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ESTIMATION IN SEMIPARAMETRIC SPATIAL REGRESSION1

BY JITI GAO, ZUDI LU2 AND DAG TJØSTHEIM

University of Western Australia, Chinese Academy of Sciences
and University of Bergen

Nonparametric methods have been very popular in the last couple of
decades in time series and regression, but no such development has taken
place for spatial models. A rather obvious reason for this is the curse of di-
mensionality. For spatial data on a grid evaluating the conditional mean given
its closest neighbors requires a four-dimensional nonparametric regression. In
this paper a semiparametric spatial regression approach is proposed to avoid
this problem. An estimation procedure based on combining the so-called mar-
ginal integration technique with local linear kernel estimation is developed
in the semiparametric spatial regression setting. Asymptotic distributions are
established under some mild conditions. The same convergence rates as in
the one-dimensional regression case are established. An application of the
methodology to the classical Mercer and Hall wheat data set is given and
indicates that one directional component appears to be nonlinear, which has
gone unnoticed in earlier analyses.

1. Introduction. Data collected at spatial sites occur in many scientific disci-
plines, such as econometrics, environmental science, epidemiology, image analysis
and oceanography. Often the sites are irregularly positioned, but, with the increas-
ing use of computer technology, data on a regular grid and measured on a contin-
uous scale are becoming more and more common. This is the kind of data that we
will be considering in this paper.

In the statistical analysis of such data, almost exclusively, the emphasis has
been on parametric modeling. So-called joint models were introduced in the pa-
pers by Whittle [36, 37], but, after the ground breaking paper by Besag [1], the
literature has been dominated by conditional models, in particular, with the use of
Markov fields and Markov chain Monte Carlo techniques. Another large branch
of literature, mainly on irregularly positioned data, though, is concerned with the
various methods of kriging which are based on parametric asumptions; see, for
example, [6], Chapters 2–5.
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In time series and regression, nonparametric methods have been very popular
both for prediction and characterizing nonlinear dependence. No such develop-
ment has taken place for spatial lattice models. Since the data are already on a
grid, unless there are missing data, the prediction issue is less relevant, but there
is still a need to explore and characterize nonlinear dependence relations. A rather
obvious reason for the lack of progress is the curse of dimensionality. For a time
series {Yt }, a nonparametric regression E[Yt |Yt−1 = y] of Yt on its immediate
predecessor is one-dimensional, and the corresponding Nadaraya–Watson (NW)
estimator has good statistical properties. For spatial data {Yij } on a grid, however,
the conditional mean of Yij given its closest neighbors Yi−1,j , Yi,j−1, Yi+1,j and
Yi,j+1 involves a four-dimensional nonparametric regression. Formally this can be
carried out using the NW estimator, and an asymptotic theory can be constructed.
In practice, however, this cannot be recommended unless the number of data points
is extremely large.

In spite of these difficulties, there has been some recent theoretical work in
this area. Kernel and nearest neighbor density estimates have been analyzed by
Tran [33] and Tran and Yakowitz [34] under spatial mixing conditions. Clearly, in
the marginal density estimation case, the curse of dimensionality is not an obsta-
cle. The L1 theory was established by Carbon, Hallin and Tran [4], and developed
further by Hallin, Lu and Tran [15] under spatial stability conditions, including
spatial linear and nonlinear processes, without imposing the less verifiable mixing
conditions. The asymptotic normality of the kernel density estimator was also es-
tablished for spatial linear processes by Hallin, Lu and Tran [14]. Finally, the NW
kernel method and the local linear spatial conditional regressor were treated by
Lu and Chen [21, 22], Hallin, Lu and Tran [16] and others. We have found these
papers useful in developing our theory, but our perspective is rather different.

There are several ways of circumventing the curse of dimensionality in nonspa-
tial regression. Perhaps the two most commonly used are semiparametric models,
which in this context will be taken to mean partially linear models, and additive
models. Actually, Cressie ([6], page 283) points out the possibility of trying such
models for spatial data, noting that the nonlinear krige technique called disjunc-
tive kriging (cf. [29]) takes as its starting point an additive decomposition. The
problem, as seen from a traditional Markov field point of view, is that additivity
clashes with the spatial Markov assumption. This is very different from the time
series case where the partial linear autoregressive model (see [9])

Yt = βYt−1 + g(Yt−2) + et

is a Markov model of second order if {et } consists of independent and identically
distributed (i.i.d.) random errors independent of {Yt−s, s > 0}.

In the spatial case so far we have not been able to construct nonlinear additive
or semiparametric models which are at the same time Markov. The problem can
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be illustrated by considering the line process {Yi}. Assuming {Yi} to be Markov on
the line and conditional Gaussian with density

p(yi |yi−1, yi+1) = 1√
2πσ

e−(yi−g(yi−1)−h(yi+1))
2/(2σ 2),

it is easily seen using formulae (2.2) and (3.3) of [1] that the Markov field property
implies g(y) ≡ h(y) ≡ ay + b for two constants a and b.

In ordinary regression, semiparametric and additive fitting can be thought of
as an approximation of conditional quantities such as E[Yt |Yt−1, . . . , Yt−k], and
sometimes [31] interaction terms are included to improve this approximation. The
approximation interpretation continues to be valid in the spatial case, so that semi-
parametric and additive models can be viewed as approximations to conditional
expressions such as E[Yij |Yi−1,j , Yi,j−1, Yi+1,j , Yi,j+1]. The conditional spirit of
Besag [1] is retained, being in terms of conditional means, however, rather than
conditional probabilities. (Note that, also, in nonlinear time series, dependence is
described by taking the conditional mean as a starting point; see, in particular, the
contributions by Bjerve and Doksum [2] and Jones and Koch [19].) The condi-
tional mean E[Yij |Yi−1,j , Yi,j−1, Yi+1,j , Yi,j+1], say, is meaningful if first-order
moments exist and if the conditional mean structure is invariant to spatial transla-
tions. Mathematically, the approximation consists in projecting this function on the
set of semiparametric or additive functions. It is not claimed that there is a Markov
field model, or any other conditional model, that can be exactly represented by
this approximation. In this respect the situation is the same as for nonlinear dis-
junctive kriging, where the conditional mean of Yij at a certain location is sought
to be approximated by an additive decomposition going over all of the remaining
observations (cf. [6], page 279). Classes of lattice models where there does exist
an exact representation are the class of auto-Gaussian models (cf. [1]) or unilat-
eral one-quadrant representations where Yij is represented additively in terms of,
say, Yi−1,j , Yi,j−1 only and an independent residual term (cf. [23]). But the for-
mer is linear, and the latter a “causal” unilateral expansion which may not be too
realistic. In general, in the nonlinear spatial case, one must live with the approx-
imative aspect. In practical time series modeling this is also the case, but in that
situation at least one is able to write up a fairly general and exact model, where Y

can be expressed as an additive function of past values and an independent residual
term. Fortunately, the asymptotic theory does not require the existence of such a
representation.

The purpose of this paper is then to develop estimators for a spatial semi-
parametric (partially linear) structure and to derive their asymptotic properties. In
the companion paper by Lu et al. [23], the additive approximation is analyzed
using a different setup and different techniques of estimation. An advantage
of using the partially linear approach is that a priori information concerning
possible linearity of some of the components can be included in the model.
More specifically, we will look at approximating the conditional mean function
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m(Xij ,Zij ) = E(Yij |Xij ,Zij ) by a semiparametric (partially linear) function of
the form

m0(Xij ,Zij ) = µ + Zτ
ijβ + g(Xij ),(1.1)

such that E[Yij −m0(Xij ,Zij )]2 or, equivalently, E[m(Xij ,Zij )−m0(Xij ,Zij )]2

is minimized over a class of semiparametric functions of the form m0(Xij ,Zij ),
subject to E[g(Xij )] = 0 for the identifiability of m0(Xij ,Zij ), where µ is an un-
known parameter, β = (β1, . . . , βq)

τ is a vector of unknown parameters, g(·) is an

unknown function over R
p , Zij = (Z

(1)
ij , . . . ,Z

(q)
ij )τ and Xij = (X

(1)
ij , . . . ,X

(p)
ij )τ

may contain both exogenous and endogenous variables, that is, neighboring values
of Yij . Moreover, a component Z

(r)
ij of Zij or a component X

(s)
ij of Xij may itself

be a linear combination of neighboring values of Yij , as will be seen in Section 4,

where Z
(1)
ij = Yi−1,j + Yi+1,j and X

(1)
ij = Yi,j−1 + Yi,j+1.

Motivation for using the form (1.1) for nonspatial data analysis can be found
in [17]. As for the nonspatial case, estimating g(·) in model (1.1) may suffer
from the curse of dimensionality when g(·) is not necessarily additive and p ≥ 3.
Thus, we will propose approximating g(·) by ga(·), an additive marginal integra-
tion projector as detailed in Section 2 below. When g(·) itself is additive, that is,
g(x) = ∑p

l=1 gl(xl), m0(Xij ,Zij ) of (1.1) can be written as

m0(Xij ,Zij ) = µ + Zτ
ijβ +

p∑
l=1

gl

(
X

(l)
ij

)
,(1.2)

subject to E[gl(X
(l)
ij )] = 0 for all 1 ≤ l ≤ p for the identifiability of m0(Xij ,Zij )

in (1.2), where gl(·), l = 1, . . . , p, are all unknown one-dimensional functions
over R

1.
Our method of estimating g(·) or ga(·) is based on an additive marginal integra-

tion projection on the set of additive functions, but where, unlike the backfitting
case, the projection is taken with the product measure of X

(l)
ij for l = 1, . . . , p

(cf. [27]). This contrasts with the smoothed backfitting approach of Lu et al. [23],
who base their work on an extension of the techniques of Mammen, Linton and
Nelson [24] to the nonparametric spatial regression case. Marginal integration, al-
though inferior to backfitting in asymptotic efficiency for purely additive models,
seems well suited to the framework of partially linear estimation. In fact, in pre-
vious work (cf. [8]) in the independent regression case marginal integration has
been used, and we do not know of any work extending the backfitting theory to
the partially linear case. Marginal integration techniques are also applicable to the
case where interactions are allowed between the X

(k)
ij -variables (cf. also the use of

marginal integration for estimating interactions in ordinary regression problems).
We believe that our approach to analyzing spatial data is flexible. It permits

nonlinearity and non-Gaussianity of real data. For example, re-analyzing the clas-
sical Mercer and Hall [26] wheat data set, one directional component appears to
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be nonlinear, and the fit is improved relative to earlier fits that have been linear.
The presence of spatial dependence creates a host of new problems and, in partic-
ular, it has important effects on the estimation of the parametric component with
asymptotic formulae different from those in the time series case.

The organization of the paper is as follows. Section 2 develops the kernel based
marginal integration estimation procedure for the forms (1.1) and (1.2). Asymp-
totic properties of the proposed procedures are given in Section 3. Section 4 dis-
cusses an application of the proposed procedures to the Mercer and Hall data.
A short conclusion is given in Section 5. Mathematical details are relegated to the
Appendix.

2. Notation and definition of estimators. As mentioned after (1.1), we are
approximating the mean function m(Xij ,Zij ) = E[Yij |Xij ,Zij ] by minimizing

E[Yij − m0(Xij ,Zij )]2 = E[Yij − µ − Zτ
ijβ − g(Xij )]2

over a class of semiparametric functions of the form m0(Xij ,Zij ) = µ + Zτ
ijβ +

g(Xij ) with E[g(Xij )] = 0. Such a minimization problem is equivalent to mini-
mizing

E[Yij − µ − Zτ
ijβ − g(Xij )]2 = E

[
E

{(
Yij − µ − Zτ

ijβ − g(Xij )
)2|Xij

}]
over some (µ,β, g). This implies that g(Xij ) = E[(Yij −µ−Zτ

ijβ)|Xij ] and µ =
E[Yij − Zτ

ijβ], and β is given by

β = (
E

[
(Zij − E[Zij |Xij ])(Zij − E[Zij |Xij ])τ ])−1

× E
[
(Zij − E[Zij |Xij ])(Yij − E[Yij |Xij ])],

provided that the inverse exists. This also shows that m0(Xij ,Zij ) is identifiable
under the assumption of E[g(Xij )] = 0.

