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ESTIMATION OF SUMS OF RANDOM VARIABLES: EXAMPLES
AND INFORMATION BOUNDS1

BY CUN-HUI ZHANG

Rutgers University

This paper concerns the estimation of sums of functions of observable
and unobservable variables. Lower bounds for the asymptotic variance and a
convolution theorem are derived in general finite- and infinite-dimensional
models. An explicit relationship is established between efficient influence
functions for the estimation of sums of variables and the estimation of their
means. Certain “plug-in” estimators are proved to be asymptotically efficient
in finite-dimensional models, while “u,v” estimators of Robbins are proved
to be efficient in infinite-dimensional mixture models. Examples include cer-
tain species, network and data confidentiality problems.

1. Introduction. Given a pool of n motorists, how do we estimate the total
intensity of those in the pool who have a prespecified number of traffic accidents
in a given time period? This is an example of a broad class of problems involving
the estimation of sums of random variables

Sn ≡
n∑

j=1

u(Xj , θj )(1.1)

[24], where Xj are observable variables, θj are unobservable variables or con-
stants, and u(·, ·) is a certain utility function. The estimation of (1.1) has numerous
important applications. In the motorist example, Xj is the number of traffic acci-
dents and θj the intensity of the j th individual in the pool, and u(x,ϑ) = ϑI {x =
a} for a prespecified integer a. In Sections 3, 4 and 5 we consider applications in
certain species, network and data confidentiality problems.

The estimation of (1.1) is a nonstandard problem in statistics, since the sums,
involving observables, as well as unobservables, are not parameters. Without a
theory of efficient estimation, the performance of different estimators can only
be measured against each other in terms of relative efficiency. For the specific
motorist example with u(x,ϑ) = ϑI {x = a}, Robbins and Zhang [28] proved that,
in a Poisson mixture model, the efficient estimation of (1.1) is equivalent to the
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efficient estimation of E(θ |X = a), so that the usual information bounds can be
used. In this paper we provide a general theory for the efficient estimation of sums
of variables.

Let (X, θ), (Xj , θj ), j = 1, . . . , n, be i.i.d. vectors with an unknown common
joint distribution F . Our general theory covers asymptotic efficiency for the esti-
mation of

Sn ≡ Sn(F ) ≡
n∑

j=1

u(Xj , θj ;F)(1.2)

based on X1, . . . ,Xn, where the utility u(x,ϑ;F) is also allowed to depend on F .
This provides a unified asymptotic theory for the estimation of (1.1) and conven-
tional parameters u(F ), since the utility is allowed to depend on F only. Our prob-
lem is closely related to the estimation of the mean

µ(F) ≡ EF u(X, θ;F).(1.3)

If EF u2(X, θ;F) < ∞ and 1/2 ≤ α < 1, an estimator is nα-consistent for the es-
timation of Sn(F ) iff it is nα-consistent for the estimation of its mean nµ(F) =
EF Sn(F ). But an efficient estimator of nµ(F) is not necessarily an efficient es-
timator of Sn(F ), since the two estimation problems may have different efficient
influence functions, as we demonstrate below in (1.4)–(1.6) and in simple exam-
ples in Sections 2.3 and 2.4. The asymptotic theory for the estimation of µ(F) is
well understood; see [3, 17, 31].

Suppose that F belongs to a known class F . Let F0 ∈ F . An estimator µ̂n

of (1.3) is (locally) asymptotically efficient in contiguous neighborhoods of PF0

iff

µ̂n = µ(F0) + 1

n

n∑
j=1

ψ∗(Xj ) + oPF0
(n−1/2),(1.4)

where ψ∗(x) ≡ ψ∗(x;F0) is the efficient influence function at F0 for the estimation
of µ(F). In Section 6 we show that, under mild regularity conditions on the utility
functions {u(x,ϑ;F),F ∈ F }, an estimator Ŝn of (1.2) is (locally) asymptotically
efficient in contiguous neighborhoods of PF0 iff

Ŝn

n
= µ(F0) + 1

n

n∑
j=1

φ∗(Xj ) + oPF0
(n−1/2),(1.5)

where φ∗(x) ≡ φ∗(x;F0) is the efficient influence function at F0 for the estimation
of Sn(F ). Furthermore, the following relationship holds between the two efficient
influence functions in (1.4) and (1.5):

φ∗(x) = ψ∗(x) + u(x;F0) − µ(F0) − u∗(x),(1.6)

where u(x;F) ≡ EF [u(X, θ;F)|X = x] and u∗(x) ≡ u∗(x;F0) is the projection
of u(x;F0) to the tangent space of the family of distributions {FX,F ∈ F } at FX

0 .



2024 C.-H. ZHANG

Here FX is the marginal distribution of X under the joint distribution F of (X, θ).
It follows clearly from (1.6) that asymptotically efficient estimations of Sn(F )/n

and µ(F) are equivalent in contiguous neighborhoods of PF0 iff u(·;F0) − µ(F0)

is in the tangent space, that is, u(·;F0) − µ(F0) = u∗(·;F0).
We will derive more explicit results in finite-dimensional models and infinite-

dimensional mixture models. In finite-dimensional models F = {Fτ , τ ∈ T }
with a Euclidean τ , it will be shown that “plug-in” estimators of the form∑n

j=1 u(Xj ;Fτ̂n) are asymptotically efficient for the estimation of (1.2) if τ̂n is
an efficient estimator of τ . In infinite-dimensional mixture models, certain “u, v”
estimators of Robbins [24] will be shown to be efficient for the estimation of (1.1).
We shall consider estimation of (1.1) with known f (x|ϑ) in Section 2 and provide
the general theory in Section 6. Section 7 contains proofs of all theorems.

2. Mixture models. Suppose (X, θ) ∼ F(dx, dϑ) = f (x|ϑ)ν(dx)G(dϑ),
that is,

X|θ ∼ f (x|θ), θ ∼ G.(2.1)

In this section we state our results for the estimation of (1.1) with known f (·|·).

2.1. Finite-dimensional mixture models. Let {Gτ , τ ∈ T } be a parametric
family of distributions with an open T in a Euclidean space. Suppose (2.1) holds
with G = Gτ for an unknown vector τ ∈ T . Suppose that, for certain functions ρ̃τ ,∫ (√

gτ,	 − 1 − 	tρ̃τ /2
)2

dGτ = o(‖	‖2),∫
gτ,	 dGτ = 1 + o(‖	‖2), as 	 → 0,

(2.2)

where gτ,	 is the Radon–Nikodym derivative of the absolutely continuous part
of Gτ+	 with respect to Gτ . Let Eτ denote the expectation under Gτ . The Fisher
information matrix for the estimation of τ based on a single X is

Iτ ≡ Covτ (ρτ (X)), ρτ (x) ≡ Eτ [ρ̃τ (θ)|X = x].(2.3)

Define uτ (x) ≡ Eτ [u(X, θ)|X = x] and µτ ≡ Eτu(X, θ).

