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PARTIALLY OBSERVED INFORMATION AND INFERENCE ABOUT
NON-GAUSSIAN MIXED LINEAR MODELS1

BY JIMING JIANG

University of California, Davis

In mixed linear models with nonnormal data, the Gaussian Fisher infor-
mation matrix is called a quasi-information matrix (QUIM). The QUIM plays
an important role in evaluating the asymptotic covariance matrix of the esti-
mators of the model parameters, including the variance components. Tradi-
tionally, there are two ways to estimate the information matrix: the estimated
information matrix and the observed one. Because the analytic form of the
QUIM involves parameters other than the variance components, for example,
the third and fourth moments of the random effects, the estimated QUIM is
not available. On the other hand, because of the dependence and nonnormal-
ity of the data, the observed QUIM is inconsistent. We propose an estimator
of the QUIM that consists partially of an observed form and partially of an
estimated one. We show that this estimator is consistent and computationally
very easy to operate. The method is used to derive large sample tests of sta-
tistical hypotheses that involve the variance components in a non-Gaussian
mixed linear model. Finite sample performance of the test is studied by sim-
ulations and compared with the delete-group jackknife method that applies to
a special case of non-Gaussian mixed linear models.

1. Introduction. Mixed linear models are widely used in practice, especially
in situations involving correlated observations. A typical assumption regarding
these models is that the observations are normally distributed, or, equivalently,
that the random effects and errors in the model are normal. However, as is well
known, the normality assumption is likely to be violated. For example, Lange and
Ryan [19] gave several examples that show that nonnormality of the random ef-
fects is, indeed, encountered in practice. The authors also developed a method for
assessing normality of the random effects. Due to such concerns, some researchers
have considered the use of Gaussian maximum likelihood (ML) or restricted max-
imum likelihood (REML) estimators in nonnormal situations; see Richardson and
Welsh [22], Jiang [12, 13] and Heyde [10, 11], among others. Throughout this pa-
per these estimators will be called ML and REML estimators even if normality
does not hold. In particular, Jiang [12, 13] established consistency and asymptotic
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normality of REML and ML estimators in nonnormal situations under regular-
ity conditions. Furthermore, Jiang [12] derived the asymptotic covariance matrix
(ACM) of the REML estimator of the variance components as well as that of the
ML estimator without assuming normality. Also see [14]. The ACM is important
for various inferences about the model parameters, including interval estimation
and hypothesis testing. Unfortunately, the ACM under nonnormality involves pa-
rameters other than the variance components, for example, the third and fourth
moments of the random effects. Note that standard procedures such as ML and
REML do not produce estimators of these additional parameters. For years this
complication has undermined the potential usefulness of the ACM in nonnormal
situations.

To see exactly where the problem occurs, consider the mixed linear model

y = Xβ + Z1α1 + · · · + Zsαs + ε,(1)

where y is an N ×1 vector of observations, X, Z1, . . . ,Zs are known matrices, β is
a p × 1 vector of unknown parameters (the fixed effects), α1, . . . , αs are vectors of
random effects and ε is a vector of errors. It is assumed that α1, . . . , αs, ε are in-
dependent. Furthermore, the components of αj are i.i.d. with mean 0 and variance
σ 2

j , 1 ≤ j ≤ s, and the components of ε are i.i.d. with mean 0 and variance σ 2
0 .

Without loss of generality, let rank(X) = p. Note that normality is not assumed
in this model, nor is any other specific distribution assumed. Also, w.l.o.g. con-
sider the Hartley–Rao form of the variance components [9]: λ = σ 2

0 , γj = σ 2
j /σ 2

0 ,
1 ≤ j ≤ s. Let θ = (λ, γ1, . . . , γs)

′.
According to [12], the ACM of the REML estimator θ̂ is given by

�R =
{

E
(

∂2lR

∂θ ∂θ ′
)}−1

Var
(

∂lR

∂θ

){
E

(
∂2lR

∂θ ∂θ ′
)}−1

,(2)

where lR is the Gaussian restricted log-likelihood function, that is, the log-
likelihood based on z = T ′y, where y satisfies (1) with normally distributed ran-
dom effects and errors, and T is an N × (N − p) matrix of full rank such that
T ′X = 0. The matrix I2 = E(∂2lR/∂θ ∂θ ′) depends only on θ , whose estimator
is already available. However, unlike I2, the matrix I1 = Var(∂lR/∂θ) depends
on, in addition to θ , the kurtoses of the random effects and errors. Similarly, let
ψ = (β ′θ ′)′ and let ψ̂ be the ML estimator of ψ . By the result of Jiang [14], it can
be shown that the ACM of ψ̂ is given by

� =
{

E
(

∂2l

∂ψ ∂ψ ′
)}−1

Var
(

∂l

∂ψ

){
E

(
∂2l

∂ψ ∂ψ ′
)}−1

,

where l is the Gaussian log-likelihood. Here, again, the matrix I2 = E(∂2l/

∂ψ ∂ψ ′) depends only on θ , but the matrix I1 = Var(∂l/∂ψ) depends on, in addi-
tion to θ , the kurtoses as well as the third moments of random effects and errors.
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It is clear that the key issue is how to estimate I1, which we call the quasi-
information matrix (QUIM) for an obvious reason. Consider, for example, the ML
case. If l were the true log-likelihood, then we would have I1 = −I2, which is
the Fisher information matrix. Traditionally, there are two ways to estimate the
Fisher information: (i) the estimated information and (ii) the observed informa-
tion. See, for example, [7] for a discussion and comparison of the two methods
in the i.i.d. case. It is known that standard procedures in mixed model analysis
such as ML and REML do not produce estimators of the third and fourth moments
of the random effects and errors. Therefore, according to our previous discussion,
method (i) is not possible unless one finds some way to estimate these higher mo-
ments. Assuming that the random effects and errors are symmetrically distributed,
in which case the third moments vanish, Jiang [15] proposed an empirical method
of moments (EMM) to estimate the kurtoses of the random effects and errors. It is
clear that this method has a limitation, because, like normality, symmetry may not
hold in practice. When the third moments are nonzero, the EMM cannot be used.
Furthermore, the situation to which the EMM applies is somewhat restrictive and
requires certain orthogonal decompositions of the linear spaces generated by the
design matrices of the random effects. Simulation results have suggested that the
EMM estimator may have large variance even when the sample size is moderately
large. As for method (ii), it is not all that clear how this should be defined in cases
of correlated observations. For simplicity, let us assume that ψ is a scalar. With
independent observations, we have

I1 = E

{
N∑

i=1

(
∂li

∂ψ

)2
}
,(3)

where li is the log-likelihood based on yi , the ith observation. Therefore, an ob-
served information is Ĩ1 = ∑N

i=1(∂li/∂ψ |ψ̃ )2, where ψ̃ is the ML estimator. This

is a consistent estimator of I1 in the sense that Ĩ1 − I1 = oP(I1) or, equivalently,
Ĩ1/I1 → 1 in probability. However, if the observations are correlated, (3) does
not hold. In this case, since I1 = E{(∂l/∂ψ)2}, one might attempt to define
Ĩ1 = (∂l/∂ψ |ψ̃ )2. However, this is zero since ψ̂ is the MLE. Even if ψ̂ is a differ-
ent (consistent) estimator, the expression is not a consistent estimator. For example,
in the independent case this is the same as (

∑N
i=1 ∂li/∂ψ |ψ̃ )2, which, asymptoti-

cally, is equivalent to N times the square of a normal random variable. Therefore,
it is not true that Ĩ1 − I1 = oP(I1). Alternatively, if normality holds, one may
define li as the logarithm of the conditional density of yi given y1, . . . , yi−1. It fol-
lows that ∂li/∂ψ , 1 ≤ i ≤ N , is a sequence of martingale differences [with respect
to the σ -fields Fi = σ(y1, . . . , yi), 1 ≤ i ≤ N ]. Thus, we still have (3) but with
new definitions of li’s; hence Ĩ1 can be defined similarly as in the independent
case. However, if normality does not hold, this latter strategy also does not work
(because ∂li/∂ψ is no longer a martingale difference).

We now explain our approach to the problem using a simple example.
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EXAMPLE 1. Consider the following model with crossed random effects:
yij = µ + vi + wj + eij , i = 1, . . . ,m, j = 1, . . . , n, where µ is an unknown
mean, vi and wj are random effects, and eij is an error. It is assumed that the
vi ’s are i.i.d. with mean 0 and variance σ 2

1 , the wj ’s are i.i.d. with mean 0 and
variance σ 2

2 , the eij ’s are i.i.d. with mean 0 and variance σ 2
0 , and v, w and e

are independent. Consider an element of the QUIM Var(∂lR/∂θ) for REML es-
timation, say, var(∂lR/∂λ), where lR is the Gaussian restricted log-likelihood and
θ = (λ, γ1, γ2)

′ (λ and γ ’s as defined earlier). By the result of Jiang ([16], Sec-
tion 5, Example 2), it can be shown that ∂lR/∂λ = {u′Bu − (mn − 1)λ}/2λ2,
where u = y − µ1m ⊗ 1n with y = (yij )1≤i≤m,1≤j≤n (as a vector in which the
components are ordered as y11, . . . , y1n, y21, . . . ) and

B = Im ⊗ In − 1

n

(
1 − 1

1 + γ1n

)
Im ⊗ Jn − 1

m

(
1 − 1

1 + γ2m

)
Jm ⊗ In

+ 1

mn

(
1 − 1

1 + γ1n
− 1

1 + γ2m

)
Jm ⊗ Jn

= Im ⊗ In + λ1Im ⊗ Jn + λ2Jm ⊗ In + λ3Jm ⊗ Jn.

Hereafter, In and 1n represent the n-dimensional identity matrix and the vec-
tor of 1’s, respectively, Jn = 1n1′

n and ⊗ means Kronecker product. Define
κ0 = E(e4

11) − 3λ2, κ1 = E(v4
1) − 3λ2γ 2

1 , κ2 = E(w4
1) − 3λ2γ 2

2 (note that these
are the kurtoses) and t0 = 1 + λ1 + λ2 + λ3, t1 = {(m − 1)n}/{m(1 + γ1n)},
t2 = {m(n − 1)}/n(1 + γ2m)}; m0 = mn, m1 = m and m2 = n. By Lemma 1 in
the sequel, it can be shown that

var
(

∂lR

∂λ

)

= E

{
(a0 + a1 + a2)

∑
i,j

u4
ij − a1

∑
i

(∑
j

uij

)4

− a2
∑
j

(∑
i

uij

)4}

(4)

+
[
mn − 1

2λ2 − 3mnt2
0

4λ2 {(1 + γ1 + γ2)
2 − (t3 + t4)} − 3(t2

1 t3m + t2
2 t4n)

4λ2

]

= S1 + S2,

where

a0 = t2
0

4λ4 , a1 = nt2
0 − t2

1

4λ4n(n3 − 1)
, a2 = mt2

0 − t2
2

4λ4m(m3 − 1)
,

t3 = n(1 + γ2 + γ1n)2 − (1 + γ1 + γ2)
2

n3 − 1
,

t4 = m(1 + γ1 + γ2m)2 − (1 + γ1 + γ2)
2

m3 − 1
.
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It is clear that S2 can be estimated by replacing the variance components by their
REML estimators, which are already available. As for S1, it cannot be estimated
in the same way for the reason given above. However, the form of S1 [cf. with (3)]
suggests an “observed” estimator by taking out the expectation sign and replacing
the parameters involved by their REML estimators. In fact, as m,n → ∞, this
observed S1, say, Ŝ1, is consistent in the sense that Ŝ1/S1 → 1 in probability. It is
interesting to note that S2 cannot be consistently estimated by an observed form.
In conclusion, S1 cannot be estimated by an estimated form, but can be estimated
by an observed form; S2 can be estimated by an estimated form, but not by an
observed form. Thus, we have reached a balance.

We propose to use such a method to estimate the QUIM. Because the estimator
consists partially of an observed form and partially of an estimated one, it is called
a partially observed quasi-information matrix (POQUIM).

One application of POQUIM is to derive robust dispersion tests in mixed linear
models. A dispersion test is a test of a statistical hypothesis that involves the vari-
ance components. Such tests, exact or asymptotic, are available in the literature
(e.g., [17, 23]), but only under the normality assumption. Since the latter is likely
to be violated in practice, as a robust approach, it is of interest to derive dispersion
tests that do not rely on normality. Using the results of Jiang [12, 14], it is possible
to derive an asymptotic dispersion test based on either the REML or the ML es-
timators without assuming normality, provided that the ACM can be consistently
estimated. The POQUIM will provide such a consistent estimator.

