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HIGH BREAKDOWN POINT ROBUST REGRESSION
WITH CENSORED DATA

BY MATÍAS SALIBIAN-BARRERA1 AND VÍCTOR J. YOHAI2

University of British Columbia and Universidad de Buenos Aires

In this paper, we propose a class of high breakdown point estimators for
the linear regression model when the response variable contains censored ob-
servations. These estimators are robust against high-leverage outliers and they
generalize the LMS (least median of squares), S, MM and τ -estimators for
linear regression. An important contribution of this paper is that we can de-
fine consistent estimators using a bounded loss function (or equivalently, a re-
descending score function). Since the calculation of these estimators can be
computationally costly, we propose an efficient algorithm to compute them.
We illustrate their use on an example and present simulation studies that show
that these estimators also have good finite sample properties.

1. Introduction. Consider the linear regression model

yi = β ′
0xi + ui, i = 1, . . . , n,(1.1)

where ui are i.i.d. errors, and the covariates xi ∈ R
p are independent from the

errors. When there is an intercept the first component of xi is set to 1. In this paper,
we study the problem of robust estimation of β0 when the response variable is
censored. Miller [12] studied least squares estimators (LS) for censored responses.
He proposed to modify the classical LS estimator

β̂n = arg min
β∈Rp

n∑
i=1

(yi − β ′xi )
2 = arg min

β∈Rp

EFnβ
[u2],(1.2)

replacing the empirical distribution of the residuals Fnβ with the corresponding
Kaplan–Meier (KM) estimator F ∗

nβ (Kaplan and Meier [9]). Unfortunately, the re-

sulting estimator is not consistent in general and the iterative algorithm to compute
it may have several or no solutions.
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Buckley and James [2] studied a different extension of LS to censored response
variables by modifying the LS scores equations

n∑
i=1

(yi − β̂ ′
nxi )xi = 0,(1.3)

using a conditional distribution approach. This proposal replaces censored resid-
uals by their estimated conditional expectation given that the response is larger
than the recorded (censored) value. The conditional expectation is estimated using
F ∗

nβ̂n

. James and Smith [7] and Lai and Ying [10] showed that this estimator is

consistent.
A different approach is proposed by Stute [19, 20] and Sellero, Manteiga and

Van Keilegom [18]. They propose to apply Kaplan–Meyer to the responses instead
to the residuals. The shortcomings of this approach is that they require stronger
assumptions on the censoring variable and that the proposed estimates are not re-
gression equivariant.

In recent years there has been some interest in extending robust regression
estimators to the case of censored response variables. Ritov [13] studied a gen-
eralization of Bukley and James’ proposal for robust estimators. He considered
monotone nondecreasing score functions ψ (that correspond to unbounded loss
functions ρ) and showed that under certain regularity conditions there exists a se-
quence of

√
n-consistent solutions to the estimating equations. This sequence is

also asymptotically normal. Unfortunately, since these estimators are based on an
unbounded loss function ρ they are not robust against high-leverage outliers. More
recently, Lai and Ying [11] extended the conditional expectation approach of Buk-
ley and James to M-regression estimators for censored and truncated data. Their
proposal also requires a monotone score function.

If we allow for a redescending score function ψ (equivalently, a bounded loss
function ρ), then the estimating equations may have several solutions with differ-
ent robustness properties. Moreover, if we define a robust estimator as the solu-
tion to a minimization problem similar to (1.2) but replacing the squared residuals
with ρ(u) for a bounded loss function ρ, then this estimator may not be consistent
(Lai and Ying [10, 11]). Hence, unlike in the uncensored regression model, we do
not have a way to identify which solutions of the redescending score equations are
not affected by the outliers.

In this paper, we extend the approach of Bukley and James and Ritov to
M-estimators with bounded loss functions ρ. We achieve this by proposing
an estimator that is the solution to a minimization problem that has a con-
sistent and robust solution. In particular, we obtain extensions of the LMS
(see Rousseeuw [14]), S (see Rousseeuw and Yohai [16]), MM-estimators (see
Yohai [22]) and τ -estimators (see Zamar and Yohai [23]). We show that these es-
timators are Fisher and

√
n-consistent, asymptotically normal, and that they have

high breakdown point.



120 M. SALIBIAN-BARRERA AND V. J. YOHAI

It is important to realize that when there are censored observations the break-
down point of an estimator maybe much lower than in the uncensored case. For ex-
ample, in the location model the worst contamination occurs when all the censored
observations are between the outliers and the “good” noncensored points. Suppose
that we have a fraction ε of outliers going to +∞ and a proportion λ of censored
observations. Since the KM estimator distributes the mass of the censored obser-
vations among the noncensored points to their right (Efron [4]), in this case the
mass given to the outliers by the KM estimators will be γ = λ + ε. Consequently,
the sample median will not break if γ < 1/2, or equivalently, if ε < 1/2 − λ = η.
It follows that the breakdown point of the median is equal to η, which is less than
1/2 when there are censored observations.

The rest of this paper is organized as follows. Section 2 contains our main def-
initions. The robustness properties of our proposal are discussed in Section 3 and
their asymptotic properties in Section 4. In Section 5, we present an algorithm to
compute these estimators. An example with real-life data is given in Section 6 and
the results of a Monte Carlo experiment are discussed in Section 7. The proofs of
the theorems are given in the Appendix while those for the lemmas can be found
in a technical report by Salibian-Barrera and Yohai [17].

2. Robust estimators. Consider the linear regression model (1.1). We assume
that the sample may be right-censored, that is, there are unobservable random
variables c1, . . . , cn independent from the errors ui ’s such that we observe y∗

i =
min(yi, ci) for i = 1, . . . , n. In other words, the observed data is zi = (y∗

i ,x′
i , δi)

′,
i = 1, . . . , n, where δi = I {yi ≤ ci}, and I {A} is the indicator function of the
event A.

When the scale of the residuals is known, regression M-estimators for uncen-
sored observations are defined by

β̂n = arg min
β∈Rp

1

n

n∑
i=1

ρ(ri(β)) = arg min
β∈Rp

EFnβ
[ρ(u)],(2.1)

where Fnβ is the empirical distribution of the residuals ri(β) = yi − β ′xi , and
ρ : R → R

+ is a function satisfying:

P1. ρ(0) = 0 and ρ is continuous at 0.
P2. ρ(−u) = ρ(u) for u > 0.
P3. ρ is monotone nondecreasing on u > 0.
P4. supu ρ(u) = a < +∞.

(See Huber [6].) If ψ(u) = ∂ρ(u)/∂u then the estimator β̂n also satisfies the fol-
lowing vector equation:

1

n

n∑
i=1

ψ(ri(β))xi = EHnβ
[ψ(u)x] = 0,(2.2)
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where Hnβ is the empirical distribution of the vectors (ri(β),x′
i )

′ ∈ R
p+1, i =

1, . . . , n.
Since not all the residuals ri(β) are observed in the presence of censoring,

we can define the censored residuals by r∗
i (β) = y∗

i − β ′xi . Note that r∗
i (β) =

min(ri(β), ci − β ′xi ), and therefore we can think of the r∗
i (β) as censored obser-

vations of ri(β) with censoring variables ci − β ′xi , i = 1, . . . , n. Then, in the case
of a censored response variable, one way to generalize (2.1) is to replace it by

β̂n = arg min
β∈Rp

1

n

n∑
i=1

E[ρ(ri(β))|zi] = arg min
β∈Rp

1

n

n∑
i=1

EFβ
[ρ(u)|wi (β)],(2.3)

where Fβ is the distribution of the residuals r(β), wi (β) = (r∗
i (β), δi) and

EFβ
(ρ(u)|wi (β)) =

⎧⎨⎩
ρ(r∗

i (β)), if δi = 1,∫ ∞
r∗
i (β)

ρ(u) dFβ(u)/[1 − Fβ(r∗
i (β))], if δi = 0.

