-) and
Q,,(f(,,,,-) are uncorrelated and we show that

Iy > I 2= E[exp(—1p, f (S, /nY/?))

X I{[|Qn(Su/nY?) 12 < 2= £0.2)pn [ (Su/n YD) ]+ 00D,
whereQ,(x) =x — f(x)w,,x € H andg, 2 — 0.

In step (iii) we smooth the variable& S, /n1/2) and|| Q,, (S, /n/?) |2 by adding
small independent normal variables and we show that

In2>1,3= E[exq_)\ann)I{Vn <@2- en,3)on Wy, Wy > 0}] + O(pn_l)’

whereW,, andV,, are the smoothed variables ang — 0.

In step (iv) we make the crucial transition to the Gaussian case. We show that
we can replace the variablé®,, V,, by smoothed version®, andV, of fa)
and| Q,(Y,) 2, respectively. That is, we prove that

13> Ina= E[eXp(—1pa W) I{Vy < (2= £,.3) 00 W, Wa > 0}] +0(p; ),

whereY, is mean zero Gaussian with qd¥) = cov(f(n’l). The crucial result for
proving this last inequality is a certain local limit theorem, Lemma 18.

The proof of this lemma can be found in part (v) of the proof. As already
mentioned in the Introduction we use an adaptation of the characteristic function
method for proving Berry—Esseen type results in Hilbert space. In particular, we
use a modification of a symmetrization lemma of Gotze [13] [see (8.39)].

In step (vi) we then show that we can remove the smoothing variables, that is,
we prove that

Ina> I, 5= E[€Xp(—2pn f YD) Qu(YIZ < (2= &0, 2) o f (V)]

+o(p, ).

Here it is very helpful that the variables(Y,) and ||Q,,(Y,;)||2 are independent
due to the choice o, in step (ii).
In the following step (vii) we remove the sequenge;, that is, we prove that

Ins > Lo = E[eXp(—2on f D)1 Qn (Y I? < 200 fF (YD }] + 007 ).

In the final step (viii) we use independence and the inequality of Anderson to
prove that

Lue > Ju+o(p; Y.
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8. Proof of Proposition 2. (i) Let X} ; = X, ;[ (| Xpill < snY/?), X, =
X, —EX, ;,1<i<n,n>1,anddenote the corresponding sums.Sp)andSn,

n,i?

respectively.
Then it is easy to see that

(8.1) I, > I,; — exp(Aponllzn ) P (Sy # S,;),

wherel, = E[eXp(—Apn [ (S, /n 2N IS, /nY2+ 241 < 200 f (S, /0t 2+ z))].
[Note thatf (S/ /n/? + z,) = 0 implies £ (S, /n*/?) > —||z,I.]
We have trivially, by Markov’s inequality,

P(Sy#S,) <nP(Xy1# X, 1) <M8™3//n.
Next, setz}, = ES,,/n*/?, z]] = z, + z}, and observe that
Iz | <n2E(I X0 2l (| X 2]l > 80Y/2)) < M5™2//n.
We can then further conclude fropi (x)| < ||x| that
1, = E[exp(=apn f (Su/n™2 + D) I{1150/n? + 211 < 20 f (Su/n*? + 2 }]
> exp(—rpallz, D1,

wherel! = E[eXp(—Apy f (Su/nY2) {1 Sy /nY? 4+ Z)11? < 2p, f (Su /Y% 4+ 2.
Let A, be the event{||S,/n'/2 + z/|? < 20, f(S,/n*? 4+ z)}. Then we
clearly have

An D {1180 /0212 + 212111 S /n 21| + 12112
<200 (f(Su/nY?) + f(2))} =t A},

Let B, = { f(S,/nY?) < |z/lle; 1}, wheres, N\, O will be specified later. Consider
further the even€,, = {||S,/nY2|12 < (2—&,) (X +&,) " 2pn f(Sn/n/?)}. Note that
we have on the eveid, N B,

15, /nY2 = £(Su/n?) > |1zl
and, consequently,
150 /2 212 + 21125 1S /021 + 2y 1P < 180 /02117 (1 + £0)2.
Furthermore, we have on this everi(z”)| < e, f (S,/n*/?) and, thus,
200 (fSu/nM?) + £(2)) = 2= e)pu f (Su/n*?).