THEOREM 2.1. Suppose (2.2) holds, Eτu
2(X, θ) is locally bounded and Iτ

are of full rank for all τ ∈ T . Then {Ŝn, n ≥ 1} is an asymptotically efficient esti-
mator of (1.1) iff (1.5) holds with µ(F0) = µτ , P = Pτ , and the efficient influence
function

φ∗ = φ∗,τ ≡ uτ − µτ + ρt
τ I

−1
τ γτ ,(2.4)

where γτ ≡ Eτ Covτ (u(X, θ), ρ̃τ (θ)|X) = Eτ {u(X, θ)ρ̃τ (θ) − uτ (X)ρτ (X)}.
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REMARK 2.1. Since κ∗,τ ≡ I−1
τ ρτ is the efficient influence function for the

estimation of τ and ∂µτ/∂τ = EτU(X, θ)ρ̃τ (θ), ψ∗,τ ≡ ρt
τ I

−1
τ Eτu(X, θ)ρ̃τ (θ)

is the efficient influence function for the estimation of µτ . Moreover, u∗,τ ≡
ρt

τ I
−1
τ Eτuτ (X)ρτ (X) is the projection of uτ to the tangent space generated by

the scores ρτ (X) under Eτ . Thus, Theorem 2.1 asserts that (1.5) and (1.6) hold
under (2.2).

Our next theorem provides the asymptotic theory for plug-in estimators

Ŝn ≡
n∑

j=1

uτ̂n(Xj )(2.5)

of (1.1), where uτ (x) ≡ Eτ [u(X, θ)|X = x] as in Theorem 2.1. An estimator τ̂n of
the vector τ is an asymptotically linear one with influence functions κτ under Eτ

if

τ̂n = 1

n

n∑
j=1

κτ (Xj ) + oPτ (n
−1/2),(2.6)

with Eτκτ (X)ρt
τ (X) being the identity matrix.

THEOREM 2.2. Let Ŝn be as in (2.5) with an asymptotically linear estima-
tor τ̂n as in (2.6). Suppose conditions of Theorem 2.1 hold, Eτu

2
τ+	(X) = O(1)

as 	 → 0 for every τ ∈ T , and for all τ ∈ T and c > 0,

sup
‖	‖≤c/

√
n

∣∣∣∣∣
n∑

j=1

[uτ+	(Xj ) − uτ (Xj ) − {Eτuτ+	(X) − µτ }]
∣∣∣∣∣ = oPτ (n

1/2).(2.7)

Let φ∗,τ and γτ be as in Theorem 2.1 and κ∗,τ = I−1
τ ρτ . Then

Ŝn − Sn

n1/2
D−→ N(0, σ 2

τ ), σ 2
τ = σ 2∗,τ + Varτ

({κτ (X) − κ∗,τ (X)}t γτ

)
(2.8)

under Eτ , where σ 2∗,τ ≡ Varτ (φ∗,τ (X) − u(X, θ)). Consequently, Ŝn is an asymp-
totically efficient estimator of (1.1) at Eτ0 iff γτ0 τ̂n is an asymptotically efficient
estimator of γτ0τ in contiguous neighborhoods of Eτ0 .

REMARK 2.2. It follows from (2.8) that |Ŝn − Sn| ≤ 1.96στ̂nn
1/2 provides an

approximate 95% confidence interval for (1.1), provided that στ is continuous in τ .

REMARK 2.3. Condition (2.7) holds if {uτ+	 : τ + 	 ∈ T ,‖	‖ ≤ δτ } is a
Donsker class under Eτ for some δτ > 0 and Eτu

2
τ+	(X) is continuous at 	 = 0.
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2.2. General mixtures. Let G be a convex class of distributions. Suppose (2.1)
holds with an unknown G ∈ G. Let EG be the expectation under (2.1). Suppose
EGu2(X, θ) < ∞ for all G ∈ G. Define

GG0 ≡
{
G :EG0

(
fG(X)/fG0(X)

)2
< ∞,

∫
fGI

{
fG0 > 0

}
dν = 1

}
,(2.9)

where fG(x) ≡ ∫
f (x|ϑ)G(dϑ), and define

VG0 ≡ {
v(x) :EGv(X) = EGu(X, θ)∀G ∈ GG0

}
.(2.10)

THEOREM 2.3. (i) If VG0 is nonempty, then {Ŝn, n ≥ 1} is an asymptotically
efficient estimator of (1.1) at EG0 iff Ŝn = {∑n

j=1 vG0(Xj )} + oPG0
(n1/2) with

vG0 ≡ arg min
{
EG0

(
v(X) − u(X, θ)

)2 :v ∈ VG0

}
.(2.11)

(ii) If VG0 is empty, then there does not exist any regular n−1/2-consistent esti-
mator of EGu(X, θ) or Sn/n in contiguous neighborhoods of EG0 .

The definition of regular estimators of (1.1) is given in Section 6.
Suppose that for certain G∗ ⊆ G the collection

V∗ ≡ {v(x) :EGv(X) = EGu(X, θ),EGv2(X) < ∞ ∀G ∈ G∗}(2.12)

is nonempty, for example, certain VG0 as in Theorem 2.3(i). Let ‖h‖G ≡
{EGh2(X)}1/2.

THEOREM 2.4. Let vG0 be as in (2.11). Suppose vG0 ∈ V∗ and as (ε, n) →
(0,∞),

sup

{∣∣∣∣∣
n∑

j=1

vG(Xj ) − vG0(Xj )

n1/2

∣∣∣∣∣ :
∥∥vG − vG0

∥∥
G0

≤ ε,G ∈ G∗
}

→ 0 in PG0

for all G0 ∈ G∗. Let Ĝ be an estimator of G such that PG0(Ĝ ∈ G∗) → 1 and
‖vĜ − vG0‖G0 → 0 in PG0 for all G0 ∈ G∗. Then

V̂n ≡
n∑

j=1

vĜ(Xj )(2.13)

is an asymptotically efficient estimator of (1.1) at PG0 for all G0 ∈ G∗.

If f (x|ϑ) belongs to certain exponential families, there exists a unique func-
tion v such that VG0 
= ∅ implies VG0 = {v}, so that vG0 = v for all G0 and
V∗ = {v}. The following theorem is a variation of Theorem 2.4 for such distribu-
tions.
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THEOREM 2.5. Suppose f (x|ϑ) ∝ exp(xtλ(ϑ)), λ(ϑ) ∈ �, is an exponential
family with an open � in a Euclidean space, and that the conditional distrib-
ution of θ given λ(θ) is known. Suppose G contains distributions G ≡ Gc with
EG|λ(θ) − c| = 0 for all c ∈ �. If VG0 
= ∅ for certain G0, then there exists a
function v(x) such that

EG[v(X)|λ(θ) = c] = EG[u(X, θ)|λ(θ) = c] ∀ c ∈ �,G ∈ G,(2.14)

and such that the following Vn is an efficient estimator of Sn under {EG :
EGv2(X) < ∞}:

Vn ≡
n∑

j=1

v(Xj ).(2.15)

REMARK 2.4. Robbins [24] called (2.15) “u, v” estimators, provided
that (2.14) holds. The V̂n in (2.13) can be viewed as a “u, v” estimator with an
estimated optimal v. Theorems 2.4 and 2.5 provide conditions under which these
two types of “u, v” estimators are asymptotically efficient.

