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ASYMPTOTIC SPECTRAL THEORY FOR NONLINEAR
TIME SERIES

BY XIAOFENG SHAO AND WEI BIAO WU1

University of Illinois at Urbana-Champaign and University of Chicago

We consider asymptotic problems in spectral analysis of stationary
causal processes. Limiting distributions of periodograms and smoothed peri-
odogram spectral density estimates are obtained and applications to the spec-
tral domain bootstrap are given. Instead of the commonly used strong mixing
conditions, in our asymptotic spectral theory we impose conditions only in-
volving (conditional) moments, which are easily verifiable for a variety of
nonlinear time series.

1. Introduction. The frequency domain approach to time series analysis is an
important subject; see [1, 7, 29] and [52] among others. An asymptotic distribu-
tion theory is needed, for example, in hypothesis testing and in the construction
of confidence intervals. However, most of the asymptotic results developed in the
literature are for strong mixing processes and processes with quite restrictive sum-
mability conditions on joint cumulants [6, 7, 56, 57]. Such conditions seem restric-
tive and they are not easily verifiable. For example, Andrews [2] showed that, for a
simple autoregressive process with innovations being independent and identically
distributed (i.i.d.) Bernoulli random variables, the process is not strong mixing.
Other special processes discussed include Gaussian processes [60, 61] and linear
processes [1].

There has been a recent surge of interest in nonlinear time series ([21, 53] and
[65]). It seems that a systematic asymptotic spectral theory for such processes is
lacking [11]. The primary goal of this paper is to establish an asymptotic spectral
theory for stationary, causal processes. Let (εn)n∈Z be a sequence of i.i.d. random
variables; let

Xn = G(. . . , εn−1, εn),(1.1)

where G is a measurable function such that Xn is a proper random variable. Then
the process (Xn) is causal or nonanticipative in the sense that it only depends on
Fn = (. . . , εn−1, εn), not on the future innovations εn+1, εn+2, . . . . The class of
processes within the framework of (1.1) is quite large (cf. [53, 65, 66] and [74]
among others).
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Assume throughout this paper that (Xn)n∈Z has mean zero and finite covariance
function r(k) = E(X0Xk), k ∈ Z. Let i = √−1 be the imaginary unit. If (Xn) is
short-range dependent, namely

∞∑
k=0

|r(k)| < ∞,(1.2)

then the spectral density

f (λ) = 1

2π

∑
k∈Z

r(k)eikλ, λ ∈ R,

is continuous and bounded. Given the observations X1, . . . ,Xn, let

Sn(θ) =
n∑

k=1

Xke
ikθ and In(θ) = 1

2πn
|Sn(θ)|2

be the Fourier transform and the periodogram, respectively. Let θk = 2πk/n,
1 ≤ k ≤ n, be the Fourier frequencies. Primary goals in spectral analysis include
estimating the spectral density f and deriving asymptotic distributions of Sn(θ)

and In(θ).
We now introduce some notation. For a column vector x = (x1, . . . , xq)

′ ∈ Rq ,
let |x| = (

∑q
j=1 x2

j )1/2. Let ξ be a random vector. Write ξ ∈ Lp (p > 0) if ‖ξ‖p :=
[E(|ξ |p)]1/p < ∞ and let ‖ · ‖ = ‖ · ‖2. For ξ ∈ L1 define projection operators
Pkξ = E(ξ |Fk) − E(ξ |Fk−1), k ∈ Z, where we recall Fk = (. . . , εk−1, εk). For
two positive sequences (an), (bn), denote by an � bn that there exists a constant c

such that 0 < c ≤ an/bn ≤ 1/c < ∞ for all large n and by an ∼ bn that an/bn → 1
as n → ∞. Let C > 0 denote a generic constant which may vary from line to line;
let � be the standard normal distribution function. Denote by “⇒” convergence in
distribution and by N(µ,σ 2) a normal distribution with mean µ and variance σ 2.
All asymptotic statements in the paper are with respect to n → ∞ unless otherwise
specified.

The paper is structured as follows. In Section 2 we shall establish a central
limit theorem for the Fourier transform Sn(θ) at Fourier frequencies. Asymptotic
properties of smoothed periodogram estimates of f are discussed in Section 3.
Section 4 shows the consistency of the frequency domain bootstrap approximation
to sampling distributions of spectral density estimates for both linear and nonlinear
processes. Section 5 gives sufficient conditions for geometric moment contraction
[see (3.1)], a basic dependence assumption used in this paper. Some examples are
also presented in that section. Proofs are gathered in the Appendix.

2. Fourier transforms. The periodogram is a fundamental quantity in fre-
quency domain analysis. Its asymptotic analysis has a substantial history; see, for
example, [57], Theorem 5.3, page 131, for mixing processes; [8], Theorem 10.3.2,
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page 347, [63] and [70] for linear processes. Other contributions can be found in
[38, 46, 55, 71] and [77]. Recently, in a general setting, Wu [73] considered asymp-
totic distributions of Sn(θ) at a fixed θ . However, results in [73] do not apply to
Sn(θ) at the Fourier frequencies. Here we shall show that Sn(θk) are asymptotically
independent normals under mild conditions; see Theorem 2.1 below. The central
limit theorem is applied to empirical distribution functions of normalized peri-
odogram ordinates (cf. Corollary 2.2). In the literature the latter problem has been
mainly studied for i.i.d. random variables [25, 26, 36] and linear processes [12].

Denote the real and imaginary parts of Sn(θj )/
√

πnf (θj ) by

Zj =
∑n

k=1 Xk cos(kθj )√
πnf (θj )

, Zj+m =
∑n

k=1 Xk sin(kθj )√
πnf (θj )

, j = 1, . . . ,m,

where m = mn := �(n − 1)/2� and �a� is the integer part of a. Let �p =
{c ∈ Rp : |c| = 1} be the unit sphere. For the set J = {j1, . . . , jp} with
1 ≤ j1 < · · · < jp ≤ 2m write the vector ZJ = (Zj1, . . . ,Zjp)′. Let the class
	m,p = {J ⊂ {1, . . . ,2m} : #J = p}, where #J is the cardinality of J .

THEOREM 2.1. Assume Xt ∈ L2,

κ :=
∞∑

k=0

‖P0Xk‖ < ∞(2.1)

and f∗ := minθ∈R f (θ) > 0. Then for any fixed p ∈ N, we have

sup
J∈	m,p

sup
c∈�p

sup
x∈R

|P(Z′
J c ≤ x) − �(x)| = o(1) as n → ∞.

Theorem 2.1 asserts that the projection of any vector of p of the Zj ’s on
any direction is asymptotically normal. The condition (2.1) was first proposed
by Hannan [30]. In many situations it is easily verifiable since it only involves
conditional moments. For generalizations see [75]. In the special case of linear
processes Xt = ∑∞

j=0 aj εt−j , where εj are i.i.d. with mean 0 and finite variance

and
∑∞

j=0 a2
j < ∞, (2.1) becomes

∑∞
j=0 |aj | < ∞, indicating that (Xn) is short-

range dependent. In the literature, central limit theorems are established for Fourier
transforms of linear processes ([21], page 63; [8], page 347, among others). The
spectral density may be unbounded if (2.1) is violated.

COROLLARY 2.1. Let q ∈ N. Under the conditions of Theorem 2.1, we have{
Sn(θlj )√
nπf (θlj )

,1 ≤ j ≤ q

}
⇒ {Y2j−1 + iY2j ,1 ≤ j ≤ q}
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for integers 1 ≤ l1 < l2 < · · · < lq ≤ m, where the indices lj may depend on
n, and Yk , 1 ≤ k ≤ 2q , are i.i.d. standard normals. Consequently, for Ĩn(θ) :=
In(θ)/f (θ),

{Ĩn(θlj ),1 ≤ j ≤ q} ⇒ {Ej ,1 ≤ j ≤ q},
where Ej are i.i.d. standard exponential random variables [exp(1)].

Corollary 2.1 easily follows from Theorem 2.1 via the Cramér–Wold device.
Let

F
Ĩ,m

(x) := 1

m

m∑
j=1

1
Ĩn(θj )≤x

be the empirical distribution function of Ĩn(θk) and FE(x) := 1 − e−x , x ≥ 0.

COROLLARY 2.2. Under the conditions of Theorem 2.1, we have

sup
x≥0

|F
Ĩ,m

(x) − FE(x)| → 0 in probability.(2.2)

PROOF. Since F
Ĩ,m

and FE are nondecreasing, it suffices to show (2.2) for

a fixed x. Let pj = pj (x) = P[Ĩn(θj ) ≤ x] and pj,k = pj,k(x) = P[Ĩn(θj ) ≤ x,
Ĩn(θk) ≤ x]; let U and V , independent of the process (Xj ), be i.i.d. uniformly
distributed over {1, . . . ,m}. By Corollary 2.1, pU → FE(x) and pU,V → FE(x)2

almost surely. By the Lebesgue dominated convergence theorem, E(pU) → FE(x)

and E(pU,V ) → FE(x)2. Notice that

E(pU) = m−1
m∑

j=1

pj and E(pU,V ) = m−2
m∑

j=1

m∑
k=1

pj,k.