We see thaC,, N BS C A, which in turn impliesls, > Ic, — Ic,nB,-
Using the elementary inequalit® — ,,)(1+ ¢,)~2 > 2 — 5g,,, we find that

— E[exp(—apn f (5./nY?)Ic,n8,)-
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Recalling thatf (S, /nY/?) > 0 onC,, we further have
E[exp(—10nf (5,/n"?))Ic,n8,]
< P(C,NBy) < P{O< f(5,/n"?) <lIz)lle; ) =: pa.
We need an upper bound fpy,. To that end we first note that
5%, =E(f2(Xn1) = E(f*(Xn.1) — 2E(f2(Xn. DI (| Xn.1]l > 8n%/%))
> 8% —2M571/n? > 522,

provided that 4/6—3/n%2 < 1. Using the Berry—Esseen inequality, it now
follows that

P < llz)lley 2671 + CoeE | £ (X, 1) [3(8%/2) %2 /n1/2.
Employing the inequalities
(8.2) Elf(Xa )P < E|I X, 1] < 8M,
we find that
pu < llzilley 2672 + 8%2CpeMs3/nY/2,

which is trivially true if 4M8—3/n%/2 > 1.
Thus, p, has the order0(n=Y2 v ||z/|le;%), which is of ordero(p; 1) if

&n CONVerges sIowa enough to 0. (For instance, we caa,set| z, ||/ 12

(i) Let w, = &;nE(Xn,lf(Xn,l)) andQ,(x) =x— f(x)w, forx e H.If Y, is
a mean zero Gaussian random vector with(&py = cov()?,,, 1), we have 0, (Y,)
and f (Y, )w, are independent and Gaussian. This implies

8.3)  EYP) =EUXn11® = E(1Qn (X D7) + lwal?57,,.
hence/jw,||? < 4(M/cr D3 <8(M /3Rt ams—3/nY2 < 1.

As ||, /n/?? < ||Qn<sn/n1/2>||2 + 201 Qu(Su/nYAILf S/ nV D) llwall +
lwnlI?1f (Sp/n/?)|?, it follows that

E[exp(—Apn f (Sn/n"?) {115, /nY?? < (2 = Ben) pu £ (Su/n*/?)}]
> E[exp(—Apn f (S,/nY?))
(8.4) X I{[1Qn(Su/nYA)1? < (2= Ten) pu f (Su/n*D)}]
— P(lwall®If (Su/nYP)| > £npn)
— P(2lwa | @ (Su/n* P = £npn).
Using Chebyshev’s inequality along with (8.2) and (8.3), we have
P(lwall®1f (Sp)/nY?| > €nn)

(8-5) 4~2 —2 —2 apm2/3
< llwall"6%,8, < 4M?||w, %, 2,2,



1342 U. EINMAHL AND J. KUELBS

where||w, | is bounded as following (8.3). Likewise, it follows that
8.6)  P(2lwnlllQu(Sn/nYA)l = £npn) < 16M* 3w, %, %p, 2.

Assuming thatenp,}/2 — 00, we see that these two probabilities are of or-

dero(p;%).
(iii) Before we can proeed with the proof we need further lemmas.

LEMMA 13. Let Z; and Z» be independent random variablesand ¢, d > 0.
Then

(8.7) P(Z1>cZp,Z2>0) <ra(d)[P(Z1>0) + E(Z])/(cd)],
wherera(d) = sup.-o P(x < Z2 < x +d).

PrROOF Using the independence @f andZ», it follows that

P(Z1>cZ3,Z2>0)

P(Zl >cZo, (j—d<Zy< ]d)

)

1

~.
Il

<) P(Z1=(—Dcd)P((j —Vd < Z2 < jd)

o

-
1
=

<ra(d) ) P(Z1/(cd) > j — 1) <ra(d)[P(Z1= 0) + E(Z)/(cd)],
j=1

and the lemma is proved

LEMMA 14. Let V, = |0, (S./nY?)|% + «,G1, where G1 is a standard
normal random variable independent of X,, 1, ..., X n, an — O. If &), = 7¢, +
o, log(1/ay), then

E[exp(=2on f (Su/nY2)I{1Qn(S,/nY?) 12 < (2= Ten) pu f (Su/nYP)]]
> E[eXp(—2on f (Sp/nY2)[{Vy < (2= €)) pu f (Su/nY?), £(S,) > 0}]

—o(py ).