2.3. The Poisson example. Let (X,Y,λ) ≡ (X, θ) with

E[Y |X,λ] = λ,

f (x|λ) ≡ P(X = x|λ) = e−λλx/x!, x = 0,1, . . . .
(2.16)

Robbins [22, 24] and Robbins and Zhang [25–27] considered the estimation of
S′

n ≡ ∑n
j=1 λju(Xj ) and S′′

n ≡ ∑n
j=1 Yju(Xj ), and several related problems.

Both S′
n and S′′

n are special cases of (1.1). For u(x) = I {x ≤ a}, S′′
n could be

the total number of accidents next year for those motorists with no more than a

accidents this year in the motorist example.
Suppose λj have a common exponential density τe−λτ dλ with unknown τ .

The marginal distribution of X is fτ (x) = τ(1 + τ)−x−1, and the marginal and
conditional expectations of λu(X) and Yu(X) are

uτ (x) = (x + 1)u(x)

1 + τ
, µτ =

∞∑
x=0

fτ (x)xu(x − 1).

Let X ≡ ∑n
j=1 Xj/n. Define τ̂n ≡ (β + n)/(α + ∑n

j=1 Xj) and

Ŝn ≡
n∑

j=1

uτ̂n(Xj ) =
n∑

j=1

(α/n + X)(Xj + 1)u(Xj )

(α + β)/n + 1 + X
.(2.17)

It follows from Theorem 2.2 that the plug-in estimators in (2.17) are asymptoti-
cally efficient for both S′

n and S′′
n . For α = β = 0, (2.17) gives the plug-in estima-

tor corresponding to the maximum likelihood estimator (MLE) of τ . For general
positive α and β , (2.17) gives the Bayes estimator of S′

n and S′′
n with a beta prior
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on τ/(1 + τ). Clearly, µ̂n ≡ ∑∞
x=1{τ̂nxu(x − 1)}/(1 + τ̂n)

x+1 is efficient for the
estimation of the mean µτ ≡ Eτu(X, θ), but not for S′

n/n or S′′
n/n. Similar results

can be obtained for λ with the gamma distribution; see [23].
In the case of completely unknown G(dλ), the “u, v” estimator (2.15) with

v(x) = xu(x − 1) is asymptotically efficient for the estimation of S′
n and S′′

n for all
G with finite EG{v(X) − λu(X)}2.

2.4. More examples.

EXAMPLE 2.1. Let X ∼ N(τ,σ 2). The number of “above average” individu-
als, Ŝn ≡ #{j ≤ n :Xj > X}, is an efficient estimator of the number of above mean
individuals Sn(τ ) ≡ #{j ≤ n :Xj > τ }. The estimator S̃n ≡ n/2 is efficient for the
estimation of EτSn(τ ) = n/2, but not Sn(τ ).

EXAMPLE 2.2. Let f (x|ϑ) ∼ N(ϑ,σ 2). An efficient estimator for the number
of “above mean” individuals, Sn ≡ #{j ≤ n :Xj > θj }, is Ŝn ≡ n/2, compared with
Example 2.1. This is even true under the condition n−1 ∑n

j=1 θ2
j = O(1), that is,

in contiguous neighborhoods of P0 with P0{θj = 0} = 1.

EXAMPLE 2.3. Ŝn ≡ 0 is efficient for the estimation of Sn(τ ) ≡ ∑n
j=1 ρτ (Xj ).

3. A species problem. An interesting example of our problem is estimating
the total number of species in a population of plants or animals. Suppose a random
sample of size N is drawn (with replacement) from a population of d species. Let
nk be the number of species represented k times in the sample. A species problem
is to estimate d based on {nk, k ≥ 1}. The problem dates back to [13] and [14]
and has many important applications [4]. We consider a network application in
Section 4.

3.1. Finite-dimensional models. Let Xj be the frequencies of the j th species
in the sample, so that, for certain pj > 0,

nk =
d∑

j=1

I {Xj = k}, (X1, . . . ,Xd) ∼ multinomial(N,p1, . . . , pd).(3.1)

We will confine our discussion to the case of (N,N/d) → (∞,µ), 0 < µ < ∞,
since E(d − ∑∞

k=1 nk) = ∑d
j=1(1 − pj )

N → 0 as N → ∞ for fixed d . Let {Gτ ,

τ ∈ T } be a parametric family of distributions in (0,∞), where τ is an unknown
parameter with a scale component, Gτ(y/c) = Gτ ′

c
(y). Let Pτ be probability mea-

sures under which (3.1) holds conditionally on N and certain i.i.d. variables θj > 0,
and

pj = θj∑d
i=1 θi

, N |{θj } ∼ Poisson

(
c

d∑
j=1

θj

)
, θj ∼ G,(3.2)
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with G = Gτ . Under Pτ , Xj are i.i.d. with Pτ {Xj = k} = ∫
e−y(yk/k!)Gτ ′

c
(dy).

Assume c = 1 due to scale invariance. Since n0 is unobservable, the MLE of (d, τ )

is

d̂ ≡
∑N

k=1 nk∫
(1 − e−y)Gτ̂ (dy)

, τ̂ ≡ arg max
τ∈T

∞∏
k=1

{ ∫
e−yykGτ (dy)

1 − ∫
e−yGτ (dy)

}nk

.(3.3)

In the next two paragraphs we derive the influence function for the MLE (3.3) and
prove its asymptotic efficiency.