The rest of the paper is organized as follows. In Section 2 we explain how one
comes up with the decomposition (4), that is, we derive POQUIM for a general
non-Gaussian mixed linear model with REML estimation of the variance compo-
nents. Sufficient conditions will be given for the consistency of POQUIM as well
as an estimator of the ACM of the REML estimator. In Section 3 we use sev-
eral examples to illustrate the main results of Section 2. In Section 4 we consider
POQUIM for ML estimation. In Section 5 we apply POQUIM to robust disper-
sion tests in mixed linear models. Some simulated examples are considered in
Section 6, in which we study the finite sample performance of POQUIM in the
context of robust dispersion tests and compare it with the delete-group jackknife
method of Arvesen [1] (also see [2]) in a case where the latter applies. In Section 7
we discuss extension of POQUIM to quasi-likelihood estimation and remark on
other issues. Proofs and other technical details are given in Section 8.

2. POQUIM for REML. The REML case is relatively simple compared to
ML, because only estimation of the variance components is involved. Furthermore,
as will be seen, the QUIM in this case does not involve the third moments of the
random effects and errors.
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Under model (1) and normality, the restricted log-likelihood for estimating the
variance components λ and γj , 1 ≤ j ≤ s, is

lR(θ) = c − 1
2{log(|T ′V T |) + y′Py},(5)

where θ = (λ, γ1, . . . , γs)
′, c is a constant, V = Var(y) = λ(I + γ1Z1Z

′
1 + · · · +

γsZsZ
′
s) (I is the N × N identity matrix), T is any N × (N − p) matrix

such that rank(T ) = N − p and T ′X = 0 (| · | means determinant), and P =
T (T ′V T )−1T ′ = V −1 − V −1X(X′V −1X)−1X′V −1 (e.g., [23], page 451). If nor-
mality does not hold, (5) is not the true restricted log-likelihood, but, instead, the
quasi-restricted log-likelihood. It is shown in Section 8.1 that ∂lR/∂θj = u′Bju −
bj , 0 ≤ j ≤ s, where θ0 = λ, θj = γj , 1 ≤ j ≤ s; u = y − Xβ; B0 = (2λ)−1P ,
Bj = (λ/2)PZjZ

′
jP , 1 ≤ j ≤ s; b0 = (N − p)/2λ and bj = (λ/2)tr(PZjZ

′
j ),

1 ≤ j ≤ s. Note that bj = E(u′Bju), 0 ≤ j ≤ s.

2.1. Derivation. Let ui = yi − x′
iβ be the ith component of u, where x′

i is
the ith row of X. The kurtoses of the random effects and errors are defined as
κt = E(α4

t1) − 3σ 4
t = E(α4

t1) − 3(λγt )
2, 0 ≤ t ≤ s, where α0 = ε and γ0 = 1. Also,

with a slight abuse of the notation, let z′
it and ztl be the ith row and lth column

of Zt , respectively, 0 ≤ t ≤ s, where Z0 = I . Define �(i1, i2) = ∑s
t=0 γt (zi1t ·zi2t ).

Here the dot product of vectors a1, . . . , ak of the same dimension is defined as
a1 · a2 · · ·ak = ∑

l a1la2l · · ·akl . Also, let mt be the dimension of αt , 0 ≤ t ≤ s

(so that m0 = N ). We begin with an expression for cov(ui1ui2, ui3ui4) (1 ≤
i1, . . . , i4 ≤ N ) as well as one for cov(∂lR/∂θj , ∂lR/∂θk), the (j, k) element of I1.

LEMMA 1. We have

cov
(
ui1ui2, ui3ui4

)
(6) = λ2{�(i1, i3)�(i2, i4) + �(i1, i4)�(i2, i3)} +

s∑
t=0

κtzi1t · · · zi4t ,

where zi1t · · · zi4t = zi1t · zi2t · zi3t · zi4t . Furthermore, we have

cov
(

∂lR

∂θj

,
∂lR

∂θk

)
= 2 tr(BjV BkV ) +

s∑
t=0

κt

mt∑
l=1

(z′
t lBj ztl)(z

′
t lBkztl).(7)

The proof is given in Section 8.2.
Let f1, . . . , fL be the different nonzero functional values of

f (i1, . . . , i4) =
s∑

t=0

κtzi1t · · · zi4t .(8)

Note that this is the second term on the right-hand side of (6). Here functional
value means f (i1, . . . , i4) as a function of κ = (κt )0≤t≤s . For example, κ0 +κ1 and
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κ2 + κ3 are different functions (even if their values may be the same for some κ).
Also, let 0 denote the zero function (of κ). Then without using (7) we have

cov
(

∂lR

∂θj

,
∂lR

∂θk

)
= ∑

i1,...,i4

Bj,i1,i2Bk,i3,i4 cov
(
ui1ui2, ui3ui4

)

= ∑
f (i1,...,i4)=0

Bj,i1,i2Bk,i3,i4 cov
(
ui1ui2, ui3ui4

)
(9)

+
L∑

l=1

∑
f (i1,...,i4)=fl

Bj,i1,i2Bk,i3,i4 cov
(
ui1ui2, ui3ui4

)

=
L∑

l=0

Sl

with Sl , 0 ≤ l ≤ L, defined in obvious ways. According to Lemma 1, the left-hand
side of (9) depends on the higher moments only through κ . By (6) and (8) we have

S0 = 2λ2
∑

f (i1,...,i4)=0

Bj,i1,i2Bk,i3,i4�(i1, i3)�(i2, i4),(10)

which depends only on θ . Furthermore, for 1 ≤ l ≤ L write

Sl = cl

∑
f (i1,...,i4)=fl

cov
(
ui1ui2, ui3ui4

)

+ ∑
f (i1,...,i4)=fl

(
Bj,i1,i2Bk,i3,i4 − cl

)
cov

(
ui1ui2, ui3ui4

)

= Sl,1 + Sl,2,

where cl is a constant to be determined later on. By (6) we have

Sl,2 = ∑
f (i1,...,i4)=fl

(
Bj,i1,i2Bk,i3,i4 − cl

)[fl + λ2{· · ·}]

= fl

∑
f (i1,...,i4)=fl

(
Bj,i1,i2Bk,i3,i4 − cl

) + · · · ,

where · · · depends only on θ . If we let the coefficient of fl in the above be equal
to zero, we have

cl = 1

|{f (i1, . . . , i4) = fl}|
∑

f (i1,...,i4)=fl

Bj,i1,i2Bk,i3,i4,(11)

where | · | denotes cardinality. With this choice of cl , we have

Sl,2 = λ2
∑

f (i1,...,i4)=fl

(
Bj,i1,i2Bk,i3,i4 − cl

){�(i1, i3)�(i2, i4) + �(i1, i4)�(i2, i3)}

= 2λ2
∑

f (i1,...,i4)=fl

(
Bj,i1,i2Bk,i3,i4 − cl

)
�(i1, i3)�(i2, i4),
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which depends only on θ . Note that cl depends only on θ . On the other hand, by
the fact that E(ui1ui2) = λ�(i1, i2) (see the first paragraph of Section 8.2), we have

Sl,1 = cl

∑
f (i1,...,i4)=fl

{
E

(
ui1 · · ·ui4

) − λ2�(i1, i2)�(i3, i4)
}

= E

(
cl

∑
f (i1,...,i4)=fl

ui1 · · ·ui4

)
− λ2cl

∑
f (i1,...,i4)=fl

�(i1, i3)�(i2, i4).

Note that
∑

f (i1,...,i4)=fl
�(i1, i2)�(i3, i4) = ∑

f (i1,...,i4)=fl
�(i1, i3)�(i2, i4), be-

cause f (i1, . . . , i4) is symmetric in i1, . . . , i4. Therefore, we have, by combining
the above,

Sl = E

(
cl

∑
f (i1,...,i4)=fl

ui1 · · ·ui4

)

+ 2λ2
∑

f (i1,...,i4)=fl

Bj,i1,i2Bk,i3,i4�(i1, i3)�(i2, i4)(12)

− 3λ2cl

∑
f (i1,...,i4)=fl

�(i1, i3)�(i2, i4).

Note that cl defined by (11) depends on j and k, that is, cl = cj,k,l . If we define
cj,k(i1, . . . , i4) = cj,k,l , if f (i1, . . . , i4) = fl , 1 ≤ l ≤ L, then by (9), (10) and (12)
it can be shown that

cov
(

∂lR

∂θj

,
∂lR

∂θk

)
= E

{ ∑
f (i1,...,i4) �=0

cj,k(i1, . . . , i4)ui1 · · ·ui4

}
+ 2 tr(BjV BkV )

− 3λ2
∑

f (i1,...,i4) �=0

cj,k(i1, . . . , i4)�(i1, i3)�(i2, i4).

We summarize the result in terms of a theorem. Write I1,jk = cov(∂lR/∂θj ,

∂lR/∂θk), which is the j, k element of the QUIM I1 = Var(∂lR/∂θ).

THEOREM 1. For any non-Gaussian mixed linear model (1), we have

I1,jk = 2 tr(BjV BkV ) +
s∑

t=0

κt

mt∑
l=1

(z′
t lBj ztl)(z

′
t lBkztl)

= E

{ ∑
f (i1,...,i4) �=0

cj,k(i1, . . . , i4)ui1 · · ·ui4

}

(13)

+
{

2 tr(BjV BkV ) − 3λ2
∑

f (i1,...,i4) �=0

cj,k(i1, . . . , i4)�(i1, i3)�(i2, i4)

}

= I1,1,jk + I1,2,jk,
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0 ≤ j, k ≤ s, where cj,k(i1, . . . , i4) = cj,k,l , if f (i1, . . . , i4) = fl , 1 ≤ l ≤ L, with

cj,k,l = 1

|{f (i1, . . . , i4) = fl}|
∑

f (i1,...,i4)=fl

Bj,i1,i2Bk,i3,i4 .(14)

Of course, (13) can be verified directly, but the derivation above also explains
where the thought came from. Note that 2 tr(BjV BkV ) is the Gaussian covariance
between ∂lR/∂θj and ∂lR/∂θk . This means that under normality I1,1,jk is identical
to the second term in I1,2,jk with the negative sign removed. Of course, this can be
easily verified using (6). On the other hand, without normality I1,1,jk may involve
higher moments of the random effects and errors, and this is why the expectation is
not taken inside the summation. Instead, we propose to estimate I1,1,jk by taking
out the expectation sign and replacing any parameter involved by its REML estima-
tor, that is, Î1,1,jk = ∑

f (i1,...,i4) �=0 ĉj,k(i1, . . . , i4)ûi1 · · · ûi4 , where ĉj,k(i1, . . . , i4)

is defined in the same way as cj,k(i1, . . . , i4) except with θ replaced by θ̂ , and
ûi = yi − x′

i β̂ . Here θ̂ is the REML estimator of θ , β̂ = (X′V̂ −1X)−1X′V̂ −1y and
V̂ is V with θ replaced by θ̂ . Note that the set {(i1, . . . , i4) :f (i1, . . . , i4) = fl}
does not depend on θ . It follows that ĉj,k(i1, . . . , i4) = ĉj,k,l if f (i1, . . . , i4) = fl ,
1 ≤ l ≤ L, where ĉj,k,l is given by (14) with B replaced by B̂ . Here B̂j,i1,i2 is
Bj,i1,i2 with θ replaced by θ̂ , and so forth. This is the observed part.

On the other hand, I1,2,jk depends only on θ and, therefore, can be estimated
by replacing θ by θ̂ . The result, denoted by Î1,2,jk , is the estimated part.

An estimator of I1,jk is then Î1,1,jk + Î1,2,jk ; hence an estimator of I1 is given
by Î1 = Î1,1 + Î1,2, where Î1,r = (Î1,r,jk)0≤j,k≤s , r = 1,2. Because the estimator
consists partially of an observed form and partially of an estimated one, it is called
a partially observed quasi-information matrix (POQUIM).

This is exactly where the decomposition (4) came from. We now use another
simple example to illustrate the POQUIM decomposition, with more examples to
come in Section 3.

