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SEMIPARAMETRIC ESTIMATION FOR STATIONARY PROCESSES
WHOSE SPECTRA HAVE AN UNKNOWN POLE1

BY JAVIER HIDALGO

London School of Economics

We consider the estimation of the location of the pole and memory
parameter,λ0 andα, respectively, of covariance stationary linear processes
whose spectral density functionf (λ) satisfiesf (λ) ∼ C|λ − λ0|−α in a
neighborhood ofλ0. We define a consistent estimator ofλ0 and derive its
limit distribution Zλ0. As in related optimization problems, when the true
parameter value can lie on the boundary of the parameter space, we show that
Zλ0 is distributed as a normal random variable whenλ0 ∈ (0,π), whereas for
λ0 = 0 or π , Zλ0 is a mixture of discrete and continuous random variables
with weights equal to 1/2. More specifically, whenλ0 = 0,Zλ0 is distributed
as a normal random variable truncated at zero. Moreover, we describe and
examine a two-step estimator of the memory parameterα, showing that
neither its limit distribution nor its rate of convergence is affected by the
estimation ofλ0. Thus, we reinforce and extend previous results with respect
to the estimation ofα whenλ0 is assumed to be known a priori. A small
Monte Carlo study is included to illustrate the finite sample performance of
our estimators.

1. Introduction. Given a covariance stationary process{xt } observed at times
t = 1,2, . . . , n, the search for cyclical components and their estimation and testing
are of undoubted interest. This is motivated by the observed periodic behavior
exhibited in many time series and manifested by sharp peaks of the spectral density
estimate.

A well-known model capable of generating such a periodic behavior is the
regression model

xt = µ + ρ1 cos(λ0t) + ρ2 sin(λ0t) + εt ,(1.1)

where ρ1 and ρ2 are zero-mean uncorrelated random variables with the same
variance and{εt } is a stationary sequence of random variables independent of
ρ1 andρ2. Model (1.1) has enjoyed extensive use and different techniques have
been proposed for the estimation of the frequency, amplitude and phase (see [6,
18–20, 35]). Extensions to a model with more than one periodic component have
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been examined by Quinn [29] and Kavalieris and Hannan [25], whose interest was
also in testing the number of sinusoidal/cosinusoidal components. See also [30].

A second statistical model capable of exhibiting peaks in its spectral density
function is the autoregressive AR(2) process

(1− a1L − a2L
2)xt = εt(1.2)

when the zeros of the polynomial(1−a1L−a2L
2) are complex, withλ0 identified

as arccos( a1
2
√−a2

). Models (1.1) and (1.2) represent two extreme situations
explaining cyclical behavior of the data and the peakedness of the spectral density
function. Model (1.2) possesses a continuous spectral density function whereas
model (1.1) has a spectral distribution function with a jump at the frequencyλ0.
The cyclical component of the data remains constant or invariant with time in
model (1.1), whereas the cyclical pattern of model (1.2) fades out with time fairly
quickly.

Between these two extreme situations there exists a class of intermediate models
in which the spectral density function ofxt exhibits a pole at the frequencyλ0. For
that purpose, define the spectral density function ofxt as the functionf (λ) which
satisfies the relationship

γ (j) = Cov(xt , xt+j ) =
∫ π

−π
f (λ)cos(jλ) dλ, j = 0,1,2, . . . .(1.3)

We say thatf (λ) has a pole atλ0 if

f (λ) ∼ C|λ − λ0|−α asλ → λ0,(1.4)

whereC ∈ (0,∞), α ∈ (0,1) is the memory parameter and “∼” means that the
ratio of the left- and right-hand sides tends to 1. One of the main objectives of this
paper is the estimation ofλ0.