Intuitively, to obtain (2.3) from (2.1), for each censored observation we replace
the term ρ(ri(β)) in (2.1) by the conditional expectation of ρ(u) given that the
(actual but unobserved) residual is larger than or equal to the observed censored
residual r∗

i (β).
The score equations in (2.2) can also be similarly modified to obtain

1

n

n∑
i=1

EFβ
[ψ(u)|wi(β)]xi = 0.(2.4)

Since the distribution of the residuals Fβ in (2.3) and (2.4) is unknown, we can
estimate it with the Kaplan–Meier estimator F ∗

nβ based on r∗
i (β).

To guarantee consistency of the estimator defined by

β̂n = arg min
β∈Rp

1

n

n∑
i=1

EF ∗
nβ

[ρ(u)|wi(β)](2.5)

we need that F ∗
nβ be consistent to Fβ for all β . Let F and D be the distribution

functions of the errors ui and censoring variables ci , i = 1, . . . , n, respectively.
Let τF = inf{u :F(u) = 1} and let τD be defined similarly. In what follows we will
assume that:

R1. τF < τD , or τF = τD = ∞, or τF = τD and τF is a continuity point of F .
R2. F and D do not have jumps in common.

Under these conditions, a sufficient condition for the KM estimator to be consistent
is the independence between the uncensored variables and the censoring times
(see, e.g., Breslow and Crowley [1]). When β = β0 we have ri(β0) = ui which
are independent from the corresponding censoring times ci − β ′

0xi because we
have assumed that the errors are independent from the ci ’s and the xi ’s. However,
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for β 	= β0 it is not generally true that ri(β) is independent from ci − β ′xi , i =
1, . . . , n. Hence, we can only guarantee the consistency of F ∗

nβ to Fβ when β = β0.
Therefore, the estimator defined in (2.5) may not be consistent (Lai and Ying [10,
11]).

On the other hand, note that the estimator β̂n defined as the solution to

1

n

n∑
i=1

EF ∗
nβ

[ψ(u)|wi(β)]xi = 0,(2.6)

is Fisher consistent. In fact, F ∗
nβ0

→ Fβ0
and therefore

1

n

n∑
i=1

EF ∗
nβ0

[ψ(u)|wi(β0)]xi → EH0(ψ(u)x) = 0,

where H0 is the joint distribution of (u,x′)′. It is important to note that, unlike in
the uncensored regression case, equations (2.5) and (2.6) are not equivalent: we
cannot obtain (2.6) by differentiating (2.5) because F ∗

nβ depends on β .
M-estimators defined by (2.6) were first proposed by Ritov [13] and further

studied by Lai and Ying [11] when ψ(u) is monotone (which corresponds to a con-
vex ρ). However, it is well known that M-estimators with monotone ψ functions
are only robust against low leverage outliers. As mentioned in the Introduction, the
main difficulty in using a redescending ψ in (2.6) is that in general this equation
may have several solutions with different robustness properties. Although in the
uncensored regression model this difficulty can be avoided by defining the estima-
tor as the solution to the minimization problem (2.1), the corresponding minimiza-
tion in the censored case (2.5) does not in general yield a consistent estimator. In
other words, (2.5) cannot be used to select a consistent solution of (2.6). For this
reason, in the next subsection we will define robust M-estimators as the solution
of a minimization problem using a bounded loss function ρ that has a consistent
sequence of solutions.

2.1. Consistent M-estimators. First note that to obtain scale equivariant re-
gression estimators, we need to standardize the residuals in the estimating equa-
tions using a robust error scale estimator sn.

Let ρ : R → R
+ satisfy regularity conditions P1–P4 above. For each β and γ

in R
p define

Cn(β,γ ) = 1

n

n∑
i=1

EF ∗
nβ

[
ρ

(
u − γ ′xi

sn

)∣∣∣wi (β)

]
,(2.7)

where sn is a robust scale estimator of the residuals. For each β ∈ R
p let

γ̂ n(β) = arg min
γ∈Rp

Cn(β,γ ).(2.8)
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Note that γ̂ n(β) can be considered an M-estimator of regression of the residuals
ri(β) on the covariates xi . Since F ∗

n,β0
is a consistent estimator of Fβ0

, the distri-
bution of the ui’s, and since the errors are independent of the xi ’s, it is reasonable
to expect that γ̂ n(β0) → 0. This can be formally proved with similar arguments
to those used in the proof of Theorem 5 below. Therefore, we define an estimator
of β0 by the equation

γ̂ n(β̂n) = 0.(2.9)

To avoid existence problems, we can alternatively define β̂n as

β̂n = arg min
β∈Rp

[γ̂ n(β)′Anγ̂ n(β)],(2.10)

where An = An(x1, . . . ,xn) is any robust equivariant estimator of the covariance
matrix of the explanatory variables xi , 1 ≤ i ≤ n. The covariance matrix An is
needed to maintain the affine equivariance of the estimator.

As an illustration of the difference between using (2.5) and (2.9) to define a
robust estimator, in Figure 1 we plot ‖γ̂ n(β)‖ and the score equations (2.5) as a
function of β for a data set of n = 200 observations with β0 = 1.5 and a prob-
ability of censoring of approximately 32%. These data were generated following
the same model we used in our simulation study described in Section 7. Note that
although the score equation has two distinct solutions and only one is close to the
true value of β0 = 1.5, our proposed optimization problem has a unique minimum
and this minimum is close to β0. This definition may be considered an extension of
Ritov’s M-estimators for censored data to the case of bounded ρ functions. In par-
ticular, note that β̂n satisfies equation (2.6) with ψ(u) = ρ ′(u). It follows that this
estimator will have the same asymptotic properties as the estimators considered in
Ritov [13].

FIG. 1. Panel (a) shows an example where the score equations (2.5) have two roots with only one
of them close to β0 = 1.5 whereas panel (b) shows that, for the same data set, the objective function
of (2.10) has a unique minimum close to β0.
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2.2. S-estimators. The scale estimator sn in (2.7) may be chosen to be the
scale of the residuals of an initial (and scale-equivariant) estimator that does not
require a scale estimator itself. One class of estimates that satisfies this is the class
of S-estimators (Rousseeuw and Yohai [16]). We can extend this class of estimators
to the case of censored observations following the same principle as above, that
is, for each β we fit an S-estimate to the residuals r∗

i (β), and find the β whose
residuals have the “smallest” S-estimator (i.e., the one with the smallest norm).

Let ρ1 satisfy regularity conditions P1–P4 and let b = EF [ρ1(u)] where F is
the distribution of the errors ui in (1.1). Define the M-scale Sn(β,γ ) by

1

n

n∑
i=1

EF ∗
nβ

[
ρ1

(
u − γ ′xi

Sn(β,γ )

)∣∣∣wi(β)

]
= b(2.11)

and let

γ̂ n(β) = arg min
γ∈Rp

Sn(β,γ ).(2.12)

Note that γ̂ n(β) is the S-estimator of regression of the residuals (r∗
i (β),x′

i )
′,

i = 1, . . . , n. We define the S-regression estimator for censored responses as the
vector β̃n such that

γ̂ n(β̃n) = 0.(2.13)

As before, to avoid existence problems, the following definition is also natural:

β̃n = arg min
β∈Rp

[γ̂ n(β)′Anγ̂ n(β)],

where An = An(x1, . . . ,xn) is any robust equivariant estimator of the covariance
matrix of the covariates xi .

A robust residual scale estimate sn can be defined by

sn = Sn(β̃n, γ̂ n(β̃n)).(2.14)

In particular, we can obtain a consistent version of the LMS using as ρ1 a jump
function

ρ1(u) =
{

0, if |u| < 1,
1, if |u| ≥ 1,

(2.15)

and b = 1/2 in equation (2.11) above.
In Section 3, we will show that the choice b = supu ρ1(u)/2 yields regression

estimators with high breakdown point. However, we know from the uncensored
case that S-estimators cannot combine high breakdown point with high efficiency
for normal errors (see Hössjer [5]). To overcome this problem, in the next sub-
section we will extend to the censored case a class of estimators that can achieve
simultaneous high efficiency and high breakdown point.
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2.3. MM-estimators. Yohai [22] proposed a class of estimators, called MM-
estimators, that simultaneously have breakdown point 50% and high efficiency for
normal errors. In this subsection, we extend this class of estimators to the case of
censored responses.