We now turn to estimation assuming that the data are available for (Yij ,Xij ,Zij )

for 1 ≤ i ≤ m,1 ≤ j ≤ n. Since nonparametric estimation is not much used for
lattice data, and since the definitions of the estimators to be used later are quite in-
volved notationally, we start by outlining the main steps in establishing estimators
for µ, β and g(·) in (1.1) and then gl(·), l = 1,2, . . . , p, in (1.2). In the following,
we give our outline in three steps.

Step 1. Estimating µ and g(·) assuming β to be known.
For each fixed β , since µ = E[Yij ]−E[Zτ

ijβ] = µY −µτ
Zβ , µ can be estimated

by µ̂(β) = �Y − �Zτβ , where µY = E[Yij ], µZ = (µ
(1)
Z , . . . ,µ

(q)
Z )τ = E[Zij ], �Y =

1
mn

∑m
i=1

∑n
j=1 Yij and �Z = 1

mn

∑m
i=1

∑n
j=1 Zij .

Moreover, the conditional expectation

g(x) = g(x,β) = E[(Yij − µ − Zτ
ijβ)|Xij = x]

= E
[(

Yij − E[Yij ] − (Zij − E[Zij ])τ β)|Xij = x
]
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can be estimated by standard local linear estimation ([7], page 19), with
ĝm,n(x,β) = â0(β) satisfying(

â0(β), â1(β)
)

(2.1)
= arg min

(a0,a1)∈R1×Rp

m∑
i=1

n∑
j=1

(
Ỹij − Z̃τ

ijβ − a0 − aτ
1 (Xij − x)

)2
Kij (x, b),

where Ỹij = Yij − �Y and Z̃ij = (Z̃
(1)
ij , . . . , Z̃

(q)
ij )τ = Zij − �Z.

Step 2. Marginal integration to obtain g1, . . . , gp of (1.2).
The idea of the marginal integration estimator is best explained if g(·) is itself

additive, that is, if

g(Xij ) = g
(
X

(1)
ij , . . . ,X

(p)
ij

) =
p∑

l=1

gl

(
X

(l)
ij

)
.

Then, since E[gl(X
(l)
ij )] = 0 for l = 1, . . . , p, for k fixed,

gk(xk) = E
[
g
(
X

(1)
ij , . . . , xk, . . . ,X

(p)
ij

)]
and an estimate of gk is obtained by keeping X

(k)
ij fixed at xk and then tak-

ing the average over the remaining variables X
(1)
ij , . . . ,X

(k−1)
ij ,X

(k+1)
ij , . . . ,X

(p)
ij .

This marginal integration operation can be implemented irrespective of whether
or not g(·) is additive. If the additivity does not hold, as mentioned in the In-
troduction, the marginal integration amounts to a projection on the space of ad-
ditive functions of X

(l)
ij , l = 1, . . . , p, taken with respect to the product measure

of X
(l)
ij , l = 1, . . . , p, obtaining the approximation ga(x,β) = ∑p

l=1 Pl,ω(X
(l)
ij , β),

which will be detailed below with β appearing linearly in the expression. In
addition, it has been found convenient to introduce a pair of weight functions
(wk,w(−k)) in the estimation of each component, hence, the index w in Pl,w . The
details are given in (2.7)–(2.9) below.

Step 3. Estimating β .
The last step consists in estimating β . This is done by weighted least squares,

and it is easy since β enters linearly in our expressions. In fact, using the expression
of g(x,β) in step 1, we obtain the weighted least squares estimator β̂ of β in (2.10)
below. Finally, this is re-introduced in the expressions for µ̂ and P̂ resulting in
the estimates in (2.11) and (2.12) below. In the following, steps 1–3 are written
correspondingly in more detail.
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Step 1. To write our expression for (â0(β), â1(β)) in (2.1), we need to in-

troduce some more notation. Let Kij = Kij (x, b) = ∏p
l=1 K(

X
(l)
ij −xl

bl
), with b =

bm,n = (b1, . . . , bp), bl = bl,m,n being a sequence of bandwidths for the lth co-

variate variable X
(l)
ij , tending to zero as (m,n) tends to infinity, and K(·) is a

bounded kernel function on R
1 (when we do the asymptotic analysis in Section 3,

we need to introduce a more refined choice of bandwidths, as is explained just
before stating Assumption 3.6). Denote

Xij = Xij (x, b) =
((X

(1)
ij − x1)

b1
, . . . ,

(X
(p)
ij − xp)

bp

)τ

,

and let bπ = ∏p
l=1 bl . We define

um,n,l1l2 = (mnbπ)−1
m∑

i=1

n∑
j=1

(
Xij (x, b)

)
l1

(
Xij (x, b)

)
l2
Kij (x, b),

(2.2)
0 ≤ l1, l2 ≤ p,

where (Xij (x, b))l = (X
(l)
ij − xl)/bl for 1 ≤ l ≤ p. We then let (Xij (x, b))0 ≡ 1

and define

vm,n,l(β) = (mnbπ)−1
m∑

i=1

n∑
j=1

(Ỹij − Z̃τ
ijβ)

(
Xij (x, b)

)
lKij (x, b)(2.3)

and where, as before, Ỹij = Yij − Ȳ and Z̃ij = Zij − Z̄.
Note that vm,n,l(β) can be decomposed as

vm,n,l(β) = v
(0)
m,n,l −

q∑
s=1

βsv
(s)
m,n,l for l = 0,1, . . . , p,(2.4)

in which

v
(0)
m,n,l = v

(0)
m,n,l(x, b)

= (mnbπ)−1
m∑

i=1

n∑
j=1

Ỹij

(
Xij (x, b)

)
lKij (x, b),

v
(s)
m,n,l = v

(s)
m,n,l(x, b)

= (mnbπ)−1
m∑

i=1

n∑
j=1

Z̃
(s)
ij

(
Xij (x, b)

)
lKij (x, b), 1 ≤ s ≤ q.

We can then express the local linear estimates in (2.1) as(
â0(β), â1(β) � b

)τ = U−1
m,nVm,n(β),(2.5)
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where � is the operation of the component-wise product, that is, a1 � b =
(a11b1, . . . , a1pbp) for a1 = (a11, . . . , a1p) and b = (b1, . . . , bp),

Vm,n(β) =
(

vm,n,0(β)

Vm,n,1(β)

)
, Um,n =

(
um,n,00 Um,n,01

Um,n,10 Um,n,11

)
,(2.6)

where Um,n,10 = Uτ
m,n,01 = (um,n,01, . . . , um,n,0p)τ and Um,n,11 is the p × p ma-

trix defined by um,n,l1l2 , with l1, l2 = 1, . . . , p, in (2.2). Moreover, Vm,n,1(β) =
(vm,n,1(β), . . . , vm,n,p(β))τ , with vm,n,l(β) as defined in (2.3). Analogously

for Vm,n, we may define V
(0)
m,n and V

(s)
m,n in terms of v

(0)
m,n and v

(s)
m,n. Then taking

the first component with γ = (1,0, . . . ,0)τ ∈ R
1+p ,

ĝm,n(x,β) = γ τU−1
m,n(x)Vm,n(x,β)

= γ τU−1
m,n(x)V (0)

m,n(x) −
q∑

s=1

βsγ
τU−1

m,n(x)V (s)
m,n(x)

= H(0)
m,n(x) − βτHm,n(x),

where Hm,n(x) = (H
(1)
m,n(x), . . . ,H

(q)
m,n(x))τ , with H

(s)
m,n(x) = γ τU−1

m,n(x)V
(s)
m,n(x),

1 ≤ s ≤ q . Clearly, H
(s)
m,n(x) is the local linear estimator of H(s)(x) = E[(Z(s)

ij −
µ

(s)
Z )|Xij = x], 1 ≤ s ≤ q .

We now define Z
(0)
ij = Yij and µ

(0)
Z = µY such that H(0)(x) = E[(Z(0)

ij −
µ

(0)
Z )|Xij = x] = E[Yij − µY |Xij = x] and H(x) = (H (1)(x), . . . ,H (q)(x))τ =

E[(Zij −µZ)|Xij = x]. It follows that g(x,β) = H(0)(x)−βτH(x), which equals
g(x) under (1.1) irrespective of whether g itself is additive.

Step 2. Let w(−k)(·) be a weight function defined on R
p−1 such that

E[w(−k)(X
(−k)
ij )] = 1, and wk(xk) = I[−Lk,Lk](xk) defined on R

1 for some large
Lk > 0, with

X
(−k)
ij = (

X
(1)
ij , . . . ,X

(k−1)
ij ,X

(k+1)
ij , . . . ,X

(p)
ij

)
,

where IA(x) is the conventional indicator function.
For a given β , consider the marginal projection

Pk,w(xk, β) = E
[
g
(
X

(1)
ij , . . . ,X

(k−1)
ij , xk,

(2.7)
X

(k+1)
ij , . . . ,X

(p)
ij , β

)
w(−k)

(
X

(−k)
ij

)]
wk(xk).

It is easily seen that if g is additive as in (1.2), then, for −Lk ≤ xk ≤ Lk ,
Pk,w(xk, β) = gk(xk) up to a constant since it is assumed that E[w(−k)(X

(−k)
ij )] =

1. In general, ga(x,β) = ∑p
l=1 Pl,w(xl, β) is an additive marginal projection ap-

proximation to g(x) in (1.1) up to a constant in the region x ∈ ∏p
l=1[−Ll,Ll]. The

quantity Pk,w(xk, β) can then be estimated by the spatial locally linear marginal
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integration estimator

P̂k,w(xk, β) = (mn)−1
m∑

i=1

n∑
j=1

ĝm,n

(
X

(1)
ij , . . . ,X

(k−1)
ij , xk,

X
(k+1)
ij , . . . ,X

(p)
ij , β

)
w(−k)

(
X

(−k)
ij

)
wk(xk)(2.8)

= P̂
(0)
k,w(xk) −

q∑
s=1

βsP̂
(s)
k,w(xk) = P̂

(0)
k,w(xk) − βτ P̂ Z

k,w(xk),

where

P̂
(s)
k,w(xk) = 1

mn

m∑
i=1

n∑
j=1

H(s)
m,n

(
X

(1)
ij , . . . ,X

(k−1)
ij , xk,

X
(k+1)
ij , . . . ,X

(p)
ij

)
w(−k)

(
X

(−k)
ij

)
wk(xk)

is the estimator of

P
(s)
k,w(xk) = E

[
H(s)(X(1)

ij , . . . ,X
(k−1)
ij , xk,

X
(k+1)
ij , . . . ,X

(p)
ij

)
w(−k)

(
X

(−k)
ij

)]
wk(xk),

for 0 ≤ s ≤ q , and P Z
k,w(xk) = (P

(1)
k,w(xk), . . . ,P

(q)
k,w(xk))

τ is estimated by

P̂ Z
k,w(xk) = (

P̂
(1)
k,w(xk), . . . , P̂

(q)
k,w(xk)

)τ
.