One model capable of generating such a cyclical behavior in the data has been
proposed by Andel [2] and Gray, Zhang and Woodward [17] and defined as(

1− 2(cosλ0)L + L2)dxt = εt ,(1.5)

whereL is the backshift operator,d = α/2 for λ0 ∈ (0, π), whereas forλ0 = 0 or
π , d = α/4. The model (1.5) was coined the Gegenbauer model by Gray, Zhang
and Woodward [17], who extended it to the GARMA model where the innovations
{εt } follow an autoregressive moving average (ARMA) process, and it was later
extended by Giraitis and Leipus [13] allowing for more than one pole or cyclical
component. The GARMA process is characterized by having the spectral density
function

f (λ) = σ 2

2π
|1− 2(cosλ0)eiλ + ei2λ|−2d

∣∣∣∣a(eiλ; θ)

b(eiλ; θ)

∣∣∣∣2, −π < λ ≤ π,(1.6)

whereσ 2 > 0, anda(·) andb(·) are polynomials of finite degree, all of whose
zeroes lie outside the unit circle. Whenλ0 = 0, we have the more familiar
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FARIMA model, apparently originated by Adenstedt [1], and studied by Granger
and Joyeux [16] and Hosking [23]. GARMA models are characterized by a
stronger and more persistent cyclical behavior than ARMA models, that is, (1.2),
but unlike model(1.1), their amplitude does not remain constant over time.

If the location of the poleλ0 is known, then under some regularity conditions
and a correct specification of the model, Whittle estimates of the parameters
α (or d), θ and σ 2, for example model (1.6), are known to ben1/2-consistent
and asymptotically normal. In the case of Gaussianity or linear processes, this
was shown by Fox and Taqqu [11], Dahlhaus [7] and Giraitis and Surgailis [15]
whenλ0 = 0 and generalized by Giraitis and Leipus [13] and Hosoya [24] forλ0

different from 0. All these papers assume thatf (λ) is fully specified by a set of
parameters(α, θ ′, σ 2)′.

Although knowledge ofλ0 can be realistic in some time series data, with
nonseasonal data that knowledge ofλ0 is not so clear. An example of the latter
is when the practitioner is interested in estimating cycles in macroeconomic
or geophysical data. Recently, Giraitis, Hidalgo and Robinson [12] have shown
that Whittle estimates of(α, θ ′, σ 2)′ are asymptotically the same irrespective of
whether or notλ0 is known. In addition, they proved that the estimate ofλ0 is
n-consistent although its limit distribution remains an open problem.

However, if the ultimate interest is only the estimation of the memory
parameterα, one possible criticism of the parametric approach is that an incorrect
specification of the model leads to inconsistent estimates ofα. One source of
misspecification is the choice of a wrong value ofλ0. If that were the case, Whittle
estimates ofα would be inconsistent, and would possibly estimate the valuezero.
The latter might happen even if a semiparametric approach were adopted; see
Section 3. Thus, we might conclude that the data is short-memory- instead of
long-memory-dependent, which could have some adverse effects on the statistical
inference of relevant statistics such as the serial covariances; see [21] or [33].

The main objectives of this paper are twofold: first, under mild conditions,
to provide a consistent estimator ofλ0 and characterize its limit distribution. In
particular we show that the limiting distribution of the estimator ofλ0 depends
on whetherλ0 ∈ (0, π) or λ0 = 0 or π . The second objective is to investigate the
consequences that the lack of knowledge ofλ0 might have on the estimation ofα.

Some earlier related work has been completed by Müller and Prewitt [27] and
Yajima [36]. In the former the authors estimate the peak of the spectral density
f (λ) in a model, like that in (1.2), whose spectral density function is continuous
in [0, π]. Looking at argsupλ f̂ (λ), where f̂ (λ) is a smoothed nonparametric
estimate off (λ), they show its consistency and the limit distribution to be a
normal random variable whenλ0 ∈ (0, π). Yajima [36] considers the estimation of
λ0 in a model with spectral density function possessing a pole atλ0. Based on the
maximum of the periodogram of the data, he gives consistency and an upper rate of
convergence for the estimate ofλ0. Unfortunately, the limit distribution, which is
required for statistical inference, was not provided. In addition, his results rely on
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the assumption that the data is Gaussian, which is not required in the present paper.
Finally, it should be mentioned that Giraitis and Leipus [13] prove the consistency
of λ0 in a model like (1.6).