Consider two functions ρ1 and ρ2 that satisfy the regularity conditions P1–P4.
Moreover, assume that ρ2(u) ≤ ρ1(u) for all u and that supu ρ2(u) = supu ρ1(u).
Let β̃n and sn be the S-regression and S-scale estimators calculated as in (2.13)
and (2.14), respectively. For each γ ∈ R

p define R(γ ) as

R(γ ) = 1

n

n∑
i=1

EF ∗
nβ̃n

[
ρ2

(
u − γ ′xi

sn

)∣∣∣wi(β̃n)

]
(2.16)

and let γ̃ n be a local minimum of R(·) such that R(γ̃ n) ≤ R(0). The MM-estimator
β̂n for censored regression is defined by

β̂n = β̃n + γ̃ n.(2.17)

The motivation for the definition in (2.17) is as follows. We improve the initial
S-estimator β̃n by fitting an efficient M-estimator to the residuals of β̃n. The re-
sulting M-estimate γ̃ n is the required correction. Expanding the conditional ex-
pectations in (2.16) we obtain

R(γ ) = 1

n

n∑
i=1

[
δiρ2

(
ri(β̃n) − γ ′xi

sn

)

+ (1 − δi)

1 − F ∗
nβ̃n

(ri(β̃n))
(2.18)

×
∫ ∞
ri (β̃n)

ρ2

(
u − γ ′xi

sn

)
dF ∗

nβ̃n
(u)

]
.

For each i such that δi = 0 let Mi = {j : rj (β̃n) > ri(β̃n), δj = 1}. Then, we have∫ ∞
ri (β̃n)

ρ2

(
u − γ ′xi

sn

)
dF ∗

nβ̃n

(u) = ∑
j∈Mi

ρ2

(
rj (β̃n) − γ ′xi

sn

)
πj(2.19)

and 1 − F ∗
nβ̃n

(ri(β̃n)) = ∑
j∈Mi

πj , where πj , j ∈ M = {j : δj = 1}, are the

probabilities given to the uncensored r∗
j (β̃n) by the KM estimator F ∗

nβ̃n

. For

i, j = 1, . . . , n let

πij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
πj

/(
n

∑
k∈Mi

πk

)
, if δi = 0 and j ∈ Mi ,

1/n, if δi = 1 and i = j ,
0, otherwise.

(2.20)
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Then, from (2.18) and (2.19) we have

R(γ ) =
n∑

i=1

n∑
j=1

ρ2

(
rj (β̃n) − γ ′xi

sn

)
πij .(2.21)

Since the πij ’s do not depend on γ , a local minimum of R(γ ) will satisfy

n∑
i=1

n∑
j=1

ρ′
2

(
rj (β̃n) − γ ′xi

sn

)
xiπij = 0.

Similarly to the uncensored case, this equation can be written as

n∑
i=1

n∑
j=1

wij

(
rj (β̃n) − x′

iγ
)
xi = 0,(2.22)

where

wij = ρ′
2((rj (β̃n) − γ ′xi )/sn)

((rj (β̃n) − γ ′xi )/sn)
πij .

Hence, a local minimum of R(γ ) is the weighted least squares estimator for the
points (ri(β̃n),xj ) with weights wij , i, j = 1, . . . , n. Equation (2.22) suggests that
an iterative reweighted least squares algorithm can be used to find a local minimum
of R(γ ). Furthermore, since we need to find a local minimum such that R(γ ) <

R(0), and reweighted least squares iterations reduce the objective function (see
Remark 1 to Lemma 8.3 in Huber [6], page 186) we can start this algorithm at
γ = 0.

2.4. τ -estimators. Another way to obtain estimators with high breakdown and
high efficiency for normal errors with censored responses, is to extend the class of
τ -estimators (Yohai and Zamar [23]). These estimators are based on an efficient
scale estimator, called τ -scale.

Let ρ1 : R → R
+ and ρ2 : R → R

+ satisfy conditions P1–P4, and let b =
EF (ρ1). Moreover, to obtain consistent estimators, we will assume that ρ1 and ρ2
satisfy:

P5. ρi , i = 1,2, are continuous, and if 0 ≤ v < w with ρ2(w) < supu ρ2(u) then
ρ2(v) < ρ2(w).

P6. 2ρ2(u) − ρ′
2(u)u ≥ 0.

Given a sample u1, . . . , un let sn be the solution of

1

n

n∑
i=1

ρ1(ui/sn) = b
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and define the τ -scale as

τ 2
n = s2

n

1

n

n∑
i=1

ρ2(ui/sn).

The extension of the τ -estimators for censored data follows the same lines as the
one for S-estimators but using a τ -scale instead of an S-scale.

More specifically, let Sn(β,γ ) be as in (2.11) and define τn(β,γ ) by

τn(β,γ )2 = Sn(β,γ )2 1

n

n∑
i=1

EF ∗
nβ

[
ρ2

(
u − γ ′xi

Sn(β,γ )

)∣∣∣wi(β)

]
.(2.23)

Let

γ̂ n(β) = arg min
γ∈Rp

τn(β,γ )(2.24)

and define the τ -estimator β̂n as in (2.9) or (2.10).

2.5. Alternative representation. In this section, we show an alternative way
of writing the estimating equations that define our estimators for censored data.
This alternative representation is most useful when computing these estimators for
non-smooth functions ρ(u) (e.g., the least median of squares—LMS). We will also
use this representation in our proofs in the Appendix. This approach also lets us
understand better the connection between the estimators defined in the previous
sections and their uncensored counterparts.

Let r1, . . . , rn be a random sample from a distribution F , and let c1, . . . , cn

be unobservable censoring variables independent from the ri’s. Suppose that we
observe r∗

i = min(ri, ci) and let δi = I {ri ≤ ci} where I {A} is the indicator func-
tion of the event A. The Kaplan–Meier estimator of F assigns positive weights
only to noncensored observations. Furthermore, the self-consistency property of
the Kaplan–Meier estimator (Efron [4]) implies that, if πj is the probability as-
signed to r∗

j for δj = 1, then

πj = 1

n
+ ∑

r∗
j >r∗

i ,δi=0

πij ,(2.25)

where the πij ’s are given by (2.20). Observe that πij can be interpreted as the
proportion of the mass from the censored ith observation that is assigned to the
j th point. Note that the mass 1/n of each censored observation r∗

i is distributed
among all the uncensored r∗

j > r∗
i with δj = 1 proportionally to πj .

Suppose now that r∗
i = r∗

i (β) for 1 ≤ i ≤ n are residuals for some vector of
regression parameters β , let xi , 1 ≤ i ≤ n, be the corresponding vectors of covari-
ates and call πβ,ij the values given by (2.20). The censored residual sample can
be written as z1 = (r∗

1 (β), δ1,x′
1)

′, . . . , zn = (r∗
n(β), δn,x′

n)
′. Consider the discrete



128 M. SALIBIAN-BARRERA AND V. J. YOHAI

distribution function H ∗
nβ that assigns mass πβ,ij to the point (r∗

j (β),xi). Follow-
ing the same arguments leading to (2.21) it is easy to show that for any function
g : R × R

p → R we have

1

n

n∑
i=1

EF ∗
nβ

[g(u,xi)|zi] =
n∑

i=1

n∑
j=1

g(r∗
j (β),xi)πβ,ij = EH ∗

nβ
[g(u,x)].(2.26)

Then, Cn(β,γ ) in (2.7) can be written as

Cn(β,γ ) = EH ∗
n,β

[
ρ

(
u − γ ′x

sn

)]
.

This formula simplifies some computations. For example, consider the jump func-
tion ρ defined in (2.15) and the solution sn to EH ∗

nβ
[ρ(u/sn)] = 1/2. Noting that

the marginal distribution of the first coordinate of H ∗
nβ is F ∗

nβ , we have that

sn = median
H ∗

nβ

(|u|) = median
F ∗

nβ

(|u|),

and thus iterative algorithms are not required.
The following theorem shows that H ∗

nβ is consistent to the true joint distribu-
tion function H(u,x) = F(u)G(x) when β = β0. Moreover, Theorem A.1 in the

Appendix, shows that if βn
P−→β0, then H ∗

nβn

P−→H(u,x).