Here, we add the weight function wk(xk) = I[−Lk,Lk](xk) in the definition
of P̂

(s)
k,w(xk), since we are only interested in the points of xk ∈ [−Lk,Lk] for some

large Lk . In practice, we may use a sample centered version of P̂
(s)
k,w(xk) as the

estimator of P
(s)
k,w(xk). Clearly, we have Pk,w(xk, β) = P

(0)
k,w(xk) − βτP Z

k,w(xk).
Thus, for every β , g(x) = g(x,β) of (1.1) [or rather the approximation ga(x,β)

if (1.2) does not hold] can be estimated by

̂̂g(x,β) =
p∑

l=1

P̂l,w(xl, β) =
p∑

l=1

P̂
(0)
l,w(xl) − βτ

p∑
l=1

P̂ Z
l,w(xl).(2.9)

Step 3. We can finally obtain the least squares estimator of β by

β̂ = arg min
β∈Rq

m∑
i=1

n∑
j=1

(
Ỹij − Z̃τ

ijβ − ̂̂g(Xij , β)
)2

(2.10)

= arg min
β∈Rq

m∑
i=1

n∑
j=1

(
Ŷ ∗

ij − (Ẑ∗
ij )

τ β
)2

,
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where Ŷ ∗
ij = Ỹij − ∑p

l=1 P̂
(0)
l,w(X

(l)
ij ) and Ẑ∗

ij = Z̃ij − ∑p
l=1 P̂ Z

l,w(X
(l)
ij ). Therefore,

β̂ =
(

m∑
i=1

n∑
j=1

Ẑ∗
ij (Ẑ

∗
ij )

τ

)−1(
m∑

i=1

n∑
j=1

Ŷ ∗
ij Ẑ

∗
ij

)
and µ̂ = �Y − β̂τ �Z.(2.11)

We then insert β̂ in â0(β) = ĝm,n(x,β) to obtain â0(β̂) = ĝm,n(x, β̂). In view
of this, the spatial local linear projection estimator of Pk(xk) can be defined by

̂̂P k,w(xk) = (mn)−1
m∑

i=1

n∑
j=1

ĝm,n

(
X

(1)
ij , . . . ,X

(k−1)
ij , xk,

(2.12)
X

(k+1)
ij , . . . ,X

(p)
ij ; β̂)

w(−k)

(
X

(−k)
ij

)
,

and for xk ∈ [−Lk,Lk], this would estimate gk(xk) up to a constant when (1.2)
holds. To ensure E[gk(X

(k)
ij )] = 0, we may rewrite ̂̂P k,w(xk) − µ̂P (k) for the esti-

mate of gk(xk) in (1.2), where µ̂P (k) = 1
mn

∑m
i=1

∑n
j=1

̂̂P k,w(X
(k)
ij ).

For the least squares estimator, β̂ , and ̂̂P k,w(·), we establish some asymptotic
distributions under mild conditions in Section 3.

3. Asymptotic properties. Let Im,n be the rectangular region defined by
Im,n = {(i, j) : i, j ∈ Z

2,1 ≤ i ≤ m,1 ≤ j ≤ n}. We observe {(Yij ,Xij ,Zij )}
on Im,n with a sample size of mn.

In this paper we write (m,n) → ∞ if

min{m,n} → ∞.(3.1)

In [33] it is required, in addition, that m and n tend to infinity at the same rate:

C1 < |m/n| < C2 for some 0 < C1 < C2 < ∞.(3.2)

Let {(Yij ,Xij ,Zij )} be a strictly stationary random field indexed by (i, j) ∈ Z
2.

A point (i, j) in Z
2 is referred to as a site. Let S and S′ be two sets of sites.

The Borel fields B(S) = B(Yij ,Xij ,Zij , (i, j) ∈ S) and B(S′) = B(Yij ,Xij ,Zij ,

(i, j) ∈ S′) are the σ -fields generated by the random variables (Yij ,Xij ,Zij ), with
(i, j) being elements of S and S′, respectively. We will assume that the variables
(Yij ,Xij ,Zij ) satisfy the following mixing condition (cf. [33]): There exists a
function ϕ(t) ↓ 0 as t → ∞, such that, whenever S, S′ ⊂ Z

2,

α
(
B(S),B(S′)

) = sup
{A∈B(S),B∈B(S′)}

{|P(AB) − P(A)P (B)|}
(3.3)

≤ f̃
(
Card(S),Card(S′)

)
ϕ

(
d̃(S, S′)

)
,

where Card(S) denotes the cardinality of S, and d̃ is the distance defined by

d̃(S, S′) = min
{√|i − i ′|2 + |j − j ′|2 : (i, j) ∈ S, (i′, j ′) ∈ S′}.
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Here f̃ is a symmetric positive function nondecreasing in each variable. Through-
out the paper, we only assume that f̃ satisfies

f̃ (n,m) ≤ min{m,n}.(3.4)

If f̃ ≡ 1, then the spatial process {(Yij ,Xij ,Zij )} is called strongly mixing. Con-
dition (3.4) holds in many cases. Examples can be found in [30]. For relevant work
on random fields, see, for example, [3, 5, 12, 13, 20, 28, 32, 35].

To state and prove our main results, we introduce the following assumptions.

ASSUMPTION 3.1. Assume that the process {(Yij ,Xij ,Zij ) : (i, j) ∈ Z
2} is

strictly stationary. The joint probability density fs(x1, . . . , xs) of (Xi1j1, . . . ,Xisjs )

exists and is bounded for s = 1, . . . ,2r − 1, where r is some positive integer such
that Assumption 3.2(ii) below holds. For s = 1, we write f (x) for f1(x1), the
density function of Xij .

ASSUMPTION 3.2. (i) Let Z∗
ij = Zij − µZ − ∑p

l=1 P Z
l,w(X

(l)
ij ) and BZZ =

E[Z∗
11(Z

∗
11)

τ ]. The inverse matrix of BZZ exists. Let Y ∗
ij = Yij −µY −∑p

l=1 P
(0)
l,w ×

(X
(l)
ij ) and Rij = Z∗

ij (Y
∗
ij − Z∗

ij
τ β). Assume that the matrix 	B = ∑∞

i=−∞ ×∑∞
j=−∞ E[(R00 − µB)(Rij − µB)τ ] is finite.
(ii) Suppose there is some λ > 2 such that E[|Yij |λr ] < ∞ for r as defined in

Assumption 3.1.

ASSUMPTION 3.3. The mixing coefficient ϕ defined in (3.3) satisfies

lim
T →∞T a

∞∑
t=T

t2r−1ϕ(t)(λr−2)/(λr) = 0(3.5)

for some constant a > max(2(rλ+2)
λr

, 2r(λr−2)
2+λr−4r

), with λ > 4 − 2
r

as in Assump-

tion 3.2(ii). In addition, the coefficient function f̃ involved in (3.3) satisfies (3.4).

ASSUMPTION 3.4. (i) The functions g(·) in (1.1) and gl(·) for 1 ≤ l ≤ p

in (1.2) have bounded and continuous derivatives up to order 2. In addition, the
function g(·) has a second-order derivative matrix g′′(·) (of dimension p × p),
which is uniformly continuous on R

p .
(ii) For each k, 1 ≤ k ≤ p, the weight function {w(−k)(·)} is uniformly contin-

uous on R
p−1 and bounded on the compact support S

(−k)
w of w(−k)(·). In addi-

tion, E[w(−k)(X
(−k)
ij )] = 1. Let SW = SW,k = S

(−k)
w × [−Lk,Lk] be the compact

support of W(x) = W(x(−k), xk) = w(−k)(x
(−k)) · I[−Lk,Lk](xk). In addition, let

infx∈SW
f (x) > 0 hold.
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ASSUMPTION 3.5. The function K(x) is a symmetric and bounded probabil-
ity density function on R

1 with compact support, CK , and finite variance such that
|K(x) − K(y)| ≤ M|x − y| for x, y ∈ CK and 0 < M < ∞.

When we are estimating the marginal projector Pk , the bandwidth bk associ-
ated with this component has to tend to zero at a rate slower than bl for l �= k.
This means that, for each k, 1 ≤ k ≤ p, we need a separate set of bandwidths
b

(k)
1 , . . . , b

(k)
p such that b

(k)
k tends to zero slower than b

(k)
l for all l �= k. Correspond-

ingly, we get p different products b
(k)
π = ∏p

l=1 b
(k)
l . Since in the following we will

analyze one component P̂k at a time, to simplify notation we omit the superscript
(k) and write bk , bl, l �= k, and bπ instead of b

(k)
k , b

(k)
l , l �= k, and b

(k)
π . It will be

seen that this slight abuse of notation does not lead to interpretational difficulties
in the proofs. To have consistency in notation, Assumptions 3.6 and 3.6′ below are
also formulated using this notational simplification. Throughout the whole paper,
we use l as any arbitrary index, while leaving k for the fixed and specified index
as suggested by a referee.

ASSUMPTION 3.6. (i) Let bπ be as defined before. The bandwidths satisfy

lim
(m,n)→∞ max

1≤l≤p
bl = 0,

lim
(m,n)→∞ mnb1+2/r

π = ∞,

lim inf
(m,n)→∞ mnb2(r−1)a+2(λr−2)/((a+2)λ)

π > 0

for some integer r ≥ 3 and some λ > 2 being the same as in Assumptions
3.1 and 3.2.

(ii) In addition, for some integer r ≥ 3, the kth component satisfies

lim sup
(m,n)→∞

mnb5
k < ∞,

lim
(m,n)→∞

max1≤l �=k≤p bl

bk

= 0,

lim
(m,n)→∞ mnb4(2+r)/(2r−1)

k = ∞.

REMARK 3.1. (i) Assumptions 3.1, 3.2, 3.4 and 3.5 are relatively mild in
this kind of problem, and can be justified in detail. For example, Assumption 3.1
is quite natural and corresponds to that used for the nonspatial case. Assump-
tion 3.2(i) is necessary for the establishment of asymptotic normality in the semi-
parametric setting. As can be seen from Theorem 3.1 below, the condition on the
existence of the inverse matrix, (BZZ)−1, is required in the formulation of that
theorem. Moreover, Assumption 3.2(i) corresponds to those used for the nonspa-
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tial case. Assumption 3.2(ii) is needed as the existence of moments of higher than
second order is required for this kind of problem when uniform convergence for
nonparametric regression estimation is involved. Assumption 3.4(ii) is required
due to the use of such a weight function. The continuity condition on the kernel
function is quite natural and easily satisfied.

(ii) As for the nonspatial case (see Condition A of [8]), some technical condi-
tions are needed when marginal integration techniques are employed. In addition,
some other technical conditions are required for the spatial case. Condition (3.5)
requires some kind of rate of convergence for the mixing coefficient. It holds auto-
matically when the mixing coefficient decreases to zero exponentially. For the non-
spatial case, similar conditions have been used. See, for example, Condition A(vi)
of [8]. For the spatial case, Assumption 3.6 requires that, when one of the band-
widths is proportional to (mn)−1/5, the optimal choice under a conventional crite-
rion, the other bandwidths need to converge to zero with a rate related to (mn)−1/5.
Assumption 3.6 is quite complex in general. However, it holds in some cases. For
example, when we choose p = 2, r = 3, λ = 4, a = 31, k = 1, b1 = (mn)−1/5 and
b2 = (mn)−2/5+η for some 0 < η < 1

5 , both (i) and (ii) hold. For instance,

lim inf
(m,n)→∞ mnb2(r−1)a+2(λr−2)/((a+2)λ)

π

= lim inf
(m,n)→∞(mn)(19/55)+(12/11)η = ∞ > 0

and

lim
(m,n)→∞ mnb1+2/r

π = lim
(m,n)→∞(mn)(5/3)η = ∞.

(iii) Similarly to the nonspatial case ([8], Remark 10), we assume that all the
nonparametric components are only two times continuously differentiable and,
thus, the optimal bandwidth bk is proportional to (mn)−1/5. As a result, Assump-
tion 3.6 basically implies p ≤ 4. For our case, the assumption of p ≤ 4 is just
sufficient for us to use an additive model to approximate the conditional mean
E[Yij |Yi−1,j , Yi,j−1, Yi+1,j , Yi,j+1] by g1(Yi−1,j ) + g2(Yi,j−1) + g3(Yi+1,j ) +
g4(Yi,j+1), with each gi(·) being an unknown function. In addition, for our case

study in Section 4, we need only to use an additive model of the form g1(X
(1)
ij ) +

g2(X
(2)
ij ) to approximate the conditional mean, where X

(1)
ij = Yi,j−1 + Yi,j+1 and

X
(2)
ij = Yi−1,j + Yi+1,j . Nevertheless, we may ensure that the marginal integration

method still works for the case of p ≥ 5 and achieves the optimal rate of conver-
gence by using a high-order kernel of the form∫

K(x)dx = 1,∫
xiK(x) dx = 0 for i = 1, . . . , I − 1 and(3.6) ∫

xIK(x) �= 0
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for I ≥ 2, as discussed in [18] for the nonspatial case, where I is the order of
smoothness of the nonparametric components. To ensure that the conclusions of
the main results hold for this case, we need to replace Assumptions 3.4–3.6 by
Assumptions 3.4′–3.6′ below:

ASSUMPTION 3.4′ . (i) The functions g(·) in (1.1) and gl(·) for 1 ≤ l ≤ p

in (1.2) have bounded and continuous derivatives up to order I ≥ 2. In addition,
the function g(·) has an I -order derivative matrix g(I)(·) (of dimension p × p ×
· · · × p) which is uniformly continuous on R

p .
(ii) Assumption 3.4(ii) holds.