EXAMPLE 2. Consider a one-way random effects model yij = µ + αi + εij ,
i = 1, . . . ,m, j = 1, . . . , n, where µ is an unknown mean; the random effects
α1, . . . , αm are i.i.d. with mean 0 and variance σ 2

1 ; the errors εij ’s are i.i.d. with
mean 0 and variance σ 2

0 ; and α and ε are independent. It is, in this case, more
convenient to use a double index (i.e., ij instead of i). It is easy to show that
f (i1j1, . . . , i4j4) = 0 if not i1 = · · · = i4; κ1 if i1 = · · · = i4 but not j1 = · · · = j4;
and κ0 + κ1 if i1 = · · · = i4 and j1 = · · · = j4. Thus, L = 2 [note that L is the
number of different functional values of f (i1j1, . . . , i4j4)]. Define the following
functions of θ , where θ = (λ, γ1)

′: t0 = 1 − {γ1/(1 + γ1n)} − 1/(1 + γ1n)mn,
t1 = {(m − 1)n/m(1 + γ1n)} and t3 = {n(1 + γ1n)2 − (1 + γ1)

2}/(n3 − 1). Then
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the POQUIM is given by Î1,kl = Î1,1,kl + Î1,2,kl , k, l = 0,1, where

Î1,1,00 = t̂2
1 − t̂2

0 n

4λ̂4n(n3 − 1)

{∑
i

(∑
j

ûij

)4

− ∑
i,j

û4
ij

}
+ t̂2

0

4λ̂4

∑
i,j

û4
ij ,

Î1,1,01 = (m − 1)(t̂1n − t̂0)

4λ̂3(1 + γ̂1n)2m(n3 − 1)

{∑
i

(∑
j

ûij

)4

− ∑
i,j

û4
ij

}

+ (m − 1)t̂0

4λ̂3(1 + γ̂1n)2m

∑
i,j

û4
ij ,

Î1,1,11 = (m − 1)2

4λ̂2(1 + γ̂1n)4m2

∑
i

(∑
j

ûij

)4

;

Î1,2,00 = 1

2λ̂2

[
mn − 1 − 3

2
mnt̂2

0 {(1 + γ̂1)
2 − t̂3} − 3

2
mt̂2

1 t̂3

]
,

Î1,2,01 = (m − 1)n

2λ̂(1 + γ̂1n)

{
1 −

(
3

2

)
(t̂1n − t̂0)t̂3 + (1 + γ̂1)

2 t̂0

1 + γ̂1n

}
,

Î1,2,11 = −(m − 1)(m − 3)n2

4m(1 + γ̂1n)2 ,

ûij = yij − ȳ · · · and the t̂’s are the t’s with θ replaced by θ̂ , the REML estimator.

COMPUTATIONAL NOTE. The following list outlines a numerical algorithm
for POQUIM:

1. Determine the sets of indices Sl = {(i1, . . . , i4) :f (i1, . . . , i4) = fl}, 1 ≤ l ≤ L.
Then, for each (j, k), 0 ≤ j ≤ k ≤ s, do the following.

2. Compute ĉj,k,l , 1 ≤ l ≤ L. Note that the denominator in (14) is |Sl|.
3. Compute Î1,1,jk = ∑

f(i1,...,i4) �=0ĉj,k(i1, . . . , i4)ûi1 · · · ûi4 , where ĉj,k(i1, . . . , i4)

is defined the same way as cj,k(i1, . . . , i4) above (14) with θ replaced by θ̂ and
ûi = yi − x′

i β̂ . Note that
∑

f (i1,...,i4) �=0 = ∑
S1

+· · · + ∑
SL

.

4. Compute Î1,2,jk , which is I1,2,jk with θ replaced by θ̂ . See step 3 for the
summation.

5. Let Î1,jk = Î1,1,jk + Î1,2,jk .

All except step 1 are fairly straightforward. As for step 1, the sets may be deter-
mined as follows. First, the index (1,1,1,1) belongs to S1. Also compute the
vector v1,1,1,1 = (z1t · z1t · z1t · z1t )0≤t≤s . Then compute the vector v1,1,1,2 =
(z1t · z1t · z1t · z2t )0≤t≤s . If v1,1,1,2 = v1,1,1,1, the index (1,1,1,2) belongs to S1;
otherwise it belongs to S2, and so on.
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The main theoretical result in this section is the consistency of POQUIM. To
state the result, we need some additional notation.

2.2. Notation. For a vector a = (al), the 1-norm of a is defined by ‖a‖1 =∑
l |al|. A sequence of matrices M is bounded from above if ‖M‖ is bounded; the

sequence is bounded from below if ‖M−1‖ is bounded, where the norm of a matrix
M is defined as ‖M‖ = {λmax(M

′M)}1/2 with λmax representing the largest eigen-
value. A positive definite matrix-valued function M(θ), which may depend on N ,
is said to be uniformly continuous at θ if ‖M−1/2(θ)M(θ +
)M−1/2(θ)−I‖ → 0
as 
 → 0 uniformly in N , where I is an identity matrix of fixed dimension. It is
easy to show that M(θ) is uniformly continuous if and only if for any η > 0, there
is δ > 0 such that |
| ≤ δ implies (1 − η)M(θ) ≤ M(θ + 
) ≤ (1 + η)M(θ) for
all N . An estimator M̂ of a positive definite matrix M , which may depend on N ,
is consistent if M−1/2M̂M−1/2 − I → 0 in probability, where I is an identity ma-
trix of fixed dimension. In the following discussion, all the sequences of numbers
(vectors, matrices) depend on N , but for notational simplicity the subscript N is
suppressed. For example, in condition (iii) of Theorem 2 below g0 means g0,N , et
cetera.

Recall that z′
it is the ith row of Zt , 0 ≤ t ≤ s, with Z0 = I . Let w′

i =
(z′

i0, z
′
i1, . . . , z

′
is). Define di as a vector of the same dimension as wi such that

the j th component of di is 1 if the corresponding component of wi is nonzero
and the j th component of di is 0 if the corresponding component of wi is zero.
Note that di is an indicator of what random effects and errors are involved in the
expression of yi . Let hl denote the denominator in (14) and let hl1,l2 be the car-
dinality of the set of (i1, . . . , i8) such that f (i1, . . . , i4) = fl1 , f (i5, . . . , i8) = fl2

and (di1 +· · ·+di4) · (di5 +· · ·+di8) �= 0. Here, recall that for two vectors a = (al)

and b = (bl), the dot product is defined as a · b = ∑
l albl .

Also recall that G = 2{tr(BjV BkV )}0≤j,k≤s is the Gaussian information matrix
[see the remark below (14)], that is, I1 = G under normality. More generally, let G̃
denote G with θ replaced by θ̃ as a function of θ̃ . For any δ > 0, define gj,k(δ) =
supθ̃∈�,|θ̃−θ |≤δ |G̃j,k − Gj,k|, where Mj,k denotes the j, k element of a matrix M ,
and define dj,k,l(δ) = supθ̃∈�,|θ̃−θ |≤δ |c̃j,k,l −cj,k,l|, where cj,k,l is defined by (14)

and c̃j,k,l is cj,k,l with θ replaced by θ̃ .
Finally, recall that the asymptotic covariance matrix of the REML estimator, θ̂ ,

is given by (2), that is, �R = I−1
2 I1I

−1
2 , where I1 = Var(∂lR/∂θ) is the QUIM

defined in Section 1, and I2 = E(∂2lR/∂θ ∂θ ′). The POQUIM estimator of �R is
defined by �̂R = Î−1

2 Î1Î
−1
2 , where Î1 is the POQUIM and Î2 is the estimated I2

obtained by replacing the variance components in I2 by their REML estimators.

2.3. Consistency. It should be pointed out that the definition of REML esti-
mator in non-Gaussian mixed linear models differs slightly according to several
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authors. In [22] the REML estimator is defined as the solution to the REML equa-
tion; in [12] the REML estimator is defined as the solution to the REML equation
plus the requirement that it belong to the parameter space; in [13] the REML esti-
mator is defined as the maximizer of the Gaussian restricted likelihood. In fact, the
last showed that, for balanced mixed linear models, such a maximizer is a consis-
tent estimator of θ ; for an unbalanced mixed linear model, it showed that a sieved
maximizer is consistent. Note that from a practical point of view the sieve puts no
restriction on the maximization, because the maximizer is always within a sieve
that satisfies the conditions (of Jiang [13], with a suitable constant). Therefore,
in the following theorem the REML estimator is understood as the maximizer
of the Gaussian restricted likelihood in the sense of Jiang [13] (with the sieves
in the unbalanced case; see above). This eliminates any possible confusion as to
which solution, or root, to the REML equation to use when there are multiple roots
(e.g., [23], Section 8.1).

THEOREM 2. Suppose that (i) σ 2
t > 0, 0 < var(α2

t1) < ∞, 0 ≤ t ≤ s; (ii) |xi |,
‖zit‖1, 1 ≤ t ≤ s, 1 ≤ i ≤ N are bounded; (iii) there is a sequence of diago-
nal matrices G = diag(g0, . . . , gs) with gj > 0, 0 ≤ j ≤ s, such that G−1GG−1 is
bounded from above as well as from below and λmin(X

′V −1X) → ∞;
(iv) (gjgk)

−1 ∑L
l=1 hl|cj,k,l|, 0 ≤ j, k ≤ s, are bounded and (gjgk)

−2 ×∑L
l1,l2=1 hl1,l2 |cj,k,l1cj,k,l2 | → 0, 0 ≤ j, k ≤ s; (v) (gjgk)

−1gj,k(δ) → 0 and

(gjgk)
−1 ∑L

l=1 hldj,k,l(δ) → 0, 0 ≤ j, k ≤ s, uniformly in N as δ → 0. Then the
POQUIM Î1 and the POQUIM estimator �̂R are both consistent.

REMARK 1. The first part of condition (iii) (regarding G) is equivalent to the
AI4 condition of Jiang [12, 13], which, together with σ 2

t > 0, 0 ≤ t ≤ s, guarantees
the consistency of the REML estimator θ̂ . Furthermore, condition (iii) ensures the
consistency of β̂ = (X′V̂ −1X)−1X′V̂ −1y, where V̂ is V with θ replaced by θ̂ .
Finally, by the proof of Lemma 3 in the sequel, it can be shown that the first part
of condition (v) [regarding gj,k(δ)] is equivalent to G̃ being uniformly continuous
at θ .

The proof of Theorem 2 is given in Section 8.3.

3. Examples. We now consider some examples and show that the conditions
of Theorem 2 are satisfied in typical situations of non-Gaussian mixed linear mod-
els.

3.1. A balanced two-way random effects model. Example 1 was used in Sec-
tion 1 to illustrate the POQUIM method. We now revisit this example and verify
the conditions of Theorem 2.
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Condition (i) is satisfied if σ 2
t > 0, t = 0,1,2, and 0 < var(v2

1), var(w2
1),

var(e2
11) < ∞.

Condition (ii) is automatically satisfied, because here xij = 1 and zij t , t =
0,1,2, are vectors with one component equal to 1 and the other components equal
to 0. Note that, as in Example 2, it is more convenient to use a double index, ij ,
instead of i.

By Jiang [12], condition (iii) is satisfied with g0 = √
mn, g1 = √

m and g2 =√
n if σ 2

t > 0, t = 0,1,2, and m,n → ∞. See the remarks below Theorem 2. Note
that here X′V −1X = mn/λ(1 + γ1n + γ2m).

Now consider condition (iv). It is easy to show that f (i1j1, . . . , i4j4) = 0 if not
i1 = · · · = i4 or j1 = · · · = j4; κ1 if i1 = · · · = i4 but not j1 = · · · = j4; κ2 if j1 =
· · · = j4 but not i1 = · · · = i4; and κ0 + κ1 + κ2 if i1 = · · · = i4 and j1 = · · · = j4.
Thus, L = 3. It is easy to show that h1 = mn(n3 − 1), h2 = nm(m3 − 1), h3 =
mn; |c0,0,1| ∝ n−3, |c0,0,2| ∝ m−3, |c0,0,3| ∝ 1; |c0,1,1| ∝ n−4, |c0,1,2| ∝ m−3n−2,
|c0,1,3| ∝ n−2; |c0,2,1| ∝ n−3m−2, |c0,2,2| ∝ m−4, |c0,2,3| ∝ m−2; |c1,1,1| ∝ n−4,
|c1,1,2| ∝ m−3n−4, |c1,1,3| ∝ n−4; |c1,2,1| ∝ m−2n−5, |c1,2,2| ∝ n−2m−5, |c1,2,3| ∝
m−2n−2; |c2,2,1| ∝ n−3m−4, |c2,2,2| ∝ m−4 and |c2,2,3| ∝ m−4. It follows that the
first part of condition (iv) is satisfied as m,n → ∞.

Furthermore, it is easy to show that h1,1 ∝ mn7(m + n), h1,2 ∝ m4n4(m + n),
h1,3 ∝ mn4(m + n), h2,2 ∝ m7n(m + n), h2,3 ∝ m4n(m + n) and h3,3 ∝ mn ×
(m + n). It follows that hl1,l2 ≤ c(m−1 + n−1)hl1hl2 , 1 ≤ l1, l2 ≤ 3. Therefore, we
have

(gjgk)
−2

3∑
l1,l2=1

hl1,l2

∣∣cj,k,l1cj,k,l2

∣∣ ≤ c

(
1

m
+ 1

n

){
(gjgk)

−1
3∑

l=1

hl|cj,k,l|
}2

−→ 0

as m,n → ∞, 0 ≤ j, k ≤ 2, using the already verified first part.
As for condition (v), it is easy to show that the derivatives of cj,k,l with respect

to θ are bounded by quantities of the same order as |cj,k,l|. It follows that dj,k,l(δ)

is bounded by δ times a quantity of the same order as |cj,k,l|. Thus, the second part
of condition (v) is satisfied by the verified first part of condition (iv). By a similar
argument, the first part of condition (v) is satisfied.