THEOREM 1. Let (y∗
i ,xi , δi), i = 1, . . . , n, be observations from a censored

linear regression model as in Section 2, and assume that the errors and censor-
ing variables satisfy R1 and R2 on page 7. Let H ∗

nβ be defined as above. Then
H ∗

nβ0
(u,x) → H(u,x) a.s.

3. Breakdown point. In general, for a sample Zn of size n, the finite-sample
breakdown point (Donoho and Huber [3]) of an estimator Tn = Tn(Zn) is defined
as

ε∗
n(Tn,Zn) = min

1≤k≤n
{k/n : sup‖Tn(Z∗

k,n) − Tn(Zn)‖ = ∞},

where the supremum is taken over all possible samples Z∗
k,n which are obtained by

replacing k observations from Zn with arbitrary values and ‖T‖ is the L2 norm.
Let Zn = (z1, . . . , zn) be a sample from a censored linear regression model,

where zi = (y∗
i ,xi , δi), xi ∈ Rp . Assume that the rank of {x1, . . . ,xn} is p and let

q = max‖θ‖=1 #{i : θ ′xi = 0}. Let m be the number of censored observations in the
sample, m = ∑n

i=1 δi . The following theorems show that a lower bound for the
breakdown point of S-, MM- and τ -regression estimators is

γ = k0/n,(3.1)
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where

k0 = min
(
n

(
1 − b

a

)
− q − m,n

b

a
− m

)
,(3.2)

b is the right-hand side of equation (2.11) and a = supu ρ(u).

THEOREM 2 (Breakdown point of S-estimators). Let S be a scale estimat-
ing functional based on a function ρ satisfying P1–P4. Let β̂n be the S-estimator
defined in Section 2.2, then

ε∗
n(β̂n,Z) ≥ γ.(3.3)

THEOREM 3 (Breakdown point of MM-estimators). Let β̂n be the MM esti-
mator defined in Section 2.3 with functions ρ1 and ρ2 satisfying P1–P4, ρ2 ≤ ρ1

and a = supρ2 = supρ1. Then ε∗
n(β̂n,Z) ≥ γ.

The following theorem is proved in Salibian-Barrera and Yohai [17].

THEOREM 4 (Breakdown point of τ -estimators). Let β̂n be the τ -estimator
defined in Section 2.4 with loss functions ρ1 and ρ2 satisfying P1–P6. Then
ε∗
n(β̂n,Z) ≥ γ.

Note that the lower bound in (3.1) is maximized when b/a = (1 − q/n)/2. The
smallest possible value of q is p − 1, and in this case, the sample is said to be in
general position (Rousseeuw and Leroy [15]). Using the optimal b/a we have

ε∗
n(β̂n,Zn) ≥ 1

2

(
n − p + 1 − 2m

n

)
.

Note that when n → ∞ the right-hand side converges to 1/2 − λ, where λ is the
probability of censoring. This is in agreement with our discussion in the Introduc-
tion, where we mention that the breakdown point of the median may be as small
as 1/2 − λ when there are censored observations. Although in linear regression
models with uncensored response variables it is possible to obtain robust regres-
sion estimators with asymptotic breakdown point of 0.5, we believe that the loss
in breakdown-point observed in the censored case is due to the use of the Kaplan–
Meyer estimator that may convert censored observations into outliers. We conjec-
ture that this loss cannot be to reduced, at least when the estimate is defined using
the Kaplan–Meyer estimate.

4. Asymptotic properties. The next theorem shows a property related to the
consistency of the S-estimator defined in Section 2.2.
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THEOREM 5. Let ρ satisfy regularity conditions P1–P4. Let the errors
u and covariates x in the linear model (1.1) have joint distribution function
H0(u,x) = F0(u)G(x) such that F0(u) is symmetric and has a unimodal den-
sity, and G(β ′x 	= 0) = t > b/a for all β ∈ R

p . Assume that R1 and R2 on page 7
hold, and let γ n(β0) = arg minγ Sn(β0,γ ), where Sn(β,γ ) is defined in (2.11).

Then γ n(β0)
a.s.−→

n→∞ 0.

The same kind of arguments used in the proof of Theorem 5 can be used to prove
similar results for MM-estimators as defined in Section 2.3. Note that a complete
proof of consistency would require to show that if β 	= β0 then ‖γ̂ n(β)‖ remains
asymptotically away from zero. We have not been able to prove this. However, in
all our numerical experiments this property seems to hold.

We can nonetheless prove the local consistency and asymptotic normality of
the M-estimates defined in Section 2.1. The proof is based on Theorem 5.1 in
Ritov [13] where the author studies M-estimates for censored regression which
solve (2.6). Unfortunately, showing that there exists a sequence of consistent solu-
tions of this equation seems to be very difficult. However, it can be shown that
there exists a sequence βn of approximate solutions to this equation which is√

n-consistent and asymptotically normal. More precisely, under some regularity
conditions Ritov [13] shows that there exists a sequence βn such that

1

n1/2

n∑
i=1

EF ∗
nβn

[ψ(u)|wi(βn)]xi
P−→0(4.1)

and such that
√

n(βn − β0)
D−→N(0,A−1

ψ BψAψ) where

Aψ =
∫

E(xx′|c − β ′
0x ≥ u)Wψ(u)Wψ0

(u)P (c − β ′
0x ≥ u)dF0(u),(4.2)

where c is the censoring variable,

Wψ(u) = ψ(u) −
∫ ∞
u ψ(t) dF0(t)

1 − F0(u)
,

ψ0(u) = −f ′
0(u)/f0(u) and

Bψ =
∫

E(xx′|c − β ′
0x ≥ u)W 2

ψ(u)P (c − β ′
0x ≥ u)dF0(u).(4.3)

The following theorem shows a similar result for the estimates defined by (2.9).
To simplify the proofs we will only consider the case where the error scale σ is
known.

THEOREM 6. Assume that:
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1. ρ satisfies P1, P2 and P3 and P4 and is three times continuously differen-
tiable with bounded derivatives. Moreover, there exists c0 such that ρ(c0) =
maxu ρ(u) and P(min(y, c)−β ′x < c0) < 1 for all β in a neighborhood of β0;

2. the errors ui have a symmetric and a strictly unimodal density f0 with finite

information for location, that is,
∫ ∞
−∞(

f ′
0(u)

f0(u0)
)2f0(u0) < ∞;

3. the vector of explanatory variables x has compact support; and
4. the matrix A defined in (4.2) is nonsingular.

Then, there exists a sequence βn such that (i)
√

nγ n(βn)
P−→0 and (ii)

√
n(βn −

β0)
D−→N(0,A−1

ψ BψA−1
ψ ), where Aψ and Bψ are defined in (4.2) and (4.3), re-

spectively.

Consider a differentiable function ρ(u) satisfying P1–P4, and let ρ ′ = ψ

with ψ(0) = a0 > 0. For c > 0 let ρc(u) = (c/a0)ρ(u/c) and ψc(u) = ρ′
c(u) =

(1/a0)ψ(u/c). Then the functions ρc satisfy P1–P4 and limc→∞ ψc(u) = u =
ψ∗(u). It is possible to show that Aψc → Aψ∗ and Bψc → Bψ∗ . Therefore, when
c → ∞ the relative asymptotic efficiency of the proposed M-estimate with respect
to the Buckley and James estimate tends to 1. Choosing c large enough, this rel-
ative efficiency can be as close to 1 as desired. For example, this can be obtained
using ρ(u) = ρT (u) Tukey’s bi-square function with derivative

ψT (u) = u(1 − u2)2I (|u| ≤ 1),

where I (|u| ≤ 1) = 1 if |u| ≤ 1 and 0 otherwise.

5. Computing algorithm. Computing the estimators proposed in Section 2
requires solving a highly complex optimization problem. In this section, we
present an efficient algorithm to compute the S-estimators defined in Section 2.2.