PROOFE As
{1Qn(Su/ A7 < 2= Ten) pn f (S5a/n"?))
S {Va < @) fSu/nYDIN{F(S0) > 0}
N{G1 > —log(1/an)pn f (Sa/nV?)},
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andG; is symmetric, it is enough to show that
P(G1=10g(Y/ay)pu f (5u/n"?), f(Sa) > 0) = 0(p; ).
Arguing as in part (i) (when estimating,), we see that
(8.8) ru(d)=supP(x < f(S,/nY?) <x +d) <ds~ + Cpe8¥2M5~3/n"2.
X
Applying Lemma 13 withZy = G1, Zo = f(S,/nY2), ¢, = 109(1/0tn) pn, dn =

1/c,, we find that the above probability is r,(d,)(1 + E[|G1|]1/2) = o(pn_l).
O

LEMMA 15. Let W, = £(S,/n%?) + &/, G2, where G is a standard normal

random variable independent of X, 1, ..., X,.», G1 and B, :=«a, p, — 0.1f ¢ =

e+ ﬂi/z, we have

E[eXp(—hpn f (Su/nY) [V < 2 = &) pu f(Sn/nY?), £(Sn) > O}]
> exp(—A2B5/2) (E[exp(—10, W)
X H{Vy <(2—¢,)pnWy, W, > 0}] — o(p; ).

PROOF By independence we obviously have
E[exp(—on W) I{Vy < 22— &) pu f (Su/n*?), £(5s) > O}]
= exp(.2B}/2) E[exp(—1on f (5./n*?)
X I{Vy < (2= &})pnf (Su/n'?), £(S0) > O}].

We further have V, < (2— /), f(S,/nY?)} =: A, D B, N C,, where

By={Va<@2—g, =B paWa),  Cu=1{20,Gp = Br?f(S,/n"?)}.
Therefore,
E[exp(=2on W)l 5 £(5,)>0/]

> E[Xp(=201 Wi g, 1 5,y=0)) = P(C N (S) > O}).

To bound the above probability we use once more Lemma 13. Selftiadl/c, =
/21, it follows that

(8.9)

(8.10) P(20,Go= BY2f(Su/n"?), f(8n) > 0) < ru(dn)(1/2+ 2E[GF)).
Recalling (8.8), we see that(d,) = o(pn_l) so that it suffices to show that
Elexp(=Aon Wi, 0 £(3,)-0)]

8.11) .
= E[exq_)\ann)IBnﬂ{Wn>O}] - O(IOn_ ).
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To that end we first note that
E[exp(—ipn Wn)IBnn{f(S‘,,)>O}]
> E[exp(—kpnWn)IBnm{wn>0}m{f(§n)>0}]
= E[exp(—Aip, W) I,n(W,>0}]
— E[exp(—Apy, Wn)IBnm{Wn>0}ﬂ{f(§n)§0}]

> E[exp(—3pu W) Ig,niw,=0)] — P(Wa > 0, f(5,) <0).

Next, observe that
P(W, >0, f(5,) <0) < P(a,G2= = f($,/n"?), = f($,) 2 0),

which in view of Lemma 13 is bounded above Ky, )(1/2 + E[GZT]), where
r/ is defined as,, with f replaced by—f. It is obvious that the upper bound

n

in (8.8) also applies to;, and we see that the above probability is of order

O(a)) = o(pn_l). This shows that (8.11) holds and Lemma 15 has been proven.
O

(iv) Recall thatY, is a centered Gaussian random vector with covariance equal
to that ofX,, 1. Assuming that’, is independent ofi1, G2, we set
Vi =122 (Y)IP + @, G,
W= f(¥;)+ Bupy "G2.
The purpose of this part of the proof is to show that
E[exq_)\pnwn)l{vn <@2- 8,/{),0n Wy, Wy, > 0}]
= E[eXp(—2pua W) {Vy < (2= £,)0a Wy, Wy > O}] + 0(0;, ).
To that end we first prove the following lemma.

(8.12)

(8.13)

LEMMA 16. Wehave
E[eXp(—Apn W) I{W, > O}] = E[exp(—ip, W) [{W, > O] + O (n /).