The paper is organized as follows. In Section 2 we describe a semiparametric
estimator ofα whenλ0 and the estimator̂λ0 of λ0 are known. In Section 3 we
discuss the statistical properties ofλ̂0 and we show that the asymptotic properties
of a two-step estimator ofα remain the same irrespective of whetherλ0 is known
or estimated. The finite sample behavior of the estimators ofλ0 andα is analyzed
in Section 4 through a Monte Carlo study. Section 5 provides the proofs of the
results given in Section 3, which apply a series of lemmas given in Section 6.
Finally, Section 7 contains a summary.

2. Regularity conditions and the estimators of the pole and memory
parameter. Let {xt } be a covariance stationary linear process observed at times
t = 1,2, . . . , n, with spectral densityf (λ) satisfying (1.4). Whenλ0 is known,
under the semiparametric specification (1.4) several estimators of the memory
parameterα have been proposed and examined. In this paper, to estimateα we
shall use a modification of the log-periodogram estimator (see [31]), which we now
describe. Consider the average periodogram spectral density estimator off (λ),

f̈	 = f̈ (λ	) = 1

2k1 + 1

∑
|j |≤k1

I	+j ,(2.1)

whereI	 = I (λ	) denotes the periodogram ofxt , that is,

I	 =
∣∣∣∣∣(2πn)−1/2

n∑
t=1

xte
itλ	

∣∣∣∣∣
2

, 	 = 1, . . . , [n/2],(2.2)

andI0 = 0, whereλ	 = (2π	)/n for 	 = 1,2, . . . , [n/2], [z] denotes the integer
part of z and k1 = k1(n) is a positive number which increases slowly withn,
that is,k−1

1 + n−1k1 → 0. (Observe that the definition ofI	 entails sample-mean
correction.)

Let ψ(u) be a weight function in(0,1), and write

α̂(λq) = 1

2h̄ψk

k∑
p=1

ψp(log f̂q+p + log f̂q−p),(2.3)

whereψp = ψ(p/k), h̄ψ = −k−1 ∑k
p=1 ψp log(p/k), f̂	 = max(f̈	, n

−1) andk =
k(n), a positive number which increases slowly withn, that is,k−1 + n−1k → 0.

DEFINITION 2.1. If λ0 is known, we define the estimator of the memory
parameterα asα̂(λs), whereλs is the closest Fourier frequencyλq to λ0.
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REMARK 2.1. The motivation to usêf	 instead off̈	 in (2.3) is due to the
singular behavior of logx at x = 0. Specifically for the proof of tightness, that is,
Proposition 5.4 in Section 5, we have not been able to bound some probabilities
or moments for alln ≥ n0 as required. This problem, of course, does not appear
asn → ∞ as can be observed from Propositions 5.1–5.3, nor if our goal were to
examine the behavior of̂α(λs). We do not believe that this adjustment is needed
in practice and have made it here only because we cannot establish Theorem 3.2
(cf. Proposition 5.4) without it, unless some additional stronger conditions were
introduced, for instance, the normality of the data.

We now define our estimator ofλ0 asλ̂0 = λq̂ = (2πq̂)/n, where

q̂ = argmax
q=0,...,[n/2]

α̂(λq).(2.4)

Note that periodicity and symmetry around zero imply that it suffices to search
for the maximum in (2.4) at frequenciesλq , with q = 0, . . . , [n/2]. From (2.4) we
could defineα̂(λ̂0) as an estimator ofα, that is, (2.3) evaluated atλ̂0. However
(see Section 3), sincêα(λ̂0) does not have optimal properties, we will describe
a two-step estimator, denotedα̌(λ̆0), which overcomes all the adverse properties
of α̂(λ̂0); see Theorem 3.4.