So ‖F
Ĩ,m

(x)−FE(x)‖2 = E(pU,V )−F 2
E(x)+2FE(x){FE(x)−E(pU)} and (2.2)

follows. �

REMARK 2.1. The above argument also implies that, for any integer k ≥ 2,

sup
x1,...,xk≥0

∣∣∣∣∣m−k
m∑

j1=1

· · ·
m∑

jk=1

1
Ĩn(θj1 )≤x1,...,Ĩn(θjk

)≤xk
−

k∏
j=1

FE(xj )

∣∣∣∣∣ → 0

in probability.

Fay and Soulier [22] obtained a functional central limit theorem for F
Ĩ,m

(x)

for i.i.d. random variables. It seems very difficult to generalize their results to the
nonlinear case.
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3. Spectral density estimation. Given a realization (Xj )
n
j=1, the spectral

density f can be estimated by

fn(λ) =
∫ π

−π
Wn(λ − µ)In(µ)dµ,

where Wn(λ) is a smoothing weight function [cf. (3.2)]. Here we study asymptotic
properties of the smoothed periodogram estimate fn. Spectral density estimation is
an important problem and there is a rich literature. However, restrictive structural
conditions have been imposed in many earlier results. For example, Brillinger [6]
assumed that all moments exist and cumulants of all orders are summable. An-
derson [1] dealt with linear processes. Rosenblatt [56] considered strong mixing
processes and assumed the summability condition of cumulants up to the eighth
order. Due to those limitations, the classical results cannot be directly applied to
nonlinear time series. Recently, Chanda [11] obtained asymptotic normality of fn

for a class of nonlinear processes. However, it seems that his formulation does
not include popular nonlinear time series models including GARCH, EXPAR and
ARMA–GARCH; see Section 5 for examples.

To establish an asymptotic theory for fn, we shall adopt the geometric-moment
contraction (GMC) condition. Let (ε′

k)k∈Z be an i.i.d. copy of (εk)k∈Z; let X′
n =

G(. . . , ε′−1, ε′
0, ε1, . . . , εn) be a coupled version of Xn. We say that Xn is GMC(α),

α > 0, if there exist C > 0 and 0 < ρ = ρ(α) < 1 such that, for all n ∈ N,

E(|X′
n − Xn|α) ≤ Cρn.(3.1)

Inequality (3.1) indicates that the process (Xn) quickly “forgets” the past F0 =
(. . . , ε−1, ε0). Note that under GMC(2), |r(k)| = O(ρk) for some ρ ∈ (0,1) and
hence the spectral density function is infinitely many times differentiable.

Many nonlinear time series models satisfy GMC (cf. Section 5). Moreover, the
GMC condition provides a convenient framework for a limit theory for nonlinear
time series; see [32, 75] and [76]. In view of those features, instead of the widely
used strong mixing condition, we employ the GMC as an underlying assumption
for our asymptotic theory of spectral density estimates.

Let r̂(k) = n−1 ∑n−|k|
j=1 XjXj+|k|, |k| < n, be the estimated covariances; let a(·)

be an even, Lipschitz continuous function with support [−1,1] and a(0) = 1;
let Bn be a sequence of positive integers with Bn → ∞ and Bn/n → 0; let
bn = 1/Bn,

Wn(λ) = 1

2π

Bn∑
k=−Bn

a(kbn)e
−ikλ and

(3.2)

fn(λ) = 1

2π

Bn∑
k=−Bn

r̂(k)a(kbn)e
−ikλ.
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THEOREM 3.1. Assume (3.1), Xn ∈ L4+δ for some δ > 0, Bn → ∞ and Bn =
o[n/(logn)2+8/δ]. Then√

nbn{fn(λ) − E(fn(λ))} ⇒ N(0, σ 2(λ)),(3.3)

where σ 2 := σ 2(λ) = {1 + η(2λ)}f 2(λ)
∫ 1
−1 a2(t) dt and η(λ) = 1 if λ = 2kπ for

some integer k and η(λ) = 0 otherwise.

REMARK 3.1. The GMC has this interesting property: If Xn ∈ Lp,p > 0,
and GMC(α0) holds for some α0 > 0, then Xn is GMC(α) for all α ∈ (0,p) ([75],
Lemma 2).

By Remark 3.1, the moment condition Xn ∈ L4+δ in Theorem 3.1 together with
GMC(α) implies GMC(4) and consequently the absolute summability of cumu-
lants up to the fourth order (cf. Lemmas A.1 and A.2). In the context of strong
mixing processes, Rosenblatt ([57], page 138) imposed Xn ∈ L8. Rosenblatt [57]
also posed the problem of whether the eighth-order cumulant summability condi-
tion can be weakened to fourth order. Theorem 3.1 partially solves the conjecture
for nonlinear processes satisfying GMC under the moment condition Xn ∈ L4+δ .
Additionally, Theorem 3.1 is applicable to a variety of nonlinear time series mod-
els (Section 5) that are not covered by Chanda [11].

Joint asymptotic distributions of spectral density estimates at different frequen-
cies (cf. Corollary 3.1 below) follow from the arguments in [48], Theorem 5A
and [56] since GMC(4) ensures the summability of the fourth cumulants; see
Lemma A.2.

COROLLARY 3.1. Let λ1, . . . , λs ∈ [0, π] be s different frequencies. Then un-
der the conditions of Theorem 3.1,

√
nbn{fn(λj ) − E(fn(λj ))}, j = 1, . . . , s, are

jointly asymptotically independent N(0, σ 2(λj )), j = 1, . . . , s.

The problem of maximum deviation of spectral density estimates has been stud-
ied by Woodroofe and Van Ness [72] for linear processes and Rudzkis [58] for
Gaussian processes. For nonlinear processes, we have:

THEOREM 3.2. Assume (3.1), Xn ∈ L4+δ for some δ ∈ (0,4], Bn → ∞, Bn =
O(nη), 0 < η < δ/(4 + δ) and f∗ := minR f (θ) > 0. Then

max
λ∈[0,π ]

√
nbn|fn(λ) − E(fn(λ))| = OP((logn)1/2).(3.4)

Under GMC(2), since ‖P0Xk‖ = O(ρk), we have (2.1). However, it is quite dif-
ficult to establish (3.3) under the weaker condition (2.1). Regarding (3.4), for linear
processes the distributional result in [72] implies that the bound OP((logn)1/2)

is optimal. We are unable to obtain a similar distributional result for nonlinear
processes.
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For long memory processes, (1.2) is violated and f may not be well defined,
so Theorems 3.1 and 3.2 are not applicable. A simple example is the fractionally
integrated process (1 −B)dXj = εj , where 0 < d < 1/2 is the long memory para-
meter, B is the back-shift operator and εj are i.i.d. with mean 0 and finite variance.
Then the spectral density f (λ) � |λ|−2d as λ → 0 and f (0) is not well defined. In
this case an important problem is to estimate d; see [54] and [59] and references
cited therein.

4. Frequency domain bootstrap. Here we consider bootstrap approxima-
tions of the distribution of the lag window estimate (3.2). Bootstrapping in the
frequency domain has received considerable attention. See [33, 45] and [64]
for Gaussian processes and [24, 37] and [47] for linear processes. For non-
linear processes we adopt the residual-based bootstrap procedure proposed by
Franke and Härdle [24]. A variant of it is discussed in Remark 4.4. Let Ij =
I (ωj ), ωj = 2πj/n, j ∈ Fn = {−�(n − 1)/2�, . . . , �n/2�}. Note that r̂(k) =
n−12π

∑
j∈Fn

Ij e
ikωj . Then the lag window estimate (3.2) can be written as

fn(λ) = 1

2π

Bn∑
k=−Bn

r̂(k)a(kbn)e
−ikλ = 1

n

∑
j∈Fn

Ij

Bn∑
k=−Bn

a(kbn)e
−ik(λ−ωj ).(4.1)

The bootstrap procedure consists of the following several steps:

1. Calculate periodogram ordinates {Ij }, j = 1, . . . ,N := �n/2�.
2. Obtain an estimate f̃ of f (e.g., a lag window estimate with bandwidth

b̃n := B̃−1
n ).

3. Let ε̄j = ε̃j /ε̄, where ε̃j = Ij /f̃j , f̃j = f̃ (ωj ) and ε̄ = N−1 ∑N
j=1 ε̃j .

4. Draw i.i.d. bootstrap samples {ε∗
j } from the empirical distribution of ε̄j .

5. Let I ∗
j = f̃j ε

∗
j be the bootstrapped periodograms; let I ∗−j = I ∗

j and I ∗
0 = 0.