In conclusion, all the conditions of Theorem 2 are satisfied with g0 = √
mn,

g1 = √
m and g2 = √

n, provided that σ 2
t > 0, t = 0,1,2, 0 < var(v2

1), var(w2
1),

var(e2
11) < ∞ and m,n → ∞.

3.2. A balanced two-way mixed effects model. In the previous example the
only fixed effect is an unknown mean µ. This time we consider a model that
involves more fixed effects. We assume that yij = βj + αi + εij , i = 1, . . . ,m,
j = 1, . . . , n, where the βj ’s are unknown fixed effects, αi’s are i.i.d. random ef-
fects with mean 0 and variance σ 2

1 , εij ’s are i.i.d. errors with mean 0 and variance
σ 2

0 , and α and ε are independent. Again we verify the conditions of Theorem 2.
Condition (i) holds if σ 2

t > 0, t = 0,1, and 0 < var(α2
1), var(ε2

11) < ∞.
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Condition (ii) is automatically satisfied.
By Jiang [12], condition (iii) is satisfied with g0 = √

mn and g1 = √
m as long

as σ 2
t > 0, t = 0,1, m → ∞ and n ≥ 2. Note that this result holds regardless of

n → ∞ or not.
Now consider (iv). It is easy to show that f (i1j1, . . . , i4j4) = 0 if not

i1 = · · · = i4; κ1 if i1 = · · · = i4 but not j1 = · · · = j4; and κ0 + κ1 if i1 = · · · = i4
and j1 = · · · = j4. Thus L = 2. It is easy to verify that h1 = mn(n3 − 1)

and h2 = mn. Furthermore, we have |c0,0,1| ∝ n−3, |c0,0,2| ∝ 1, |c0,1,1| ∝ n−4,
|c0,1,2| ∝ n−2, |c1,1,1| ∝ n−4 and |c1,1,2| ∝ n−4. It follows that the first part of
condition (iv) is satisfied as m → ∞. Also, we have h1,1 ∝ mn8, h1,2 ∝ mn5 and
h2,2 ∝ mn2; hence hl1,l2 ≤ cm−1hl1hl2 , 1 ≤ l1, l2 ≤ 2. Thus, for the same reason as
in the previous subsection, the second part of condition (iv) is satisfied as m → ∞.

By similar arguments as in the previous subsection, condition (v) is satisfied.
In conclusion, all the conditions of Theorem 2 are satisfied with g0 = √

mn and
g1 = √

m, provided that σ 2
t > 0, t = 1,2, 0 < var(α2

1), var(ε2
11) < ∞, m → ∞ and

n ≥ 2.

3.3. An unbalanced nested error regression model. In the previous examples
the data are balanced in the sense that there are equal numbers of observations per
cell (e.g., [23], Chapter 4). In this subsection we consider an unbalanced case.
The model may be viewed as an extension of Example 2 in Section 2, which
can be expressed as yij = x′

ij β + αi + εij , i = 1, . . . ,m, j = 1, . . . , ni , where
ni (ni ≥ 1) is the size of the ith cluster, xij is a vector of known covariates, β is
a p-dimensional vector of unknown regression coefficients, αi’s are i.i.d. random
effects with mean 0 and variance σ 2

1 , εij ’s are i.i.d. errors with mean 0 and vari-
ance σ 2

0 , and α and ε are independent. When xij = 1, β = µ and ni = n, 1 ≤ i ≤ m,
the model reduces to Example 2 of Section 2. Such a model is useful in a num-
ber of application areas, including small area estimation (e.g., [3, 8]). Here, once
again, we verify the conditions of Theorem 2.

Condition (i) is satisfied provided that σ 2
r > 0, r = 0,1, and 0 < var(α2

1),
var(ε2

11) < ∞. Condition (ii) is satisfied if |xij | is bounded. By Jiang [12] it can
be shown that condition (iii) is satisfied with g0 = √

N , where N = ∑m
i=1 ni

is the total sample size and g1 = √
m, provided that m → ∞, p is bounded,

lim sup(m/N) < 1 and

lim inf

[
λmin

{
1

m

m∑
i=1

ni∑
j=1

(xij − x̄i·)(xij − x̄i·)′
}

∨ λmin

{
1

m

m∑
i=1

x̄i·x̄′
i·

}]
> 0,(15)

where x̄i· = n−1
i

∑ni

j=1 xij . Note that lim sup(m/N) < 1 ensures that, asymptoti-
cally, the random effects and errors can be separated, that is, the variance compo-
nents are asymptotically identifiable [12]. Although condition (15) can be further
weakened, it is more intuitive and satisfied in most cases.
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Now consider condition (iv). The function f (i1j1, . . . , i4j4) has the same ex-
pression as in Example 2 of Section 2. Thus we have L = 2, h1 = ∑m

i=1 ni(n
3
i − 1)

and h2 = N . Furthermore, it can be shown that the i1j1, i2j2 element of B0 is

B0,i1j1,i2j2 = 1

2λ2

{
1(i1=i2,j1=j2) − γ1

1 + γ1ni1

1(i1=i2)

−
(
xi1j1 − γ1ni1

1 + γ1ni1

x̄i1·
)′

D−1
(
xi2j2 − γ1ni2

1 + γ1ni2

x̄i2·
)}

,

where D = ∑m
i=1X

′
iDiXi with Xi = (x′

ij )1≤j≤ni
and Di = Ini

−γ1(1+γ1ni)
−1Jni

.
Similarly, the i1j1, i2j2 element of B1 is

B1,i1j1,i2j2 = 1

2λ

{
1(i1=i2)

(1 + γ1ni1)(1 + γ1ni2)

− ni1

(1 + γ1ni1)
2

(
xi2j2 − γ1ni2

1 + γ1ni2

x̄i2·
)′

D−1x̄i1·

− ni2

(1 + γ1ni2)
2

(
xi1j1 − γ1ni1

1 + γ1ni1

x̄i1·
)′

D−1x̄i2·

+
(
xi1j1 − γ1ni1

1 + γ1ni1

x̄i1·
)′

D−1QD−1
(
xi2j2 − γ1ni2

1 + γ1ni2

x̄i2·
)}

,

where Q = ∑m
i=1{ni/(1 + γ1ni)}2x̄i·x̄′

i·. Thus, it can be shown that |c0,0,1| ∝
N/

∑m
i=1 ni(n

3
i − 1), |c0,0,2| ∝ 1, |c0,1,1|, |c1,1,1| ∝ m/

∑m
i=1 ni(n

3
i − 1) and

|c0,1,2|, |c1,1,2| ∝ m/N . It follows that the first part of condition (iv) is satisfied.
Furthermore, it can be shown that |hl1,l2 | ≤ chl1hl2

∑m
i=1 n

a1+a2
i /(

∑m
i=1 n

a1
i ) ×

(
∑m

i=1 n
a2
i ), l1, l2 = 1,2, provided that lim sup(m/N) < 1, where c is a constant

and ar = (3 − lr )
2, r = 1,2. Note that here we use the fact that, by Hölder’s in-

equality and the fact that ni ≥ 1, it can be shown that (
∑m

i=1 ni)/(
∑m

i=1 n4
i ) ≤

(m/N)3/4, which implies that h1 ∝ ∑m
i=1 n4

i , because lim sup(m/N) < 1. Thus,
by the first part of condition (iv), the second part of condition (iv) is satisfied,
provided that ∑m

i=1 na+b
i

(
∑m

i=1 na
i )(

∑m
i=1 nb

i )
−→ 0, a, b = 1 or 4.(16)

Note that, for example, if the ni’s are bounded, then the left-hand side of (16) is
O(m−1).

Finally, condition (v) can be verified using the same arguments as in part (v) of
the previous two subsections.

In conclusion, all the conditions of Theorem 2 are satisfied with g0 = √
N and

g1 = √
m, provided that σ 2

r > 0, r = 0,1, 0 < var(α2
1), var(ε2

11) < ∞, m → ∞,
p is bounded, lim sup(m/N) < 1, and (15) and (16) hold. Note that the conditions
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do not include that ni → ∞. In fact, in most practical situations the ni ’s are small
(e.g., Ghosh and Rao [8]).

3.4. A random intercept/slope model. So far in the examples the number of
different functional values for f (i1, . . . , i4), defined by (8), is bounded, that is,
L is bounded. We now consider a case in which L increases with N .

Suppose that two measures are collected from each of m patients, once before
and once after a surgery, but, because of the availability of patients, the measures
are made at different times after the time of the surgery. It is thought that the
recovery is a linear function of time, but the slope depends on the individual pa-
tient. For the ith patient, the baseline measure made before the surgery can be
expressed as β0 + ai , where β0 is an unknown mean and ai is a random effect;
after the surgery, a measure is collected at time ti from the surgery and the im-
provement can be expressed as (β1 + bi)ti on top of the baseline, where β1 is an
unknown parameter and bi is another random effect. Of course, each time there is
a random measurement error. This model can be expressed as yi = β0 + ai + ei ,
ym+i = β0 + β1ti + ai + biti + em+i , i = 1, . . . ,m, where yi and ym+i correspond
to the measurements from the ith patient before and after the surgery. It is assumed
that the ai ’s are i.i.d. with mean 0 and variance σ 2

1 , the bi ’s are i.i.d. with mean 0
and variance σ 2

2 , the ei ’s are i.i.d. with mean 0 and variance σ 2
0 , and a, b, e are

independent (see the discussion in Section 7).
Now consider the conditions of Theorem 2. Condition (i) is satisfied if σ 2

t > 0,
t = 0,1,2, and 0 < var(a2

1), var(b2
1), var(e2

1) < ∞. Condition (ii) is satisfied pro-
vided that the ti ’s are bounded. By Jiang [12], it can be shown that condition (iii) is
satisfied with gj = √

m, j = 0,1,2, provided that m → ∞ and the ti ’s are bounded
from above and away from zero.

Now consider condition (iv). For 1 ≤ i ≤ N = 2m, write i = 2(l − 1) + r ,
where 1 ≤ l ≤ m and r = 1,2. Then it can be shown that the i1, i2 element of Bj

can be expressed as O(1)1(l1=l2) + O(m−1), j = 0,1,2. For simplicity, assume
that the ti ’s are all different. Then it is easy to see that f (i1, . . . , i4) = 0 if not
l1 = · · · = l4; κ1 if l1 = · · · = l4 but not r1 = · · · = r4; κ0 + κ1 if l1 = · · · = l4 and
r1 = · · · = r4 = 1; and κ0 + κ1 + t2

l κ2 if l1 = · · · = l4 = l and r1 = · · · = r4 = 2,
1 ≤ l ≤ m. Thus, we have, in particular, L = m + 2. It is easy to show that h1 =
14m, h2 = m and h2+l = 1, 1 ≤ l ≤ m. Furthermore, we have |cj,k,1| = O(1), 1 ≤
l ≤ m+ 2. It follows that (gjgk)

−1{h1|cj,k,1|+h2|cj,k,2|+∑m
l=1 h2+l|cj,k,2+l|} =

m−1O(m) = O(1); hence the first part of condition (iv) is satisfied. Similarly,
we have h1,1 = O(m), h1,2 = O(m), h1,2+l = O(1), 1 ≤ l ≤ m, h2,2 = m,
h2,2+l = 1, 1 ≤ l ≤ m, and h2+l,2+l′ = 1(l=l′), 1 ≤ l, l′ ≤ m. Thus, we have
(gjgk)

−2 ∑L
l1,l2=1 hl1,l2 |cj,k,l1cj,k,l2 | = O(m−1); hence the second part of condi-

tion (iv) is satisfied. By similar arguments as in the previous examples, condition
(v) is satisfied.

In conclusion, all the conditions of Theorem 2 are satisfied with gj = √
m,

j = 0,1,2, provided that σ 2
t > 0, t = 0,1,2, 0 < var(a2

1), var(b2
1), var(e2

1) < ∞,
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m → ∞, and the ti ’s are bounded from above and away from zero, and are differ-
ent. The last condition that the ti ’s are all different is only for technical convenience
(otherwise L may be less than m + 2, but the conditions can be verified similarly).

4. POQUIM for ML. In this section we derive POQUIM for ML estimation.
Under model (1) and normality, the log-likelihood for estimating β and θ is given
by

l(β, θ) = c − 1
2{log(|V |) + (y − Xβ)′V −1(y − Xβ)},(17)

where c is a constant. If normality does not hold, (17) is considered the quasi-log-
likelihood. It is easy to show that ∂l/∂β = X′V −1u, and ∂l/∂θj = u′Cju − cj ,
0 ≤ j ≤ s, where C0 = (2λ)−1V −1, Cj = (λ/2)V −1ZjZ

′
jV

−1, 1 ≤ j ≤ 1, c0 =
N/2λ, cj = (λ/2)tr(V −1ZjZ

′
j ), 1 ≤ j ≤ s, and again, u = y − Xβ . Note that

cj = E(u′Cju), 0 ≤ j ≤ s. Let V −1Xj = qj = (qj,i)1≤i≤N , where Xj is the j th
column of X.