PROOF Integration by parts yields that
o
E[(1—exp(—=rp, W) I{W, > 0}] = Apn/ exp(—Ap,u) P{W,, > u}du.
0

Using the corresponding formula faE[(1 — exp(—rp, W) I{W, > 0}], we
readily obtain that

|E[eXD(—K,0n W) I{W, > 0}] — E[exq_)\ann)I{Wn > 0}]|

o0 _
< xpnfo XP(—putt)| P{W, > u} — P{W,y = u}|du

+|P{Wn>0}_P{Wn>O}|7
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which is obviously< 2sup, | P{W,, > u} — P{W, > u}|. By conditioning on the
independent variabl&é,, we see that the last term in turn is bounded above by

Sup| P{f(8,/n"?) = x} — P{f(¥;) = x}| < 2Cae8%2M5~3/n'/?,
X

where we have used once more the Berry—Esseen inequality.

In view of Lemma 16 it is clear that (8.13) is proven once we have established
the subsequent lemma.
LEMMA 17. Wehave
6.1 E[exp(—=2p, W) I{0 < (2— &) pa Wy < Vi }]
= E[exp(—1oa W) {0 < 2 — &) pu Wy < Vi }] + 0(0, ).
PROOF We first note that
P(Vy 2 %) < P(G12x/2) + P(I1Qu(S) > (nx/2)"?),

and choosing > 0 sufficiently large, we have from (8.2) and the Fuk—Nagaev type
inequality presented in [11], page 338, that/fdarge

P(V, = clogpn)

§exp{—(C|ngn)2} n 72-21111Mq,::> Xp{— cnlogp, }
8 (cnlogp,/2)3/2 7681 M2/3

=o(p; b,

where we have used thak(]|Q,(X,.1)[? < 4M?3, which follows from
(8.2) and (8.3). The latter relation also implies that= || Q.|| < 1+ ||lw,]| is
bounded. Therefore,

E[exp(—rpu W) I{0 < (2 — &) py Wy < Vu}]
= E[eXp(—20, W) I {(Vir, Wp) € Au}1 + 0(o, b,

whereA, = {(v,w):0<w < 2—¢,)""v/p, < 2—¢})"*c(10g pu)/ pn}.
By an obvious modification of the above argument we find that also

E[exp(—ron W) I{0< (2— &) puW, < V]

(8.15)

(8.16) o
= E[exp(—20, W) I{(V, W) € A}l 4 0(p; ).

It thus suffices to prove that

(8 ) E[exp(—k,on Wn)l{(vm Wn) S An}]
A7
= E[eXp(—=oa W) I{(V, W,) € Au}l +0(0; ).
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Let f,.1 be the (two-dimensional) Lebesgue density functio0\gf, W,,) and f,, 2

that of (V,,, W,,). (These exist because we added an independent normal random
vector.) Then we obviously have that the absolute difference of the two last
expectations is bounded above by

Il fn,1 = Jn,2llo0 Area(Ap).

Since A, is the triangle in the(v, w) plane with baseclogp, and height
2- e;[)‘lc(logp,,)/p,,, we obviously have it <1,

Area(A,) < ¢?(10g 02)?/ (2pn),

and relation (8.17) immediately follows from the subsequent Lemma(18.

LEMMA 18. If f,.1, f,.2 are as above, where ,, = B, = (log p,) 1, then we
have for some y > 0,

(8.18) I fn1 = fn2lle = O(p, 7).

PROOF.  First, observe that by the inversion formula it is enough to show the
characteristic functiong, 1 andg, 2 of (V,,, W,) and(V,,, W), respectively, sat-

isfy
(8.19) / /R 160 1(5.1) — b 2(s. Dl ds dr = 0(p; 7).

To verify (8.19) let

1”71:/ / |¢n,1(svt)_¢n,2(S,f)|det,
Is|<(logpn)? J|1]<n®

o= f / 105+ 1) — Gu.2(s. )| ds dt,
Is|<(logpy)2 Jn™ <|t|<py(l0g py)?