The rescaling treatment in step 3 avoids an unpleasant bias at the resampling
stage. Setting I ∗

0 = 0 in step 5 corresponds to the fact that, for a mean-corrected
sample, the periodogram value is 0 at frequency 0. The sampling distribution of
gn(λ) = √

nbn{fn(λ) − f (λ)} is expected to be close to its bootstrap counterpart
g∗

n(λ) = √
nbn{f ∗

n (λ) − f̃ (λ)}, where

f ∗
n (λ) = 1

n

∑
j∈Fn

I ∗
j

Bn∑
k=−Bn

a(kbn)e
−ik(λ−ωj )

is the bootstrapped version of (4.1). Here we measure the closeness by Mallows’ d2
metric [4]. For two probability measures P1 and P2 on R with

∫
R |x|2 dPj < ∞,

j = 1,2, let d2(P1,P2) = inf‖Y1 − Y2‖, where the infimum is taken over all vec-
tors (Y1, Y2) with marginal distributions P1 and P2. Write

d2[gn(λ), g∗
n(λ)] = d2{P[gn(λ) ∈ ·],P[g∗

n(λ) ∈ ·|X1, . . . ,Xn]}.
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The bootstrap procedure is said to be (weakly) consistent if d2[gn(λ), g∗
n(λ)] =

oP(1). Let L(·|X1, . . . ,Xn) denote the conditional distribution given the sample
X1, . . . ,Xn.

It seems that in the literature the theoretical investigation of the consistency
problem has been limited to linear processes. Let Xt = ∑∞

j=−∞ aj εt−j . Franke
and Härdle [24] proved the consistency of their residual-based procedure under
the condition

sup{|E(eiuε1)|; |u| ≥ δ} < 1 for all δ > 0.(4.2)

Condition (4.2) excludes many interesting cases. For example, it is violated if ε1
is a Bernoulli random variable. Franke and Härdle [24] conjectured that their re-
sults still hold without (4.2). The latter condition is removed in Corollary 4.1 of
Theorem 4.1 below at the expense of the stronger eighth moment condition. The-
orem 4.1 is also applicable to nonlinear processes; see Corollary 4.2. Since our
results hold under various combinations of conditions, it is convenient to label the
common ones:

(A1) limx→0 x−2{1 − a(x)} = c2, where c2 is a nonzero constant.
(A2) minλ∈[0,π ] f (λ) > 0.
(A3) maxλ∈[0,π ] |f̃ (λ) − f (λ)| = oP(bn).
(A3′) maxλ∈[0,π ] |f̃ (λ) − f (λ)| = oP(1).
(A4)

∑
k∈Z |r(k)|k2 < ∞.

(A4′) ∑
k∈Z |r(k)k| < ∞.

(A5)
∑

t1,...,tk−1∈Z |cum(X0,Xt1, . . . ,Xtk−1)| < ∞ for k = 3,4.
(A5′) ∑

t1,...,tk−1∈Z |cum(X0,Xt1, . . . ,Xtk−1)| < ∞ for k = 3, . . . ,8.
(A6)

√
nbn{fn(λ) − E(fn(λ))} ⇒ N(0, σ 2(λ)) and nbn var(fn(λ)) → σ 2(λ).

REMARK 4.1. Condition (A1) says that a(·) is locally quadratic at 0 and it is
satisfied for many lag windows. It is related to the bias. By Anderson [1], Theo-
rem 9.4.3, or Priestley [52], page 459, under (A1), (A4) and B3

n = o(n),

B2
n{E(fn(λ)) − f (λ)} → c2f

′′(λ),
(4.3)

where f ′′(λ) = − 1

2π

∑
k∈Z

r(k)k2e−ikλ.

Additionally, if (A6) holds, then the optimal bandwidth bn is of order n−1/5 in the
sense of mean square error.

REMARK 4.2. The cumulant summability conditions (A5) and (A5′) are
commonly imposed in spectral analysis [7, 57]. For the linear process Xt =∑∞

j=−∞ aj εt−j with
∑∞

j=−∞ |aj | < ∞, (A5) [resp. (A5′)] holds if ε1 ∈ L4 [resp.
ε1 ∈ L8]. By Lemma A.1, for the process (1.1), (A5) [resp. (A5′)] is satisfied under
GMC(4) [resp. GMC(8)]. Zhurbenko and Zuev [79] and Andrews [3] considered
strong mixing processes.
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Let P∗, E∗ and var∗ denote the conditional probability, expectation and vari-
ance given Xj,1 ≤ j ≤ n; let Vn(λ) = √

nbn{fn(λ) − E(fn(λ))}, V ∗
n (λ) =√

nbn{f ∗
n (λ)−E∗f ∗

n (λ)}, βn(λ) = √
nbn{E(fn(λ))−f (λ)} and β∗

n(λ) = √
nbn ×

{E∗f ∗
n (λ) − f̃ (λ)}. For the consistency of the bootstrap approximation, it is com-

mon to treat the variance and the bias separately.

PROPOSITION 4.1. Assume Xt ∈ L8, (A2), (A3), (A4′), (A5′) and (A6). Let
B2

n = o(n). Then d2[Vn(λ),V ∗
n (λ)] → 0 in probability.

PROPOSITION 4.2. Assume Xt ∈ L4, (A1), (A4) and (A5). Let bn = o(b̃n),
B3

n = o(n) and B̃5
n = o(n). Then B2

n{E∗f ∗
n (λ) − f̃ (λ)} → c2f

′′(λ) in probability.

REMARK 4.3. The condition bn = o(b̃n) is needed to ensure the consistency
of the bias; see (4.3). So f̃ (λ) is smoother than fn(λ). Oversmoothing is a common
practice in the frequency domain bootstrap [24, 37, 47].

THEOREM 4.1. Assume Xt ∈ L8, (A1), (A4), (A5′) and (A6). Let bn �
n−1/5 and bn = o(b̃n). Then d2[gn(λ), g∗

n(λ)] = oP(1) and d2[gn(λ)/f (λ), g∗
n(λ)/

f̃ (λ)] = oP(1).

PROOF. In the proof λ is suppressed and we write gn, and so on, for gn(λ), and
so on. Since d2

2 (gn, g
∗
n) = d2

2 (Vn,V
∗
n ) + d2

2 (βn,β
∗
n) ([4], Lemma 8.8), by Propo-

sitions 4.1, 4.2 and (4.3), d2(gn, g
∗
n) = oP(1). The second assertion follows simi-

larly. By (A2), (A3) and Proposition 4.2, β∗
n/f̃ − βn/f = (β∗

n − βn)/f̃ + (f̃ −1 −
f −1)βn = oP(1). It remains to verify d2(Vn/f,V ∗

n /f̃ ) = oP(1). By Lemma 8.3
in [4], it suffices in view of (A6) to show that var∗(V ∗

n /f̃ ) → σ 2/f 2 and
L(V ∗

n /f̃ |X1, . . . ,Xn) ⇒ N(0, σ 2/f 2) in probability. By (A2) and (A3), these two
assertions follow from relation (A.21) in the proof of Proposition 4.1. �

REMARK 4.4. Since the residuals {In(ωj )/f (ωj )} are asymptotically i.i.d.
exp(1) (Corollary 2.1), a modified procedure is to replace the bootstrapped resid-
uals ε∗

j by i.i.d. standard exponential variables. For this modified bootstrap pro-
cedure, Theorem 4.1 holds with the assumption (A5′) replaced by (A5) and the
eighth moment condition weakened to Xt ∈ L4; see the proof of Proposition 4.1.

COROLLARY 4.1. Let Xt = ∑∞
j=−∞ aj εt−j , where |ak| = O(|k|−1−β),

β > 1/5 and ε1 ∈ L8. Assume (A1), (A2), (A4), bn � n−1/5 and b̃n � n−η1 ,
η1 ∈ (1/10,1/5). Then the conclusions in Theorem 4.1 hold.

PROOF. By Theorem 4.1, it suffices to verify (A3), (A5′) and (A6). (A6) fol-
lows from Theorems 9.3.4 and 9.4.1 in [1]. The assumption (A5′) is satisfied under
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E(ε8
1) < ∞ and |ak| = O(|k|−1−β), β > 1/5 (see Remark 4.2). Note that

max
λ∈[0,π ] |f̃ (λ) − f (λ)|

(4.4)
≤ max

λ∈[0,π ] |f̃ (λ) − E(f̃ (λ))| + max
λ∈[0,π ] |E(f̃ (λ)) − f (λ)|,

which is of order OP((logn)1/2/(nb̃n)
1/2) + OP(b̃2

n) = oP(bn) by Theorem 2.1
in [72] and (4.3). So (A3) follows. �

COROLLARY 4.2. Let the process (1.1) satisfy GMC(8). Assume (A1), (A2),
bn � n−1/5 and b̃n � n−η2 , η2 ∈ (1/10,1/5). Then the conclusions in Theorem 4.1
hold.

PROOF. We shall apply Theorem 4.1. By Lemma A.1, GMC(8) implies (A4)
and (A5′), while (A6) [resp. (A3)] follows from Theorem 3.1 [resp. Theorem 3.2
and (4.4)]. �

5. Applications. There are two popular criteria to check the stationarity of
nonlinear time series models, drift-type conditions [10, 23, 42, 67–69] and con-
traction conditions [16, 19, 34, 76]. It turns out that contraction conditions typi-
cally imply GMC under some extra mild assumptions, and are thus quite useful
in proving limit theorems [32, 75]. In this section we consider nonlinear autore-
gressive models and present sufficient conditions for GMC so that our asymptotic
spectral theory is applicable.