Using the expression (17), it can be shown that

cov
(

∂l

∂βj

,
∂l

∂βk

)
= X′

jV
−1Xk, 1 ≤ j, k ≤ p.

Next, similar to Lemma 1, the following equations can be easily derived.

LEMMA 2. We have

cov
(
ui1, ui2ui3

) =
s∑

t=0

E(α3
t1)zi1t · zi2t · zi3t ,(18)

cov
(

∂l

∂βj

,
∂l

∂θk

)
=

s∑
t=0

E(α3
t1)

mt∑
l=1

(X′
jV

−1ztl)(z
′
t lCkztl).

Write t (i1, i2, i3) = E(ui1ui2ui3), which is the right-hand side of (18). Let tl ,
1 ≤ l ≤ K , be the different functional values of t (i1, i2, i3) [as functions of the
third moments; see (18)]. Then, by similar arguments as in the previous section, it
can be shown that

cov
(

∂l

∂βj

,
∂l

∂θk

)
= E

{ ∑
t (i1,i2,i3) �=0

c1,j,k(i1, i2, i3)ui1ui2ui3

}
,

where c1,j,k(i1, i2, i3) = c1,j,k,l if t (i1, i2, i3) = tl , 1 ≤ l ≤ K , with

c1,j,k,l = 1

|{t (i1, i2, i3) = tl}|
∑

t (i1,i2,i3)=tl

qj,i1Ck,i2,i3 .(19)
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Furthermore, recall that f (i1, . . . , i4) is defined by (8). Then, similar to the pre-
vious section, define c2,j,k(i1, . . . , i4) = c2,j,k,l if f (i1, . . . , i4) = fl , 1 ≤ l ≤ L,
with

c2,j,k,l = 1

|{f (i1, . . . , i4) = fl}|
∑

f (i1,...,i4)=fl

Cj,i1,i2Ck,i3,i4 .(20)

Then we have similar expressions for cov(∂l/∂θj , ∂l/∂θk) (with the only differ-
ence from Section 2.1 being that B is replaced by C). We summarize the re-
sults as follows. As before, write ψ = (β ′θ ′)′ and, again, write the QUIM as
I1 = Var(∂l/∂ψ) = (I1,jk)1≤j,k≤p+s+1.

THEOREM 3. For any non-Gaussian mixed linear model (1), we have

I1,jk = X′
jV

−1Xk = I1,2,jk,(21)

that is, I1,1,jk = 0, 1 ≤ j, k ≤ p;

I1,j (p+k+1) =
s∑

t=0

E(α3
t1)

mt∑
l=1

(X′
jV

−1ztl)(z
′
t lCkztl)

= E

{ ∑
t (i1,i2,i3) �=0

c1,j,k(i1, i2, i3)ui1ui2ui3

}
(22)

= I1,1,j (p+k+1),

that is, I1,2,j (p+k+1) = 0, 1 ≤ j ≤ p, 0 ≤ k ≤ s; and

I1,(p+j+1)(p+k+1) = 2 tr(CjV CkV ) +
s∑

t=0

κt

mt∑
l=1

(z′
t lCj ztl)(z

′
t lCkztl)

= E

{ ∑
f (i1,...,i4) �=0

c2,j,k(i1, . . . , i4)ui1 · · ·ui4

}

+
{

2 tr(CjV CkV )(23)

− 3λ2
∑

f (i1,...,i4) �=0

c2,j,k(i1, . . . , i4)�(i1, i3)�(i2, i4)

}

= I1,1,(p+j+1)(p+k+1) + I1,2,(p+j+1)(p+k+1),

0 ≤ j, k ≤ s, where c1,j,k(i1, i2, i3) and c2,j,k(i1, . . . , i4) are defined by (19) and
(20), respectively.
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Similar to Section 2, the POQUIM is given by Î1 = (Î1,jk)1≤j,k≤p+s+1, where
Î1,jk = Î1,1,jk + Î1,2,jk , Î1,1,jk is the observed part obtained by taking the expec-
tation sign out of I1,1,jk , if there is one, and then replacing the parameters involved
by their ML estimators; and Î1,2,jk is the estimated part obtained by replacing θ

by θ̂ , the ML estimator, in I1,2,jk , if the latter is nonzero. Let ψ̂ = (β̂ ′θ̂ ′)′ be the
ML estimator of ψ . Then, according to the discussion in Section 1, the ACM of ψ̂

is given by � = I−1
2 I1I

−1
2 , where I2 = E(∂2l/∂ψ ∂ψ ′). Thus, the POQUIM es-

timator of � is given by �̂ = Î−1
2 Î1Î

−1
2 , where Î1 is the POQUIM and Î2 is I2

with θ replaced by θ̂ . Similar to Theorem 2, sufficient conditions can be given for
the consistency of Î1 and �̂. The details are omitted.

We now use a simple example to illustrate the POQUIM for ML given by
(21)–(23).

EXAMPLE 2 (continued). Here p = s = 1. It is easy to show that Î1,11 =
mn/λ̂(1 + γ̂1n),

Î1,12 = 1

2λ̂3(1 + γ̂1n)2

[
1 − γ̂1

n + 1

∑
i

(∑
j

ûij

)3

+
{
γ̂1n + (1 − γ̂1)n

n + 1

}∑
i,j

û3
ij

]

and Î1,13 = {1/2λ̂2(1 + γ̂1n)3}∑
i (

∑
j ûij )

3, where λ̂, γ̂1 are the ML estimators.

Furthermore, we have Î1,(j+2)(k+2) = Î1,1,(j+2)(k+2) + Î1,2,(j+2)(k+2), j, k = 0,1,
where

Î1,1,22 = n{n − (γ̂1n + 1 − γ̂1)
2}

4λ̂4(1 + γ̂1n)2n(n3 − 1)

{∑
i

(∑
j

ûij

)4

− ∑
i,j

û4
ij

}

+ (γ̂1n + 1 − γ̂1)
2

4λ̂4(1 + γ̂1n)2

∑
i,j

û4
ij ,

Î1,1,23 = n + 1 − γ̂1

4λ̂3(1 + γ̂1n)3(n2 + n + 1)

{∑
i

(∑
j

ûij

)4

− ∑
i,j

û4
ij

}

+ γ̂1n + 1 − γ̂1

4λ̂3(1 + γ̂1n)3

∑
i,j

û4
ij ,

Î1,2,22 = mn

2λ̂2

[
1 +

(
3

2

)
n(1 + γ̂1n)2 − (1 + γ̂1)

2

n3 − 1

×
{(

γ̂1n + 1 − γ̂1

1 + γ̂1n

)2

− n

(1 + γ̂1n)2

}

−
(

3

2

)(
γ̂1n + 1 − γ̂1

1 + γ̂1n

)2

(1 + γ̂1)
2
]
,
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Î1,2,23 = mn

2λ̂(1 + γ̂1n)

[
1 −

(
3

2

)
(n + 1 − γ̂1){n(1 + γ̂1n)2 − (1 + γ̂1)

2}
(1 + γ̂1n)2(n2 + n + 1)

−
(

3

2

)
(γ̂1n + 1 − γ̂1)(1 + γ̂1)

2

(1 + γ̂1n)2

]
,

Î1,1,33 =
{

1

4λ̂2(1 + γ̂1n)4

}∑
i

(∑
j

ûij

)4

and Î1,2,33 = mn2

4(1 + γ̂1n)2 .

5. Robust dispersion tests. In this section we consider an application of the
results on POQUIM to robust dispersion tests in mixed linear models. The tests
considered here are robust in the sense that they do not require normality. A dis-
persion test may be regarding both the fixed effects and the variance components
or only the variance components, and both ML and REML estimators may be used
in such a test. To be more specific, here we consider dispersion tests regarding only
the variance components based on the REML estimators.

Consider the following general hypothesis regarding θ in model (1):

H0 : K ′θ = ϕ,(24)

where ϕ is a specified vector and K is a known (s + 1) × r matrix with
rank(K) = r . We assume that the REML estimator θ̂ is asymptotically normal
with mean 0 and ACM �R, that is,

�
−1/2
R (θ̂ − θ) −→ N(0, Is+1) in distribution.(25)

Sufficient conditions for (25) can be found in, for example, [12]. It is then easy to
show that, under the null hypothesis (24),

(K ′θ̂ − ϕ)′(K ′�RK)−1(K ′θ̂ − ϕ) −→ χ2
r in distribution.(26)

We then replace �R by its POQUIM estimator �̂R of Section 2 to obtain the test
statistic

χ̂2 = (K ′θ̂ − ϕ)′(K ′�̂RK)−1(K ′θ̂ − ϕ).(27)

The following theorem states that χ̂2 has the same asymptotic null distribution
as (26).

THEOREM 4. Suppose that the conditions of Theorem 2 are satisfied. Fur-
thermore suppose that (25) holds. Then, under the null hypothesis, χ̂2 → χ2

r in
distribution.

In cases where some components of θ are specified under the null hypothesis,
it is customary to use these specified values, instead of the estimators, in the PO-
QUIM estimator. Under the null hypothesis this may improve the accuracy of the
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POQUIM estimator, although the difference is expected to be small in large sam-
ples (because of the consistency of θ̂ ; e.g., [12]). It is easy to see, by examing
the proofs of Theorems 2 and 4, that the same conclusion of Theorem 4 holds after
such a modification. (Note that the only property of θ̂ used in the proof of Theorem
2 is its consistency.) We consider a simple example.

EXAMPLE 2 (continued). Suppose that one wishes to test the hypothesis H0:
γ1 = 1, that is, the variance contribution due to the random effects is the same as
that due to the errors. Note that in this case θ = (λ, γ1)

′, so the null hypothesis
corresponds to (24) with K = (0,1)′ and ϕ = 1. Furthermore, we have K ′�RK =
�R,11, which is the asymptotic variance of γ̂1, the REML estimator of γ1. Thus,
the test statistic is χ̂2 = (γ̂1 − 1)2/�̂R,11, where �̂R,11 is the POQUIM estimator
of �R,11 (see Section 2). It is easy to show that

�̂R,11 = Î1,11Î
2
2,00 − 2Î1,01Î2,00Î2,01 + Î1,00Î

2
2,01

(Î2,00Î2,11 − Î2
2,01)

2
,(28)

where Î1,jk = Î1,1,jk + Î1,2,jk , j, k = 0,1, and Î1,r,jk , r = 1,2, are given in
Example 2 in Section 2, but with γ̂1 replaced by 1, its value under H0; further-
more, we have Î2,00 = −(mn − 1)/2λ̂2, Î2,01 = −(m − 1)n/2λ̂(1 + γ̂1n) and
Î2,11 = −(m − 1)n2/2(1 + γ̂1n)2, again with γ̂1 replaced by 1, where λ̂ is the
REML estimator of λ. The asymptotic null distribution is χ2

1 . In the next section
the finite sample performance of this test will be investigated.

6. Simulations. In this section we consider two simulated examples. The goal
is to study the finite sample performance of POQUIM, whose large sample prop-
erties were studied in Section 2 (Theorem 2) and later in Section 4 in the context
of the robust dispersion test (Theorem 4). The latter will be the focus of our simu-
lation study.

The first example is the one-way random effects model considered in Exam-
ple 2. Note that this model is a special case of the unbalanced nested error regres-
sion model of Section 3.3. However, by restricting to the balanced case we are able
to make a direct comparison with the delete-group jackknife method [1, 2].

The second example is a balanced two-way random effects model. Note that the
jackknife method does not apply to this case. In fact, when the random effects and
errors are not normal or symmetric, POQUIM is the only method that is known
to apply, by Section 2, at least in large samples. Now our goal is to investigate its
finite sample performance.

6.1. A balanced one-way random effects model. Consider once again Exam-
ple 2 (continued) in Section 5, where the hypothesis to be tested is H0: γ1 = 1.
For example, such a test may be of genetic interest, which corresponds to H0:
h2 = 2, where h2 = 4σ 2

1 /(σ 2
0 + σ 2

1 ) is the heritability. We consider a test based
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on REML estimation of the variance components. More specifically, we are in-
terested in the situation when m is increasing while n remains fixed. Therefore,
the following sample size configurations are considered: Case I, m = 50, n = 2;
Case II, m = 400, n = 2. Case I represents a moderate sample size, while Case II
represents a large sample size. In addition, we would like to investigate different
cases in which normality and symmetry may or may not hold. Therefore, the fol-
lowing combinations of distributions for the random effects and errors are consid-
ered: Case i, Normal–Normal; Case ii, DE–NM(−2,2,0.5), where DE represents
the double exponential distribution and NM(µ1,µ2, ρ) denotes the mixture of two
normal distributions with means µ1, µ2, variance 1 and mixing probability ρ [i.e.,
the probabilities 1 − ρ and ρ correspond to N(µ1,1) and N(µ2,1), resp.]; and
Case iii, CE–NM(−4,1,0.2), where CE represents the centralized exponential dis-
tribution, that is, the distribution of X−1, where X ∼ Exponential(1). Note that in
Case ii the distributions are not normal but symmetric, while in Case iii the distrib-
utions are not even symmetric—a further departure from normality. Also note that
all these distributions have mean 0. They are standardized so that the distributions
of the random effects and errors have variances σ 2

1 and σ 2
0 , respectively. The true

value of µ is set to 1.0. The true value of σ 2
0 is also chosen as 1.0.