The motivation for the estimator in (2.4) is as follows. From the proof of
Theorem 3.4(a) below, it is easily shown thatα̂(λs) is a consistent estimator ofα.
On the other hand, ifλq is in any open set outsideλ0, that is,|λq − λs | > δ, for
any arbitrarily smallδ > 0, Condition C.1 below implies that

f (λq) = |λq − λ0|−αg(λq) ∼ Cg(λq).

That is, at the frequencyλq the spectral density function behaves as ifα were equal

to zero. So, from the proof of Theorem 3.4(a) we should expect thatα̂(λq)
P→ 0,

implying that Pr{|λ̂0 − λs | < δ} → 1. That is, the estimator given in (2.4) is
consistent. These heuristics will be formalized in Theorem 3.1 below. We finish
this section by introducing the following regularity conditions and their discussion.

CONDITION C.1. There existsα ∈ (0,1) such that

f (λ) =
{ |λ − λ0|−αg(λ), if 0 ≤ λ ≤ π ,

|λ + λ0|−αg(λ), if −π ≤ λ ≤ 0,

whereg(λ) is a bounded symmetric and bounded away from zero function with
two continuous derivatives for 0< λ < π .

CONDITION C.2. {xt } is a covariance stationary linear process,

xt =
∞∑

j=0

βjεt−j ,

∞∑
j=0

β2
j < ∞,
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where{εt } is a zero-mean i.i.d. sequence withE(ε2
t ) = 1 andE|εt |	 = µ	 < ∞

for 	 = 3, . . . ,2τ and someτ ≥ 4.

CONDITION C.3. Asλ → λ, the functionβ(λ) = ∑∞
j=0 βje

ijλ satisfies

|∂β(λ)/∂λ| = O
(|λ − λ0|−1|β(λ)|).

CONDITION C.4. k1+ιk−2
1 + k−2k3

1 logk + nk
−(τ2+2)/2τ
1 → 0, for someι > 0

asn → ∞, with k ≤ cn4/5, 0< c < ∞ and whereτ is as in Condition C.2.

CONDITION C.5. The functionψ(x) is twice continuously differentiable
with second derivative that is Lipschitz of order at least1

2 in its support(0,1)

and satisfies
∫ 1
0 ψ(x)dx = 0, 0 < hψ = − ∫ 1

0 ψ(x)(logx)dx < ∞, 0 < ψ̄ ′′ =∫ 1
0 ψ ′′(x)(logx)dx, whereψ ′′(x) = d2

dx2ψ(x), and|x−2ψ(x)|+|(1−x)−1ψ(x)| ≤
D < ∞.

We now discuss Conditions C.1–C.5. Condition C.1 is much the same as that
employed by Robinson [31, 32]. Indeed, Condition C.1 implies that asλ → λ0,

f (λ) = C|λ − λ0|−α(
1+ C−1g′(λ0)(λ − λ0) + O(|λ − λ0|2))

by Taylor expansion ofg(λ) aroundλ0 and whereC = g(λ0). Observe that
g′(λ0) = 0 whenλ0 = {0, π} by symmetry off (λ), obtaining then the corre-
sponding condition used in [31, 32]. However, we prefer to state the condition
in its present form since, in Theorems 3.1 and 3.2 below, some regularity con-
ditions on f (λ) are needed outside any open set containing±λ0. Examples
of processes whose spectral density function satisfies Condition C.1 are the
FARIMA (p,α/2, q) and the GARMA model given in (1.6). Finally, the last
part of Condition C.1 is quite standard in the spectral density estimation litera-
ture. Condition C.2 is needed for the proof of tightness (see the proofs of The-
orems 3.2 and 3.1). It is also required to show the uniform convergence off̂ ,
although for the latter property, at the expense of stronger conditions on the
rate of convergence ofk−1

1 to zero, fewer moments ofεt can be assumed. Ob-
viously Condition C.2 is satisfied ifεt is Gaussian. Condition C.3 is the same
as Robinson’s [32]. Condition C.4 controls the rate of increase ofk and k1.
For instance, denotingk = nγ2 andk1 = nγ1, in the Gaussian case, we can take
0 < γ1 < 8/15 and 3γ1/2 < γ2 ≤ min{2γ1/(1 + ι),4/5}, whereas forτ = 4 the
bounds are 4/9 < γ1 < 8/15 and 3γ1/2 < γ2 ≤ 4/5. Finally, Condition C.5 char-
acterizes the type of weight in (2.3). An example ofψ(u) satisfying Condition C.5
is ψ(u) = −u2 + 35u2.5/6− 29u3/6+ 2u3 logu.