Let ε, εn be i.i.d., p,d ≥ 1; let Xn ∈ Rd be recursively defined by

Xn+1 = R(Xn, . . . ,Xn−p+1; εn+1),(5.1)

where R is a measurable function. Suitable conditions on R implies GMC.

THEOREM 5.1. Let α > 0 and α′ = min(1, α). Assume that R(y0; ε) ∈ Lα for
some y0 and that there exist constants a1, . . . , ap ≥ 0 such that

∑p
j=1 aj < 1 and

‖R(y; ε) − R(y′; ε)‖α′
α ≤

p∑
j=1

aj |xj − x′
j |α

′
(5.2)

holds for all y = (x1, . . . , xp) and y′ = (x′
1, . . . , x

′
p). Then (i) (5.1) admits a sta-

tionary solution of the form (1.1) and (ii) Xn satisfies GMC(α). In particular, if
there exist functions Hj such that |R(y; ε) − R(y′; ε)| ≤ ∑p

j=1 Hj(ε)|xj − x′
j | for

all y and y′ and
∑p

j=1 ‖Hj(ε)‖α′
α < 1, then we can let aj = ‖Hj(ε)‖α′

α .

Duflo [18] assumed α ≥ 1 and called (5.2) the Lipschitz mixing condition. We
allow α < 1. Similar conditions are given in [27].
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PROOF OF THEOREM 5.1. It follows from the arguments in [76] and
Lemma 6.2.10 and Proposition 6.3.22 in [18]. For completeness we include the
proof here. Without loss of generality let d = 1. Let α < 1. For y = (x1, . . . , xp) ∈
Rp define the random map Rε(y) = (R(y, ε), x1, . . . , xp−1). Let Zm(y) be the first
element of the vector Rε0◦ Rε−1◦ · · · ◦ Rε−m(y), where m is a nonnegative integer.
By (5.2), we have for m ≥ p that

‖Zm(y) − Zm(y′)‖α
α ≤

p∑
j=1

aj‖Zm−j (y) − Zm−j (y
′)‖α

α.

Since a1, . . . , ap are nonnegative and
∑p

j=1 aj < 1, it is easily seen that the pre-
ceding relation implies that there exist constants C > 0 and λ0 ∈ (0,1) depending
only on a1, . . . , ap and α such that

‖Zm(y) − Zm(y′)‖α
α ≤ Cλm

0 |y − y′|α(5.3)

holds for all m ≥ 0. See also Lemma 6.2.10 in [18]. Applying (5.3) with y = y0
and y′ = Rε−m−1(y0), since λ0 < 1 and α < 1,

E

( ∞∑
m=0

|Zm(y0) − Zm+1(y0)|
)α

≤
∞∑

m=0

‖Zm(y0) − Zm+1(y0)‖α
α

≤ C

∞∑
m=0

λm
0 ‖y0 − Rε(y0)‖α

α < ∞.

So {Zm(y0)}m≥0 is a Cauchy sequence and it has an almost sure limit Z∞ (say)
which is in Lα . Since Z∞ is F0-measurable, we can write Z∞ = G(F0) for some
measurable function G. By (5.3), for any y, Zm(y) converges almost surely to the
same limit Z∞. So we can express Xn = G(Fn), n ∈ Z. Let F ∗

j = (. . . , ε′
j−1, ε

′
j ).

By stationarity, (ii) follows from (5.3) by letting y = (G(F−m−1), . . . ,G(F−m−p))

and y′ = (G(F ∗−m−1), . . . ,G(F ∗−m−p)). The other case α ≥ 1 can be similarly
dealt with. See Proposition 6.3.22 in [18]. �

THEOREM 5.2. Let (ηt ) satisfy GMC(α); let θ1, . . . , θp,φ1, . . . , φq , p,q ∈ N,
be real coefficients and the roots of the equation λp − ∑p

k=1 θkλ
p−k = 0 lie inside

the unit circle. Then the autoregressive moving average (ARMA) (p, q) process Xt

defined below also satisfies GMC(α):

Xt − θ1Xt−1 − · · · − θpXt−p = ηt − φ1ηt−1 − · · · − φqηt−q.

Theorem 5.2 shows that the GMC property is preserved in ARMA model-
ing [43] and that it is an easy consequence of the representation Xt = ∑∞

k=0 bkηt−k

with |bk| ≤ Cρk for some ρ ∈ (0,1). Min [43] considered the case α ≥ 1. Theorem
5.2 implies that the ARMA–ARCH and ARMA–GARCH models [39] are GMC;
see Examples 5.4 and 5.5.
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Near-epoch dependence (NED) is widely used in econometrics for central limit
theorems [14, 15]. The process (1.1) is geometrically NED [G-NED(α)] on (εs)

in Lα , α > 0, if there exist C < ∞ and ρ ∈ (0,1) such that

‖Xt − E(Xt |εt−m, εt−m+1, . . . , εt )‖α ≤ Cρm

holds for all m ∈ N. It is easily seen that, for α ≥ 1, GMC(α) is equivalent to
G-NED(α). In certain situations GMC is more convenient to work with; see Re-
mark 5.1. Additionally, GMC has the nice property that X′

t is identically distributed
as Xt , while in NED the distribution of E(Xt |εt−m, . . . , εt ) typically differs. Here
we list some examples that are not covered by Davidson [15].

EXAMPLE 5.1. Amplitude-dependent exponential autoregressive (EXPAR)
models have been studied by Jones [35]. Let εj ∈ Lα be i.i.d. innovations and

Xn = [α1 + β1 exp(−aX2
n−1)]Xn−1 + εn,

where α1, β1, a > 0 are real parameters. Then H1(ε) = |α1| + |β1|. By Theo-
rem 5.1, Xn is GMC(α) if |α1| + |β1| < 1.

EXAMPLE 5.2. Let θ1, . . . , θ5 be real parameters and consider the AR(2)
model with ARCH(2) errors [20],

Xn = θ1Xn−1 + θ2Xn−2 + εn

√
θ2

3 + θ2
4 X2

n−1 + θ2
5 X2

n−2.

Theorem 5.1 is applicable: we can let H1(ε) = |θ1| + |εθ4| and H2(ε) = |θ2| +
|εθ5|. Then GMC(α), α > 0, holds if

∑2
j=1 ‖Hj(ε)‖α′

α < 1 and ε1 ∈ Lα .

Let At be p × p random matrices and Bt be p × 1 random vectors. The gener-
alized random coefficient autoregressive process (Xt) is defined by

Xt+1 = At+1Xt + Bt+1, t ∈ Z.(5.4)

Let (At ,Bt ) be i.i.d. Bilinear and GARCH models fall within the framework
of (5.4). The stationarity, geometric ergodicity and β-mixing properties have been
studied by Pham [50], Mokkadem [44] and Carrasco and Chen [9]. Their results
require that innovations have a density, which is not needed in our setting.

For a p × p matrix A, let |A|α = supz �=0 |Az|α/|z|α , α ≥ 1, be the matrix norm
induced by the vector norm |z|α = (

∑p
j=1 |zj |α)1/α . It is easily seen that Xt is

GMC(α), α ≥ 1, if E(|A0|α) < 1 and E(|B0|α) < ∞. By Jensen’s inequality, we
have E(log |A0|α) < 0. By Theorem 1.1 of [5],

Xn =
∞∑

k=0

AnAn−1 · · ·An−k+1Bn−k(5.5)

converges almost surely.
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EXAMPLE 5.3. Consider the subdiagonal bilinear model [28, 62]

Xt =
p∑

j=1

ajXt−j +
q∑

j=0

cj εt−j +
P∑

j=0

Q∑
k=1

bjkXt−j−kεt−k.(5.6)

Let s = max(p,P + q,P + Q), r = s − max(q,Q) and ap+j = 0 = cq+j =
bP+k,Q+j = 0, k, j ≥ 1; let H be a 1 × s vector with the (r + 1)st element 1
and all others 0, c be an s × 1 vector with the first r − 1 elements 0 followed
by 1, a1 + c1, . . . , as−r + cs−r , and d be an s × 1 vector with the first r elements 0
followed by b01, . . . , b0,s−r . Define the s × s matrices

A =




0 1 0 0
. . . 0

0 1 0

0 0 a1
. . . 0

... 1
as · · · · · · as−r 0




,

B =




0 · · · 0 0 · · · 0
...

...
...

...
...

...

0 · · · 0 0 · · · 0
br1 · · · b01 0 · · · 0
...

...
...

...
...

...

br,s−r · · · b0,s−r 0 · · · 0




.