According to Section 5, the χ2-test statistic is given by

χ̂2 = (γ̂1 − 1)2

�̂R,11
,(29)

where γ̂1 is the REML estimator of γ1, �̂R,11 is given by (28) and

λ̂ = 1

mn − 1

(
SSE + SSA

n + 1

)
.(30)

Here

SSE =
m∑

i=1

n∑
j=1

(yij − ȳi·)2

and

SSA = n

m∑
i=1

(ȳi· − ȳ··)2,

with ȳi· = n−1 ∑n
j=1 yij and ȳ·· = (mn)−1 ∑m

i=1
∑n

j=1 yij . Note that (30) is the
REML estimator of λ under the null.

Arvesen [1] proposed a delete-group jackknife method and established consis-
tency, using U -statistics. Furthermore, Arvesen and Schmitz [2] provided simula-
tion results. The delete-group jackknife applies to cases where data can be divided
into i.i.d. groups, such as the current situation. We refer to this method as jackknife.
The method is briefly described as follows. Let X1, . . . ,Xm be i.i.d. observations
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and let θ be an unknown parameter. Let θ̂ be an estimator of θ based on all the
observations and let θ̂−i be the estimator based on all but the ith observation, ob-
tained otherwise the same way as θ̂ . Define θ̂i = mθ̂ − (m− 1)θ̂−i , 1 ≤ i ≤ m. The
jackknife estimator of θ is defined as θ̂jack = m−1 ∑m

i=1 θ̂i , that is, the average of
the θ̂i’s.

Now consider the one-way random effects model of Example 2. Instead of delet-
ing the ith observation, one deletes the ith group consisting of the observations
yij , j = 1, . . . , n. A dispersion test that is often of genetic interest is H0: γ1 = γ10,
which corresponds to H0: h2 = 4γ10/(1 + γ10), where h2 = 4σ 2

1 /(σ 2
0 + σ 2

1 ) is the
heritability. Arvesen and Schmitz proposed use of the jackknife estimator with a
transformation. Let θ = log(1 + γ1n) and θ̂ = log(MSA/MSE), where MSA and
MSE are the between and within group mean squares. A test of H0 will be based
on

t =
√

m(θ̂jack − θ)√
(m − 1)−1 ∑m

i=1(θ̂i − θ̂jack)2
,(31)

which is expected to have an asymptotic tm−1 null distribution [1].
To make a fair comparison, we note that a test of χ2 type is omnibus rather than

directional (e.g., [21], Section 1.1). In other words, a χ2 test is typically used in
situations of two-sided hypotheses. On the other hand, a t-test is appropriate to
both one- and two-sided hypotheses. Therefore, we consider testing H0: γ1 = 1
against H1: γ1 �= 1. For each simulated data set, the test statistics (29) and (31) are
computed. The simulated sizes that correspond to the usual nominal levels 0.01,
0.05 and 0.10 are reported in Table 1. Furthermore, the simulated powers at a
number of alternatives, namely, γ1 = 0.2,0.5,2,5, are reported in Tables 2–4. All
results are based on 10,000 simulations.

Overall, the jackknife appears to be more accurate in terms of the size, espe-
cially when m is relatively small (Case I). On the other hand, the simulated pow-
ers for POQUIM are higher at all alternatives, especially when m is relatively

TABLE 1
POQUIM versus jackknife—size

Simulated size

Nominal level Method I-i I-ii I-iii II-i II-ii II-iii

0.01 POQUIM 0.022 0.026 0.028 0.011 0.013 0.015
Jackknife 0.010 0.014 0.020 0.009 0.011 0.013

0.05 POQUIM 0.070 0.078 0.091 0.054 0.057 0.063
Jackknife 0.052 0.053 0.068 0.053 0.053 0.060

0.10 POQUIM 0.123 0.132 0.151 0.106 0.108 0.114
Jackknife 0.099 0.103 0.122 0.104 0.103 0.109
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TABLE 2
POQUIM versus jackknife—power (nominal level 0.01)

Simulated power

Alternative Method I-i I-ii I-iii II-i II-ii II-iii

γ1 = 0.2 POQUIM 0.506 0.616 0.468 1.000 1.000 1.000
Jackknife 0.487 0.463 0.454 1.000 1.000 1.000

γ1 = 0.5 POQUIM 0.112 0.164 0.122 0.914 0.891 0.793
Jackknife 0.108 0.121 0.137 0.921 0.866 0.787

γ1 = 2.0 POQUIM 0.354 0.256 0.221 0.995 0.971 0.913
Jackknife 0.196 0.118 0.072 0.993 0.968 0.887

γ1 = 5.0 POQUIM 0.991 0.954 0.900 1.000 1.000 1.000
Jackknife 0.954 0.876 0.715 1.000 1.000 1.000

TABLE 3
POQUIM versus jackknife—power (nominal level 0.05)

Simulated power

Alternative Method I-i I-ii I-iii II-i II-ii II-iii

γ1 = 0.2 POQUIM 0.747 0.807 0.745 1.000 1.000 1.000
Jackknife 0.728 0.709 0.668 1.000 1.000 1.000

γ1 = 0.5 POQUIM 0.283 0.336 0.286 0.980 0.966 0.917
Jackknife 0.277 0.271 0.275 0.981 0.958 0.912

γ1 = 2.0 POQUIM 0.532 0.424 0.369 0.999 0.993 0.973
Jackknife 0.411 0.317 0.223 0.999 0.993 0.970

γ1 = 5.0 POQUIM 0.997 0.984 0.956 1.000 1.000 1.000
Jackknife 0.991 0.971 0.903 1.000 1.000 1.000

TABLE 4
POQUIM versus jackknife—power (nominal level 0.10)

Simulated power

Alternative Method I-i I-ii I-iii II-i II-ii II-iii

γ1 = 0.2 POQUIM 0.844 0.875 0.807 1.000 1.000 1.000
Jackknife 0.829 0.810 0.776 1.000 1.000 1.000

γ1 = 0.5 POQUIM 0.405 0.442 0.396 0.991 0.983 0.954
Jackknife 0.398 0.382 0.372 0.991 0.979 0.950

γ1 = 2.0 POQUIM 0.633 0.564 0.462 1.000 0.997 0.987
Jackknife 0.540 0.453 0.350 1.000 0.997 0.986

γ1 = 5.0 POQUIM 0.999 0.992 0.975 1.000 1.000 1.000
Jackknife 0.998 0.988 0.954 1.000 1.000 1.000
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small (Case I). However, it would be misleading to conclude that the POQUIM
has higher power than the jackknife, because the power comparison is considered
fair only if the two tests have similar sizes. In other words, for the case of m = 50,
the higher power for POQUIM could be the result of the test overrejecting. Finally,
note that the jackknife with the logarithmic transformation is specifically designed
for this kind of model where the observations are divided into independent groups,
while the POQUIM is for a much richer class of mixed linear models where the
observations may or may not be divided into independent groups, as we will see in
the next simulated example.

6.2. A balanced two-way random effects model. We now consider the bal-
anced two-way random effects model of Example 1, also discussed in Section 3.1.
Consider testing the hypothesis H0: σ 2

1 = σ 2
2 , or, equivalently, H0: γ1 = γ2, which

means that the two random effect factors contribute equally to the total variation.
It is easy to show that the test statistic (27) reduces to

χ̂2 = (γ̂1 − γ̂2)
2

�̂R,11 − 2�̂R,12 + �̂R,22
,(32)

where γ̂1 and γ̂2 are the REML estimators of γ1 and γ2, and �̂R,jk is the j, k el-
ement of the POQUIM estimator �̂R of the ACM of θ̂ = (λ̂, γ̂1, γ̂1)

′, the REML
estimator. Note that in this case there are no (fully) specified values of the para-
meters under the null hypothesis, although the latter may still be used in some
way (but the difference is expected to be small in large samples; see the remark
below Theorem 4). On the other hand, it is interesting to see how the test performs
when the straight POQUIM estimator is used in the denominator of (32), and that
is what we do in this simulation. Once again, we study the performance of the test
under both moderate and large sample sizes, as well as departures from normality.
The following sample size configurations are considered: Case I, m = 40, n = 40;
Case II, m = 200, n = 200. Furthermore, the following combinations of distrib-
utions for the random effects and errors are considered: Case i, v, w ∼ Normal;
Case ii, v, w ∼ DE; Case iii, v ∼ DE, w ∼ CE; and Case iv, v, w ∼ CE. In all
cases, e ∼ Normal. Note that the jackknife method discussed in the previous sub-
section does not apply to this case, because the observations cannot be divided
into i.i.d. groups (or even independent groups). The true values of parameters are
µ = σ 2

0 = σ 2
1 = 1.0.

As in the previous subsection, we first consider the size of the test, so we take
σ 2

2 = 1.0. The simulated sizes corresponding to the nominal levels 0.01, 0.05 and
0.10 are reported in Table 5. Next we look at the powers at the following alterna-
tives: σ 2

2 = 0.2, 0.5, 2, 5, which correspond to γ2/γ1 = 0.2, 0.5, 2, 5, respectively.
The simulated powers are reported in Tables 6–8. Again, all results are based on
10,000 simulations.
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TABLE 5
Simulated size

Nominal level I-i I-ii I-iii I-iv II-i II-ii II-iii II-iv

0.01 0.014 0.011 0.014 0.011 0.011 0.008 0.011 0.008

0.05 0.071 0.061 0.070 0.066 0.053 0.051 0.055 0.048

0.10 0.135 0.126 0.139 0.136 0.108 0.108 0.109 0.102

TABLE 6
Simulated power (nominal level 0.01)

Alternative I-i I-ii I-iii I-iv II-i II-ii II-iii II-iv

γ2/γ1 = 0.2 0.955 0.568 0.551 0.398 1.000 1.000 0.999 0.986

γ2/γ1 = 0.5 0.313 0.100 0.118 0.073 0.988 0.684 0.619 0.439

γ2/γ1 = 2.0 0.324 0.100 0.070 0.088 0.988 0.685 0.459 0.443

γ2/γ1 = 5.0 0.969 0.649 0.491 0.497 1.000 0.999 0.989 0.992

TABLE 7
Simulated power (nominal level 0.05)

Alternative I-i I-ii I-iii I-iv II-i II-ii II-iii II-iv

γ2/γ1 = 0.2 0.994 0.864 0.839 0.713 1.000 1.000 1.000 0.999

γ2/γ1 = 0.5 0.579 0.308 0.321 0.232 0.998 0.874 0.819 0.713

γ2/γ1 = 2.0 0.595 0.305 0.227 0.256 0.998 0.879 0.764 0.717

γ2/γ1 = 5.0 0.997 0.901 0.799 0.779 1.000 1.000 1.000 0.999

TABLE 8
Simulated power (nominal level 0.10)

Alternative I-i I-ii I-iii I-iv II-i II-ii II-iii II-iv

γ2/γ1 = 0.2 0.999 0.946 0.923 0.846 1.000 1.000 1.000 1.000

γ2/γ1 = 0.5 0.702 0.456 0.451 0.364 0.999 0.931 0.887 0.818

γ2/γ1 = 2.0 0.719 0.448 0.359 0.382 0.999 0.936 0.864 0.818

γ2/γ1 = 5.0 0.999 0.955 0.904 0.879 1.000 1.000 1.000 1.000
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The numbers seem to follow the same pattern. As the sample size increases,
the simulated sizes get closer to the nominal levels and the simulated powers in-
crease significantly. There does not seem to be a difference, in terms of the size,
across different distributions. However, the simulated powers appear significantly
higher when all the distributions are normal as compared to other cases where the
distributions of the random effects are nonnormal. Also, the powers are relatively
low when the alternatives are close to the null (γ2/γ1 = 0.5 or 2.0), but much im-
proved when the alternatives are further away (γ2/γ1 = 0.2 and 5.0). Overall, the
simulation results are consistent with the theoretical findings of Theorem 4.

7. Discussion and remarks. A classic parametric statistical model assumes
that the distribution of the data is fully determined by a vector of parameters. Under
such a model, a maximum likelihood estimator of the vector of parameters is self-
contained in the sense that the (asymptotic) covariance matrix of the estimator does
not involve any additional unknown parameter. In many cases, however, a model is
not fully determined by a set of parameters. For example, under nonnormality, the
distribution of the data is not determined by the mean and the variance. Obviously,
in such cases maximum likelihood does not apply, but a quasi-likelihood method
may be used to estimate the parameters of direct interest (e.g., [11]). The problem
is that the estimator may no longer be self-contained. The POQUIM method pro-
vides a way to estimate the (asymptotic) covariance matrix of a maximum quasi-
likelihood estimator and, hence, self-contains the latter.