It is worth mentioning that the quadratic behavior of the weightψ(u), asu → 0,
guarantees that the first moment ofξ(υ) (see Theorem 3.2 below) has a parabolic
structure so that the maximum ofξ(υ) is easily obtainable. Obviously, other
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different types of weights can be used which would not prevent the consistency
of the estimator ofλ0. However, for weights not having a quadratic behavior, the
asymptotic distribution of the estimate of the pole is not guaranteed to be normally
distributed. We will return to this condition after Theorem 3.2.

3. Statistical properties of the estimators of the pole and memory parame-
ter. In this section we prove a functional limit theorem for a process operating on
increments ofα̂(λq) nearλ0, which together with the continuous mapping theo-
rem will allow obtaining the asymptotic distribution ofλ̂0. A similar approach was
used by Eddy [10] to estimate the mode of a probability density function and by
Müller [26] for the estimation of the break point in a regression model. Apart from
providing the consistency and rate of convergence ofλ̂0 to λ0, the limit distribution
will guarantee that asymptotic valid inferences around the true value ofλ0 may be
implemented.

The strategy of the proof to obtain the asymptotic distribution ofλ̂0 consists of
three steps; see [34], Chapter 3. Step 1 establishes the consistency ofλ̂0 to λ0.
Step 2 establishes the rate of convergence ofλ̂0 to λ0, and Step 3 shows that
suitably rescaled versions ofα̂(λq) converge weakly to a limit, denotedξ(υ) in
Theorem 3.2, in the spaceD[−M,M] for each finite 0< M < ∞. Note that
convergence inD[−M,M] for each finite 0< M < ∞ is to be meant convergence
in D(−∞,∞). See Pollard [28]. From here, the continuous mapping theorem
will conclude thatλ̂0, after normalization, will converge in distribution to the
argmaxυ ξ(υ).

The next theorem gives the consistency and rate of convergence ofλ̂0 to λ0, that
is, Steps 1 and 2. Theorem 3.2 justifies Step 3, whereas Corollary 3.3 examines the
asymptotic distribution of̂λ0.

THEOREM 3.1. Assuming Conditions C.1–C.5,|λ̂0 − λ0| = Op(k1/2n−1).

We see that the rate of convergence ofλ̂0 to λ0 is slower than the parametric
rate n−1 obtained by Giraitis, Hidalgo and Robinson [12]. This appears to be
reasonable due to the local behavior of our statistics. The same phenomenon occurs
in other related, although different, problems involving nonparametric statistics;
see, for instance, [10, 26] or [27].

Under Conditions C.2 and C.4, forτ = 4, (λ̂0 − λ0) = Op(nδ−2/3) for any
arbitrarily smallδ > 0. However, a closer examination of these conditions and
the proof of Lemma 6.3 indicate that the rate depends on the number of finite
moments of the sequenceεt in Condition C.2. In general, withτ ≥ 4, (λ̂0 − λ0) =
Op(nδ−(2τ2−3τ+4)/2(τ2+2)). So, the greater the number of finite moments allowed
for εt , the faster the rate of convergence ofλ̂0 to λ0. In the extreme case where
all the moments exist, the rate of convergence ofλ̂0 becomesnδ−1. This rate
was obtained by Yajima [36] in the Gaussian case and is arbitrarily close ton−1

obtained in [12].
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So Theorem 3.1 indicates thatλ̂0 = λ0 + n−1(2π[k1/2υ]) for some |υ| ≤
M < ∞. To examine the asymptotic distribution ofλ̂0, let us introduce the notation

ξ̂n(υ) = k
(
α̂

(
λs+[k1/2υ]

) − α̂(λs)
)
.(3.1)

ξ̂n(υ) is a random step function which is constant in the intervals[i/k1/2, (i +
1)/k1/2), |i| ≤ M , so that ξ̂n(υ) is a random element in the Skorohod space
D[−M,M] for arbitrary 0< M < ∞.