If (2.2) holds and the MLE τ̂ of τ is asymptotically efficient, then

τ̂ = τ + 1

d

d∑
i=1

κ∗,τ (Xj ) + oP (d−1/2)(3.4)

with κ∗,τ ≡ {Covτ (ρτ (X)}−1ρτ and ρτ ≡ I{x>0}(ρτ (x) − γτ ), where ρτ is as
in (2.3) and γτ ≡ Eτ [ρτ (X)|X > 0]. Thus, by the Taylor expansion of the d̂

in (3.3),

d̂ = d +
d∑

j=1

φ∗,τ (Xj ) + oP (d1/2),(3.5)

where φ∗,τ (x) ≡ I{x>0}/Pτ (X > 0) − 1 − κt∗,τ (x)γτ . In this case, as d → ∞,

d̂ − d

d1/2
D−→ N

(
0,

Pτ (X = 0)

Pτ (X > 0)
+ γ t

τ {Covτ (ρτ (X)}−1γτ

)
.(3.6)

For the gamma G(dy; τ) ∝ yα−1 exp(−y/β)dy, the MLE τ̂ ≡ (α̂, β̂) satisfies
∞∑

k=1

∑∞
�=k n�

α̂ + k − 1
= d̃ log(1 + β̂)

1 − (1 + β̂)−α̂
,

d̃α̂β̂

1 − (1 + β̂)−α̂
= N,(3.7)

with d̃ = ∑∞
k=1 nk , and (3.4) holds [29]. Rao [19] called (3.3) with (3.7) pseudo

MLE in a different (gamma) model, but the efficiency of the d̂ was not clear [11].
The species problem is a special case of estimating (1.1) when d is viewed as

the number of species represented in the population out of a total of n species.
Specifically, letting pj = 0 if the j th species is not represented in the population,
estimating

d =
n∑

j=1

I {pj > 0} =
n∑

j=1

I {Xj = 0,pj > 0} +
N∑

k=1

nk(3.8)

is equivalent to estimating (1.1) with u(x,p) = I {p > 0} or u(x,p) = I {x = 0,

p > 0}, based on observations {Xj, j ≤ n}. Under (3.1) and (3.2) with d replaced
by n,

Pp∗,τ {Xj = k} = (1 − p∗)I {k = 0} + p∗
∫

e−y(yk/k!)Gτ (dy)∫
(1 − e−y)Gτ (dy)

I {k > 0}(3.9)
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with certain p∗ <
∫
(1 − e−y)Gτ (dy). Under (3.9), the τ̂ in (3.3) is the condi-

tional MLE of τ given {nk, k ≥ 1}. Since (
∑∞

k=1 nk, d, n− d) is a trinomial vector,
τ̂ in (3.3) equals the MLE of τ based on a sample {Xj, j ≤ n} from (3.9), provided
that d̂ in (3.3) is no greater than n. Since Pp∗,τ {d̂ ≤ n} → 1 under (3.9), by The-
orem 2.1, the (conditional) MLE (3.3) is asymptotically efficient in the empirical
Bayes model (3.2) under conditions (2.2), (3.4) and (3.5).

3.2. General mixture. Now, suppose the distribution G in (3.2) is completely
unknown. The nonparametric MLE of (d,G) is given by

d̂ ≡ d̃
∫
y>0 Ĝ(dy)∫

(1 − e−y)Ĝ(dy)
, Ĝ ≡ arg max

G

∞∏
k=1

{ ∫
e−yykG(dy)

1 − ∫
e−yG(dy)

}nk

,(3.10)

with d̃ ≡ ∑N
k=1 nk , but its asymptotic distribution is unclear. Since there is no so-

lution v to the equation
∑∞

x=0 v(x)e−ϑϑx/x! = I {ϑ > 0} for 0 ≤ ϑ < ∞, by The-
orems 2.3 and 2.5, the estimation of d with completely unknown G is an ill-posed
problem.

Among many choices, a compromise between (3.3) and (3.10) is to fit
Eτnk ∝ Pτ (X = k) = ∫

e−y(yk/k!)Gτ (dy) for 1 ≤ k ≤ m. For gamma G with
Enk+1/Enk = (k + α)β/(1 + β), fitting the negative binomial distribution yields

d̂ ≡ d̃ + max(τ̂1,0)n1, d̃ ≡
N∑

k=1

nk,(3.11)

where τ̂1 is the (weighted) least squares estimate of τ1 ≡ (β + 1)/(αβ) based on

nk = τ1nk+1 + τ2(knk) + error, k = 1, . . . ,m − 1, τ2 ≡ −1/α,

with nk being a response variable and (nk+1, knk) being covariates for each k. For
small θj (large nk for small k), (3.11) has high efficiency for gamma G and small
bias for G(y) = c1y

α + (c2 +o(1))yα+1 at y ≈ 0. Chao [5] proposed d̃ +n2
1/(2n2)

as a low estimate of d . Another possibility is to estimate d by correcting the bias
of the estimator d̃/(1 − n1/N) of Darroch and Ratcliff [9] as in [6].

4. Networks: estimation of node degrees based on source-destination data.
Source-destination (SD) data in networks are generated by sending probes (e.g.,
traceroute queries in the Internet) through networks from certain source nodes to
certain destination nodes; see [8, 32]. We shall treat SD data as a collection of
random vectors Wj, j = 1, . . . ,N , generated from a sample of SD pairs and make
statistical inference based on U -processes of {Wj }, for example,

N∑
j=1

h1(Wj )

N
,

∑
1≤j1 
=j2≤N

h2(Wj1,Wj2)

N(N − 1)
,(4.1)
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indexed by Borel h1 and h2, where Wj are the observations from the j th SD pair
in the sample. We focus here on the estimation of node degrees, although the ap-
proach based on (4.1) could be useful in other network problems.

The topology of a deterministic network can be described with a routing table:
a list r1, . . . , rJ of directed paths representing connections between pairs of source
and destination nodes, with each path being composed of a set of directed links.
For example, the path 4 → 2 → 3 → 8 has source node 4, destination node 8, and
links 4 → 2, 2 → 3 and 3 → 8. Consider a network with nodes {1, . . . ,K}. The
link degree D(k, �) is defined as the number of paths using the link k → �,

D(k, �) ≡ #{j ≤ J : link k → � is used in rj },(4.2)

with D(k, �) = 0 if k → � is nonexistent or never used. The node degree, defined
as

dk =
K∑

�=1

I {D(k, �) > 0},(4.3)

is the number of outgoing links from k to other nodes. This is also called out-
degree. The in-degree,

∑
� I {D(�, k) > 0}, is the number of incoming links to k.

The node degrees dk and their (empirical) distributions are important characteris-
tics of networks; see [12, 15, 30].

For a given sample size N , let R1, . . . ,RN be a sample of SD pairs from the
routing table {r1, . . . , rJ }. Suppose we observe the paths of Rj , so that the vectors
Wj ≡ (W1j , . . . ,WKj )

′ are given by Wkj ≡ � if link k → � is used in Rj for some
1 ≤ � ≤ K and Wkj = 0 otherwise. The observed link frequencies are

Xk� ≡ #{j ≤ N : link k → � is used in Rj } =
N∑

j=1

I {Wkj = �}.(4.4)

Since Xk�=0 for D(k, �) = 0 by (4.3), the node degree dk is a sum

dk = d̃k + sk, d̃k ≡
K∑

�=1

I {Xk� > 0},(4.5)

where d̃k is the observed degree and sk is the unobserved degree given by

sk ≡
K∑

�=1

I {Xk� = 0,D(k, �) > 0}.(4.6)

Lakhina, Byers, Crovella and Xie [16] and Clauset and Moore [7] pointed out that
the observed degrees d̃k may grossly underestimate the true node degree dk .