ASSUMPTION 3.5′ . Assumption 3.5(i) holds. In addition, the kernel function
satisfies (3.6).

ASSUMPTION 3.6′ . (i) Assumption 3.6(i) holds.
(ii) In addition, for the kth component,

lim sup
(m,n)→∞

mnb2I+1
k < ∞,

lim
(m,n)→∞

max1≤l �=k≤p bl

bk

= 0,

lim
(m,n)→∞ mnb4(2+r)/(2r−1)

k = ∞

for λ > 2 and some integer r ≥ 3.

After Assumptions 3.4–3.6 are replaced by Assumptions 3.4′–3.6′, we may
show that the conclusions of the results remain true. Under Assumptions 3.4′–3.6′,
we will need to make changes at several places in the proofs of Lemmas A.3–A.5
and Theorems 3.1 and 3.2. Apart from replacing Assumptions 3.4–3.6 by Assump-
tions 3.4′–3.6′ in their conditions, we need to replace

∑p
k=1 b2

k by
∑p

k=1 bI
k and

µ2(K) = ∫
u2K(u)du by µI (K) = ∫

uIK(u)du, for example, in several relevant
places.

To verify Assumption 3.6′, we can choose (remember the notational sim-
plification introduced just before Assumption 3.6) the optimal bandwidth bk ∼
(mn)−1/(2I+1) and bl ∼ (mn)−2/(2I+1)+η, with 0 < η < 1

2I+1 for all l �= k. In this
case, it is not difficult to verify Assumption 3.6′ for the case p ≥ 5. As expected,
the order of the smoothness I needs to be greater than 2. For example, it is easy to
see that Assumption 3.6′ holds for the case p = 6 when we choose a = 31, r = 3,
λ = 4 and I > 4 + 1

2 . For instance, on the one hand, in order to make sure that the

condition lim(m,n)→∞
max1≤l �=k≤p bl

bk
= 0 holds, we need to have 0 < η < 1

2I+1 . On
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the other hand, in order to ensure that

lim inf
(m,n)→∞ mnb2(r−1)a+2(λr−2)/((a+2)λ)

π

= lim inf
(m,n)→∞(mn)(2I−11)/(2I+1)+(60/11)η = ∞ > 0

and

lim
(m,n)→∞ mnb1+2/r

π = lim
(m,n)→∞(mn)(6I−52)/(3(2I+1))+(25/3)η = ∞

both hold, we need to assume η > 52−6I
25(2I+1)

. Thus, we can choose η such that
52−6I

25(2I+1)
< η < 1

2I+1 when I > 4 + 1
2 . The last equation of Assumption 3.6′(ii)

holds automatically when I > 4 + 1
2 .

As pointed out by a referee, in general, to ensure that Assumption 3.6′ holds,
we will need to choose η such that [2(p−1)+1](1+2/r)−(2I+1)

(p−1)(1+2/r)
< η < 1

2I+1 , which

implies that (I,p, r) does need to satisfy I >
(p−1)r+2p

2r
.

This suggests that, in order to achieve the rate-optimal property, we will need
to allow that smoothness increases with dimensions. This is well known and has
been used in some recent papers for the nonspatial case (see Conditions A5, A7
and NW2–NW3 of [18]).

(iv) Assumptions 3.2(ii), 3.3 and 3.6 together require the existence
of E[|Yij |10+ε] for some small ε > 0. This may look like a strong moment
condition. However, this is weaker than E[|Yij |k] < ∞ for k = 1,2, . . . and
E[e|Yij |] < ∞ corresponding to those used in the nonspatial case.

We can now state the asymptotic properties of the marginal integration es-
timators for both the parametric and nonparametric components. Recall that
Z∗

ij = Zij − µZ − ∑p
l=1 Pl,w(X

(l)
ij ), Y ∗

ij = Yij − µY − ∑p
l=1 P

(0)
l,w(X

(l)
ij ) and Rij =

Z∗
ij (Y

∗
ij − Z∗

ij
τ β).

THEOREM 3.1. Assume that Assumptions 3.1–3.6 hold. Then under (3.1),

√
mn[(β̂ − β) − µβ] D→ N(0,	β),(3.7)

with µβ = (BZZ)−1µB and 	β = (BZZ)−1	B((BZZ)−1)τ , where BZZ =
EZ∗

11Z
∗
11

τ , µB = E[Rij ] and 	B = ∑∞
i=−∞

∑∞
j=−∞ E[(R00 −µB)(Rij −µB)τ ].

Furthermore, when (1.2) holds, we have

µβ = 0,	β = (BZZ)−1	B((BZZ)−1)τ ,

where 	B = ∑∞
i=−∞

∑∞
j=−∞ E[R00R

τ
ij ], with Rij = Z∗

ij εij and εij = Yij −
m0(Xij ,Zij ) = Yij − µ − Zτ

ijβ − g(Xij ).
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REMARK 3.2. Note that
p∑

l=1

P
(0)
l,w

(
X

(l)
ij

) − βτ
p∑

l=1

P Z
l,w

(
X

(l)
ij

) =
p∑

l=1

(
P

(0)
l,w

(
X

(l)
ij

) − βτP Z
l,w

(
X

(l)
ij

))

=
p∑

l=1

Pl,w

(
X

(l)
ij , β

) ≡ ga(Xij , β).

Therefore, Y ∗
ij −Z∗

ij
τ β = εij +g(Xij )−ga(Xij , β), where g(Xij )−ga(Xij , β)

is the residual due to the additive approximation. When (1.2) holds, it means that
g(Xij ) in (1.1) has the expression g(Xij ) = ∑p

l=1 gl(X
(l)
ij ) = ∑p

l=1 Pl,w(X
(l)
ij , β) =

ga(Xij , β) and H(Xij ) = ∑p
l=1 P Z

l,w(X
(l)
ij ), and hence, Y ∗

ij − Z∗
ij

τ β = εij . As β

minimizes L(β) = E[Yij − m0(Xij ,Zij )]2, we have L′(β) = 0 and E[εijZ
∗
ij ] =

E[εij (Zij − E[Zij |Xij ])] = 0 when (1.2) holds. This implies E[Rij ] = 0 and,
hence, µβ = 0 in (3.7) when the marginal integration estimation procedure is em-
ployed for the additive form of g(·).

In both theory and practice, we need to test whether H0 :β = β0 holds for a
given β0. The case where β0 ≡ 0 is an important one. Before we state the next
result, one needs to introduce some notation. Let

B̂ZZ = 1

mn

m∑
i=1

n∑
j=1

Ẑ∗
ij (Ẑ

∗
ij )

τ , Ẑ∗
ij = Z̃ij −

p∑
l=1

P̂ Z
l,w

(
X

(l)
ij

)
,

µ̂B = 1

mn

m∑
i=1

n∑
j=1

R̂ij , R̂ij = Ẑ∗
ij

(
Ŷ ∗

ij − (Ẑ∗
ij )

τ β̂
)
,

µ̂β = (B̂ZZ)−1µ̂B, 	̂β = (B̂ZZ)−1	̂B((B̂ZZ)−1)τ ,

in which 	̂B is a consistent estimator of 	B , defined simply by

	̂B =
Mm∑

i=−Mm

Nn∑
j=−Nn

γ̂ij ,

γ̂ij =



1

mn

m−i∑
u=1

n−j∑
v=1

(R̂uv − µ̂B)(R̂u+i,v+j − µ̂B)τ , if (1.1) holds,

1

mn

m−i∑
u=1

n−j∑
v=1

R̂uvR̂
τ
u+i,v+j , if (1.2) holds,

where Mm → ∞, Nn → ∞, Mm/m → 0 and Nn/n → 0 as m → ∞ and n → ∞.
It can be shown that both µ̂β and 	̂β are consistent estimators of µβ and 	β ,
respectively.
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We are now in the position to state a corollary of Theorem 3.1 that can be used
to test hypotheses about β .

COROLLARY 3.1. Assume that the conditions of Theorem 3.1 hold. Then un-
der (3.1),

	̂
−1/2
β

√
mn[(β̂ − β) − µ̂β] D→ N(0, Iq)(3.8)

and

mn[(β̂ − β) − µ̂β]τ 	̂−1
β [(β̂ − β) − µ̂β] D→ χ2

q .(3.9)

Furthermore, when (1.2) holds, we have, under (3.1),

	̂
−1/2
β

√
mn(β̂ − β)

D→ N(0, Iq)(3.10)

and (√
mn(β̂ − β)

)τ
	̂−1

β

(√
mn(β̂ − β)

) D→ χ2
q .(3.11)

The proof of Theorem 3.1 is relegated to the Appendix, while the proof of Corol-
lary 3.1 is straightforward and therefore omitted.

REMARK 3.3. Theorem 3.1 implies that there is a big difference between the
asymptotic variances in the spatial case and in the time series case. The difference
is mainly because the time series is unilateral, while the spatial process is not.
Let us consider the simplest case of a line process with p = q = 1. In the corre-
sponding time series case where Yt = βYt−1 + g(Yt−2)+ et , et is usually assumed
to be independent of the past information {Ys, s < t}; then with Zt = Yt−1 and
Xt = Yt−2, εt = Yt − E(Yt |Xt,Zt) = et , therefore Rt = Z∗

t εt = Z∗
t et (with Z∗

t

defined analogously to Z∗
ij ) is a martingale process with E[R0Rt ] = 0 for t �= 0,

which leads to 	B = E[R2
0]. However, in the bilateral case on the line with the

index taking values in Z
1 where Yt = βYt−1 + g(Yt+1)+ et , et cannot be assumed

to be independent of (Yt−1, Yt+1) even when et itself is an i.i.d. normal process
and g is linear, since under some suitable conditions, as shown in [36], the linear
stationary solution may be of the form Yt = ∑∞

j=−∞ aj et−j , with all aj nonzero.
Then with Zt = Yt−1 and Xt = Yt+1, εt = Yt − E(Yt |Xt,Zt) �= et , and usually
E[R0Rt ] �= 0 for t �= 0, which leads to 	B �= E[R2

0].

Next we state the result for the nonparametric component.

THEOREM 3.2. Assume that Assumptions 3.1–3.6 hold. Then under (3.1), for
xk ∈ [−Lk,Lk],√

mnbk

( ̂̂P k,w(xk) − Pk,w(xk) − bias1k

) D→ N(0,var1k),(3.12)
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where

bias1k = 1

2
b2
kµ2(K)

∫
w(−k)

(
x(−k))f(−k)

(
x(−k))∂2g(x,β)

∂x2
k

dx(−k)

and

var1k = J

∫
V (x,β)

[w(−k)(x
(−k))f(−k)(x

(−k))]2

f (x)
dx(−k),

with J = ∫
K2(u) du, µ2(K) = ∫

u2K(u)du, g(x,β) = E[(Yij −µ−Zτ
ijβ)|Xij =

x] and V (x,β) = E[(Yij − µ − Zτ
ijβ − g(x,β))2|Xij = x].

Furthermore, assume that the additive form (1.2) holds and that
E[w(−k)(X

(−k)
ij )] = 1. Then under (3.1),√

mnbk

(
ĝk(xk) − gk(xk) − bias2k

) D→ N(0,var2k),(3.13)

where

bias2k = 1

2
b2
kµ2(K)

∂2gk(xk)

∂x2
k

and

var2k = J

∫
V (x,β)

[w(−k)(x
(−k))f(−k)(x

(−k))]2

f (x)
dx(−k),

with V (x,β) = E[(Yij − µ − Zτ
ijβ − ∑p

k=1 gk(xk))
2|Xij = x].