We now establish our main result, that is, the aforementioned Step 3.

THEOREM 3.2. Let |υ| ≤ M for any arbitrary M ∈ (0,∞). Assuming
Conditions C.1–C.5,

ξ̂n(υ)
weakly	⇒ ξ(υ) in the space D[−M,M],

where ξ(υ) is a continuous Gaussian process such that

E(ξ(υ)) = −h−1
ψ ψ̄ ′′υ2α/2 and Cov

(
ξ(υ1), ξ(υ2)

) = h−2
ψ ςυ1υ2,

where ς = ∫ 1
0 ψ ′(u)2 du < ∞ with ψ ′(x) = d

dx
ψ(x).

The immediate consequence of Theorem 3.2 is that argmaxυ ξ(υ) is a normal
random variable. Indeed, because Theorem 3.2 implies that the limiting process
ξ(υ) is Gaussian, it can be written as

ξ(υ) = −h−1
ψ ψ̄ ′′υ2α/2+ h−1

ψ ς1/2υX,

whereX = N(0,1). But ξ(υ) is a random parabola with fixed second derivatives
and a unique maximum at

υ∗ = (ψ̄ ′′α)−1ς1/2X,

since by Condition C.5, 0< hψ,0 < ψ̄ ′′, so that∂2ξ(υ)/∂υ2 = −h−1
ψ ψ̄ ′′α < 0.

From here we can observe the (possible) consequences of using a weight
function ψ(u) which does not have a parabolic structure atu = 0. The main
implication is that if the latter were the case,E(ξ(υ)) would not necessarily
be a parabola as in Theorem 3.2. For example, it may be thatE(ξ(υ)) = C|υ|,
in which case not only can the argmaxυ ξ(υ) be difficult to obtain, but more
importantly it would no longer be a normal random variable. So, in view of the
asymptotic normality achieved with a weightψ(u) satisfying Condition C.5, it
appears desirable to employ it. Similar issues occur when estimating the date of a
break in a regression model; see, for example, [26].

Now we turn our attention to the asymptotic properties ofλ̂0. Note that
Theorem 3.1 indicates that

λ̂0 = λs + 2πk1/2

n
υ̂n = λ0 + 2πk1/2

n
υ̂n + O

(
1

n

)
,(3.2)

whereυ̂n = argmaxυ ξ̂n(υ). Then we have the following:
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COROLLARY 3.3. Denote � = ς(ψ̄ ′′α)−2. Assuming Conditions C.1–C.5,as
n → ∞:

(a) If λ0 ∈ (0, π), then (2πk1/2)−1n(λ̂0 − λ0)
d→ Zλ0 ≡ Y = N(0,�).

(b) If λ0 = 0, then (2πk1/2)−1nλ̂0 d→ Z0 = YI(Y ≥ 0), where I(A) denotes
the indicator function of the set A.

(c) If λ0 = π , then (2πk1/2)−1n(λ̂0 − π)
d→ Zπ = YI(Y ≤ 0).