Ia= / / (b 1(5. 1) — .25, D) ds i,
Is|>(log pn)? JteR

ha=|[ | ($n1(5. 1) — .25, )] ds dt,
seR mZ/On(Ingn)z

wheret > 0 will be specified later.
It is obviously enough to show fdr=1, 2, 3,4 and somes > 0, that

(8.20) Lk =0(o;").

Proof of (8.20)whenk=1. LetY,1,...,Y,, beiid. copies oft, and for
—00 < s,t <ooandx € H, define

F(x) = explisl| @, (x)[1? +itf (x)}.
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Then F(.) is Frechét differentiable inc, and Taylor's formula with integral
remainder, see [7], page 70, implies

F(x +h) = F(x) + DF(x)(h) + 3 D*F (x)(h, h)
(8.21)
+3E[(1—1)2D3(x + th)(h, h, )],
wherert is uniform on[0, 1] and D¥ F (x) is thekth derivative ofF atx. Thus, by
a standard argument we can conclude that

(8.22) |[E(F(Sa/n™?) = FOD) < 3
k=1

where

(8.23)  Ji=|E(F(Wi+n"Y2X, 1)) — E(F(Wi +n~Y2y, p)|
and

(8.24) Wi=Xp1+ -+ Xpp1+ Yopsr+ -+ Vo) /02,

fork=1,2,...,n. Recall thatY, s, 1 < k <n are independent Gaussian random
vectors with the same distribution &, which can be chosen independently

of the random vectorsX, s, 1 < k < n. Using (8.21), we expand the terms

in J; with x = Wy and h = X,,.x/nY/? or h = Y, /nY/?, respectively. Since

X,.x andY, ; are independent o¥, andX,, ; and¥, ; both have mean zero with
common covariance functions, the terms containing derivatives up to second order
coincide so that

(8.25) Je <n32 + I,
where
I =3E(Q— 02D F (Wi + e X1/ nY?) Xk, Xker X))
and
I =3 E(Q = 02D3F (Wi 4 Y /02 (Yo ks Yok Y )|
Since|| f|| = 1, we have
IDF3(x)(h. h, )|

< 1252110, (1311 Qn ()l + Blst ][] @ (B) 12|12
+ 228151311 Qn ) IR Qn (W) 112 + 123111 113),
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and, therefore, since® r < 1 (and setting,, = || Q. ), we have
Ji < SE[32s131 Qn (X0 131 Qn (Wi + T X /0?1
+ 615t 11 @ (X O 121 Xkl + 41301 X 1113
+ 1252 0 (X ) 131 @ (Wi + T X 1/ D]
< SE[32s13q21 X I1F{ 43I Wil + g 31 X 13 /03 )
+ 6lst1gZ 1 X k12 + 412131 X 1113
+ 21252 1 Xk I3 Wil + 11 X 11/ )],

(8.26)

Now P(| X, < 28n?) =1, E(|X.4]1®) < 8M, and X,; and W, are
independent, so

T < [512Mq8Is PE(| Wil + 85%)
(8.27)
+ (24Mg?|st| + 16M|1|3) + 48Ms2q E (| Wi || + 28)].

We need an upper bound fax( || W,||2). To that end we first note that by convexity
and that they,, x's are independent and identically distributed Gaussian random
vectors, we have

(8.28) E|Will® < 4E (115,113 /n%% + 4E(1 Y0 111%).
Applying Propogion 6.8 of [18], we have

(8.29) E(IS,11®) < 2-4%85%1%/2 + 2(4b0)°,
where

b= mf{b P( max

1<j=<n

anm >b)<(2 43)~1 }

Using Proposition 1.1.2 in [10], we further have

J

anm

Since we are in a Hilbert space, we have

anm

and via Markov’s inequality, it follows thaty < 144M1/3,1/2,
Employing the trivial inequality® < M, we see that

(8.31) E(IS,113) < AMn®?,

l<]<n l<]<n

P(max

>b><3 maxP(

J
> Xnm
m=1

>b/3>.