The proof of Theorem 3.2 is relegated to the Appendix. We finally state the
corresponding results of Theorems 3.1 and 3.2 under Assumptions 3.1–3.3 and
3.4′–3.6′ in Theorem 3.3 below. Its proof is omitted.

THEOREM 3.3. (i) Assume that Assumptions 3.1–3.3 and 3.4′–3.6′ hold. Then
under (3.1), the conclusions of Theorem 3.1 hold.

(ii) Assume that Assumptions 3.1–3.3 and 3.4′–3.6′ hold. Then under (3.1), for
xk ∈ [−Lk,Lk],√

mnbk

( ̂̂P k,w(xk) − Pk,w(xk) − bias1k(I )
) D→ N

(
0,var1k(I )

)
,(3.14)

where

bias1k(I ) = 1

2
bI
kµI (K)

∫
w(−k)

(
x(−k))f(−k)

(
x(−k))∂I g(x,β)

∂xI
k

dx(−k)

and

var1k(I ) = J

∫
V (x,β)

[w(−k)(x
(−k))f(−k)(x

(−k))]2

f (x)
dx(−k),
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with g(x,β) = E[(Yij − µ − Zτ
ijβ)|Xij = x], V (x,β) = E[(Yij − µ − Zτ

ijβ −
g(x,β))2|Xij = x], J = ∫

K2(u) du and µI (K) = ∫
uIK(u)du.

Furthermore, let the additive form (1.2) hold and E[w(−k)(X
(−k)
ij )] = 1. Then

under (3.1), √
mnbk

(
ĝk(xk) − gk(xk) − bias2k(I )

) D→ N
(
0,var2k(I )

)
,(3.15)

where

bias2k(I ) = 1

2
bI
kµI (K)

∂Igk(xk)

∂xI
k

and

var2k(I ) = J

∫
V (x,β)

[w(−k)(x
(−k))f(−k)(x

(−k))]2

f (x)
dx(−k),

with V (x,β) = E[(Yij − µ − Zτ
ijβ − ∑p

k=1 gk(xk))
2|Xij = x].

4. An illustrative example with simulation. In this section we consider an
application to the wheat data set of Mercer and Hall [26] as an illustration of the
theory and methodology established in this paper. This data set has been analyzed
by several investigators including Whittle [36] and Besag [1]; see also [25] on
the analysis from the spectral perspective. It involves 500 wheat plots, each 11 ft
by 10.82 ft, arranged in a 20×25 rectangle, plot totals constituting the observa-
tions. Two measurements, grain yield and straw yield, were made on each plot.
Whittle [36] analyzed the grain yields, fitting various stationary unconditional nor-
mal autoregressions. Besag [1] analyzed the same data set, but on the basis of
the homogenous first- and second-order auto-normal schemes [see (5.5) and (5.6)
in [1], page 206], and found that the first-order auto-normal scheme appears satis-
factory ([1], page 221). This model has the conditional mean of Yij , given all other
site values, equal to

γ0 + γ1(Yi−1,j + Yi+1,j ) + γ2(Yi,j−1 + Yi,j+1),(4.1)

where we use Yij to denote the grain yield, and γ0, γ1 and γ2 are unknown para-
meters. For more details, the reader is referred to the above references.

As a first step, we are concerned with whether or not the first-order scheme
is linear as in (4.1) or partially linear as in (1.2). This suggests considering the
additive first-order scheme

µ + g1
(
X

(1)
ij

) + g2
(
X

(2)
ij

)
,(4.2)

where X
(1)
ij = Yi−1,j +Yi+1,j , X

(2)
ij = Yi,j−1 +Yi,j+1, µ is an unknown parameter

and g1(·) and g2(·) are two unknown functions on R
1. If the Besag scheme is

correct, both (1.1) and (1.2) hold and are linear, and one can model (4.2) as a
special case of model (1.2) with β = 0.
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Next, we apply the approach established in this paper to estimate g1 and g2.
In doing so, the two bandwidths, b1 = 0.6 and b2 = 0.7, were selected using a
cross-validation selection procedure for the case of p = 2. The resulting estimated
functions of g1(·) and g2(·) are depicted in Figure 1(a) and (b) with solid lines,
respectively, where the additive modeling, based on the modified backfitting algo-
rithm proposed by Mammen, Linton and Nielsen [24] in the i.i.d. case and devel-
oped by Lu et al. [23] for the spatial process, is also plotted with dotted lines. We
need to point out that, in an asymptotic analysis of such a two-dimensional model,
two bandwidths tending to zero at different rates have to be used for each compo-
nent, thus, we will need to use four bandwidths altogether. But in a finite sample
situation like ours, we think that it may be better to rely on cross-validation. This
technique is certainly used in the nonspatial situation too, even in cases where an
optimal asymptotic formula exists.

The pictures of the additive first-order scheme indicate that the estimated func-
tion of g1(·) appears to be linear as in [1], while the estimated function of g2(·)
seems to be nonlinear. This suggests using a partially linear spatial autoregression
of the form

β0 + β1X
(1)
ij + g2

(
X

(2)
ij

)
.(4.3)

For this case, we view model (4.3) as a special case of model (1.2) with µ = β0,
β = β1, Zij = X

(1)
ij , Xij = X

(2)
ij and g(·) = g2(·). Based on the bandwidth of 0.4

selected using a cross-validation selection procedure, the resulting estimates were
β̂0 = 1.311, β̂1 = 0.335 and ĝ2(·), which are also plotted in Figure 1(a) and (b)
with dashed lines, respectively.

We find that our estimate of β1 based on the partially linear first-order scheme is
almost the same as Besag’s first-order auto-normal schemes, which are tabulated
in Table 1 below. The estimate of g2(·) based on the partially linear first-order
scheme, similarly to that given in Figure 1(b) based on both the marginal integra-
tion and the backfitting of the additive first-order scheme, indicates nonlinearity
with a change point around x = 7.8.

One may wonder whether the apparent nonlinearity in g2 could arise from ran-
dom variation even if g2 is linear. The similarity of the two estimates using differ-
ent techniques is reassuring, but we also did some simulations with samples from

TABLE 1
Estimates of different first-order conditional autoregression schemes for Mercer and Hall’s data

Scheme Regressor: X
(1)
ij Regressor: X

(2)
ij Variance of residuals

Partially linear β̂1 = 0.335 ĝ2(·): Figure 1(b) 0.1081
Auto-normal ([1], Table 8) γ̂1 = 0.343 γ̂2 = 0.147 0.1099
Auto-normal ([1], Table 10) γ̂1 = 0.350 γ̂2 = 0.131 0.1100
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FIG. 1. Estimated functions of semi-parametric first-order schemes: (a) g1(x), (b) g2(x). Here the
solid and the dotted lines are for the estimates of the additive first-order scheme based on the mar-
ginal integration developed in this paper and the modified backfitting in [24] and [23], respectively;
the dashed line is for the estimates of the partially linear first-order scheme based on the approach
developed in this paper.
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TABLE 2
A six-number summary for β̂1

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.2313 0.3129 0.3405 0.3387 0.3684 0.4182

the auto-normal first-order scheme with conditional mean (4.1) with γ0 = 0.16,
γ1 = 0.34, γ2 = 0.14 and with constant conditional variance σ 2 = 0.11, where the
values of the parameters were chosen to be close to the estimated values of the
auto-normal first-order scheme for the grain yields data given by Besag’s [1] cod-
ing method. The sample size in the simulation is the same as that of the grain yields
data, that is, m = 20 and n = 25. We repeated the simulation 100 times. For each
simulated realization, our partially linear first-order scheme of (4.3) was estimated
by the approach developed in this paper with the bandwidth of 0.4 (the same as that
used for the grain yields data in the above). The boxplots of the 100 simulations
for the nonparametric component g2(·) are depicted in Figure 2. A six-number
summary for β̂1 is given in Table 2.

It is clear that the estimate for β1 is quite stable with median almost equal to
the actual parameter β̂1 = 0.34, and the estimate for g2 also looks quite linear with
small errors around x = 7.8. The simulation results show that it is unlikely that
the estimated nonlinearity in g2 for the grain yields data in Figure 1(b) should be
caused by random variations with the true model being linear. In fact, the accuracy
of our estimates is quite high around x = 7.8, since the samples of the grain yields
are quite dense there (see Figure 3).

Table 1 reports the variance of the residuals of the partially linear first-order
scheme, as well as of Besag’s auto-normal schemes. By contrast, the partially lin-
ear first-order scheme gives some improvement over the auto-normal schemes, but
perhaps surprisingly small in view of the rather pronounced nonlinearity of Fig-
ure 1. In an attempt to understand this, we also calculated the variances of the es-
timated components and the variance of Yij over {(i, j) : 2 ≤ i ≤ 19,2 ≤ j ≤ 24},
reported in Table 3. By combining Table 3 with Table 1, we can see the fol-

TABLE 3
Variances of components of different first-order conditional autoregression schemes

for Mercer and Hall’s data

Scheme Var(Yij ) Var{g1(X
(1)
ij )} Var{g2(X

(2)
ij )}

Partially linear 0.205 0.0661 0.0114
Auto-normal ([1], Table 8) 0.205 0.0693 0.0102
Auto-normal ([1], Table 10) 0.205 0.0722 0.0081
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FIG. 2. Boxplots of the estimated partial linear first-order scheme for the 100 simulations of the
auto-normal first-order model for the nonparametric component g2(x). The sample size is m = 20
and n = 25.

lowing: (a) clearly, for the partially linear first-order scheme, as well as Be-
sag’s auto-normal schemes, the variances of the residuals (in Table 1) are quite
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FIG. 3. The estimated kernel density of X
(2)
ij defined in (4.3) for the grain yields data.

large, all about half of the variance of Yij (given in Table 3); (b) the variances

of the first component, Var{g1(X
(1)
ij )}, are much larger (6 times) than those of

the second component, Var{g2(X
(2)
ij )}, and therefore, the first components in the
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fitted conditional means play a key role, while the impact of the second com-
ponents is smaller; and (c) if we are only concerned with the estimate of the
second component g2, then the improvement of the partially linear first-order
scheme over the auto-normal schemes is clear if measured in terms of the rela-
tive increase of the variance: (0.0114 − 0.0102)/0.0102 × 100% = 11.76% and
(0.0114 − 0.0081)/0.0081 × 100% = 40.74% (cf. Table 3). These facts serve at
least as tentative explanations of the slightly contradictory messages of Figure 1
and Table 1. The partially linear scheme provides an alternative choice of fitting
and conveys more information on the data. A referee suggested that the apparent
nonlinearity may be due to an inhomogeneity in the data (cf. [25]). This is a pos-
sibility that cannot be ruled out. Also, for time series it is sometimes difficult to
distinguish between nonlinearity and nonstationarity.

5. Conclusion and future studies. This paper uses a semiparametric addi-
tive technique to estimate conditional means of spatial data. The key idea is that
the semiparametric technique is employed as an approximation to the true condi-
tional mean function of the spatial data. The asymptotic properties of the resulting
estimates are given in Theorems 3.1–3.3. The results of this paper can serve as a
starting point for research in a number of directions, including problems related to
the estimation of the conditional variance function of a set of spatial data.

In Section 4 our empirical studies show that the estimated form of g2(·) is non-
linear. To further support such nonlinearity, one may need to establish a formal test.
In general, we may consider testing for linearity in the nonparametric components
gl(·) involved in model (1.2).

In the time series case, such test procedures for linearity have been studied ex-
tensively during the last ten years. Details may be found in [10]. In the spatial case,
Lu et al. [23] propose a bootstrap test and then discuss its implementation. To the
best of our knowledge, there is no asymptotic theory available for such a test, and
the theoretical problems are very challenging.