Let Zt be an s × 1 vector with the j th entry Xt−r+j if 1 ≤ j ≤ r and

r∑
k=j

akXt+j−k +
s−r∑
k=j

{
ck +

P∑
l=0

blkXt+j−k−l

}
εt+j−k

if 1 + r ≤ j ≤ s. Pham [49, 51] gave the representation

Xt = HZt−1 + εt , Zt = (A + Bεt)Zt−1 + cεt + dε2
t .(5.7)

By (5.7), Xt is GMC(α), α ≥ 1, if ε1 ∈ L2α and E(|A + Bε1|α) < 1. By (5.5),
Zt admits a casual representation and so does Xt .

REMARK 5.1. Davidson [15] considered the bilinear model (5.6) with q = 0
and Q = 1. He commented that, due to the complexity of moment expressions,
it is not easy to show G-NED(2) for general cases. In comparison, our argument
works.

EXAMPLE 5.4. Ding, Granger and Engle [17] proposed the asymmetric
GARCH(r, s) model

Xt = εt

√
ht , h

ς/2
t = α0 +

r∑
j=1

αj (|Xt−j | − γXt−j )
ς +

s∑
j=1

βjh
ς/2
t−j ,(5.8)
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where α0 > 0, αj ≥ 0 (j = 1, . . . , r) with at least one αj > 0, βj ≥ 0 (j =
1, . . . , s), ς ≥ 0 and |γ | < 1. The linear GARCH(r, s) model is a special case of
(5.8) with ς = 2, γ = 0. Wu and Min [75] showed GMC for linear GARCH(r, s)

models. Let Zt = (|εt | − γ εt )
ς , ξςt = (α0Zt,0, . . . , α0,0, . . . ,0)′(r+s)×1, of which

the (r + 1)st element is α0 and

Aςt =




α1Zt · · · αrZt β1Zt · · · βsZt

I(r−1)×(r−1) O(r−1)×1 O(r−1)×s

α1 · · · αr β1 · · · βs

O(s−1)×r I(s−1)×(s−1) O(s−1)×1


 .

Ling and McAleer [40] showed that Xt ∈ Lmς for some m ∈ N if and only if

�{E(A⊗m
ςt )} < 1,(5.9)

where ⊗ is the usual Kronecker product and �(A) is the largest eigenvalue of the
matrix (A′A)1/2. Further, Xt admits a casual representation (1.1); see Theorem 3.1
of Ling and McAleer [40]. It turns out that (5.9) also implies GMC(mς).

PROPOSITION 5.1. For the asymmetric GARCH(r, s) model (5.8), let
εt ∈ Lmς , ς ≥ 1. Then Xt is GMC(mς) if (5.9) holds.

PROOF. Let Yt = [(|Xt | − γXt)
ς , . . . , (|Xt−r+1| − γXt−r+1)

ς , h
ς/2
t , . . . ,

h
ς/2
t−s]′. Then Yt = AςtYt−1 + ξςt [40]. Let Y ′

0, independent of {εt , t ∈ Z}, be an
i.i.d. copy of Y0. We recursively define Y ′

t = AςtY
′
t−1 +ξςt , t ≥ 1. Let Ỹt = Yt −Y ′

t .

Then Ỹt = Aςt Ỹt−1. Applying the argument of Proposition 3 in [75], we have

Ỹ⊗m
t = A⊗m

ςt Ỹ⊗m
t−1 = · · · = A⊗m

ςt · · ·A⊗m
ς1 Ỹ⊗m

0 .

Thus E(Ỹ⊗m
t ) = [E(A⊗m

ς1 )]tE(Ỹ⊗m
0 ) since Aςt , . . . ,Aς1 are i.i.d. By (5.9),

|E(Ỹ⊗m
t )| ≤ Cρt for some ρ ∈ (0,1). So E(|hς/2

t − (h′
t )

ς/2|m) is bounded by Cρt

and

E(|Xt − X′
t |mς) = E(ε

mς
t )E

(∣∣√ht −
√

h′
t

∣∣mς ) ≤ CE
(|hς/2

t − (h′
t )

ς/2|m) ≤ Cρt ,

where the inequality |a − b|ς ≤ |aς − bς |, a ≥ 0, b ≥ 0, ς ≥ 1, is applied. �

EXAMPLE 5.5. Let εt be i.i.d. with mean 0 and variance 1. Consider the
signed volatility model [78]

Xt = εt |st |1/ς , st = g(εt−1) + c(εt−1)st−1, ς > 0.(5.10)

When st = h
ς
t > 0, (5.10) reduces to the general GARCH(1,1) model [31, 41]

Xt = εtht , h
ς
t = g(εt−1) + c(εt−1)h

ς
t−1, ς > 0.

We shall show that the model (5.10) satisfies GMC under mild conditions.
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PROPOSITION 5.2. For the model (5.10), let E(|ε1|ας ) < 1, E{|c(ε1)|α} < 1
and g(ε1) ∈ Lα , α > 0. Let ς ≥ 1. Then Xt is GMC(ςα).

PROOF. By Theorem 5.1, st is GMC(α). Since E{(|st |1/ς − |s′
t |1/ς )ςα} ≤

E(|st − s′
t |α) and Xt = εt |st |1/ς , Xt is GMC(ςα). �

Since E{|c(ε1)|α} < 1 implies E{log |c(ε1)|} < 0, by Theorem 1 of [78], Xt has
a unique stationary solution which admits the casual representation (1.1).

APPENDIX

We now give the proofs of the results in Sections 2–4.

A.1. Proof of Theorem 2.1. For presentational clarity we restrict J =
{j1, . . . , jp} ⊂ {1, . . . ,m} and hence Zjl

corresponds to the real parts of Sn(θjl
).

The argument easily extends to general cases. Let

Tn =
n∑

k=1

µkXk, where µk = µk(c, J ) =
p∑

l=1

cl cos(kθjl
)√

πf (θjl
)

, 1 ≤ k ≤ n.

Since f∗ := minR f (θ) > 0, there exists µ∗ such that |µk| ≤ µ∗ for all c ∈ �p and
J ∈ 	m,p . Let dn(h) = n−1 ∑n

k=1+h µkµk−h if 0 ≤ h ≤ n − 1 and dn(h) = 0 if
h ≥ n. Note that

n∑
k=1

cos(kθjl
) cos[(k + h)θjl′ ] = n

2
cos(hθjl

)1jl=jl′ .

Then it is easily seen that there exists a constant K0 > 0 such that for all h ≥ 0,

τn(h) = sup
J∈	m,p

sup
c∈�p

∣∣∣∣∣dn(h) −
p∑

l=1

c2
l

cos(hθjl
)

2πf (θjl
)

∣∣∣∣∣ ≤ K0h

n
.

Clearly τn(h) ≤ µ∗ + (2πf∗)−1 =: K1. So we have uniformly over J and c that∣∣∣∣‖Tn‖2

n
− 1

∣∣∣∣ =
∣∣∣∣∣dn(0)r(0) + 2

∞∑
h=1

dn(h)r(h) − 1

∣∣∣∣∣
(A.1)

≤ 2
∞∑

h=0

τn(h)r(h) ≤
∞∑

h=0

K2 min(h/n,1)r(h) →n→∞ 0

by the Lebesgue dominated convergence theorem, where K2 = 2(K0 + K1).
Let T̃n = ∑n

k=1 µkX̃k , where X̃k = E(Xk|εk−�+1, . . . , εk) are �-dependent. So
δ� = ‖X0 − X̃0‖ → 0 as � → ∞. If k < �, then P0X̃k = E(P0Xk|εk−�+1, . . . , ε0).
By Jensen’s inequality ‖P0X̃k‖ ≤ ‖P0Xk‖. If k ≥ �, then P0X̃k = 0. Clearly
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‖P0(Xk − X̃k)‖ ≤ 2δ�. By the Lebesgue dominated convergence theorem, (2.1)
entails that

‖Tn − T̃n‖√
n

=
[

1

n

n∑
j=−∞

‖Pj (Tn − T̃n)‖2

]1/2

≤ µ∗
∞∑

k=0

‖P0(Xk − X̃k)‖
(A.2)

≤ µ∗
∞∑

k=0

2 min(‖P0Xk‖, δ�) →�→∞ 0.

Let gn(r) = r2E[X̃21(|X̃| ≥ √
n/r)]. Since E(X̃2) < ∞, limn→∞ gn(r) = 0 for

any fixed r > 0. Note that gn is nondecreasing in r . Then there exists a se-
quence rn ↑ ∞ such that gn(rn) → 0. Let Yk = X̃k1(|X̃k| ≤ √

n/rn) and Tn,Y =∑n
k=1 µkYk . Then ‖Yk − X̃k‖ = o(1/rn). Since Yk − X̃k are �-dependent,

‖Tn,Y − T̃n‖ ≤
�∑

a=1

∥∥∥∥∥
∑

b≤n,�|(b−a)

µb(Yb − X̃b)

∥∥∥∥∥ = o
(√

n/rn
)
,(A.3)

where �|h means that � is a divisor of h. Let pn = �r1/4
n � and blocks Bt = {a ∈

N : 1 + (t − 1)(pn + �) ≤ a ≤ pn + (t − 1)(pn + �)}, 1 ≤ t ≤ tn := �1 + (n −
pn)/(pn + �)�. Define Ut = ∑

a∈Bt
µaYa , Vn = ∑tn

t=1 Ut , Rn = Tn,Y − Vn, W =
(Vn − E(Vn))/

√
n and � = T̃n/

√
n − W . Then Ut are independent and ‖Rn‖ =

O(
√

tn) since Ya are �-dependent. Note that |E(Vn)| = O(n)|E(Yk)| = o(
√

n/rn).
Then by (A.3),

√
n‖�‖ ≤ |E(Vn)| + ‖Vn − T̃n‖ = o

(√
n/rn

) + O
(√

tn + √
n/rn

)
(A.4)

= O
(√

tn
)
.