2
(8.30) max E( ) <nE(| Xn.1l1?) <4M?3n

<]<n
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whereA is a universal constant.
Using the equivalence of the moments of Gaussian random variables (see, e.g.,
Corollary 3.2 of [18]), we also have

(8.32) E(1Y, 13 < AE(1X,11%)¥? <84'M,

where A’ is another universal constant. Sinde(||Wil) < (E(||Wi|®)HY3,
by combining (8.28), (8.31) and (8.32) we have iM&3/nt/2 < 1 and,
consequentlyy, < 1+ |wy,| <1+ +/8MY/35-1,

(8.33) J. < CaflsP+ 1112+ 11,

where(; is a finite constant depending only af ands.
Here we have used that| < (s2 +12)/2,s2 < |s|3+ 1 ands? < |7|3 + 1.
Similarly, it follows that if 4M§—3/n1/2 < 1, we have

(8.34) I < Calls B+ 1113 4 11,

whereC is another finite constant depending only d@n§.
Combining (8.22), (8.25), (8.33) and (8.34) witly = C1 + C», we see that
under the assumptiomds —3/n1/2 <1,

(8.35) |E(F(8,/nY?) — F(Y))| < Can™Y2[Is >+ 1113 + 11.

Enlarging the constan@s if necessary, we fina~lly see that this is also the case if
AMs—3/n%? > 1. [Use the trivial fact thakE (F (S, /n%/?) — F(Y/))| < 2.]
By independence we obviously have

|n,1(s, 1) — Pn,2(s, 1)
(8.36) = | E(e/*nOrtitenG2)| . |E(F(S,/nY?) — F(Y,))]
<|E(F(8,/n"?) = F(¥)|.
Thus, (8.35) and (8.36) imply

(Ingn)Z n®
Iy1< 4C3n‘1/2/ (/ (s3+13+1) dz) ds = 0(n~Y?* (logn)?),
0 0

which is of orderO (n=Y4) = 0(p; /%), provided 0< 7 < 1/16. Thus, (8.20)
holds fork =1 withy =1/2if0 <7 < 1/16.

Proof of (8.20)whenk =2. LetA, = Z’;”zl X, j/nY? andU, = §,/n'/? —
A, wherek, < n will be specified later. Then
Pn.1(s, 1) = E(exisl| Qn (A + U +itf (A, + Up) +isa, Gy + ita), G2),
and we also define
n,1(s,1) = E (exp[is] Qn (A)I? + 2i8(0, (A,),
0 (Un)) +itf(Ay 4 Uy) +isa, G1 + it G2]).
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Then, sincge’* — 1| < |x|, we have because of (8.3),

160.1(5. 1) — Gp.a(s. 1) < E(|SI2n @I _ 1))
(8.37

< IsIE(1Qn(Un)I?) < |s|E<||5fn,1||2>(1— k;)
Next observe that
(Bn.1(s. D12 = |E(E ()1 80) [?) exp—a,%s? — ) °1?)
(8.38) < E(|E(¢--)1A)])
= E(|E(exp{2iS(0,(An). Qu(Un) +itf U} AL) ),

where(- - -) = exp(is|| @ (A% + 2iS(Qn (An), Qn(Un)) +itf (A + Up)). Thus,
if U, is an independent copy @f, which is also independent df,,, we readily
obtain that

(839) |$n’l(s’ t)lz < E(@ZiS(Qn(An)sQn(U;lk»-i—itf(U:))’

whereU;* = U, — U, is the symmetrization alf,.
Denoting the distribution 00, (A,,) by w,, we have

E(exp{2iS(Qn(An), Qn(U)) +itf(UN)})

840) = [ Elexpl2is(0,U). x) +itf U dyua(x)
= fH[E(cos[<2s/n1/2><Qn<5f:;>, xX)+ @ /nYA FEOHN] T dpn (),

whereX* = X, 1 — X, is the symmetrization of, 1.
Now for eachx € H,

E(cod(2s/nY3)(Qn(X}), x) + (t/n?) £ (X))
<1 1E((25/nY?)(0u(X2). x) + (t/nY?) F(XD)?)
+ §E(12s/nY2(Qu(X). x) + (/02 F (X))
<1—(t2/@n)E(F2X0) + 33t/ n¥ D E(1 £ (X)F)
+ (s 13/n¥AE(1Qn (XD 1P I1x )13
<1—(®/mE(f2Xn0) + M (112 +8431x1131s1%) /02,

where we first have used thaQ,(X¥),x) and f(X*) are uncorrelated by
our choice ofw, and then relation (8.2), along with the convexity of the
functionu — |ul3.
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If4AMs—3/nY? < 1sothatE (f%(X,.1)) > 82/2, we have fol|x|| < |t|/(2s]gn),
E(cod(2s/n"?)(0n (X)), x) + (t/n*?) f (X))
(8.41) <1-128%/(2n) + 128(1113/n¥? M
1— 1252/ (4n),

provided|s| < (3/5128%n/2/ M.
Combining (8.37) with (8.39)—(8.41) and that-1x < ¢, we see that