To test H0 :gk(X
(k)
ij ) = X

(k)
ij γk , where {γk} is an unknown parameter for each

given k, our experience with the nonspatial case suggests using a kernel-based test
statistic of the form

Lk =
m∑

i1=1

n∑
j1=1

m∑
i2=1,�=i1

n∑
j2=1,�=j1

Ki1j1

(
Xi2j2, b

)
ε̂
(k)
i1j1

ε̂
(k)
i2j2

,

where Ki1j1(Xi2j2, b) = ∏p
l=1 K(

X
(l)
i1j1

−X
(l)
i2j2

bl
), as defined at the beginning of Sec-

tion 2, and ε̂
(k)
ij = Yij − µ̂ − Zτ

ij β̂ − X
(k)
ij γ̂k − ∑

l=1,�=k ĝl(X
(l)
ij ), in which µ̂, β̂ , γ̂k

and ĝl(·) are the corresponding estimators of µ, β , γk and gl(·). These estimators
may be defined similarly as in Section 2.

Our experience and knowledge with the nonspatial case would suggest that the
normalized version of Lk should have an asymptotically normal distribution un-
der H0, although we have not been able to rigorously prove such a result. This



1420 J. GAO, Z. LU AND D. TJØSTHEIM

issue and other related issues, for example, a test for isotropy, are left for future
research.

APPENDIX: PROOFS OF THEOREMS 3.1 AND 3.2

Throughout the rest of the paper, the letter C is used to denote constants whose
values are unimportant and may vary from line to line. All limits are taken as
(m,n) → ∞ in sense of (3.1) unless stated otherwise.

A.1. Technical lemmas. In the proofs we need to repeatedly use the follow-
ing cross term inequality and uniform-consistency lemmas.

Let f(−k)(·) and f (·) be the probability density functions of X
(−k)
ij and Xij ,

respectively. For k = 1,2, . . . , p and s = 1,2, . . . , q , let

dijk(xk) = f
(
X

(−k)
ij , xk

)−1
w

(
X

(−k)
ij

)
f(−k)

(
X

(−k)
ij

)
,

ε
(s)
ij = Z

(s)
ij − E

[
Z

(s)
ij |Xij

]
, �ij (xk) = K

(X
(k)
ij − xk

bk

)
dijk(xk)ε

(s)
ij .

LEMMA A.1. (i) Let Assumptions 3.1–3.6 hold. Then under (3.1),

1√
mnbk

m∑
i=1

n∑
j=1

�ij (xk)
D→ N

(
0,var(s)1k

)
,

where

var(s)1k = J

∫
V (s)(x)

[w(−k)(x
(−k))f(−k)(x

(−k))]2

f (x)
dx(−k),

in which J = ∫
K2(u) du, V (s)(x) = E((Z

(s)
ij − µ

(s)
Z − H(s)(x))2|Xij = x) and

x(−k) is the (p − 1)-dimensional vector obtained from x with the kth compo-
nent, xk , deleted.

(ii) Let Assumptions 3.1–3.6 hold. For any (m,n) ∈ Z
2, define two sequences of

positive integers c1 = c1mn and c2 = c2mn such that 1 < c1 < m and 1 < c2 < n.
For any xk , let

J̃ (xk) =
m∑

i=1

n∑
j=1
i′ �=i

m∑
i′=1

or j ′ �=j

n∑
j ′=1

E[�ij (xk)�i′j ′(xk)],(A.1)

J̃1 = c1c2mnb(λr−2)/(λr+2)+1
k ,

(A.2)

J̃2 = Cmnb2/(λr)
k

( √
m2+n2∑

i=min(c1,c2)

iϕ(i)(λr−2)/(λr)

)
,
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where C > 0 is a positive constant and λ > 2 and r ≥ 1 are as defined in Assump-
tions 3.1 and 3.2(ii). Then for any xk ,

|J̃ (xk)| ≤ C[J̃1 + J̃2].(A.3)

PROOF. The proof of (i) follows similarly from that of Lemma 3.1 of [16],
while the proof of (ii) is analogous to that of Lemma 5.2 of [16]. When applying
Lemma 3.1, one needs to notice that E[ε(s)

ij ] = 0 and N = 2. For the application of
Lemma 5.2, we need to take δ = λr − 2, d = 1 and N = 2 in the lemma. �

LEMMA A.2. Let (i, j) ∈ Z
2 and ξij = K((X

(1)
ij − x1)/b1, . . . , (X

(p)
ij −

xp)/bp)θij , where K(·) satisfies Assumption 3.5, and θij = θ(Xij , Yij ), in which
θ(·, ·) is a measurable function, satisfy E[ξij ] = 0 and E[|θij |λr ] < ∞ for a pos-
itive integer r and some λ > 2. In addition, let Assumptions 3.1–3.6 hold. Then
there exists a constant C depending on r but depending on neither the distribution
of ξij nor bπ and (m,n) such that

E

[(
m∑

i=1

n∑
j=1

ξij

)2r]
≤ C(mnbπ)r(A.4)

holds for all p sets of bandwidths.

PROOF. The proof of this lemma follows from that of Lemma 6.2 of [11]. �

LEMMA A.3. Let {Yij ,Xij } be an R
1 × R

p-valued stationary spatial process
with the mixing coefficient function ϕ(·) as defined in (3.3). Set θij = θ(Xij , Yij )

and R(x) = E(θij |Xij = x). Assume that E|θij |λr < ∞ for some positive integer r

and some λ > 2, and that Assumptions 3.1–3.6 hold. Let R(x) and f (x) be twice
differentiable with bounded second-order derivatives on R

p . Then

sup
x∈SW

∣∣∣∣∣(mnbπ)−1
m∑

i=1

n∑
j=1

θij

p∏
l=1

K
((

X
(l)
ij − xl

)
/bl

) − f (x)R(x)

∣∣∣∣∣
(A.5)

= OP

(
(mnb1+2/r

π )−r/(p+2r) +
p∑

k=1

b2
k

)
holds for all p sets of bandwidths.

PROOF. The lemma follows from Lemma A.3 of [11]. �

LEMMA A.4. Let Um,n be as defined in (2.4). Suppose Assumptions 3.1,
3.2 and 3.4 hold. In addition, if bπ → 0 and mnbπ → ∞, then uniformly over
x ∈ SW ,

Um,n
p→ U ≡ f (x)

(
1 0τ

0 µ2(K)Ip

)
,(A.6)
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where 0 = (0, . . . ,0)τ ∈ R
p , µ2(K) = ∫

u2K(u)du, Ip is an identity matrix of

order p and
P→ denotes convergence in probability.

PROOF. The proof follows from Lemma A.3. Its details are available from the
proof of Lemma 6.4 of [11]. �

A.2. Proofs of Theorems 3.1 and 3.2. To prove our main theorems, we will
often use the property of the marginal integration estimator, which is to be estab-
lished here and is of independent interest in some other applications.

Let H(s)(x) = E[(Z(s) − µ
(s)
Z )|X = x] be the conditional regression of Z

(s)
ij −

µ
(s)
Z given Xij = x, P

(s)
k,w(xk) = E[H(s)(X

(−k)
ij , xk)w(−k)(X

(−k)
ij )] the weighted

marginal integration of H(s)(x), and H
(s)
a (x) = ∑p

k=1 P
(s)
k,w(xk) the additive ap-

proximation of H(s)(x) based on marginal integrations, for s = 0,1, . . . , q . The
estimates of these functionals were given in Section 2. Let W(x) and SW be as de-
fined in Lemma A.3. The following lemma is necessary for the proof of the main
theorems.

LEMMA A.5. Suppose Assumptions 3.1–3.5 hold and the bandwidths satisfy
mnb5

k = O(1),
∑p

l=1,l �=k b2
l = o(b2

k). Then under (3.1),√
mnbk

(
P̂

(s)
k,w(xk) − P

(s)
k,w(xk) − bias(s)

1k

) D→ N
(
0,var(s)1k

)
,(A.7)

where

bias(s)
1k = 1

2
b2
kµ2(K)

∫
w(−k)

(
x(−k))f(−k)

(
x(−k))∂2H(s)(x)

∂x2
k

dx(−k),

var(s)1k = J

∫
V (s)(x)

[w(−k)(x
(−k))f(−k)(x

(−k))]2

f (x)
dx(−k),

in which µ2(K) = ∫
u2K(u)du, and the other quantities are as defined in

Lemma A.1.
Let H

(s)
k (xk) = E[(Z(s)

ij − µ
(s)
Z )|X(k)

ij = xk]. Furthermore, if H(s)(x) =∑p
k=1 H

(s)
k (xk) and E[w(−k)(X

(−k)
ij )] = 1, then under (3.1),√

mnbk

(
P̂

(s)
k,w(xk) − H

(s)
k (xk) − bias(s)

2k

) D→ N
(
0,var(s)2k

)
,(A.8)

where

bias(s)
2k = 1

2
b2
kµ2(K)

∂2H
(s)
k (xk)

∂x2
k

and

var(s)2k = J

∫
V (s)(x)

[w(−k)(x
(−k))f(−k)(x

(−k))]2

f (x)
dx(−k),
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where V (s)(x) = E[(Z(s)
ij − µ

(s)
Z − ∑p

k=1 H
(s)
k (xk))

2|Xij = x].

PROOF. By the law of large numbers, it is obvious that, for xk ∈ [−Lk,Lk],

P̃
(s)
k,w(xk) = (mn)−1

m∑
i=1

n∑
j=1

H(s)(X(−k)
ij , xk

)
w(−k)

(
X

(−k)
ij

)
(A.9)

= P
(s)
k,w(xk) + OP

(
1√
mn

)
.

Throughout the rest of the proof, set γ = (1,0, . . . ,0)τ ∈ R
1+p . Note that, by

the notation and definitions in Section 2,

H(s)
m,n

(
X

(−k)
ij , xk

) − H(s)(X(−k)
ij , xk

)
= γ τU−1

m,n

(
X

(−k)
ij , xk

)
V (s)

m,n

(
X

(−k)
ij , xk

) − H(s)(X(−k)
ij , xk

)
(A.10)

= γ τU−1
m,n

(
X

(−k)
ij , xk

)
Bm,n

(
X

(−k)
ij , xk

)
,

where DH(s)(x) = (∂H(s)(x)/∂x1, . . . , ∂H(s)(x)/∂xp) with x = (x(−k), xk), the
symbol � is as defined in (2.5) and

Bm,n(x)

=
(

v
(s)
m,n,0(x) − um,n,00(x)H(s)(x) − Um,n,01(x)

(
DH(s)(x) � b

)τ
V

(s)
m,n,1(x) − Um,n,10(x)H(s)(x) − Um,n,11(x)

(
DH(s)(x) � b

)τ
)

(A.11)

≡
(

Bm,n,0(x)

Bm,n,1(x)

)
.

Therefore, by the uniform consistency in Lemma A.4, for xk ∈ [−Lk,Lk],
P̂

(s)
k,w(xk) − P̃

(s)
k,w(xk)

= γ τ (mn)−1
m∑

i=1

n∑
j=1

U−1
m,n

(
X

(−k)
ij , xk

)
Bm,n

(
X

(−k)
ij , xk

)
w(−k)

(
X

(−k)
ij

)
(A.12)

= (mn)−1
m∑

i=1

n∑
j=1

f −1(
X

(−k)
ij , xk

)
Bm,n,0

(
X

(−k)
ij , xk

)
w(−k)

(
X

(−k)
ij

)

+ OP (dmn)(mn)−1
m∑

i=1

n∑
j=1

Bm,n,0
(
X

(−k)
ij , xk

)
w(−k)

(
X

(−k)
ij

)
,
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where dmn = (mnb1+2/r
π )−r/(p+2r) + ∑p

l=1 b2
l . Note that

Bm,n,0(x) = (mnbπ)−1
m∑

i′=1

n∑
j ′=1

(
Z̃

(s)
i′j ′ − H(s)(x)

−
p∑

�=1

∂H(s)

∂x�

(x)
(
X

(�)
i′j ′ − x�

))
Ki′j ′(x, b)

= (mnbπ)−1
m∑

i′=1

n∑
j ′=1

ηi′j ′(x)Ki′j ′(x, b)(A.13)

− (�Z(s) − µ
(s)
Z

)
(mnbπ)−1

m∑
i′=1

n∑
j ′=1

Ki′j ′(x, b)

≡ B∗
m,n,0

(
x(−k), xk

) + B∗∗
m,n,0

(
x(−k), xk

)
,

where ηi′j ′(x) = Z
(s)
i′j ′ − µ

(s)
Z − H(s)(x) − ∑p

l=1
∂H(s)

∂xl
(x)(Xl

i′j ′ − xl).