We will follow a widely used strategy to approximate the solution of complex
optimization problems in robust statistics. This approach is based on generating a
large number N of candidate vectors β1, . . . ,βN . One way to generate these can-
didates is by drawing subsamples of size p from the data and adjusting them. The
estimator is then approximated by the best candidate β̂n. The number of candi-
dates N required to obtain a good approximation can be determined explicitly as
in the uncensored case (Rousseeuw and Leroy [15]). In other words, if β1, . . . ,βN

are the resampling candidates described above, the approximated estimator β̂n sat-
isfies β̂n = βk, where

γ̂ n(βk)
′Anγ̂ n(βk) = min

1≤j≤N
γ̂ n(βj )

′Anγ̂ n(βj ).

We now turn our attention to the calculation of γ̂ n(βj ) for each candidate βj .
Recall that this requires to solve the minimization problem given by (2.12). For
each βj consider a large number of candidates for γ and set γ̂ n(βj ) to be the
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best of these candidates. Note that for each fixed βj if βr is good approximation
to the true β , then the vector βr − βj is a natural candidates for γ̂ n(βj ). This
observation follows by noting that in this case the residuals ri(βj ) will follow a
linear regression model with coefficients β −βj .Then, we approximate γ̂ n(βj ) by
the vector βr − βj satisfying

Sn(βj ,βr − βj ) = min
1≤i≤N

Sn(βj ,βi − βj ),

where for each pair β,γ ∈ R
p , Sn(β,γ ) is the M-scale estimator defined in (2.11).

Note that, in principle, this algorithm requires finding N2 scales Sn(βj ,βi −
βj ), i, j = 1, . . . , n. However, this is not always necessary. Suppose that we have
already computed γ̂ n(βj ) for j = 1, . . . , i and let

κi = min
1≤j≤i

γ̂ n(βj )
′Anγ̂ n(βj ),

the best value of the objective function obtained so far. We will need to compute
γ̂ n(βi+1) only if

γ̂ n(βi+1)
′Anγ̂ n(βi+1) < κi.

Divide the set of candidates for γ̂ n(βi+1) into two sets: those with (βk −
β i+1)

′An(βk − βi+1) ≥ κi (call them γ 1, . . . ,γ N1
) and those with (βk −

β i+1)
′An(βk − β i+1) < κi (call them γ̃ 1, . . . , γ̃ N2

). Note that ‖γ̂ n(βi+1)‖ < κi

only if

min
1≤j≤N1

Sn(βi+1,γ j ) > min
1≤j≤N2

Sn(βi+1, γ̃ j ).

Hence, we first compute ω = min1≤j≤N2 Sn(βi+1, γ̃ j ). Then we compare each
Sn(βi+1,γ m) for m = 1, . . . ,N1 with ω. If for some m0, we find Sn(βi+1,γ m0

) <

ω then we stop and set κi+1 = κi . Since κi → 0 we expect E(N1) to decrease as
well. Our Monte Carlo experiments show that there is a substantial gain in speed
with this modified algorithm.

6. Example. Consider the Heart dataset analyzed in Kalbfleisch and Pren-
tice [8]. These data contain information on heart transplant recipients, including
their age and their survival times, which are censored in some cases. In Figure 2,
we plot Log (Survival time) versus Age for these patients. We indicate uncensored
cases with the symbol “1” and censored ones with “0”s. In the same figure, we
also show the fitted lines corresponding to our modified extensions of the LS and
MM-estimators. Note that the LS estimator is very much influenced by the early
death of two young patients, that can be considered outliers. We used small dia-
monds around these points to identify them on the plot. We also plot the same LS
fit with these two points removed. Note that this line is now close to the robust fit.
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FIG. 2. Heart transplant data. “1”s indicate deaths, “0”s indicate censored observations. The least
squares estimator seems to be influenced by the two young patients that die early in the study.

7. Monte Carlo study. To study the finite-sample properties of these estima-
tors we performed a Monte Carlo study for the simple regression model:

yi = α + βxi + ui, i = 1, . . . , n.

We considered 1,000 samples of size n = 100, independent normal errors ui ∼
N (0,1), random covariates xi ∼ N (0,1) independent from the errors, α = 0 and
β = 1.5. We used censoring random variables c1, . . . , cn that were sampled from
an independent random variable with distribution N (1,1). With these choices we
have P(δ = 0) = 0.32.

We included the consistent versions under censoring proposed in this paper
of the following estimators: the least squares estimator (LS), the least median
of squares (LMS), an S-estimator (S) with 50% breakdown point when there is
no censoring in the sample, an MM-estimator (MM) with 95% efficiency un-
der normal errors and no censoring, the L1-estimator (L1) [an M-estimator with
ψ(x) = sign(x)], and the GM estimator defined by

n∑
i=1

EF ∗
nβ

[
ψ1

(
u − α(β)

)|wβi

]
ψ2(xi − mx) = 0,

where ψ1(x) = ψ2(x) = sign(x), α(β) = median(F ∗
nβ) and mx = median(x1, . . . ,

xn). This is the analogous to the Mood–Brown estimator with breakdown point
1/4. Both the S- and the MM-estimators used ρ functions in the bisquare family.
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TABLE 1
MSEs without outliers

Estimator S LMS LS MM GM L1

MSE 0.060 0.164 0.019 0.027 0.046 0.025

The samples were contaminated with 10% of outliers (10 observations). These
10 observations were changed to the points (x0,mx0) where x0 was set at 1 and 10
(resulting in low and high leverage outliers resp.), and m ranged between 2 and 5.

In Table 1, we report the MSE for β when there are no outliers in the sample.
Tables 2 and 3 contain the MSE’s for β for the cases x0 = 1 and x0 = 10, respec-
tively. From Table 1, we see that, as expected, the most efficient estimator is the LS,
followed by the L1 and the MM with efficiencies of 76% and 70%, respectively.
For low leverage contaminations (Table 2), the two estimators that perform better,
from a maximum MSE point of view, are the L1 and the MM. These two estimators
have a similar behavior with a small advantage of the MM. The other estimators
are notably worse. Table 3 shows that for high-leverage outliers the MM estima-
tor had the smallest MSE, followed by the S-estimator. Not surprisingly, both the
LS and L1 estimators have noticeably worse MSEs than all the other estimators
considered here.

Based on these results, we may conclude that the MM-estimators have the best
overall performance.

APPENDIX: PROOFS

A.1. Consistency of H ∗
nβ0

.

PROOF OF THEOREM 1. Fix (a,v′)′ ∈ R
p+1 and note that H ∗

nβ0
(a,v) =

EH ∗
nβ0

[I (u ≤ a,x ≤ v)] where I (A) denotes the indicator function of the event A.

TABLE 2
MSEs with 10% of outliers at x0 = 1

Slopes

Estimator 2 2.5 3 3.5 4 4.5 5

S 0.10 0.27 0.38 0.30 0.20 0.13 0.10
LMS 0.14 0.30 0.54 0.69 0.79 0.76 0.78
LS 0.03 0.05 0.10 0.15 0.23 0.33 0.43
MM 0.04 0.11 0.17 0.18 0.18 0.19 0.20
GM 0.09 0.25 0.40 0.52 0.62 0.71 0.78
L1 0.07 0.16 0.20 0.21 0.21 0.21 0.21
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TABLE 3
MSEs with 10% of outliers at x0 = 10

Slopes

Estimator 2 2.5 3 3.5 4 4.5 5

S 0.25 0.50 0.34 0.20 0.11 0.08 0.10
LMS 0.31 0.45 0.58 0.65 0.49 0.40 0.38
LS 0.24 0.90 1.98 3.44 5.09 6.61 7.61
MM 0.23 0.45 0.30 0.17 0.08 0.06 0.07
GM 0.15 0.39 0.56 0.69 0.79 0.92 1.08
L1 0.25 0.93 2.04 3.59 5.63 8.08 11.03

Let u∗
i = y∗

i − β ′
0xi for i = 1, . . . , n. Using (2.26), we have

H ∗
nβ0

(a,v) = EH ∗
nβ0

[I (u ≤ a,x ≤ v)]

= 1

n

n∑
i=1

{δiI (u∗
i ≤ a,xi ≤ v)

+ (1 − δi)EF ∗
n,β0

[I (ui ≤ a,xi ≤ v)|ui > u∗
i ]}.