It follows from (4.5), (4.6) and (3.8) that the problem of estimating the node
degree (4.3) is a species problem. From this point of view, we may directly use
estimators in Section 3 and references therein, for example, (3.11). However, in
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network problems, we are typically interested in simultaneous estimation of many
node degrees. Thus, information from {Xk�, � ≤ K} can be pooled from differ-
ent nodes k. Let K ⊆ {1, . . . ,K} be a collection of “similar” and/or “independent”
nodes. Let G be a family of distributions, for example, gamma with unit scale. Sup-
pose the G in (3.2) for different nodes are identical to a member of G up to scale
parameters βk . Then, as in (3.10), the (pseudo) MLE for {dk,βk, k ∈ K,G} is
given by

d̂k ≡
∑N

j=1 nkj

∫
y>0 Ĝ(dy)∫

(1 − e−β̂ky)Ĝ(dy)
,

(β̂, Ĝ) ≡ arg max
β,G

∏
k∈K

N∏
j=1

{ ∫
e−βkyyjG(dy)

1 − ∫
e−βkyG(dy)

}nkj

,

(4.7)

where β ≡ (β, . . . , βK) and the maximum is taken over all βk > 0 and G ∈ G. This
type of estimator is expected to perform well for self-similar networks.

In the nonparametric case of completely unknown G, the MLE (β̂, Ĝ) in (4.7)
can be computed via the following EM algorithm:

β
(m+1)
k ←

{
N∑

j=1

nkj

(
p(j + 1;β(m)

k ,G(m))

p(j ;β(m)
k ,G(m))

+ p(1;β(m)
k ,G(m))

1 − p(0;β(m)
k ,G(m))

)}−1 N∑
j=1

jnkj ,

with p(j ;βk,G) ≡ ∫
e−βkyyjG(dy),

G(m+1)(dϑ) ← G(m)(dϑ)

( ∑
k∈K

N∑
j=1

nkj/
{
1 − p

(
0;β(m+1)

k ,G(m))})−1

× ∑
k∈K

N∑
j=1

nkj

(
exp(−β

(m+1)
k ϑ)ϑj

p(j ;β(m+1)
k ,G(m))

+ exp(−β
(m+1)
k ϑ)

1 − p(0;β(m+1)
k ,G(m))

)
.

5. Data confidentiality: estimation of risk in statistical disclosure. A ma-
jor concern in releasing microdata sets is protecting the privacy of individuals in
the sample. Consider a data set in the form of a high-dimensional contingency ta-
ble. If an individual belongs to a cell with small frequency, an intruder with certain
knowledge about the individual may identify him and learn sensitive information
about him in the data. Statistical models and methods concerning the risk of such
breach of confidentiality have been considered by many; see [10] and the proceed-
ings of the joint ECE/EUROSTAT work sessions on statistical data confidentiality.
For multi-way contingency tables, Polettini and Seri [18] and Rinott [21] studied
the estimation of global disclosure risks of the form

SJ ≡
J∑

j=1

u(Xj ,Yj )(5.1)
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based on {Xj, j ≤ J }, where Xj and Yj are the sample and population frequencies
in the j th cell, J is the total number of cells, and u(x, y) is a loss function of the
form u(x, y) = u(x)/y, for example, u(x, y) = y−1I {x = 1}.

Let N = ∑J
j=1 Yj be the population size. Suppose N ∼ Poisson(λ),

{Yj }|N ∼ multinomial(N, {πj }), Xj |({Yj },N) ∼ binomial(Yj ,pj ),(5.2)

for certain πj > 0 with
∑J

j=1 πj = 1, 0 ≤ pj ≤ 1 and λ > 0. For known
{pj ,πj , λ}, the Bayes estimator of SJ in (5.1) is

S∗
J ≡ E(SJ |{Xj }) =

J∑
j=1

uj (Xj ), uj (x) ≡ Eu(x,Yj − Xj + x),(5.3)

with Yj − Xj ∼ Poisson((1 − pj )πjλ) (independent of Xj ). For u(x, y) =
y−1I {x = 1},

uj (x) = {(1 − pj )πjλ}−1[1 − exp{−(1 − pj )πjλ}].(5.4)

In general, the parameters (1 − pj )πjλ cannot be completely identified from
the data Xj ∼ Poisson(pjπjλ), so that it is necessary to further model the para-
meters. This can be achieved by setting {pj ,πj , λ} to known tractable functions
of an unknown vector τ and certain covariates zj characterizing cells j , and by
incorporating all available knowledge about the parameters, for example, λ ≈ N

and
∑J

j=1 piπj ≈ n/N , where n = ∑J
j=1 Xj is the sample size. Consequently, the

conditional expectation uj (x) in (5.4) can be written as uj (x) = u(x, zj ; τ). This
suggests

ŜJ ≡
J∑

j=1

u(Xj , zj ; τ̂J )(5.5)

as an estimator of the global risk (5.1) and its conditional expectation (5.3), where
τ̂J is a suitable (e.g., the maximum likelihood or method of moments) estimator
of τ . For example, in a two-way table with cells labelled by j ∼ (i, k) and known
πi,k and λ, we may assume a regression model pi,k = ψ0(τ1 + τ ′

2zi,k) for a cer-
tain known (e.g., logit or probit) function ψ0. In the case of unknown πi,k , we
may consider the independence model πi,k = πi·π·k with unknown πi· and known
or unknown π·k . If τ has fixed dimensionality and τ̂J is asymptotically efficient,
(5.5) is efficient by Theorem 2.2. Theorem 2.2 also suggests that (5.5) is highly
efficient if dim(τ )/J → 0.

Alternatively, we may consider the negative binomial model N ∼NB(α,1/(1 +
β)), that is, P(N = k) = �(k + α){�(α)k!}−1βk/(1 + β)k+α . As in [21], we have
in this case Yj ∼ NB(α,1/(1 + βj )) with βj = βπj , Xj ∼ NB(α,1/(1 + pjβj )),
and (Yj − Xj)|{Xj = x} ∼ NB(x + α, (1 + pjβj )/(1 + βj )). Consequently,

uj (x) = 1 + pjβj

(1 − pj )βj

∫ 1

(1+pjβj )/(1+βj )
tαj−1 dt I {x = 1}(5.6)
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in (5.3) for u(x, y) = y−1I {x = 1}. Bethlehem, Keller and Pannekoek [2] stud-
ied this negative binomial model with constant πj = 1/J and pj = En/EN ≈
n/N . For (αj , βj ) → (0,∞), (Yj − Xj)|{Xj = x} converges in distribution to
the NB(x,pj ), resulting in the µ-ARGUS estimator [1] with uj (x) = pj (1 −
pj )

−1(− logpj )I {x = 1} in (5.6), as pointed out by Rinott [21]. Compared with
the Poisson model in which λ ≈ N , estimates of both EN and Var(N) are re-
quired in the negative binomial model. The µ-ARGUS model essentially assumes
Var(N)/(EN)2 ≥ 1/α → ∞, which may not be suitable in some applications.