Since |Ut |3 ≤ µ3∗p2
n

∑
a∈Bt

|Ya|3 and E(Y 2
a ) ≤ E(X2

k), E(|Ut |3) = O(p3
n

√
n/rn).

By the Berry–Esseen theorem ([13], page 304),

sup
x

|P(W ≤ x) − �(x/‖W‖)| ≤ C

tn∑
t=1

E(|Ut |3) × ‖Vn − E(Vn)‖−3

(A.5)
= O

(
tnp

3
n

√
n/rn

) × n−3/2 = O(p−2
n ).

Let δ = δn = p
−1/4
n . By (A.4), (A.5) and

P(W ≤ w − δ) − P(|�| ≥ δ) ≤ P(W + � ≤ w)
(A.6)

≤ P(W ≤ w + δ) + P(|�| ≥ δ),

we have supx |P(T̃n ≤ √
nx)−�(

√
nx/‖T̃n‖)| = O[p−2

n +P(|�| ≥ δ)+δ+δ2] =
O(δ) since supx |�(x/σ1)−�(x/σ2)| ≤ C|σ1/σ2 −1| holds for some constant C.
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Let W1 = T̃n/
√

n, �1 = (Tn − T̃n)/
√

n and η = η�,n = (‖Tn − T̃n‖/√n)1/2. We
apply (A.6) with W,� replaced by W1,�1,

sup
x

∣∣∣∣P
(

Tn√
n

≤ x

)
− �

(√
nx

‖Tn‖
)∣∣∣∣ = O

(
P(|�1| ≥ η) + δ + η + η2)

.

So the conclusion follows from (A.1) and (A.2) by first letting n → ∞ and then
� → ∞.

A.2. Proof of Theorem 3.1. The following two lemmas are needed.

LEMMA A.1 ([76]). Assume (3.1) with α = k for some k ∈ N. Then there
exists a constant C > 0 such that for all 0 ≤ m1 ≤ · · · ≤ mk−1,

| cum(X0,Xm1, . . . ,Xmk−1)| ≤ Cρmk−1/[k(k−1)].

LEMMA A.2. Let the sequence sn ∈ N satisfy sn ≤ n and Bn = o(sn); let

Yu := Yu(λ) = (2π)−1
Bn∑

k=−Bn

XuXu+ka(kbn) cos(kλ).(A.7)

Then under GMC(4) we have ‖∑sn
u=1{Yu − E(Yu)}‖2 ∼ snBnσ

2.

PROOF. Let L(s) = {(m1,m2,m3) ∈ Z3 : max1≤i≤3 |mi | = s} and c(m1,m2,

m3) = cum(X0,Xm1,Xm2,Xm3). So #L(s) ≤ 6(2s +1)2. By Lemma A.1, we have

∑
m1,m2,m3∈Z

|c(m1,m2,m3)| ≤ C

∞∑
s=0

∑
(m1,m2,m3)∈L(s)

|c(m1,m2,m3)|

≤ C

∞∑
s=0

s2ρs/[4(4−1)] < ∞.

See also Remark 3 in [76]. Then the lemma follows from equations (3.9)–(3.12)
in [56], page 1174. �

PROOF OF THEOREM 3.1. Let ρ = ρ(4), αk = a(kbn) cos(kλ) and

hn(λ) := 1

2π
√

nBn

(
Bn∑
k=0

n∑
u=n−k+1

XuXu+kαk +
−1∑

k=−Bn

n∑
u=n+k+1

XuXu+kαk

)
.

By the summability of cumulants of orders 2 and 4 (cf. [57], page 139), ‖hn(λ)‖ =
(nBn)

−1/2O(Bn). Recall (A.7) for the definition of Yu and let gn := gn(λ) =∑n
u=1 Yu(λ). Then

√
nbn{fn(λ) − E(fn(λ))} = gn − E(gn)√

nBn

+ hn(λ) − E(hn(λ)).(A.8)
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For k ∈ Z let X̃k = E(Xk|εk−l+1, . . . , εk), where l = ln = �c logn� and c =
−8/ logρ. Let Ỹu := Ỹu(λ) be the corresponding sum with Xk replaced by X̃k .
Observe that X̃n and X̃m are i.i.d. if |n−m| ≥ l and Ỹu and Ỹv are i.i.d. if |u−v| ≥
2Bn + l. The independence plays an important role in establishing the asymptotic
normality of g̃n := g̃n(λ) = ∑n

u=1 Ỹu(λ). Then ‖gn − g̃n‖ = o(1) since

‖Yu − Ỹu‖ ≤ (2π)−1
Bn∑

k=−Bn

‖XuXu+k − X̃uX̃u+k‖|αk| = O(Bnρ
l/4).(A.9)

Let ψn = n/(logn)2+8/δ , pn = �ψ2/3
n B

1/3
n � and qn = �ψ1/3

n B
2/3
n �. Then

pn, qn → ∞, qn = o(pn),
(A.10)

2Bn + l = o(qn) and kn = �n/(pn + qn)� → ∞.

Define the blocks Lr = {j ∈ N : (r − 1)(pn + qn) + 1 ≤ j ≤ r(qn + pn) − qn},
1 ≤ r ≤ kn, Sr = {j ∈ N : r(pn + qn) − qn + 1 ≤ j ≤ r(qn + pn)}, 1 ≤ r ≤ kn − 1
and Skn = {j ∈ N :kn(pn + qn) − qn + 1 ≤ j ≤ n}. Let Ur = ∑

j∈Lr
Ỹj and Vr =∑

j∈Sr
Ỹj . Observe that U1, . . . ,Ukn are i.i.d. and V1, . . . , Vkn−1 are also i.i.d. By

Lemma A.2 and (A.9),

‖U1 − E(U1)‖ =
∥∥∥∥∥

pn∑
j=1

{Yj − E(Y0)}
∥∥∥∥∥ + O(pn‖Y0 − Ỹ0‖)

(A.11)
∼ (pnBnσ

2)1/2 + O(pnBnρ
l/4) ∼ (pnBnσ

2)1/2.

Similarly, ‖V1 − E(V1)‖ ∼ (qnBnσ
2)1/2 + O(qnBnρ

l/4). By (A.10),

var(V1 + · · · + Vkn) = (kn − 1)‖V1 − E(V1)‖2 + ‖Vkn − E(Vkn)‖2

= O(knqnBn) + O[(pn + qn)Bn] = o(nBn).

Then we have (nBn)
−1/2{g̃n − E(g̃n)} ⇒ N(0, σ 2) if

(nBn)
−1/2

kn∑
r=1

{Ur − E(U1)} ⇒ N(0, σ 2).(A.12)

Let τ = 2 + δ/2. Case (i) [logn = o(Bn)]. By the triangle and Rosenthal in-
equalities∥∥∥∥∥

pn∑
u=1

−l∑
k=−Bn

X̃uX̃u+kαk

∥∥∥∥∥
τ

≤
l∑

h=1

∥∥∥∥∥
�(pn−h)/l�∑

j=1

−l∑
k=−Bn

X̃h+(j−1)lX̃h+(j−1)l+kαk

∥∥∥∥∥
τ

≤ O(l)
√

pn/l

∥∥∥∥∥
−l∑

k=−Bn

X̃kαk

∥∥∥∥∥
τ
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≤ O
(√

pnl
) l−1∑
h=0

∥∥∥∥∥
�(Bn−l−h)/l�∑

j=0

X̃−Bn+h+j lα−Bn+h+j l

∥∥∥∥∥
τ

= O
[(√

pnl
)
l
√

Bn/l
] = O

(√
pnBnl

)
.

On the other hand, since X̃h+3j lX̃h+3j l+k , 0 ≤ j ≤ �(pn − h)/(3l)�, are i.i.d.,∥∥∥∥∥
pn∑

u=1

0∑
k=1−l

X̃uX̃u+kαk

∥∥∥∥∥
τ

≤
0∑

k=1−l

∥∥∥∥∥
pn∑

u=1

X̃uX̃u+kαk

∥∥∥∥∥
τ

≤
0∑

k=1−l

3l∑
h=1

∥∥∥∥∥
�(pn−h)/(3l)�∑

j=0

X̃h+3j lX̃h+3j l+kαk

∥∥∥∥∥
τ

(A.13)

= O
(
l2√

pn/l
)
.