The general procedure of POQUIM is the following: Let l(θ) be the quasi-log-
likelihood. Then the ACM of θ̂ , the maximum quasi-likelihood estimator, is � =
I−1

2 I1I
−1
2 , where I1 = Var(∂l/∂θ) and I2 = E(∂2l/∂θ ∂θ ′). Usually, I2 either

does not involve additional parameters or, if it does, at least it can be estimated
by an observed form (e.g., by ∂2l/∂θ ∂θ ′ with θ replaced by θ̂ ). However, when
the data are correlated, the matrix I1 cannot be estimated by an observed form.
The idea of POQUIM is to express I1 as E(S1) + S2 such that E(S1) involves
parameters other than θ but that can be estimated by an observed form (i.e., by
S1 with θ replaced by θ̂ ), and S2 does not involve any additional parameters and
therefore can be estimated by an estimated form (i.e., by S2 with θ replaced by θ̂ ).
In this paper this general method is applied to mixed linear models.

In this paper we assume that the random effects and errors in a non-Gaussian
mixed linear model are independent. This means that (i) the vectors α1, . . . , αs, ε

are independent and (ii) the components of αj (1 ≤ j ≤ s) and ε are independent.
A mixed linear model that satisfies (1) as well as (i) and (ii) above is also known
as an analysis of variance mixed (ANOVA) model (e.g., [5], where normality is
assumed). Mixed ANOVA models are very popular in practice. On the other hand,
there are also mixed linear models used in practice that involve dependent random
effects or errors, such as the so-called longitudinal model (e.g., [5], [18]). For
example, in Section 3.4 it may be reasonable to assume that the random intercept,
ai , and slope, bi , which correspond to the same individual, are correlated. Note
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that, in cases of correlated random effects, the variance components are defined as
the parameters involved in V , the covariance matrix of y, that involve correlations
in addition to the variances. Furthermore, there are more additional parameters
involved in the ACM of, say, the REML estimator. However, a possible POQUIM
decomposition may still be obtained. For example, by (9), one can write

cov
(

∂lR

∂θj

,
∂lR

∂θk

)
= ∑

(i1,...,i4)∈S1

Bj,i1,i2Bk,i3,i4 cov
(
ui1ui2, ui3ui4

)

+ ∑
(i1,...,i4)∈S2

Bj,i1,i2Bk,i3,i4 cov
(
ui1ui2, ui3ui4

)

= I1 + I2,

where S2 are those indices such that cov(ui1ui2, ui3ui4) involve only the variance
components and S1 are those indexes such that cov(ui1ui2, ui3ui4) involve addi-
tional parameters. If I1 can be further expressed as an expected value plus a term
that depends only on the variance components, one has a potential POQUIM de-
composition.

The robust dispersion test derived in Section 5 is of χ2 type. As mentioned in
Section 6.1, χ2 tests are omnibus (e.g., [21], Section 1.1). However, a directional
test could be obtained, using asymptotic normality of, say, the REML estimator θ̂

and the POQUIM estimator of its ACM. The only exception is when θ lies on the
boundary of the parameter space, because, obviously, in this case θ̂ cannot be as-
ymptotically normal if it is required to stay in the parameter space. However, for
testing purposes one may relax the latter restriction, for example, by defining θ̂

as the solution to the REML equation, which may or may not be in the parameter
space (see the remark above Theorem 2). With such a definition, asymptotic nor-
mality of θ̂ may still hold, even if θ is on the boundary of the parameter space. See,
for example, [22]. Such a result may be used for testing, for example, that some of
the variance components are zero.

The conditions of Theorem 2 [more specifically, condition (iii)] imply the exis-
tence and consistency of the REML estimator. See the remarks below Theorem 2
and also those above Theorem 2 regarding the definition of the REML estimator.
Of course, this is a large sample result, which does not guarantee the existence
of the REML estimator in a finite sample situation, even under the normality as-
sumption. A similar problem exists for the ML estimator as well. See, for example,
[6] and [4].

8. Proofs and other technical details.

8.1. Partial derivatives of the quasi-restricted log-likelihood. Differentiat-
ing (5) with respect to θ and using the fact PV P = P , we have ∂lR/∂λ =
(y′Py − N + p)/2λ and ∂lR/∂γj = (λ/2){y′PZjZ

′
jPy − tr(PZjZ

′
j )}, 1 ≤

j ≤ s. Note that since PX = 0, the vector y in the above expressions can
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be replaced by u = y − Xβ . Furthermore, we have E(∂2lR/∂λ2) = −(N −
p)/2λ2, E(∂2lR/∂λ∂γj ) = −(1/2)tr(PZjZ

′
j ), 1 ≤ j ≤ s, and E(∂2lR/∂γj ∂γk) =

−(λ2/2)tr(PZjZ
′
jPZkZ

′
k), 1 ≤ j, k ≤ s.

8.2. Proof of Lemma 1. First note ui = ∑s
t=0 uit with uit = ∑mt

l=1 zitlαtl ;
hence E(ui1ui2) = ∑s

t=0 E(ui1tui2t ) = ∑s
t=0 σ 2

t z′
i1t

zi2t = λ�(i1, i2). Next, we
have E(ui1 · · ·ui4) = ∑

t1,...,t4
E(ui1t1 · · ·ui4t4) and E(ui1t1 · · ·ui4t4) = 0 unless (1)

t1 = · · · = t4 or (2) the t’s are in two pairs. Furthermore, under (1) we have
E(ui1t1 · · ·ui4t4) = ∑

l1,...,l4
zi1t l1 · · · zi4t l4E(αtl1 · · ·αtl4), where t1 = · · · = t4 = t .

Again, E(αtl1 · · ·αtl4) = 0 unless (1–1) l1 = · · · = l4, (1–2) l1 = l2 �= l3 =
l4, (1–3) l1 = l3 �= l2 = l4 or (1–4) l1 = l4 �= l2 = l3. It is easy to show
that

∑
(1−1) · · · = E(α4

t1)zi1t · · · zi4t ,
∑

(1−2) · · · = σ 4
t {(zi1t · zi2t )(zi3t · zi4t ) −

zi1t · · · zi4t },
∑

(1−3) · · · = σ 4
t {(zi1t · zi3t )(zi2t · zi4t ) − zi1t · · · zi4t } and

∑
(1−4) · · · =

σ 4
t {(zi1t · zi4t )(zi2t · zi3t ) − zi1t · · · zi4t }. It follows that

∑
(1)

E
(
ui1t1 · · ·ui4t4

)

= ∑
t

κt zi1t · · · zi4t

+ λ2

{∑
t

γ 2
t

(
zi1t · zi2t

)(
zi3t · zi4t

)

+ ∑
t

γ 2
t

(
zi1t · zi3t

)(
zi2t · zi4t

) + ∑
t

γ 2
t

(
zi1t · zi4t

)(
zi2t · zi3t

)}
.

Similarly, (2) has three cases: (2–1) t1 = t2 �= t3 = t4, (2–2) t1 = t3 �= t2 = t3 and
(2–3) t1 = t4 �= t2 = t3. Furthermore, we have

∑
(2−1)

E
(
ui1t1 · · ·ui4t4

) = λ2

{
�(i1, i2)�(i3, i4) − ∑

t

γ 2
t

(
zi1t · zi2t

)(
zi3t · zi4t

)}
,

∑
(2−2)

E
(
ui1t1 · · ·ui4t4

) = λ2

{
�(i1, i3)�(i2, i4) − ∑

t

γ 2
t

(
zi1t · zi3t

)(
zi2t · zi4t

)}
,

∑
(2−3)

E
(
ui1t1 · · ·ui4t4

) = λ2

{
�(i1, i4)�(i2, i3) − ∑

t

γ 2
t

(
zi1t · zi4t

)(
zi2t · zi3t

)}
.

Therefore, in conclusion, we have cov(ui1ui2, ui3ui4) = E(ui1 · · ·ui4) −
λ2�(i1, i2)�(i3, i4) equal to the right-hand side of (6).

Equation (7) is easily derived from (6), observing the first equation of (9).
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8.3. Proof of Theorem 2. In the following discussion AN, . . . represent se-
quences of matrices (vectors, numbers), but for notational simplicity we suppress
the subscript N . Note that for a matrix B , B > 0 means that B is positive definite.
We first state and prove a lemma.

LEMMA 3. Let A, G be sequences of positive definite matrices such that
G−1AG−1 → B > 0. Let Ã be another sequence of matrices. Then A−1/2Ã ×
A−1/2 → I , the identity matrix, if and only if G−1(Ã − A)G−1 → 0.

PROOF. Suppose that A−1/2ÃA−1/2 → I . Then we have

G−1(Ã − A)G−1 = G−1A1/2(A−1/2ÃA−1/2 − I )A1/2G−1.

Therefore,

‖G−1(Ã − A)G−1‖ ≤ ‖G−1A1/2‖2‖A−1/2ÃA−1/2 − I‖
= λmax(G

−1AG−1)‖A−1/2ÃA−1/2 − I‖ −→ 0.

Now suppose that G−1(Ã − A)G−1 → 0. Let 
 = G−1AG−1 − B . Then we
have

A−1/2ÃA−1/2 − I = A−1/2GBGA−1/2 − I

+ A−1/2GB1/2(B−1/2G−1ÃG−1B−1/2 − I )B1/2GA−1/2

= D1 + D2.

We have D1 = A−1/2(GBG − A)A−1/2 = −A−1/2G
GA−1/2; thus
‖D1‖ ≤ ‖A−1/2G‖2‖
‖ = λmax(GA−1G)‖
‖ → 0, because GA−1G → B−1

and 
 → 0. On the other hand, we have

B−1/2G−1ÃG−1B−1/2 − I = B−1/2G−1AG−1B−1/2 − I

+ B−1/2G−1(Ã − A)G−1B−1/2 −→ 0.

Therefore,

‖D2‖ ≤ ‖A−1/2GB1/2‖2‖B−1/2G−1ÃG−1B−1/2 − I‖
= λmax(B

1/2GA−1GB1/2)‖B−1/2G−1ÃG−1B−1/2 − I‖ −→ 0. �

Recall that a sequence of matrices M is bounded from above if ‖M‖ is bounded;
the sequence is bounded from below if ‖M−1‖ is bounded.

COROLLARY 1. Let A, G be sequences of positive definite matrices such that
G−1AG−1 is bounded from above as well as from below. Let Â be a sequence of
random matrices. Then A−1/2ÂA−1/2 → I in probability if and only if G−1(Â −
A)G−1 → 0 in probability.
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PROOF. A sequence of random matrices converges in probability if and only
if for any subsequence, there is a further subsequence that converges almost surely
(to the same limit).

First assume that A−1/2ÂA−1/2 → I in probability. For any subsequence of
G−1(Â−A)G−1, since the corresponding subsequence of G−1AG−1 is bounded,
there is a further subsequence such that G−1AG−1 → B for some B > 0. The
latter property is implied by the boundedness from below of the subsequence.
Consider the corresponding further subsequence of A−1/2ÂA−1/2. Since it con-
verges in probability, there is a further subsequence such that A−1/2ÂA−1/2 → I

almost surely. It follows, by Lemma 1, that the corresponding further subsequence
G−1(Â − A)G−1 → 0 almost surely.

Next assume that G−1(Â − A)G−1 → 0 in probability. By similar arguments
we have for any subsequence of A−1/2ÂA−1/2 that there is a further subsequence
that → I almost surely. �

The next lemma states that the Gaussian information matrix G and the QUIM I1

are asymptotically of the same order.

LEMMA 4. Under condition (i) of Theorem 2, there are positive constants
a and b such that aG ≤ I1 ≤ bG.

PROOF. First, it is easy to show that

tr(BjV BkV ) =
s∑

t1,t2=0

σ 2
t1
σ 2

t2

mt1∑
l1=1

mt2∑
l2=1

(
z′
t1l1

Bjzt2l2

)(
z′
t1l1

Bkzt2l2

)
.

Condition (i) of Theorem 2 implies that there is 0 < δ < 1 such that κt =
var(α2

t1) − 2σ 4
t ≥ 2(δ − 1)σ 4

t , 0 ≤ t ≤ s. Thus, it can be shown by (7) that for
any x = (xj )0≤j≤s ,

x′I1x = x′Gx +
s∑

t=0

κt

mt∑
l=1

{
s∑

j=0

xj (z
′
t lBj ztl)

}2

≥ δx′Gx + 2(1 − δ)

[
s∑

t1,t2=0

σ 2
t1
σ 2

t2

mt1∑
l1=1

mt2∑
l2=1

{
s∑

j=0

xj

(
z′
t1l1

Bjzt2l2

)}2

−
s∑

t=0

σ 4
t

mt∑
l=1

{
s∑

j=0

xj (z
′
t lBj ztl)

}2]

≥ δx′Gx.
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On the other hand, condition (i) of Theorem 2 implies that there is M > 0 such
that κ4 ≤ 2Mσ 4

t , 0 ≤ t ≤ s. Thus, we have, similarly,

x′I1x ≤ x′Gx + 2M

s∑
t=0

σ 4
t

mt∑
l=1

{
s∑

j=0

xj (z
′
t lBj ztl)

}2

≤ (1 + M)x′Gx. �

COROLLARY 2. Under condition (i) of Theorem 2, G−1GG−1 is bounded
from above as well as from below if and only if G−1I1G

−1 is bounded from above
as well as from below.