Clearly, the result of �Z(s) − µ
(s)
Z = OP ( 1√

mn
) together with the uniform consis-

tency in Lemma A.3 leads to

B∗∗
m,n,0

(
x(−k), xk

) = OP

(
1√
mn

)
,

which holds uniformly with respect to x = (x(−k), xk) ∈ SW . Now it follows from
(A.12)–(A.13) by exchanging the summations over (i, j) and (i ′, j ′) that

P̂
(s)
k,w(xk) − P̃

(s)
k,w(xk)

= (mnbk)
−1

m∑
i′=1

n∑
j ′=1

K

(
X

(k)
i′j ′ − xk

bk

)
B

(k)
i′j ′(xk)

(A.14)

+ OP (cmn)(mnbk)
−1

m∑
i′=1

n∑
j ′=1

K

(
X

(k)
i′j ′ − xk

bk

)
B

∗(k)
i′j ′ (xk)

+ OP

(
1√
mn

)
,

where B
(k)
i′j ′(xk) = 1

mnb(−k)

∑m
i=1

∑n
j=1 f −1(X

(−k)
ij , xk)w(−k)(X

(−k)
ij )ηi′j ′(X(−k)

ij ,

xk)K
(−k)
ij,i′j ′ and B

∗(k)
i′j ′ (xk) = 1

mnb(−k)

∑m
i=1

∑n
j=1 w(−k)(X

(−k)
ij )ηi′j ′(X(−k)

ij ,

xk)K
(−k)
ij,i′j ′ , in which b(−k) = ∏p

l=1,l �=k bl and K
(−k)
ij,i′j ′ = ∏p

l=1,l �=k K(
X

(l)
ij −X

(l)

i′j ′
bl

).

Recall ε
(s)
ij = Z

(s)
ij −µ

(s)
Z −H(s)(Xij ) = Z

(s)
ij −E(Z

(s)
ij |Xij ). Note that the prop-

erties (compact support) of the kernel function in Assumption 3.5 show that, if
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K
(−k)
ij,i′j ′ > 0 and K((X

(k)
i′j ′ − xk)/bk) > 0 in (A.14), then |X(l)

i′j ′ − X
(l)
ij | ≤ Cbl → 0

for l �= k and |X(k)
i′j ′ − xk| ≤ Cbk → 0, as m → ∞ and n → ∞. Therefore, if

K
(−k)
ij,i′j ′ > 0 and K((X

(k)
i′j ′ − xk)/bk) > 0 in (A.14), then by Taylor’s expansion

(around Xij ) together with the uniform continuity of second partial derivatives of
g(·) in Assumption 3.4,

ηi′j ′
(
X

(−k)
ij , xk

) = Z
(s)
i′j ′ − µ

(s)
Z − H(s)(X(−k)

ij , xk

)
−

p∑
l=1,l �=k

∂H(s)

∂xl

(
X

(−k)
ij , xk

)(
X

(�)
i′j ′ − X

(l)
ij

)

− ∂H(s)

∂xk

(
X

(−k)
ij , xk

)(
X

(k)
i′j ′ − xk

)
= ε

(s)
i′j ′ + 1

2

∂2H(s)(X
(−k)
ij , xk)

∂x2
k

(
X

(k)
i′j ′ − xk

)2

+ o(1)

2

[ p∑
l,l′=1,�=k

blbl′ +
p∑

l=1,�=k

blbk + b2
k

]

+ 1

2

p∑
l,l′=1,�=k

∂2H(s)(X
(−k)
ij , xk)

∂xl ∂xl′
O(blbl′)

+
p∑

l=1,�=k

∂2H(s)(X
(−k)
ij , xk)

∂xl ∂xk

O(blbk).

Then under K
(−k)
ij,i′j ′ > 0 and K((X

(k)
i′j ′ − xk)/bk) > 0,

B
(k)
i′j ′(xk) = ε

(s)
i′j ′

{
mnb(−k)

}−1
m∑

i=1

n∑
j=1

f −1(
X

(−k)
ij , xk

)
w(−k)

(
X

(−k)
ij

)
K

(−k)
ij,i′j ′

− 1

2

(
X

(k)
i′j ′ − xk

)2{
mnb(−k)

}−1
m∑

i=1

n∑
j=1

f −1(
X

(−k)
ij , xk

)
w(−k)

(
X

(−k)
ij

)

× ∂2H(s)(X
(−k)
ij , xk)

∂x2
k

K
(−k)
ij,i′j ′

+ 1

2

p∑
l,l′=1,�=k

O(blbl′)
{
mnb(−k)

}−1
m∑

i=1

n∑
j=1

f −1(
X

(−k)
ij , xk

)
w(−k)

(
X

(−k)
ij

)

× ∂2H(s)(X
(−k)
ij , xk)

∂xl ∂xl′
K

(−k)
ij,i′j ′
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+
p∑

l=1,�=k

O(blbk)
{
mnb(−k)

}−1
m∑

i=1

n∑
j=1

f −1(
X

(−k)
ij , xk

)
w(−k)

(
X

(−k)
ij

)

× ∂2H(s)(X
(−k)
ij , xk)

∂xl ∂xk

K
(−k)
ij,i′j ′

+
(

1

2

p∑
l,l′=1,�=k

blbl′ +
p∑

l=1,�=k

blbk + b2
k

)
· o(1)

× 1

mnb(−k)

m∑
i=1

n∑
j=1

f −1(
X

(−k)
ij , xk

)
w(−k)

(
X

(−k)
ij

)
K

(−k)
ij,i′j ′ .

Again, using the uniform consistency in Lemma A.3, we have

B
(k)
i′j ′(xk) = di′j ′k(xk)

[
ε
(s)
i′j ′ + 1

2

(
X

(k)
i′j ′ − xk

)2 ∂2H(s)(X
(−k)
i′j ′ , xk)

∂x2
k

]

+ OP

(
c(−k)
mn

)[
ε
(s)
i′j ′ + 1

2

(
X

(k)
i′j ′ − xk

)2
]

+ 1

2

p∑
l,l′=1,�=k

O(blbl′)
[
di′j ′k(xk)

∂2H(s)(X
(−k)
i′j ′ , xk)

∂xl ∂xl′
+ OP

(
c(−k)
mn

)]
(A.15)

+
p∑

l=1,�=k

O(blbk)

[
di′j ′k(xk)

∂2H(s)(X
(−k)
i′j ′ , xk)

∂xl ∂xk

+ OP

(
c(−k)
mn

)]

+
(

1

2

p∑
l,l′=1,�=k

o(1)blbl′ +
p∑

�=1,�=k

o(1)blbk + o(1)b2
k

)

× [
di′j ′k(xk) + OP

(
c(−k)
mn

)]
,

where dijk(xk) = f (X
(−k)
ij , xk)

−1w(−k)(X
(−k)
ij )f(−k)(X

(−k)
ij ).

In addition, denote by

d∗
ijk(xk) ≡ w(−k)

(
X

(−k)
ij

)
f(−k)

(
X

(−k)
ij

)
and Kbk

(xk) ≡ b−1
k K

(
xk

bk

)
.

Then similarly to (A.15),

B
∗(k)
i′j ′ (xk) = d∗

i′j ′k(xk)

[
ε
(s)
i′j ′ + 1

2

(
X

(k)
i′j ′ − xk

)2 ∂2H(s)(X
(−k)
i′j ′ , xk)

∂x2
k

]

+ OP

(
c(−k)
mn

)[
ε
(s)
i′j ′ + 1

2

(
X

(k)
i′j ′ − xk

)2
]

(A.16)
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+ 1

2

p∑
l,l′=1,�=k

O(blbl′)
[
d∗
i′j ′k(xk)

∂2H(s)(X
(−k)
i′j ′ , xk)

∂xl ∂xl′
+ OP

(
c(−k)
mn

)]

+
p∑

l=1,�=k

O(blbk)

[
d∗
i′j ′k(xk)

∂2H(s)(X
(−k)
i′j ′ , xk)

∂xl ∂xk

+ OP

(
c(−k)
mn

)]

+
(

1

2

p∑
l,l′=1,�=k

o(1)blbl′ +
p∑

l=1,�=k

o(1)blbk + o(1)b2
k

)

× [
d∗
i′j ′k(xk) + OP

(
c(−k)
mn

)]
.

Therefore, by (A.14)–(A.16),

P̂
(s)
k,w(xk) − P̃

(s)
k,w(xk)

= T (k)
mn + OP (cmn)T

∗(k)
mn + OP (1)

p∑
l=1,�=k

b2
l(A.17)

+ OP (1)

p∑
l=1,�=k

b�bk + oP (1)b2
k + OP (1)

(
1√
mn

)
,

where

T (k)
mn = (mnbk)

−1
m∑

i=1

n∑
j=1

K

(X
(k)
ij − xk

bk

)
dijk(xk)ε

(s)
ij

+ (mnbk)
−1

m∑
i=1

n∑
j=1

K

(X
(k)
ij − xk

bk

)
dijk(xk)

(A.18)

×
[

1

2

(
X

(k)
ij − xk

)2 ∂2H(s)(X
(−k)
ij , xk)

∂x2
k

]
≡ T

(k)
mn1 + T

(k)
mn2,

and T
∗(k)
mn can be expressed similarly to (A.18) with dijk(xk) replaced by d∗

ijk(xk).

We next consider T
(k)
mn1 and T

(k)
mn2. Clearly, E[T (k)

mn1] = 0 since E(ε
(s)
ij |Xij ) = 0.

We calculate the asymptotic variance of T
(k)
mn1. Note that

E
[
T

(k)
mn1

]2 = J1(xk) + J2(xk),(A.19)



1428 J. GAO, Z. LU AND D. TJØSTHEIM

where

J1(xk) = (mnbk)
−2

m∑
i=1

n∑
j=1

E

[
K2

(X
(k)
ij − xk

bk

)
d2
ijk(xk)

(
ε
(s)
ij

)2
]
,

J2(xk) = (mnbk)
−2

m∑
i=1

n∑
j=1
i′ �=i

m∑
i′=1

or j ′ �=j

n∑
j ′=1

E[�ij (xk)�i′j ′(xk)],

in which �ij (xk) = K((X
(k)
ij − xk)/bk) dijk(xk)ε

(s)
ij . A simple calculation implies

J1(xk) = 1

mnbk

JE
[
d2
ijk(xk)ε

2
ij |X(k)

ij = xk

]
fk(xk)

(
1 + o(1)

)
(A.20)

= 1

mnbk

(
1 + o(1)

)
Ck(J,V ),

where

Ck(J,V ) = J

∫
V (s)(x)

[w(−k)(x
(−k))f(−k)(x

(−k))]2

f (x)
dx(−k),

in which J = ∫
K2(u) du, V (s)(x) = E[(ε(s)

ij )2|Xij = x], and fk(xk) is the density

function of X
(k)
ij . To deal with the cross term J2(xk), we need to use Lemma 6.1.

Under the assumptions of the lemma, it leads to

J2(xk) ≤ C(mnbk)
−1

[
b

(λr−2)/(λr+2)
k c1c2

(A.21)

+ b
−(λr−2)/(λr)
k

( ∞∑
t=min{c1,c2}

t{ϕ(t)}(λr−2)/(λr)

)]
.