Then we have ‖U1‖τ = O(
√

pnBnl + l2√pn/l) = O(
√

pnBnl). Case (ii) [Bn =
O(logn)]. By the argument of (A.13), ‖U1‖τ = O(Bnl

√
pn/l) = O(

√
pnBnl). It

is easily seen that the O(·)-relation holds uniformly over λ ∈ [0, π], that is,

sup
λ∈[0,π ]

‖U1(λ)‖τ = O
(
l
√

pnBn

)
.(A.14)

Then ‖U1 − E(U1)‖τ = o[(nBn)
1/2k

−1/τ
n ] and the Liapounov condition holds. By

the central limit theorem and (A.11), we have (A.12). So (3.3) follows from (A.8).
�

A.3. Proof of Theorem 3.2. We adopt the block method. Let Ur(λ), r =
1, . . . , kn, be i.i.d. block sums with block length p = pn = �n1−4η/δ(logn)−8/δ−4�
and Vr(λ), r = 1, . . . , kn − 1, be i.i.d. block sums with the same block length
q = qn = pn. The last block Vkn(λ) is negligible. Note that Bn = o(pn) since
η < δ/(4 + δ). Let l = ln = �−8 logn/ logρ(4)� as in the proof of Theo-
rem 3.1. Define Ur(λ)′ := Ur(λ)× 1(|Ur(λ)| ≤ dn) for r = 1, . . . , kn, where
dn = �√nBn(logn)−1/2�. The following lemma is needed.

LEMMA A.3. Under the assumptions in Theorem 3.2, we have

E
(

max
λ∈[0,π ] |Vkn(λ)|

)
= O

(√
pnlBn

)
,(A.15)

E
(

max
λ∈[0,π ] |hn(λ)|

)
= o(1),(A.16)

max
λ∈[0,π ] var(U1(λ)) = O(pnBn),(A.17)

var(U1(λ)′) = var(U1(λ))[1 + o(1)],(A.18)

where the relation o(1) in (A.18) holds uniformly over [0, π].
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PROOF. Let z = kn(p + q) + 1 − q and τ = 2 + δ/2. Then

E
(

max
λ∈[0,π ] |Vkn(λ)|

)
≤ C

Bn∑
j=−Bn

E

∣∣∣∣∣
n∑

u=z

X̃uX̃u+j

∣∣∣∣∣.
For |j | ≤ l, ‖∑n

u=z X̃uX̃u+j‖ = O(
√

pnl) since X̃uX̃u+j is 2l-dependent. When
|j | > l, ‖∑n

u=z X̃uX̃u+j‖2 = ∑n
u,u′=z E(X̃uX̃u+j X̃u′X̃u′+j ) = O(pnl) since the

sum vanishes if |u − u′| > l. So E maxλ∈[0,π ] |Vkn(λ)| = O(
√

pnlBn). Let h̃n(λ)

be the corresponding sum of hn(λ) with XuXu+k replaced by X̃uX̃u+k . As at (A.9),
we have E maxλ∈[0,π ] |hn(λ) − h̃n(λ)| = o(1). To show (A.16), it suffices to show
E maxλ∈[0,π ] |h̃n(λ)| = o(1) which follows from a similar argument as in the proof
of (A.15). Regarding (A.17), we have

var(U1(λ)) =
∥∥∥∥∥

p∑
u=1

Bn∑
k=−Bn

{XuXu+k − r(k)}αk

∥∥∥∥∥
2

=
p∑

u,u′=1

Bn∑
k,k′=−Bn

{r(u − u′)r(u − u′ + k − k′)

+ r(u′ − u + k′)r(u′ − u − k)

+ cum(X0,Xk,Xu′−u,Xu′−u+k′)}αkαk′

=: I1 + I2 + I3.

Then I1 is bounded by C
∑p−1

h=1−p(p − |h|)|r(h)|∑2Bn

g=−2Bn
(2Bn + 1 − |g|)|r(h +

g)|, which is less than Cp(2Bn + 1)(
∑∞

k=−∞ |r(k)|)2. Similarly, smaller bounds
can be obtained for I2 and I3 due to the summability of the second and fourth cu-
mulants. Thus maxλ∈[0,π ] var(U1(λ)) = O(pnBn). For (A.18), let v = var{U1(λ)−
U1(λ)′} and c = E(U1(λ)′)E{U1(λ) − U1(λ)′}. Then var(U1(λ)′) = var(U1(λ)) −
v + 2c. By Markov’s inequality and (A.14), v ≤ ‖U1(λ)‖τ

τ /d
τ−2
n = o(pnBn) and

similarly c ≤ ‖U1(λ)‖τ+1
τ /dτ−1

n = o(pnBn). By Lemma A.2 and since f is every-
where positive, (A.18) follows. �

PROOF OF THEOREM 3.2. Let Hn(λ) = ∑kn

r=1[Ur(λ)− E{Ur(λ)}], Hn(λ)′ =∑kn

r=1[Ur(λ)′ − E{Ur(λ)′}]. Let λj = πj/tn, j = 0, . . . , tn, tn = �Bn log(Bn)�. Let
cn = 1/(1 − 3π/ logBn) → 1. By Corollary 2.1 in [72], maxλ∈[0,π ] |Hn(λ)| ≤
cn maxj≤tn |Hn(λj )|. By (A.17) and (A.18), there exists a constant C1 > 1 such
that maxλ∈[0,π ] var(U1(λ)′) ≤ C1pnBn. Let αn = (C1nBn logn)1/2. By Bernstein’s
inequality, we have

P
(

max
0≤j≤tn

|Hn(λj )
′| ≥ 4αn

)
≤

tn∑
j=0

P
(|Hn(λj )

′| ≥ 4αn

)

= O(tn) exp
( −16α2

n

2knC1pnBn + 16dnαn

)
= o(1).
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Let Ur(λ)′′ = Ur(λ) − Ur(λ)′ and Hn(λ)′′ = Hn(λ) − Hn(λ)′. Then by Markov’s
inequality and (A.14),

P
(

max
0≤j≤tn

|Hn(λj )
′′| ≥ 4αn

)
≤

tn∑
j=0

P
(|Hn(λj )

′′| ≥ 4αn

)

≤
tn∑

j=0

var(U1(λj )
′′)kn

16α2
n

= O(tnkn(
√

pnBnl)
τ )

α2
nd

τ−2
n

= O

(
(Bn logn)(n/pn)(

√
pnBn logn)τ

(nBn logn)(nBn)τ/2−1(logn)−τ/2+1

)

= O((logn)−δ/4) = o(1).

So maxλ∈[0,π ] |Hn(λ)| = OP(αn). Clearly the same bound also holds for the
sum

∑kn−1
r=1 [Vr(λ) − E{Vr(λ)}]. By (A.9), E maxλ∈[0,π ] |g̃n(λ) − gn(λ)| = o(1).

By (A.15), (A.16) and (A.8), we have (3.4). �

A.4. Proof of Propositions 4.1 and 4.2. Let δj,k = 1j=k .

LEMMA A.4. Let m = �(n − 1)/2�. (i) Assume (A4′), (A5′) and Xt ∈ L8.
Then maxj,k≤m |cov(I 2

j , I 2
k ) − 4f 4

j δj,k| = O(1/n). (ii) Assume (A4′), (A5) and

Xt ∈ L4. Then maxj,k≤m |cov(Ij , Ik) − f 2
j δj,k| = O(1/n).

PROOF. We only show (i) since (ii) can be handled similarly. Note that

cov(I 2
j , I 2

k )

= 1

16π4n4

∑
tl ,sl∈{1,...,n},l=1,...,4

ei(t1−t2+t3−t4)λj−i(s1−s2+s3−s4)λk(A.19)

× cov(Xt1Xt2Xt3Xt4,Xs1Xs2Xs3Xs4).

By Theorem II.2 in [57], we have

cov(Xt1Xt2Xt3Xt4,Xs1Xs2Xs3Xs4) = ∑
v

cum(Xij ; ij ∈ v1) · · · cum(Xij ; ij ∈ vp),

where
∑

v is over all indecomposable partitions v = v1 ∪ · · · ∪ vp of the two-way
table

Xt1(+) Xt2(−) Xt3(+) Xt4(−)

Xs1(−) Xs2(+) Xs3(−) Xs4(+).

The signs in the above table are from the exponential terms in the sum (A.19).
Since E(Xt) = 0, only partitions v with #vj > 1 for all j contribute. One of the
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many indecomposable partitions consisting only of pairs with + in t matched to −
in s [say, {(t1, s1), (t2, s2), (t3, s3), (t4, s4)}] leads to the sum [A(λj , λk)]4, where

A(λj , λk) = 1

2πn

n∑
t1,s1=1

r(t1 − s1)e
it1λj−is1λk = f (λj )1j=k + O(1/n).