Adding and substracting

n∑
i=1

(1 − δi)EH [I (ui ≤ a,xi ≤ v)|ui > u∗
i ,xi]

we obtain

H ∗
nβ0

(a,v) − H(a,v)

= 1

n

n∑
i=1

[g̃(u∗
i ,xi ) − H(a,v)]

(A.1)

+ 1

n

n∑
i=1

[
(1 − δi)

(
EF ∗

n,β0
[g(ui,xi )|ui > u∗

i ]

− EH

(
g(ui,xi )|ui > u∗

i ,xi

))]
,

where

g̃(u∗
i ,xi) = δiI (u∗

i ≤ a,xi ≤ v) + (1 − δi)EH [I (ui ≤ a,xi ≤ v)|ui > u∗
i ,xi],

H denotes the joint distribution of the vector (x′, u)′ and g(u,x) = I (u ≤ a,x ≤ v).
Note that

g̃(u∗
i ,xi ) = E

(
I (ui ≤ a,xi ≤ v)|u∗

i ,xi , δi

)
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and therefore E[g̃(u∗
i ,xi)] = H(a,v).

Since g̃ is bounded, Kolmogorov’s law of large numbers yields

1

n

n∑
i=1

[g̃(u∗
i ,xi ) − H(a,v)] a.s.−→

n→∞ 0.

Moreover, note that since g(u,x) = I (u ≤ a)I (x ≤ v) we have

EF ∗
n,β0

[g(ui,xi)|ui > u∗
i ] = I (xi ≤ v)EF ∗

n,β0
[d(ui)|ui > u∗

i ],
where d(u) = I (u ≤ a). Also, because of the independence between u and x we
have EH(g(ui,xi)|ui > u∗

i ,xi) = I (xi ≤ v)EF (d(ui)|ui > u∗
i ). Hence, the second

term in (A.1) equals

1

n

n∑
i=1

(1 − δi)I (xi ≤ v)
(
EF ∗

n,β0
[d(ui)|ui > u∗

i ] − EF

(
d(ui)|ui > u∗

i

))
.

Thus, we only need to show that

sup
b∈R

∣∣EF ∗
n,β0

[d(u)|u > b] − EF [d(u)|u > b]∣∣ a.s.−→
n→∞ 0.(A.2)

First, note that we only need to consider the supremum over the set b ≤ a, since

EF ∗
n,β0

[d(u)|u > b] = EF [d(u)|u > b] = 0 for b > a.

Next, note that EF [d(u)|u > b] = (F (a) − F(b))/(1 − F(b)). Thus, we need to
bound

sup
b≤a

∣∣∣∣F ∗
n,β0

(a) − F ∗
n,β0

(b)

1 − F ∗
n,β0

(b)
− F(a) − F(b)

1 − F(b)

∣∣∣∣
= sup

b≤a

∣∣∣∣(F ∗
n,β0

(a) − F(a)) − (F ∗
n,β0

(b) − F(b))

(1 − F ∗
n,β0

(b))(1 − F(b))
(A.3)

+ F(a)(F ∗
n,β0

(b) − F(b)) + F(b)(F (a) − F ∗
n,β0

(a))

(1 − F ∗
n,β0

(b))(1 − F(b))

∣∣∣∣
≤ 4

supb |F ∗
n,β0

(b) − F(b)|
(1 − F ∗

n,β0
(a))(1 − F(a))

.

Since we are assuming R1 and R2 on page 7, Corollary 1.3 of Stute and Wang [21]
implies

lim
n→∞ sup

b

|F ∗
n,β0

(b) − F(b)| = 0 a.s.

This completes the proof. �



ROBUST CENSORED REGRESSION 137

THEOREM A.1. Let (y∗
i ,xi , δi), i = 1, . . . , n, be observations from a censored

linear regression model as in Section 2, and assume that the errors and censoring

variables satisfy R1 and R2 on page 7. Furthermore, assume that βn
P−→β0 and

let H ∗
nβ be defined as above. Then

H ∗
nβn

(u,x)
P−→H(u,x).

PROOF. The proof follows the same steps as that of the previous theorem re-
placing H ∗

nβ0
by H ∗

n,β̂n

. The only difference is that now we need to show that

sup
b

|F ∗
n,β̂n

(b) − F(b)| P−→
n→∞ 0.

Lemmas 7.1 and 7.2 in Ritov [13] show that

sup
b

|F ∗
n,β̂n

(b) − F(b)| ≤ Op(n−1/2) + O(‖β̂n − β0‖) = op(1),

because β̂n
P−→β0. �

A.2. Breakdown point of the S-estimator. Define the M-scale estimator
S(F ) for any arbitrary distribution function F by

S(F ) = inf{s > 0 :EF [ρ(x/s)] < b},(A.4)

where b ≥ 0 and ρ : R → R+ satisfies P1–P4 in Section 2. The following lemma is
needed to find the breakdown point of the S-estimators for censored observations.
Its proof can be found in Salibian-Barrera and Yohai [17].

LEMMA A.1. Let S(F ) be a scale estimator defined by (A.4) where ρ satisfies
properties P1–P4. Then we have:

(a) Given any K > 0, and C > b/a there exists K ′ such that if

PF {|x| > K ′} > C,(A.5)

then S(F ) > K .
(b) Given any M > 0 and C < b/a, there exist M ′ such that if

PF {|x| > M) < C,(A.6)

then S(F ) < M ′.

Given a distribution function H and a Borel set B , in the rest of the paper we
will denote by H(B) the probability of B under H , that is H(B) = PH(B).

PROOF OF THEOREM 2. Observe that Sn(β,γ ) can be defined by

EH ∗
n,β

(
ρ

(
(r − γ ′x)/Sn(β,γ )

)) = b,(A.7)
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and Sn(β,0) by

EF ∗
n,β

(ρ(r/Sn(β,0))) = b.(A.8)

Assume that (3.3) is not true. Then there exists a sequence of samples Z(j) =
(z(j)

1 , . . . , z(j)
n ), 1 ≤ j < ∞, z(j)

i = (y
∗(j)
i ,x(j)

i , δ
(j)
i ) such that each Z(j) differs

from Z in t observations where t satisfies t < k0, and such that if we call β(j)
n =

β̂n(Z
(j)), then

lim
j→∞

∥∥β(j)
n

∥∥ = ∞.(A.9)

Let γ j (β) denote the function γ (β) defined in (2.8) when the sample is Z(j).

We will show that (A.9) is not possible by proving that

lim
j→∞

∥∥γ j

(
β(j)

n

)∥∥ = ∞(A.10)

and that

sup
j

‖γ j (0)‖ < ∞.(A.11)

Let us start by proving (A.11). Assume that it is not true. Then without loss of
generality we can assume that

lim
j→∞‖γ j (0)‖ = ∞(A.12)

and that

lim
j→∞

γ j (0)

‖γ j (0)‖ = λ.(A.13)

We will show that this is not possible by proving that

lim
j→∞S(j)

n (0,γ j (0)) = ∞(A.14)

and

sup
j

S(j)
n (0,0) < ∞,(A.15)

where S
(j)
n (β,γ ) denotes the function Sn(β,γ ) when the sample is Z(j).

Let F
∗(j)
n,β,γ denote the distribution of r − γ ′x when (r,x) has distribution H ∗

n,β

and the sample is Z(j). Let

M = max
1≤i≤n

|y∗
i | + 1.(A.16)

Then the y
(j)∗′
i s in Z(j) that are neither contaminated nor censored will have ab-

solute value smaller than M . Moreover, F
∗(j)
n,0,0 gives at least mass 1/n to each of
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these points. Therefore, F ∗(j)
n,0,0(|y| < M) ≥ (n−m− t)/n. Since t < k0, using (3.2)

it follows that (n−m− t)/n > 1−b/a. Thus, from Lemma A.1(b) there exists M ′
such that S

(j)
n (0,0) < M ′ for all j , and (A.15) holds.