6. General information bounds. We provide a lower bound for the asymp-
totic variance and a convolution theorem for (locally asymptotically) regular es-
timators of the sum in (1.2). To facilitate the statements of our results, we first
briefly describe certain terminologies and concepts in general asymptotic theory.

6.1. Scores and tangent spaces. Suppose (X, θ) ∼ F with F ∈ F , where F is
a family of joint distributions. Let C ≡ C(F0) be a collection of mappings {Ft ,0 ≤
t ≤ 1} from [0,1] to F satisfying

EF0

(√
ft (X) − 1 − tρ(X)/2

)2 = o(t2), EF0ft (X) = 1 + o(t2),(6.1)

for certain score functions ρ(x) ≡ ρ(x; {Ft }) depending on the mappings {Ft },
where ft ≡ dFX

t /dFX
0 is the Radon–Nikodym derivative of the absolutely con-

tinuous part of the marginal distribution FX
t of X under Ft with respect to the

marginal distribution FX
0 . Let C∗ ≡ C∗(F0) be the collection of score functions

ρ(X) generated by C. The tangent space H∗ ≡ H∗(F0) is the closure of the linear
span [C∗] of C∗ in L2(F0); that is,

H∗ ≡ [C∗], C∗ ≡ {
ρ(·; {Ft }) : {Ft } ∈ C

}
.(6.2)

For further discussion about score and tangent space, see [3], pages 48–57. The
second part of (6.1) holds in regular parametric models; see [3], page 459.

6.2. Smoothness of random variables and their distributions. Let L(U ;F) be
the distribution of U under PF . Suppose that, for all {Ft } ∈ C, the random variables
uFt ≡ u(X, θ;Ft) and uFt ≡ EFt [uFt |X] satisfy the continuity conditions

lim
t→0+ VarF0

(
uFt − uF0

) = 0,(6.3)

L
(
wFt ;Ft

) D−→ L
(
wF0;F0

)
, EFt w

2
Ft

→ EF0w
2
F0

,(6.4)

as t → 0+, with wF ≡ uF − uF , and also satisfy the differentiability condition

lim
t→0+EF0

(
uFt − uF0

)
/t = EF0φ(X)ρ(X)(6.5)
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for certain φ(X) ≡ φ(X;F0) ∈ L2(F0). The usual smoothness condition for µ(F),
see [3], pages 57–58, is that, for a certain influence function ψ(X) ≡ ψ(X;F0) ∈
L2(F0),

lim
t→0+{µ(Ft) − µ(F0)}/t = EF0ψ(X)ρ(X).(6.6)

6.3. Regular estimators. An estimator µ̃n ≡ µ̃n(X1, . . . ,Xn) of µ(F) is (lo-
cally asymptotically) regular at F0 if there exists a random variable ζ0 such that

lim
n→∞L

(
n1/2{µ̃n − µ(Fc/

√
n)};Fc/

√
n

) = L(ζ0;F0)(6.7)

for all c > 0 and {Ft } ∈ C ([3], page 21). Likewise, for the estimation of the sum
Sn(F ) in (1.2), we say that an estimator S̃n ≡ S̃n(X1, . . . ,Xn) is regular at F0 if
there exists a random variable ξ0 such that, for all c > 0 and {Ft } ∈ C,

lim
n→∞L

(
n−1/2{S̃n − Sn(Fc/

√
n)};Fc/

√
n

) = L(ξ0;F0).(6.8)

6.4. Efficient influence functions and information bounds. Let ψ∗ be the pro-
jection of ψ in (6.6) to the tangent space H∗ in (6.2). The standard convolution
theorem ([3], page 63) asserts that, for a certain variable ζ ′

0,

L(ζ0;F0) = N
(
0,Eψ2∗ (X)

)
� L(ζ ′

0;F0)

for the ζ0 in (6.7), and that efficient estimators are characterized by (1.4). For
h ∈ L2(F0), let An(h) ≡ ∑n

j=1 h(Xj , θj )/n and Zn(h) ≡ √
n{An(h) − EF0h}.

THEOREM 6.1. Suppose (6.3), (6.4) and (6.5) hold at F0. Let φ∗,0 be the
projection of φ in (6.5) into the tangent space H∗ in (6.2), and let φ∗ ≡ uF0 −
µ(F0) + φ∗,0.

(i) If (6.8) holds, then VarF0(ξ0) ≥ VarF0(φ∗ − uF0). Moreover, the lower
bound is reached without bias, that is, EF0ξ

2
0 = VarF0(φ∗ − uF0), iff (1.5) holds.

(ii) If (6.8) holds and the L2(F0) closure C∗ of C∗ in (6.2) is convex, then there
exist a random variable ξ̃0 and certain normal variables Z(h) ∼ N(0,VarF0(h))

such that

L

((√
n{S̃n/n − An(φ∗) − µ(F0)}

Zn

(
uF0 + h − uF0

) )
;F0

)
D−→ L

((
ξ̃0

Z
(
uF0 + h − uF0

))
;F0

)
and ξ̃0 is independent of Z(uF0 + h − uF0) for all h ∈ H∗. In particular, for h =
φ∗,0,

L(ξ0;F0) = L
(
Z

(
φ∗ − uF0

);F0
)
� L(ξ̃0;F0).

(iii) Suppose EFt u
2(X;Ft) is bounded for all {Ft } ∈ C. Then, ψ∗ = φ∗,0 + u∗

is the efficient influence function for the estimation of µ(F), that is, (6.6) holds
with ψ = ψ∗, where u∗ is the projection of uF0 to H∗. Consequently, (1.6) holds.
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REMARK 6.1. Based on Theorem 6.1(i) and (ii), Ŝn is said to be locally as-
ymptotically efficient if (1.5) holds. Note that in Theorem 6.1(ii), ξ̃0 = 0 iff (1.5)
holds.

REMARK 6.2. In the proof of Theorem 6.1(iii), we show that (6.5) and (6.6)
are equivalent under the condition that EFt u

2(X;Ft) = O(1) for all {Ft } ∈ C.

REMARK 6.3. For the estimation of µ(F), that is, u(x,ϑ,F ) ≡ µ(F) as a
special case of Theorem 6.1(ii), a standard proof of the convolution theorem uses
analytic continuation along lines passing through the origin in the tangent space,
and as a result, C∗ is often assumed to be a linear space. In the proof of Theo-
rem 6.1(ii), analytic continuation is used along arbitrary lines across C∗, so that
only the convexity of C∗ is needed as in [31], pages 366–367. Rieder [20] showed
that, in the case of convex C∗, the projections of scores to C∗ (not to H∗) are useful
in the context of one-sided confidence.