Throughout the rest of the proof, c represents a positive constant whose value
may be different in each occurrence.

First prove that Î1 is consistent. According to condition (iii) and Corollary 2, the
sequence G−1I1G

−1 is bounded from above as well as from below. Then, accord-
ing to Corollary 1, it suffices to show that G−1(Î1 − I1)G

−1 → 0 in probability.
First consider the observed part. Let D = {|θ̂ − θ | ≤ δ, |β̂ − β| ≤ δ} (δ > 0)

and Ĩ1,1,jk = ∑L
l=1 cj,k,l

∑
f (i1,...,i4)=fl

ui1 · · ·ui4 . It is easy to show that, on D ,

|ûi1 · · · ûi4 − ui1 · · ·ui4 | ≤ cδ
∑4

r=1(y
4
ir

+ |xir |4) and |ûi1 · · · ûi4 | ≤ c
∑4

r=1(y
4
ir

+
|xir |4). It follows that, on D ,∣∣∣∣∣ĉj,k,l

∑
f (i1,...,i4)=fl

ûi1 · · · ûi4 − cj,k,l

∑
f (i1,...,i4)=fl

ui1 · · ·ui4

∣∣∣∣∣
≤ c{dj,k,l(δ) + |cj,k,l|δ}

∑
f (i1,...,i4)=fl

4∑
r=1

(
y4
ir

+ ∣∣xir

∣∣4)
.

Conditions (i) and (ii) imply that E(y4
i ) ≤ c. Therefore, we have

E{(gjgk)
−1|Î1,1,jk − Ĩ1,1,jk|1D }

≤ c(gjgk)
−1

L∑
l=1

{dj,k,l(δ) + |cj,k,l|δ}
∑

f (i1,...,i4)=fl

4∑
r=1

{
E

(
y4
ir

) + ∣∣xir

∣∣4}
(33)

≤ c

{
(gjgk)

−1
L∑

l=1

hldj,k,l(δ) + δ(gjgk)
−1

L∑
l=1

hl|cj,k,l|
}
.

On the other hand, given M > 0, we have αtl = αtl1 + αtl2, where αtl1 =
αtl1(|αtl |≤M) − E{αtl1(|αtl |≤M)}. Thus,

ui =
s∑

t=0

z′
itαt = ui1 + ui2,
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where uir = ∑s
t=0

∑mt

l=1 zitlαtlr , r = 1,2. Conditions (i) and (ii) imply that

E(u4
i1) ≤ c

∑s
t=0 ‖zit‖4

1 ≤ c and E(u4
i2) ≤ cb4(M), where b(M) =∑s

t=0 E(α4
t11(|αt1|>M)) → 0 as M → ∞. Write

ui1 · · ·ui4 − E
(
ui1 · · ·ui4

) = ui11 · · ·ui41 − E
(
ui11 · · ·ui41

) + (· · ·) − E(· · ·),
where (· · ·) is a sum of products with each product involving at least one uir2
(r = 1, . . . ,4). It follows by Hölder’s inequality that |E(· · ·)| ≤ E| · · · | ≤ cb(M).
Therefore, we can write

Ĩ1,1,jk − I1,1,jk =
L∑

l=1

cj,k,l

∑
f (i1,...,i4)=fl

{
ui11 · · ·ui41 − E

(
ui11 · · ·ui41

)}

+
L∑

l=1

cj,k,l

∑
f (i1,...,i4)=fl

{(· · ·) − E(· · ·)}

= S1 + S2

with E(|S2|/gjgk) ≤ cb(M)(gjgk)
−1 ∑L

l=1 hl|cj,k,l|. Furthermore, we have

E(S2
1) =

L∑
l1,l2=1

cj,k,l1cj,k,l2

× ∑
f (i1,...,i4)=fl1 ,f (i5,...,i8)=fl2

cov
(
ui11 · · ·ui41, ui51 · · ·ui81

)
.

The nonzero components of di1 + · · · + di4 (di is defined in the second para-
graph of Section 2.2) correspond to the indexes of the random effects and er-
rors involved in ui11 · · ·ui41. Thus, if (di1 + · · · + di4) · (di5 + · · · + di8) = 0,
ui11 · · ·ui41 and ui51 · · ·ui81 involve different random effects and errors, hence
cov(ui11 · · ·ui41, ui51 · · ·ui81) = 0; otherwise, the covariance is bounded in ab-
solute value by cM8. It follows that

E(S1/gjgk)
2 ≤ cM8(gjgk)

−2
L∑

l1,l2=1

hl1,l2

∣∣cj,k,l1cj,k,l2

∣∣.
In conclusion, we have

E{(gjgk)
−1|Ĩ1,1,jk − I1,1,jk|}

≤ cb(M)(gjgk)
−1

L∑
l=1

hl|cj,k,l|(34)

+ cM4

√√√√√(gjgk)−2
L∑

l1,l2=1

hl1,l2

∣∣cj,k,l1cj,k,l2

∣∣.
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Now consider the estimated part. We have

Î1,2,jk − I1,2,jk

= 2{tr(B̂j V̂ B̂kV̂ ) − tr(BjV BkV )}

− 3λ̂2
L∑

l=1

(ĉj,k,l − cj,k,l)
∑

f (i1,...,i4)=fl

�̂(i1, i3)�̂(i2, i4)

− 3λ̂2
L∑

l=1

cj,k,l

∑
f (i1,...,i4)=fl

{�̂(i1, i3)�̂(i2, i4) − �(i1, i3)�(i2, i4)}

− 3(λ̂2 − λ2)

L∑
l=1

cj,k,l

∑
f (i1,...,i4)=fl

�(i1, i3)�(i2, i4)

= T1 −
3∑

r=1

Tr .

On D we have |T1| ≤ gj,k(δ). Also, condition (ii) implies that, on D , |T2| ≤
c

∑L
l=1 hldj,k,l(δ) and |Tr | ≤ cδ

∑L
l=1 hl|cj,k,l|, r = 3,4. Therefore, we have

(gjgk)
−1|Î1,2,jk − I1,2,jk|

≤ (gjgk)
−1gj,k(δ) + c(gjgk)

−1
L∑

l=1

hldj,k,l(δ)(35)

+ cδ(gjgk)
−1

L∑
l=1

hl|cj,k,l| on D .

For any η > 0 and ρ > 0, first choose δ > 0 and M > 0 such that the right-
hand side of (33) is less than ηρ/15, the right-hand side of (35) is less than η/3
and the first term on the right-hand side of (34) is less than ηρ/15, which one
can do according to conditions (i), (ii), (iv) and (v). Then choose N0 such that,
when N ≥ N0, we have P(Dc) < ρ/5, and the second term on the right-hand side
of (34) is less than ηρ/15, which one can do by conditions (iii) and (iv). Note that
condition (iii) implies consistency of θ̂ and β̂ (see the remarks below Theorem 2).
It follows that, when N ≥ N0, by (33) and Chebyshev’s inequality,

P
(
(gjgk)

−1|Î1,1,jk − Ĩ1,1,jk| > η

3

)

≤ P
(
(gjgk)

−1|Î1,1,jk − Ĩ1,1,jk|1D >
η

3

)
+ P(Dc)

≤ 3

η
E{(gjgk)

−1|Î1,1,jk − Ĩ1,1,jk|1D } + ρ

5
<

2

5
ρ.
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Similarly, by (34), P((gjgk)
−1|Ĩ1,1,jk − I1,1,jk| > η/3) < (2/5)ρ, and by (35),

P((gjgk)
−1|Î1,2,jk −I1,2,jk| > η/3) ≤ P(Dc) < ρ/5. Therefore, we conclude that

when N ≥ N0, the probability is greater than 1−ρ that (gjgk)
−1|Î1,jk − I1,jk| ≤ η.

Now consider consistency of �̂R. First note that I2 = −G, which is nonsingu-
lar by condition (iii). Since G�RG = (G−1GG−1)−1G−1I1G

−1(G−1GG−1)−1,
by Corollary 2, G�RG is bounded from above as well as from below. Then, by
Corollary 1 [note that G = (G−1)−1], it suffices to show that G(�̂R − �R)G → 0
in probability.

By condition (v) and consistency of θ̂ , it is easy to show that G−1(Ĝ−G)G−1 →
0 in probability, where Ĝ is G with θ replaced by θ̂ . Note that Î2 = −Ĝ. Also,
since G−1ĜG−1 = G−1GG−1 + G−1(Ĝ − G)G−1, we have λmin(G

−1ĜG−1) ≥
λmin(G

−1GG−1) − ‖G−1(Ĝ − G)G−1‖, which is bounded away from zero with
probability tending to 1. It follows that (G−1ĜG−1)−1 = OP(1). Furthermore, we
have


 = (G−1ĜG−1)−1 − (G−1GG−1)−1

= −(G−1GG−1)−1G−1(Ĝ − G)G−1(G−1ĜG−1)−1 −→ 0

in probability. Therefore, we have

G(�̂R − �R)G = (G−1GG−1)−1G−1I1G
−1
 + 
G−1I1G

−1(G−1ĜG−1)−1

+ (G−1ĜG−1)−1G−1(Î1 − I1)G
−1(G−1ĜG−1)−1 −→ 0

in probability, using the results previously proved.

8.4. Proof of Theorem 4. We have

χ̂2 = (K ′θ̂ − ϕ)′(K ′�RK)−1(K ′θ̂ − ϕ)

+ (K ′θ̂ − ϕ)′{(K ′�̂RK)−1 − (K ′�RK)−1}(K ′θ̂ − ϕ)

= χ̃2 + 
.

By (26), χ̃2 → χ2
r , so it remains to show that 
 → 0 in probability.

According to the definition in Section 2.2 (first paragraph) and the conclu-
sion of Theorem 2, for any η > 0 we have, with probability tending to 1
(hereafter w.p. → 1), (1 − η)�R ≤ �̂R ≤ (1 + η)�R. It follows that w.p. → 1
(1 − η)K ′�RK ≤ K ′�̂RK ≤ (1 + η)K ′�RK and hence (1 + η)−1(K ′�RK)−1 ≤
(K ′�̂RK)−1 ≤ (1 − η)−1(K ′�RK)−1 (e.g., [20], Theorem A.52). Therefore, we
have w.p. → 1,

(1 + η)−1Ir ≤ (K ′�RK)1/2(K ′�̂RK)−1(K ′�RK)1/2 ≤ (1 − η)−1Ir ,(36)

which implies ‖W − Ir‖ ≤ {(1 − η)−1 − 1} ∨ {1 − (1 + η)−1}, where W is the
middle term in (36) and a ∨ b = max(a, b). Since η is arbitrary, this proves that
W → Ir in probability. That 
 → 0 in probability then follows by observing


 = (K ′θ̂ − ϕ)′(K ′�RK)−1/2(W − Ir)(K
′�RK)−1/2(K ′θ̂ − ϕ),
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hence ‖
‖ ≤ ‖W − Ir‖(K ′θ̂ − ϕ)′(K ′�RK)−1(K ′θ̂ − ϕ) = ‖W − Ir‖χ̃2.

Acknowledgments. The author is grateful to an Associate Editor and two ref-
erees for their constructive comments. Furthermore, the author wishes to thank
Zhonghua Gu and Wen-Ying Feng for their computational support during the re-
vision of the manuscript.

REFERENCES

[1] ARVESEN, J. N. (1969). Jackknifing U -statistics. Ann. Math. Statist. 40 2076–2100.
MR0264805

[2] ARVESEN, J. N. and SCHMITZ, T. H. (1970). Robust procedures for variance component
problems using the jackknife. Biometrics 26 677–686.

[3] BATTESE, G. E., HARTER, R. M. and FULLER, W. A. (1988). An error-components model
for prediction of county crop areas using survey and satellite data. J. Amer. Statist. Assoc.
83 28–36.

[4] BIRKES, D. and WULFF, S. S. (2003). Existence of maximum likelihood estimates in normal
variance-components models. J. Statist. Plann. Inference 113 35–47. MR1963033

[5] DAS, K., JIANG, J. and RAO, J. N. K. (2004). Mean squared error of empirical predictor. Ann.
Statist. 32 818–840. MR2060179

[6] DEMIDENKO, E. and MASSAM, H. (1999). On the existence of the maximum likelihood esti-
mate in variance components models. Sankhyā Ser. A 61 431–443. MR1743550
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