We now turn our attention to (A.14). Let ξi = |λ′xi |, 1 ≤ i ≤ n, where λ is
defined in (A.13), and let

ξ = min{ξi : ξi > 0}/2.(A.17)

Then, for all the elements of the original sample, except at most q , we have
|λ′xi | > ξ . All the contaminated samples Z(j) have at least n − q − m − t non-
censored observations from the original sample Z such that |λ′x(j)

i | > ξ. Then,
for j large enough, at least n − q − m − t observations in Z(j) satisfy∣∣y(j)

i − γ j (0)′xi

∣∣ ≥
∣∣∣∣‖γ j (0)‖

∣∣∣∣( γ j (0)

‖γ j (0)‖
)′

xi

∣∣∣∣ − M

∣∣∣∣.(A.18)

Fix K > 0 arbitrary and let K ′ be as in Lemma A.1(a) with C any real number
satisfying

h0

n
> C >

b

a
,(A.19)

where h0 is the smallest integer larger than nb/a. Since t < k0, by (3.2) we have
(n − q − m − t)/n > b/a, and then

(n − q − m − t)/n > C.(A.20)

Because of (A.12) and (A.13), we can always find j0 large enough so that the right-
hand side of (A.18) is larger than K ′ for all j > j0. Moreover, F

∗(j)
n,0,γ j (0) gives at

least mass 1/n to those residuals y
(j)
i − γ j (0)′xi . Hence, by (A.20), for j > j0 we

have

F
∗(j)
n,0,γ j (0)(|y| > K ′) ≥ (n − q − m − t)/n > C.

From Lemma A.1(a) it follows that S
(j)
n (0,γ j (0)) > K for all j > j0 and this

proves (A.14).
We now prove (A.10). Assume that it is not true. Then we would have

sup
j

∥∥γ j

(
β(j)

n

)∥∥ = L < ∞.(A.21)

To show that this is not possible we will prove that

lim
j→∞Sn

(
β(j)

n ,γ j

(
β(j)

n

)) = ∞(A.22)

and

sup
j

Sn

(
β(j)

n ,−β(j)
n

)
< ∞.(A.23)
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To show (A.23) let M be as in (A.16) and observe that there are at least n − m − t

observations in Z(j) with |y(j)∗
i | < M . It is easy to see that F

∗(j)

n,βn,−βn
gives mass

at least 1/n to these observations, and the proof follows as that of (A.15) above.
We will now prove (A.22). Without loss of generality assume that

lim
j→∞

β(j)
n

‖β(j)
n ‖ = λ.(A.24)

Let ξ be as defined in (A.17). Then for all the elements of the original sample,
except at most q , we have |λ′xi | > ξ . All the contaminated samples Z(j) have at
least n − q − m − t noncensored observations from the original sample Z with
|λ′x(j)

i | > ξ . Then, for j large enough, at least n − q − m − t observations in Z(j)

satisfy

∣∣y(j)
i − α(j)′xi

∣∣ ≥
∣∣∣∣‖β(j)

n ‖
∣∣∣∣( α(j)

‖β(j)
n ‖

)′
xi

∣∣∣∣ − M

∣∣∣∣,(A.25)

where α(j) = β(j)
n + γ j (β

(j)
n ). From (A.9), (A.21) and (A.24) it is easy to see that

limj→∞ α(j)/‖β(j)
n ‖ = λ. Observing that F

∗(j)

n,β
(j)
n ,γ (β

(j)
n )

gives at least mass 1/n to

these n − m − q − t residuals of the form y
(j)
i − α(j)′xi , and that the right-hand

side of (A.25) can be made arbitrarily large, the rest of the proof follows the same
lines as that of (A.14). �

A.3. Breakdown point of MM-estimators. The following theorem is needed
to find the breakdown point of MM-estimators when the response variable can be
censored.

THEOREM A.2. Let Z = (z1, . . . , zn) with zi = (y∗
i ,xi , δi) and xi ∈ Rp be a

sample from a censored linear regression model. Let β̂1n be any regression esti-
mator, and let F̂ ∗

n = F ∗
β1n,n the KM estimator of the corresponding residual distri-

bution. Let ρ1 and ρ2 two functions satisfying P1–P4, and such that ρ2 ≤ ρ1 and
a = supρ2 = supρ1. Define sn = S(F̂ ∗

n ), where S is a M-scale functional based
on ρ1 and 0 < b < a. Let β̂2n be another estimator satisfying

EH ∗
n

(
ρ2

((
u + (β̂1n − β̂2n)

′x
)
/sn

)) ≤ EH ∗
n
(ρ2(u/sn)).(A.26)

Assume that the rank of {x1, . . . ,xn} is p, let q = max‖θ‖=1 #{i : θ ′xi = 0} and
m = ∑n

i=1 δi . Then

ε∗
n(β̂2n,Z) ≥ min

(
ε∗
n(β̂1n,Z), (1 − b/a) − (q + m)/n, b/a − m/n

)
.(A.27)

PROOF. Let ε0 be the right-hand side of (A.27) and assume that the theorem
is not true. Then there exists a sequence of samples Z(j) = (z(j)

1 , . . . , z(j)
n ),1 ≤

j < ∞, z(j)
i = (y

∗(j)
i ,x(j)

i , δ
(j)
i ) such that each Z(j) differs from Z in t < ε0n
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observations and such that limj→∞ ‖β(j)
2n ‖ = ∞. Since t < ε∗

n(β̂1n,Z)n we have

supj ‖β̂(j)

1n ‖ < ∞. Hence, if we call γ
(j)
n = β1n(Z

(j)) − β2n(Z
(j)) then

lim
j→∞

∥∥γ (j)
n

∥∥ = ∞.(A.28)

Moreover, in all the samples Z(j),1 ≤ j ≤ n, there are at least n− t −m > (1−
b/a)n noncensored observations from the original sample. Since supj ‖β̂(j)

1n ‖ < ∞
we have that the residuals r∗

i (β
(j)
1n ) for these n − t − m observations remain

bounded uniformly in j . Let F̂
∗(j)
n be F̂ ∗

n when the sample is Z(j). Then it is

clear that F̂
∗(j)
n assigns probability at least 1/n to these residuals, and hence by

Lemma A.1(b) we have supj S(F̂
∗(j)
n ) = S+ < ∞. Without loss of generality as-

sume that

lim
j→∞

γ
(j)
n

‖γ (j)
n ‖

= λ.(A.29)

Let M = max1≤i≤n |y∗
i | + 1, δi = |λ′xi |,1 ≤ i ≤ n, and δ = min{δi > 0}/2. Note

that all the contaminated samples Z(j) have at least n − q − m − t non cen-
sored observations z(j)

i = (y
(j)
i ,x(j)

i , δ
(j)
i ) from the original sample Z which have

|λ′x(j)
i | > δ. Then, since for j large enough

∣∣y(j)
i − γ (j)′

n xi

∣∣ ≥
∣∣∣∣‖γ (j)

n ‖
∣∣∣∣( γ

(j)
n

‖γ (j)
n ‖

)′
xi

∣∣∣∣ − M

∣∣∣∣,(A.30)

by (A.29) and (A.28), there are at least n − q − m − t observations in Z(j) such
that |y(j)

i − γ
(j)′
n xi | → ∞. Since n0 = n − q − m − t > nb/a we can choose

bn/n0 < μ < a and let M = ρ−1
2 (μ). There exists a j0 sufficiently large such

that for j ≥ j0 these n0 observations satisfy∣∣y(j)
i − γ (j)′

n xi

∣∣/S+ > M.

Noting that the distribution function H ∗
n assigns at least mass 1/n to each of

these n0 observations, we can conclude that

EH ∗
n

(
ρ2

((
u + (

β̂
(j)

1n − β̂
(j)

2n

)′x)
/sn

))
>

n0

n
ρ2(M) >

n0

n
μ >

n0

n

bn

n0
= b.(A.31)

On the other hand, by the definition of sn we have

EH ∗
n
(ρ2(u/sn)) ≤ EH ∗

n
(ρ1(u/sn)) = b.(A.32)

Finally, note that (A.31) and (A.32) contradict (A.26). �

PROOF OF THEOREM 3. Follows immediately from Theorem A.2 �
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A.4. Consistency of the S-regression estimator. Some auxiliary results are
needed to prove our main result in this section (Theorem 5). The following lemma
is proved as Lemma 7 in Salibian-Barrera and Yohai [17].