6.5. Finite-dimensional models. Let F = {Fτ , τ ∈ T } with an open Euclidean
parameter space T . We shall extend the results in Section 2.1 to general sums (1.2).
Suppose dFX

τ = f X
τ dν exists and is differentiable in the sense of (6.1), that is,∫

(f
1/2
τ+	 − f 1/2

τ − 	ρτ )
2 dν = o(‖	‖2), τ ∈ T .(6.9)

Let Eτ ≡ EFτ , Iτ ≡ Covτ (ρτ (X)), uτ ≡ u(X, θ;Fτ ) and uτ ≡ u(X;Fτ ).

THEOREM 6.2. (i) Suppose (6.9) holds, Iτ is of full-rank, L(uτ ;Fτ ) is con-
tinuous in τ in the weak topology, Eτu

2
τ is continuous, Eτ {uτ+	 − uτ }2 → 0 as

	 → 0, Eτu
2
τ is locally bounded, and µ′(τ ) exists. Then (2.4) gives the efficient

influence function for the estimation of (1.2) with γτ = µ′(τ )−Eτuτρτ , and (1.5)
and (1.6) hold.

(ii) Suppose (2.6), (2.7) and conditions of (i) hold. Then (2.8) holds for the
plug-in estimator (2.5) with the γτ in (i). In particular, (2.5) is asymptotically
efficient under Pτ iff γτκτ = γτ I

−1
τ ρτ .

REMARK 6.4. Comparing Theorem 6.2 with Theorems 2.1 and 2.2, we see
that (6.9) is weaker than (2.2) and (1.2) is more general than (1.1), while stronger
conditions are imposed on uτ in Theorem 6.2.

7. Proofs. We prove Theorems 6.1, 2.1, 2.2, 6.2, and 2.3–2.5 in this section.

LEMMA 7.1. Suppose (2.2) holds. Let (X, θ) ∼ Ft under Pτ+at and ρ = atρτ

for a vector a, where ρτ is as in (2.3). Then (6.1) holds with PF0 = Pτ .
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PROOF. Let gt ≡ gτ+at and 	 = at . The lemma follows from the expansion
√

ft − 1

t
− ρ

2
= 1

f
1/2
t + 1

E0

[
g

1/2
t − 1

t
(g

1/2
t + 1)

∣∣∣X = x

]
− E0

[
at ρ̃τ

2

∣∣∣X = x

]
.

The uniform integrability of the square of the right-hand side (i.e., the first term)
under f0(x) follows from the inequality E0[gt |X] ≤ ft (X)I {f0(X) > 0}. We omit
the details. �

LEMMA 7.2. Suppose (6.1) holds and X ∼ FX
t under Pt , 0 ≤ t ≤ 1. Let µt ≡

Etht (X) for a certain Borel ht . If Eth
2
t (X) = O(1) and ht → h0 in L2(P0), then

µt − µ0 = E0{ht (X) − h0(X)} + tE0ρ(X)h0(X) + o(t) as t → 0.

PROOF. Let Bt be the support sets of dPt(X) − ft (X)dP0(X). By (6.1) and
the boundedness of Eth

2
t , Etht − E0ftht = EthtIBt = O(1)(Eth

2
t )

1/2P
1/2
t (Bt ) =

o(t). Thus,

µt − µ0 = Etht − E0h0 = E0(ft − 1)ht + E0(ht − h0) + o(t)(7.1)

as t → 0+. Since (
√

ft − 1)/t → ρ/2 in L2(P0) and E0{(√ft + 1)ht }2 = O(1),

E0(ft − 1)ht/t = E0
[
t−1(√

ft − 1
)(√

ft + 1
)
ht

] → E0h0ρ.

This and (7.1) complete the proof. �

PROOF OF THEOREM 6.1. Let Fn ≡ Fc/
√

n, ξn ≡ √
n{S̃n/n − Sn(Fn)/n},

ξ ′
n ≡ √

n{S̃n/n − An(uFn)}, ξ ′′
n ≡ √

nAn(wFn) and Z′′ = Z(wF0). Then ξn =
ξ ′
n + ξ ′′

n and ξ ′
n depend on {Xj } only. By (6.4), w2

Fn
under PFn are uniformly

integrable and L(wFn;Fn)
D−→ L(wF0;F0) as n → ∞. Thus, by the Lindeberg

central limit theorem and the weak law of large numbers,

EFn[exp(itξ ′′
n )|{Xj }] → EF0 exp(itZ′′)(7.2)

in probability for all t . Since ξ ′
n depends on {Xj } only, this and (6.8) imply

EFn exp(itξ ′
n)E exp(itZ′′) = EFn exp(itξ ′

n) exp(itξ ′′
n ) + o(1) → EF0 exp(itξ0).

Thus, since E exp(itZ′′) 
= 0 for all t ,

L

(
n−1/2

{
S̃n −

n∑
j=1

u(Xj ;Fc/
√

n)

}
;Fc/

√
n

)
= L(ξ ′

n;Fn)
D−→ L(ξ ′

0;F0)(7.3)

for a certain variable ξ ′
0 independent of c > 0 and the curve {Ft } ∈ C.

Define ξ ′
n,0 ≡ √

n{S̃n/n − An(uF0)}. By (6.3) and (6.5), ξ ′
n,0 − ξ ′

n = √
nAn ×

(uFn −uF0) = EF0(uFn −uF0)+oP (1) → cEφ(X)ρ(X) in probability under PF0 .
Thus, as in [3], pages 24–26, by (7.3) and the LAN from (6.1) and (6.2),

EF0 exp
(
itξ ′

0 + zZ(ρ)
) = exp

[
itzEF0φρ + z2EF0ρ

2/2
]
EF0 exp(itξ ′

0)(7.4)
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for all ρ ∈ C∗ and complex z. Here Z(h) are constructed so that (ξ ′
n,0,Zn(h)) con-

verges jointly in distribution to (ξ ′
0,Z(h)) for all h ∈ L2(F0). Differentiating (7.4)

in t at t = 0 and then in z at z = 0, we find

EF0ξ
′
0Z(h) = EF0φ(X)h(X) = EF0Z(φ∗,0)Z(h)(7.5)

for all scores h = ρ, ρ ∈ C∗, and then for all h ∈ H∗ by (6.2). Since φ∗,0 ∈ H∗,
ξ ′

0 − Z(φ∗,0) and Z(φ∗,0) are orthogonal in L2(F0). This proves (i), since ξ ′
0 and