6105, )| < |n.1(s, )]+ ISIE(I X 211D (L — kn /1)
< ISIE(I X1l (A =k /1)

(8.42) + (E(exp{2S(Qn(Ay), QUH) +itf(UH)) Y2
< ISIE(IXn,101%) (X = kn/n) + exp{—128%(n — k) /(8n)}

+ (P{I1Qu (AN = gn) Yt /s Y2,

if |#] < (3/512821nY2/M and|s| < (log p,)2.
Taking k, = n — [n/|t|¥?] — 1, we thus have by (8.3) and the Fuk—-Nagaev
inequality as given in [11] and sught that

105, )] < AsIM?3(1e| 72 4+ n=h) + exp(—128%1|~%/2/8)
+19- 2" M (It /s)"3q31Y 2n Y4
(8.43) + exp{—It/s1/ (T68E (| X, 11)
< As\M?3([e| 732 4 n 1) 4 expi—11|Y/252/8)
+ Cafls/11¥%n ™Y + exp{—Cs|t/51%)).

In the first inequality of (8.43) when we apply the Fuk—Nagaev inequality, we
use the fact that fod, », the ratio|t/s| > n?/(logp,)?, and thatE(||A,|) <
E(1S,15Y2/nV2 < MY3 < 00. Also, recall thatg, < 1+ +/8MY3/5 if n is
large enough.

As f(Y)), |10,(Y)]l, G1 andG3 are independent random variables, we readily
obtain for—oco < s, 1 < oo (assuming #5-3/nt/2 < 1),

|fn,2(5, )] < E(exp(itf (Y,))) = exp(—1*E(f2(X,,1)/2))
< exp(—t252/4),
which is for|¢| > 1 dominated by exjp-|7|1/282/8}. It thus follows that for large,
|n,1(s, 1) — Pn,2(s, 1)
(8.45) < Co(Isllr| %+ Isin™Y) + Crexp{—Calt|"/?)
+ Cals/11¥?n ™ 4 Caexpi—Cst/s[?),

(8.44)
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provided thats| < (logp,)2 andn® < |7| < (3/512)82nY/2/M .
The constant€; depend onV and$ only and are strictly positive and finite.
Integrating over the region related 1p », we havel, » = O (n~"?(logn)%).
Thus, (8.20) holds fok = 2 with y = 0.9t (say).

Proof of (8.20)whenk = 3,4. Recalling the definition o¥/,,, W,,, V,, andW,,
and that,, = (logp,) ™2, &, = (p, log p,) 1, we see that

l,3<2 / exp(—a2s2/2 — a! %12 /2) ds dt
Is|>(logpn)? J1€R
= exq_(IOQ :On)z/z) vV 27 p, 109 0y,

log o,

which is obviously of ordero(pn—l). A similar calculation shows finally that
Iya= o(pn_l), thereby completing the proof of Lemma 18]
(vi) Given (8.13) we now investigate the asymptotic behavior of

E[exp(=Apu W) I{V, < 2—¢e)puWy, W, > 0}].

We first show that we can remove the smoothing variablé;. Arguing as in the
proof of Lemma 14, we find that

E[exq_)\ann)I{Vn <@2- 8,/1/),0an, Wn > 0}]
> E[exp(—hpa W) {1 Qu (Y II? < (2= 267)0a W, }]
- P{anGl = g;l/ann’ Wn > O}’

where we haveP{«,G1 > &) p,W,, W, > 0} = o(p, 1) by Lemma 13. [Recall
thate) /o, — oo and use the fact that the densities of the random varidbles

normal(Q62, + e7) are uniformly bounded ]

Letg, 1 andg,. 2 be the (normal) densities gf(Y/) andW,,, respectively. Then,
using the inversion formula for densities, we see that

-~— ~ 2. — _
(8.46)  V2rlign1— gn2lleo =67, — (G5, +ap) P =0(p;?).