LEMMA A.2. Let ρ satisfy regularity conditions P1–P4. Let Hn(u,x) →
F0(u)G0(x) = H0 a.s. where F0 is symmetric and has a unimodal density, and
G(β ′x 	= 0) ≥ t for all β ∈ R

p . Then for any s > 0 and any b∗ < ta there exists K

such that

lim
n→∞ inf‖β‖>K

EHn

(
ρ

(
(u − β ′x)/s

))
> b∗ a.s.

The next lemma is proved as Lemma 9 in Salibian-Barrera and Yohai [17].

LEMMA A.3. Let ρ satisfy regularity conditions P1–P4. Let Hn(u,x) →
F0(u)G0(x) = H0 a.s. where F0 is symmetric and has a unimodal density, and
G(β ′x 	= 0) > b/a for all β ∈ R

p . Let s0 be defined by EF0(ρ(u)/s0) = b. Then
given ε > 0 and K there exist s1 > s0 and b1 > b such that limn→∞ infε≤‖β‖≤K

EHn(ρ((u − β ′x)/s1) > b1.

The next lemma is proved as Lemma 10 in Salibian-Barrera and Yohai [17].

LEMMA A.4. Let ρ satisfy regularity conditions P1–P4. Let Hn(u,x) →
H0(u,x) = F0(u)G0(x) a.s. where F0 is symmetric and has a unimodal density,
and G(β ′x 	= 0) = t > b/a for all β ∈ R

p . Let s0 defined by EF0(ρ(u/s0)) = b,
then if s1 > s0 we have limn→∞ EHn(ρ(u/s1)) < b.

PROOF OF THEOREM 5. Observe that Sn(β0,γ ) is the value s satisfy-
ing EH ∗

n,β0
(ρ((y − γ ′x)/s)) = b. We know by Theorem 1 that H ∗

n,β0
(u,x) →

H0(u,x) = F0(u)G0(x) a.s. for all u and x. Define s0 by EH0(ρ(u/s0)) = b. Then
using Lemma A.2 with s = s0 + 1, we can find K such that

lim inf
n→∞ inf‖γ ‖>K

Sn(β0,γ ) ≥ s0 + 1 a.s.

Let ε > 0 be arbitrary. For this ε and the K found above, by Lemma A.3, we can
find s1 > s0 such that

lim inf
n→∞ inf

ε≤‖γ ‖≤K
Sn(β0,γ ) ≥ s1 a.s.

Take s2 such that s0 < s2 < min(s0 + 1, s1). By Lemma A.4 we have that
limn Sn(β0,0) ≤ s2 a.s. This implies that, with probability 1, there exists n0 such
that for all n ≥ n0 we have ‖γ n(β0)‖ < ε. This proves the theorem. �
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A.5. Asymptotic distribution. Some auxiliary results are needed to prove
Theorem 6. The following lemma is proved as Lemma 12 in Salibian-Barrera and
Yohai [17].

LEMMA A.5. Let Hn(u) with u ∈ R
p be a sequence of stochastic processes

such that, for each n and each element of the underlying probability space
where the processes are defined, Hn(u) is a distribution function. Assume that

Hn(u)
p−→H(u) for each u ∈ R

p , where H(u) is a distribution function on R
p .

Let g : Rp → R be bounded and continuous, then EHn[g(u)] P−→EH [g(u)].

The following lemma is proved as Lemma 14 in Salibian-Barrera and
Yohai [17].

LEMMA A.6. Let ρ satisfy regularity conditions P1–P4. Let Hn(u,x)
P−→

F0(u)G0(x) = H0 where F0 is symmetric and has a unimodal density, and
G(β ′x 	= 0) > t for all β ∈ R

p . Assume that t > EF0[ρ(u/σ)]/a where a =
supu ρ(u). For all ε > 0 there exists δ > 0 such that

lim
n→∞P

(
inf‖α‖>ε

Cn(βn,α) < EF0

(
ρ

(
u

σ

))
+ δ

)
= 0,

where Cn(β,α) = EH ∗
nβ

(ρ((u − α′x)/σ )).

PROOF OF THEOREM 6. Let

Cn(β,α) = 1

n

n∑
i=1

EF ∗
nβ

[
ρ

(
u − α′xi

σ

)∣∣∣wi(β)

]
= EH ∗

nβ

(
ρ

(
u − α′x

σ

))
,

Dn(β) = 1

nσ

n∑
i=1

EF ∗
nβ

[
ψ

(
u

σ

)
xi

∣∣∣wi (β)

]
= 1

σ
EH ∗

nβ

(
ψ

(
u

σ

))
,

Ln(β) = 1

nσ 2

n∑
i=1

EF ∗
nβ

[
ψ ′

(
u

σ

)
xix′

i

∣∣∣wi (β)

]
= 1

σ 2 EH ∗
nβ

(
ψ ′

(
u

σ

)
xx′

)
.

By Theorem 5.1 in Ritov [13], there exists a sequence βn such that

n1/2Dn(βn)
p−→0(A.33)

and n1/2(βn − β0)
D−→N (0,A−1

ψ BψA−1
ψ ). Then we only have to prove that

n1/2γ n(βn)
p−→0.

Using a second-order Taylor expansion around α = 0 we obtain

Cn(βn,α) = Cn(βn,0) + D′
n(βn)α + 1

2α′Ln(βn)α + ‖α‖3Kn(α),(A.34)
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where there exists ε0 and K0 such that

p lim
n→∞ sup

‖α‖≤ε0

Kn(α)| ≤ K0.(A.35)

Using Theorem A.1, we have that H ∗
nβn

(u,x) → F0(u)G0(x) in probability for
any u and x, and therefore, by Lemma A.6, we have that for any ε > 0, there exists
δ > 0 such that

lim
n→∞P

(
inf‖α‖>ε

Cn(βn,α) < EF0

(
ρ

(
u

σ

))
+ δ

)
= 0.(A.36)

On the other hand by Lemma A.5

Cn(βn,0)
P−→ EF0

(
ρ

(
u

σ

))
= d,(A.37)

Dn(βn)
P−→ EH0(ψ(u/σ))x = 0(A.38)

and

Ln(βn)
P−→L0,(A.39)

where

L0 = 1

σ 2 EF0

[
ψ ′

(
u

σ

)]
EG0(xx′).(A.40)

The next step is to prove that γ n(βn)
P−→0. We have

{‖γ n(βn)‖ > ε} ⊂
{

inf‖α‖>ε
Cn(βn,α) < d + 2δ/3

}
∪ {Cn(βn,0) > d + δ/3}

and therefore (A.36) and (A.37) imply P {‖γ n(βn)‖ > ε}) → 0.

Finally, we will prove that n1/2‖γ n(βn)‖ = op(1). Then if we denote Jn =
{n1/2‖γ n(βn)‖ > ε}, we have to prove that for any ε > 0 we have

lim
n→∞P(Jn) = 0.(A.41)

According to (A.34) we have

Jn ⊂
{

inf
ε0>‖α‖>εn−1/2

[
D′

n(βn)α + 1
2α′Ln(βn)α + ‖α‖3Kn(α)

] ≤ 0
}

∪ {‖γ n(βn)‖ ≥ ε0}.
Since P {‖γ n(βn)‖ > ε0} → 0, in order to prove that (A.41) it is enough to show
that

P

(
inf

ε0>‖α‖>εn−1/2

[
α′Dn(βn)

‖α‖2 + 1

2

α′

‖α‖Ln(βn)
α

‖α‖ + ‖α‖Kn(α)

]
> 0

)
(A.42)

→ 1
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and since (A.38), (A.39) and (A.40) hold, it is enough to prove that for all ε

p lim
n→∞ sup

‖α‖>εn−1/2

α′Dn(βn)

‖α‖2 = 0.

This follows from

sup
‖α‖>εn−1/2

|α′Dn(βn)|
‖α‖2 ≤ n1/2

ε
‖Dn(βn)‖

and (A.33). �
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