The other indecomposable partitions consisting entirely of pairs (with + in t

matched to − in s) are {(t1, s3), (t2, s2), (t3, s1), (t4, s4)}, {(t1, s1), (t2, s4), (t3, s3),

(t4, s2)} and {(t1, s3), (t2, s4), (t3, s1), (t4, s2)}. It is easily seen after some calcula-
tions that partitions containing entirely pairs but with at least one + in t matched
to one + in s result in a term of order O(1/n) for any j, k. All other partitions
that are not all pairs will give a quantity of order O(1/n) due to the summability
of cumulants up to the eighth order. Finally, it is not hard to see that O(1/n) does
not depend on (j, k). Thus the conclusion is proved. �

LEMMA A.5. Assume Xt ∈ L8, (A2), (A3′), (A4′) and (A5′). Then
var∗(ε∗

1) → 1 in probability and E∗(|ε∗
1 |4) = OP(1).

PROOF. By (A3′), f̃ is a uniformly consistent estimate of f . It remains to
show

1

N

N∑
j=1

Ij

fj

→ 1,
1

N

N∑
j=1

I 2
j

f 2
j

→ 2 in probability and

(A.20)
1

N

N∑
j=1

I 4
j

f 4
j

= OP(1).

By Proposition 10.3.1 in [8] and Lemma A.4, we have E(Ij ) = fj + o(1)

and E(I 2
j ) = 2f 2

j + o(1) uniformly in j . Thus the first two assertions follow
from Lemma A.4 since their variances go to 0 as n → ∞. By Lemma A.4,
E(I 4

j ) = cov(I 2
j , I 2

j ) + (EI 2
j )2 = 8f 4

j + o(1) uniformly in j , and the last assertion
holds. �

REMARK A.1. For linear processes, Franke and Härdle [24] remarked that
their consistency result strongly depends on the asymptotic normality of fn and
the weak convergence of F

Ĩ,m
(x) (see Corollary 2.2). The latter condition holds

under ε1 ∈ L5 and (4.2) by Chen and Hannan [12]. Franke and Härdle [24] further
conjectured that their results hold assuming only ε1 ∈ L4, under which the weak
convergence of F

Ĩ,m
(x) might be true. However, it seems from our argument (see

the proof of Proposition 4.1) that it is not the weak convergence of F
Ĩ,m

(x) but the
first two conditions in (A.20) that play key roles; compare Proposition A1 in [24].
The proof of the second assertion in (A.20) (see Lemmas A.4 and A.5) in a general
setting needs the stronger eighth moment assumption.
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Let a ∨ b = max(a, b) and a ∧ b = min(a, b); let r̃2(k) = ∫ 2π
0 f̃ 2(λ)eikλ dλ,

r2(k) = ∫ 2π
0 f 2(λ)eikλ dλ, r̃(k) = ∫ 2π

0 f̃ (λ)eikλ dλ and F+
n = {1, . . . , �n/2�}.

By (A3), maxk∈Z |r̃2(k) − r2(k)| ≤ 2π maxλ |f̃ 2(λ) − f 2(λ)| = oP(bn).

PROOF OF PROPOSITION 4.1. By Lemma 8.3 of [4], the convergence under
the d2 metric is equivalent to weak convergence and convergence of the first two
moments. By (A6), it suffices to show that

nbn var∗(f ∗
n (λ)) → σ 2(λ), L(V ∗

n (λ)|{Xj }nj=1) ⇒ N(0, σ 2(λ))(A.21)

in probability.

Let �j = ∑Bn

k=−Bn
a(kbn)e

−ikλ(eikωj + e−ikωj ). Since the resampled residu-

als {ε∗
j } are i.i.d. given X1, . . . ,Xn, we have var∗(I ∗

j ) = f̃ 2
j var∗(ε∗

1), and, since
I ∗

0 = 0, nbn var∗(f ∗
n (λ)) = var∗(ε∗

1)Rn(λ) + oP(1), where

Rn(λ) = nbn

n2

∑
j∈F+

n

f̃ 2
j �2

j

= 1

nBn

Bn∑
k,k′=−Bn

a(kbn)a(k′bn)e
−iλ(k−k′)

× ∑
j∈Fn

f̃ 2
j

{
eiωj (k−k′) + eiωj (k+k′)} + oP(1)

= 1

2πBn

Bn∑
k,k′=−Bn

a(kbn)a(k′bn)e
−iλ(k−k′)

× {r̃2(k − k′) + r̃2(k + k′)} + oP(1)

= 1

2πBn

Bn∑
k,k′=−Bn

a(kbn)a(k′bn)e
−iλ(k−k′)

× {r2(k − k′) + r2(k + k′)} + oP(1)

= R(1)
n (λ) + R(2)

n (λ) + oP(1) (say).

Let βn(k) = ∫ 2π
0 R

(1)
n (λ)eikλ dλ and β(k) = ∫ 2π

0
∫ 1
−1 a2(u)f 2(λ)eikλ dudλ. Then

βn(k) = r2(k)

Bn

Bn+0∧k∑
j=−Bn+0∨k

a(jbn)a
(
(j − k)bn

) → r2(k)

∫ 1

−1
a2(u) du.
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Since |βn(k)| ≤ C|r2(k)| and
∑

k∈Z |r2(k)| < ∞, by the Lebesgue dominated
convergence theorem, R

(1)
n (λ) → f 2(λ)

∫ 1
−1 a2(u) du. For R

(2)
n (λ), λ �= 0,±π , we

have

R(2)
n (λ) = 1

2πBn

2Bn∑
h=−2Bn

r2(h)eihλ
Bn+0∧h∑

k=−Bn+0∨h

a(kbn)a
(
(k − h)bn

)
e−2ikλ

= 1

2πBn

2Bn∑
h=−2Bn

r2(h)eihλO(1) → 0.

It is easily seen that R
(1)
n (λ) = R

(2)
n (λ) when λ = 0,±π . Hence by Lemma A.5,

nbn var∗(f ∗
n (λ)) → σ 2(λ) in probability.

Finally, since {ε∗
j } are i.i.d. conditional on {X1, . . . ,Xn}, by the Berry–Esseen

theorem and Lemma A.5, we have

sup
x

∣∣∣∣P∗(
V ∗

n (λ) ≤ x
) − �

(
x

nbn var∗(f ∗
n (λ))

)∣∣∣∣
≤ C

∑
j∈F+

n
f̃ 4

j E∗|ε∗
1 |4�4

j

[∑j∈F+
n

f̃ 2
j var∗(ε∗

1)�2
j ]2

= OP

(
nB4

n

n2B2
n

)
,

which implies L(V ∗
n (λ)|X1, . . . ,Xn) ⇒ N(0, σ 2(λ)) in probability since B2

n =
o(n) and supx |�(x/σ1) − �(x/σ2)| ≤ C|σ1/σ2 − 1| for some constant C. �

PROOF OF PROPOSITION 4.2. Since B3
n = o(n) and r̃(k) = a(kb̃n)r̂(k),

|k| ≤ B̃n and 0 otherwise, we have B2
n[E∗f ∗

n (λ) − f̃ (λ)] = Jn(λ) + oP(1), where

Jn(λ) = B2
n

2π

B̃n∑
k=−B̃n

a(kb̃n)r̂(k)e−ikλ(
a(kbn) − 1

)
.

It remains to show E(Jn(λ)) → c2f
′′(λ) and var(Jn(λ)) → 0. By (A1), (A4)

and (A5),

E(Jn(λ)) = B2
n

2π

B̃n∑
k=−B̃n

a(kb̃n)e
−ikλ(1 − |k|/n)r(k)

(
a(kbn) − 1

)

= −B2
n

2π

B̃n∑
k=−B̃n

a(kb̃n)e
−ikλr(k)k2b2

nc2
(
1 + o(1)

) → c2f
′′(λ)
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and

var(Jn(λ)) = B4
n

4π2

B̃n∑
k,k′=−B̃n

a(kb̃n)a(k′b̃n)
(
a(kbn) − 1

)(
a(k′bn) − 1

)

× e−i(k−k′)λ cov(r̂(k), r̂(k′))

= (1 + o(1))c2
2

4π2n2

B̃n∑
k,k′=−B̃n

a(kb̃n)a(k′b̃n)k
2k′2e−i(k−k′)λ(A.22)

×
n−|k|∑
t=1

n−|k′|∑
t ′=1

cov
(
XtXt+|k|,Xt ′Xt ′+|k′|

)

= O(B̃4
n/n2)

B̃n∑
k,k′=0

n−k∑
t=1

n−k′∑
t ′=1

| cov(XtXt+k,Xt ′Xt ′+k′)|.

Note that cov(XtXt+k,Xt ′Xt ′+k′) = r(t − t ′)r(t + k − t ′ − k′) + r(t − t ′ −
k′)r(t ′ − t − k) + cum(Xt ,Xt+k,Xt ′,Xt ′+k′). The contribution of the first term

r(t − t ′)r(t + k − t ′ − k′) to (A.22) is O(B̃5
n/n)

∑B̃n

h=−B̃n

∑2n
s=−2n |r(h)r(h+ s)| =

O(B̃5
n/n) = o(1) since

∑
k∈Z |r(k)| < ∞. Similarly, the contribution of the second

term to (A.22) approaches zero as n → ∞. The third term is O(B̃4
n/n) = o(1) due

to the summability of the fourth cumulants. �
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