Take c1 = c2 = [b−(λr−2)/(aλr)
k ], where [u] ≤ u denotes the largest integer part

of u. Then since a > 2(λr +2)/λr in Assumption 3.3, 2(λr−2)
aλr

< λr−2
λr+2 , and it hence

follows from (A.21) and Assumption 3.3 that

J2(xk) ≤ C(mnbk)
−1

[
b

(λr−2)/(λr+2)−(2(λr−2))/(aλr)
k

+ ca
1

∞∑
t=c1

t{ϕ(t)}(λr−2)/(r)

]
(A.22)

= o((mnbk)
−1),

using ca
1

∑∞
t=c1

t{ϕ(t)}(λr−2)/(λr) ≤ ca
1

∑∞
t=c1

t2r−1{ϕ(t)}(λr−2)/(λr) → 0 by As-
sumption 3.3.
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Now the asymptotic variance of T
(k)
mn1, using (A.19), (A.20) and (A.22), equals

the right-hand side of (A.20), that is,

(mnbk)E
[
T

(k)
mn1

]2 → J

∫
V (s)(x)

[w(−k)(x
(−k))f(−k)(x

(−k))]2

f (x)
dx(−k)

(A.23)
≡ var(s)1k .

Next, we consider the term T
(k)
mn2 in (A.18). From (A.18), together with the prop-

erty of the kernel function in Assumption 3.5,

T
(k)
mn2 = 1

2
b2
kE

[
dijk(xk)

∂2H(s)(X
(−k)
ij , xk)

∂xk
2

∣∣∣X(k)
ij = xk

]
fk(xk)µ2(K) + OP

(
l(k)
mn

)
b2
k

= b2
kµ2(K)fk(xk)

2

∫
w(−k)

(
x(−k))∂2g(x(−k), xk)

∂xk
2 dx(−k) + oP (b2

k)

≡ bias(s)
1k + oP (b2

k),

where l
(k)
mn = (mnb1+2/r

k )−r/(1+2r) + b2
k and µ2(K) = ∫

u2K(u)du.

Similarly, one can show T
∗(k)
mn = OP (1/

√
mnbk + b2

k). Based on the conditions,
mnb5

k = O(1) and
∑p

�=1,�=k b2
� = o(b2

k), the remaining terms in (A.17) can be ne-
glected since√

mnbkcmn

(
1√

mnbk

+ b2
k

)
= (

1 + b2
k

√
mnbk

)(
(mnb1+2/r

π )−r/(p+2r) +
p∑

l=1

b2
l

)
→ 0,

√
mnbk

p∑
l=1,�=k

b2
l = O(1)

[
mnbk

( p∑
l=1,�=k

b2
l

)2]1/2

→ 0,

√
mnbk

p∑
l=1,�=k

blbk = O(1)

(
mnb3

k

p∑
l=1,�=k

b2
l

)1/2

→ 0

and
√

mnbk
1√
mn

= b
1/2
k → 0.

Therefore, in view of what we have derived, to complete the proof of (A.8),

it suffices to show that
√

mnbkT
(k)
mn1

D→ N(0,var(s)1k ), which follows from Lem-
ma A.1(i). �

PROOF OF THEOREM 3.1. We note that

β̂ − β =
(

1

mn

m∑
i=1

n∑
j=1

Ẑ∗
ij (Ẑ

∗
ij )

τ

)−1(
1

mn

m∑
i=1

n∑
j=1

Ẑ∗
ij (Ŷ

∗
ij − Ẑ∗

ij β)

)
(A.24)

≡ (BZZ
mn )−1BZY

mn .
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Denote by H
(s)
a (x) ≡ ∑p

l=1 P
(s)
l,w(xl) and Ha(x) ≡ ∑p

l=1 P Z
l,w(xl) the additive ap-

proximate versions to H(s)(x) = E[(Z(s)
ij − µ

(s)
Z )|Xij = x] and H(x) = E[(Zij −

µZ)|Xij = x], respectively, and by H
(s)
a,mn(x) ≡ ∑p

l=1 P̂
(s)
l,w(xk) and Ha,mn(x) ≡∑p

l=1 P̂ Z
l,w(xl) the corresponding estimators of H

(s)
a (x) and Ha(x). Then we have

BZZ
mn = 1

mn

m∑
i=1

n∑
j=1

Z̃∗
ij (Z̃

∗
ij )

τ + 1

mn

m∑
i=1

n∑
j=1

Z̃∗
ij (�

Ha

ij )τ

+ 1

mn

m∑
i=1

n∑
j=1

�
Ha

ij (Z̃∗
ij )

τ + 1

mn

m∑
i=1

n∑
j=1

�
Ha

ij �
Ha

ij

τ
(A.25)

≡
4∑

k=1

BZZ
mn,k,

where Z̃∗
ij = Z̃ij − Ha(Xij ) and �

Ha

ij = Ha(Xij ) − Ha,mn(Xij ). Moreover,

BZY
mn = 1

mn

m∑
i=1

n∑
j=1

Z∗
ij ε

∗
ij + 1

mn

m∑
i=1

n∑
j=1

Z∗
ij

(
�

(0)
ij − �

Ha

ij

τ
β

)

+ 1

mn

m∑
i=1

n∑
j=1

�
Ha

ij ε∗
ij + 1

mn

m∑
i=1

n∑
j=1

�
Ha

ij

[
�

(0)
ij − (�

Ha

ij )τβ
]

(A.26)

≡
4∑

j=1

BZY
mn,j ,

where ε∗
ij = Y ∗

ij −Z∗
ij

τ β , Z∗
ij and Y ∗

ij = Ỹij −H
(0)
a (Xij ) are as defined in Assump-

tion 3.2(i) and Theorem 3.1, and �
(s)
ij ≡ H

(s)
a (Xij ) − H

(s)
a,mn(Xij ). So, to prove the

asymptotic normality of β̂ , it suffices to show that

BZZ
mn

P→ BZZ,
√

mn(BZY
mn − µB)

D→ N(0,	B),(A.27)

where BZZ , µB and 	B are as defined in Theorem 3.1. To this end, we need to
have

m∑
i=1

n∑
j=1

(
P̂

(s)
k,w

(
X

(k)
ij

) − P
(s)
k,w

(
X

(k)
ij

))2 = oP

(√
mn

)
,

(A.28)
s = 0,1, . . . , q.

This is ensured by the following facts: due to (A.17), together with Lemma A.3 for
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p = 1,

sup
xk∈[−Lk,Lk]

∣∣P̂ (s)
k,w(xk) − P

(s)
k,w(xk)

∣∣
= OP

(
(mnb1+2/r

k )−r/(1+2r) + b2
k

) + OP (1)

p∑
l=1,�=k

b2
l

+ OP (1)

p∑
l=1,�=k

blbk + oP (1)b2
k + OP (1)

(
1√
mn

)
,

and owing to mnb4(2+r)/(2r−1)
k → ∞ for some integer r ≥ 3 and mnb5

k = O(1),
√

mn
(
(mnb1+2/r

k )−r/(1+2r) + b2
k

)2

= C
(
(mn)−(2r−1)/(1+2r)b

−4(2+r)/(1+2r)
k + mnb8

k

)1/2

→ 0,

√
mn

(
OP (1)

p∑
l=1,�=k

b2
l + OP (1)

p∑
l=1,�=k

blbk + oP (1)b2
k + OP (1)

(
1√
mn

))2

→ 0.

Thus,

m∑
i=1

n∑
j=1

(
�

(s)
ij

)2 =
m∑

i=1

n∑
j=1

( p∑
k=1

P̂k,w

(
X

(k)
ij

) − Pk,w

(
X

(k)
ij

))2

(A.29)

= oP

(√
mn

)
.

Therefore, using the Cauchy–Schwarz inequality, it follows that the (s, t)th el-
ement of BZZ

mn,4 satisfies

BZZ
mn,4(s, t) = 1

mn

m∑
i=1

n∑
j=1

�
(s)
ij �

(t)
ij

≤ 1

mn

(
m∑

i=1

n∑
j=1

(
�

(s)
ij

)2
)1/2(

m∑
i=1

n∑
j=1

(
�

(t)
ij

)2
)1/2

= oP (1),

and similarly

BZZ
mn,2(s, t) = oP (1), BZZ

mn,3(s, t) = oP (1).

Now since BZZ
mn,1 → E[Z∗

11Z
∗
11

τ ] in probability, it follows from (A.26) that the first
limit of (A.27) holds with BZZ = E[Z∗

11Z
∗
11

τ ]. To prove the asymptotic normality
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in (A.27), by using the Cauchy–Schwarz inequality and (A.29), we have

√
mn

4∑
k=2

BZY
mn,k = oP (1).

Therefore, the second limit of (A.27) follows from (A.26) and

√
mn(BZY

mn,1 − µB) = 1√
mn

m∑
i=1

n∑
j=1

[Z∗
ij ε

∗
ij − µB] D→ N(0,	B),

with µB = E[Rij ] and 	B = ∑∞
i=−∞

∑∞
j=−∞ E[R00R

τ
ij ], where Rij = Z∗

ij ε
∗
ij .

The proof of the asymptotic normality follows directly from the central limit theo-
rem for mixing random fields (see Theorem 6.1.1 of [20], e.g.). When (1.2) holds,
the proof of the second half of Theorem 3.1 follows trivially. �

PROOF OF COROLLARY 3.1. Its proof follows from that of Theorem 3.1. �

PROOF OF THEOREM 3.2. Note that̂̂P k,w(xk) = P̂
(0)
k,w(xk) − β̂τ P̂ Z

k,w(xk)

given in (2.12) and that Pk,w(xk) = P
(0)
k,w(xk) − βτP Z

k,w(xk). Then

̂̂P k,w(xk) − Pk,w(xk)

= [
P̂

(0)
k,w(xk) − P

(0)
k,w(xk) − βτ (

P̂ Z
k,w(xk) − P Z

k,w(xk)
)] − (β̂ − β)τ P̂ Z

k,w(xk)

= Pmn,1(xk) + Pmn,2(xk).

For any c = (c0,C
τ
1 )τ ∈ R

1+q with C1 = (c1, . . . , cq)
τ ∈ R

q , we note that, for
xk ∈ [−Lk,Lk],

q∑
s=0

csP
(s)
k,w(xk) = c0P

(0)
k,w(xk) + Cτ

1 P Z
k,w(xk)

= E
[
g∗∗(

X
(−k)
ij , xk

)]
w(−k)

(
X

(−k)
ij

)
,

where g∗∗(x) = E[Y ∗∗
ij |Xij = x] with Y ∗∗

ij = c0(Yij − µY ) + Cτ
1 (Zij − µZ), and

similarly,

q∑
s=0

csP̂
(s)
k,w(xk) = c0P̂

(0)
k,w(xk) + Cτ

1 P̂ Z
k,w(xk)

= 1

mn

m∑
i=1

n∑
j=1

g∗∗
m,n

(
X

(−k)
ij , xk

)
w(−k)

(
X

(−k)
ij

)
,
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where g∗∗
m,n(x) is the local linear estimator of g∗∗(x), as defined in Section 2

with Ỹ ∗∗
ij = c0Ỹij + Cτ

1 Z̃ij instead of Ỹij there. Therefore, using the argument of
Lemma A.5, the distribution of

√
mnbk

q∑
s=0

cs

(
P̂

(s)
k,w(xk) − P

(s)
k,w(xk)

)
(A.30)

is asymptotically normal.
Now taking c0 = 0 in (A.30) shows that P̂ Z

k,w(xk) → P Z
k,w(xk) in probability,

which together with Theorem 3.1 leads to√
mnbkPmn,2(xk) = √

mnbk(β̂ − β)τ P̂ Z
k,w(xk) = OP

(√
bk

) = oP (1).(A.31)

On the other hand, taking c0 = 1 and C1 = −β in (A.30), we have√
mnbkPmn,1(xk)

(A.32)
= √

mnbk

[
P̂

(0)
k,w(xk) − P

(0)
k,w(xk) − βτ (

P̂ Z
k,w(xk) − P Z

k,w(xk)
)]

are asymptotically normal as in (A.8), with Y ∗∗
ij = Yij − µY − βτ (Zij − µZ) and

g∗∗(x) = E(Y ∗∗
ij |Xij = x) instead of H(s)(x) and Z

(s)
ij in Lemma A.5, respectively.

This finally yields Theorem 3.2. �
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