Let furtherv, be the distribution of] Q,,(Y,’l)||2. By independence of the variables
10, (Y |I2, f(Y)), andG2, we have then

E[exp(=Aon W) {1 Qn (Y17 < (2= 260 pa W }]

(8.47) o e
- f / XP(—Apu2)gn.2(2) dz dvn(x)
0 x/[(2—e})) pn]
and
E[exp(—2on f ED) {100 (YDII? < (2 2&)) pu f(Y))
©.48) [exp(—Apn f O T{I1Qn () ) onf (V) }]

o0 o0
- f f OXP(—Apn2)gn1(2) dz dvy(x).
0 x/[(2—€))) pn]
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Combining (8.46)—(8.48), we can infer that
E[exp(—Aoa W) I{IQu(YDII? < (2= 2¢)) pu W]
= E[exp(—2on f YD) {1 Qn (Y1 < (2= 26)) pu f (Y))}] + 0(p,2).
(vii) Next, observe that
E[exp(—Aon fF YD)V I{1Qn (Y117 < 200 f (Y))}]
— E[exp(—apon f YD) {1 Qn (YD I% < (2= 26)) pn f (Y)}]

(8.49)

x/[(2—2¢}) pn
_/ / eXP(—A0nz)gn,1(2) dzd vy (x)
x/(2,0n)

< 2(1 ooy lenal oo ELI QA1) o

=o(p, b).
By independence we have, for ady> 0,
E[exp(—Apn f(Y,)) ] 0n(Y)I? < 200 f (Y)}]
> eXp(—2LA)P{A < f(Y;)pu < 2A}P{I1Q, (V) II? < A},
which in turn via Markov’s inequality and (8.2) and (8.3) is greater than or equal
to
exp(—20A)P{A < f(Y))pn < 2A}/2,

if we chooseA = 8M?/3. The density functions of (Y/) are eventually uniformly
positive in a neigborhood of zero so that

(8.50)  liminf p, E[exp(—hpn f (YD) {1 Qn (VDI < 200 f (¥,)}] > O
and we can conclude that as~ oo,
(8.51) liminf £,/ E[exp(—ron f Y)T{I Qn (Y)I1Z < 200 f (V)] 2 1
(viii) Given n > 1, let ¥,’ be a Gaussian mean zero random vector which is
independent of, so that
LX) =LY +Y)),  n=1l

[Such a sequence exists since @gy — cov(Y,) is positive semidefinite, as can
easily be seen from the definition of these random vectors.]

Denoting the density function gf(Y;,) by g,, it follows that|| g, .1 — gn llocc = O,
which in turn by the independence ¢tY,,) andQ,(Y,)) and a slight modification
of (8.48) implies

E[exp(—pn f ED) {1 Cn (YD < 20, f (V)]

(8.52) o »
= E[exp(=ipn f Y)) I{I1Qu (Y1 < 200 f (Ya)}] + (0, ).
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Setting
va=ELfYOYVELPY? and Q/(x)=x —v,f(x), x€H,
if E[f2(Y/")]> 0, we obviously have

1Y l12 = 1100(Y)) + QLYY + fF(YDws + f(Y))al?,

where the variable®), (Y,), 0, (Y,)), f(Y,) and f(Y,) are independent. It thus
follows that

E —2onf CNVINY 0l < 200 f (Y
(6.53) [exp(—=2pu f X)) I{IY, 17 < 200 f (V) }]

o0 o0
=/ / e Mt (21, 22)8n.3(22) dz2 801 (21) dz1,
-0 J =71

where Pn(21,22) = P{”Qn(Y,;) + Q;(Y,;/) + ziw, + ZZUnH2 < 2p,(z1 + 22)}
andg, 3 is the density off (Y,).
By the inequality of Anderson we have, for, zo € R,

Pn(z1,22) < P{10n(Y)) + QL (Y12 < 204 (21 + 22) )

< P{IQn (Y < 204(z1 + 22)},
which in combination with (8.53) implies

E[exp(—Aon fF X)) {I1Yall? < 200 f (Yi)}]

< E[exp(—xpn f X)) I{I1Qn(YDIIZ < 20 f (Yu)}]-
Recalling (8.50) and (8.52), we obtain the desired resuit.
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