Z(φ∗,0) are both independent of Z′′ by (7.2) and Z(φ∗,0) + Z′′ = Z(φ∗ − uF0).
Now, suppose C∗ is convex in L2(F0). By continuity extension, (7.4) holds for

all ρ ∈ C∗ and complex z. Let ρj ∈ C∗. Since (7.4) holds for ρ = sρ1 + (1 −
s)ρ2,0 ≤ s ≤ 1, with both sides being analytic in s, by analytic continuation it
holds for ρ = sρ1 + (1 − s)ρ2 for all real s. Thus, (7.4) holds for all complex z and

ρ ∈ H0 ≡ {sρ1 + (1 − s)ρ2 :ρj ∈ C∗,−∞ < s < ∞}.(7.6)

Let H̃ be the linear span of a set of finitely many members of C∗. Let ρ1 be a fixed
interior point of H̃ ∩ C∗ and ρ2 ∈ H̃ with ‖ρ2 − ρ1‖ = δ0. For sufficiently small
δ0 > 0, ρ2 ∈ C∗ for all such ρ2, so that H̃ ⊆ H0. Thus, H0 is a linear space and H∗
is the closure of H0. It follows that (7.4) holds for all ρ ∈ H∗ and complex z. As
in [3], pages 25–26, this implies the independence of ξ ′

0 − Z(φ∗,0) and {Z(h) :h ∈
H∗}. Since {ξ ′

0,Z(h),h ∈ H∗} is independent of Z′′ = Z(uF0 − uF0) by (7.2), the
conclusions of part (ii) hold with ξ̃0 = ξ ′

0 − Z(ψ∗,0).
The proof of part (iii) follows easily from Lemma 7.2 with ht = uFt , which

gives

{µ(Ft) − µ(F0)}/t − EF0

{
uFt − uF0

}
/t → EF0uF0ρ = EF0u∗ρ.

It follows that (6.5) and (6.6) are equivalent under EFt u
2(X;Ft) = O(1), with

ψ = ψ∗ = u∗ + φ∗,0, by (1.6) and the definition of φ∗. The proof is complete. �

PROOF OF THEOREM 2.1. The proof is similar to that of Theorem 6.1(i),
so we omit certain details. By (2.2), ξ0 is independent of Z(ρ̃τ ) under Pτ . Since
Eτu

2 < ∞, (7.2) holds for fixed Fn = Fτ , so that ξ0 = ξ ′
0 + Z(uτ − u) as a sum of

independent variables. Let Z(hτ ) be the projection of ξ ′
0 to {Z(h),h ∈ L2(Fτ )} in

L2(Pτ ) and vτ = hτ + uτ . Then Varτ (ξ0) ≥ Eτ (vτ − u)2 and Eτ (vτ − u)ρ̃τ = 0.
Since ξ ′

0 is the limit of variables dependent on {Xj } only, hτ and vτ depend on X

only.
Since Eτu

2gτ,	(θ) ≤ Eτ+	u2 = O(1), by (2.2) and Lemma 7.2 with ht =
h0 = u(x,ϑ), µτ+	 − µτ ≈ 	tEτuρ̃τ = 	tEτψ∗,τ (X)ρτ (X), where ψ∗,τ ≡
ρt

τ I
−1
τ Eτuρ̃τ . It follows that 0 = Eτ (vτ − u)ρ̃τ = Eτ (vτ ρ̃τ − ψ∗,τ ρτ ) = Eτ (vτ −

ψ∗,τ )ρτ . Thus, Eτ (vτ − uτ )ρτ = Eτ (ψ∗,τ − u∗,τ )ρτ with u∗,τ ≡ ρt
τ I

−1
τ Eτuτρτ .

Since ψ∗,τ − u∗,τ is linear in ρτ , Z(vτ − uτ − (ψ∗,τ − u∗,τ )) is independent
of Z(ψ∗,τ − u∗,τ ). Thus, Varτ (vτ − uτ ) ≥ Varτ (ψ∗,τ − u∗,τ )) and Varτ (ξ0) ≥
Varτ (vτ − uτ ) + Varτ (uτ − u) ≥ Varτ (φ∗,τ − u) by (2.4). The proof is complete.

�



ESTIMATING SUMS OF RANDOM VARIABLES 2039

PROOFS OF THEOREMS 2.2 AND 6.2. Theorem 6.2(i) follows from Theo-
rem 6.1 and Remark 6.2. Let µ(t; τ) = Eτut (X). By Lemma 7.2, µ′ = Eτuρ̃ in
Theorem 2.2 and γτ = (∂/∂t)µ(τ ; τ) in both theorems. Simple expansion of (2.5)
via (2.7) yields

Ŝn

n
= An(uτ ) + {µ(τ̂n; τ) − µ(τ ; τ)} + oPτ (n

−1/2)

= An(uτ + γτκτ ) + oPτ (n
−1/2),

which implies (2.8). Note that γτ (κτ − κ∗,τ ) is orthogonal to uτ − uτ + γτκ∗,τ .
The proof is complete. �

PROOFS OF THEOREMS 2.3, 2.4 AND 2.5. Let Gt ≡ (1 − t)G0 + tG,
ft ≡ fGt and Et ≡ EGt , t > 0. By (2.9), (6.1) holds with ρ = fG/f0 − 1.
Since EGu2 < ∞, u2 are uniformly integrable under Pt , so that (6.4) holds.
Since f0/ft ≤ 1/(1 − t), {u2

t ,0 ≤ t ≤ 1/2} are uniformly integrable under E0,
so that (6.3) holds. Moreover,

t−1E0{ut − u0} = E0

{
fG

ft

(uG − u0)

}
→ E0

{
fG

f0
(uG − u0)

}
.(7.7)

Suppose there exists a regular estimator of (1.1). Let ξ ′
0 be as in (7.5) and let

Z(v − u0) be the projection of ξ ′
0 to {Z(h),h ∈ L2(f0)} as in the proof of Theo-

rem 2.1. It follows from (7.7) and the argument leading to (7.5) that

E0(v − u0)(fG/f0 − 1) = E0Z(v − u0)Z(ρ) = E0

{
fG

f0
(uG − u0)

}
,

which implies EGv − E0v + E0u = EGu. Since ξ ′
0 does not depend on the choice

of G ∈ GG0 , v ∈ VG0 . By the Lindeberg central limit theorem, EG0v
2 < ∞ and

v ∈ VG0 imply L(Zn(v − u);Pc/
√

n) → L(Z(v − u);P0), so that Vn in (2.15) is
regular at G0 for all v ∈ VG0 . If v is a limit point of VG0 in L2(f0), Vn is also a
regular estimator of Sn at P0, so that VG0 is closed in L2(f0). This completes the
proof of Theorem 2.3.

The proof of Theorem 2.4 is similar to those of Theorems 2.2 and 6.2 but sim-
pler. We note that EG0(vG − vG0) = 0. Finally, Theorem 2.5 follows from the fact
that VG contains a single function v due to the completeness of exponential fami-
lies. The proofs are complete. �
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