We now comment on the results of Corollary 3.3. First, we now see the necessity
of Theorem 3.1, as it will give us the normalization needed to achieve a “proper”
asymptotic distribution. Next, we observe that the limiting distribution ofλ̂0

depends on whetherλ0 is {0, π} or λ0 ∈ (0, π). The intuition about the limiting
distribution of λ̂0 in cases (b) and (c) is as follows. As the maximization of
α̂(λq) in (2.4) is restricted to the interval 0≤ λq ≤ π , for λ0 = 0, it implies that
(λ̂0 − λ0) = λ̂0 ≥ 0 so thatZ0 cannot take negative values. Similarly,λ0 = π

implies thatλ̂0 − π ≤ 0 andZπ cannot take positive values. So, the estimation
of λ0 falls into the category of a constrained optimization problem or inequality
constraint estimation. Indeed, whenλ0 is an interior point of the set[0, π] and due
to the consistency of̂λ0, we can expect that the constrained estimator,λ̂0 = λq̂ ,
coincides with the unconstrained estimatorλ̃q = λq̃ = (2πq̃)/n, where

q̃ = argmax
q∈{0,±1,±2,... }

α̂(λq),(3.3)

whereas ifλ0 = 0, q̂ = q̃I(q̃ ≥ 0). Similar arguments apply whenλ0 = π .
Once we have examined the properties ofλ̂0, we next examine the estimation

of α. By Theorems 3.1 and 3.2 and the functional mapping theorem, it is easily
shown that̂α(λ̂0) − α̂(λ0) = op(k−1/2). So,k1/2(α̂(λ̂0) − α) andk1/2(α̂(λ0) − α)

have the same asymptotic distribution. However, the faster the convergence ofλ̂0

to λ0, the slower the rate of convergence ofα̂(λ̂0) to α, and hence it becomes
slower than the rate obtained whenλ0 is known. The same phenomenon happens to
hold in [26]. Hence, to circumvent this drawback, as in [26], we propose atwo-step
procedure to estimateα. To this end, we shall use as an estimator ofα that given

in (2.3) whereλq is replaced by̆λ0 = (2πq̆)/n such that|λ̆0 − λ0| = Op(k1/2/n),
andk andk1 are replaced bym andm1, respectively, satisfying:

CONDITION C.6. m−1+mm−2
1 +m5

1m
−3 logm1+k/m → 0 with m = cn4/5,

0< c < ∞.

In addition, to be a bit more general regarding our choice of the weight
functionψ(u), we allow for the weighted function, sayw(u), to satisfy:
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CONDITION C.7.
∫ 1
0 w(u)du = 0, 0 < hw = − ∫ 1

0 w(u)(logu)du < ∞,
w(u) ∼ cuζ asu → 0+ for some 1/3 ≤ ζ ≤ 1 and for all 0< u1 < u2 < 1,

|w(u2) − w(u1)| ≤ D|u2 − u1|ζ , 0< D < ∞.

So, ourtwo-step estimator ofα is defined as

α̌(λ̆0) = 1

2h̄wm

m∑
p=1

wp(log f̂q̆+p + log f̂q̆−p),(3.4)

where f̂ (λ) = max{f̈ (λ), n−1} and f̈ (λ) is as in (2.1) but with the smoothing
parameterk1 there being replaced bym1, h̄w = −m−1 ∑m

p=1 wp log(p/m) and
wp = w(p/m).

We now comment oňα(λ̆0) compared töα(λ̆0) = (h̄wm)−1 ∑m
p=1 wp log f̂q̆+p.

Observe that the former is a “symmetrized” version of the latterα̈(λ̆0). Assume
for simplicity that λ0 is known. As in other semiparametric estimators, for
example, [31], one source of the bias ofm1/2(α̈(λ0) − α) comes from the
replacement off (λ) by g(λ0)|λ−λ0|−α , which in our case, that is, ifλ0 = {0, π},
will be proportional to

m−1/2
m∑

p=1

wp

(
λp + O(λ2

p)
) = O(n−1m3/2).

The main reason for this behavior is that whenλ0 = {0, π}, by symmetry we
have g′(0) = g′(π) = 0, whereas forλ = 0 or π , g′(λ) may not be zero so
that g−1(λ0)|λ − λ0|αf (λ) = 1 + g−1(λ0)g′(λ0)(λ − λ0) + O(|λ − λ0|2) by a
Taylor expansion ofg(λ) aroundλ0. Recall the comments made on Condition C.1.
However, when the estimatořα(λ0) in (3.4) is employed, the contribution of
the above approximation (Taylor expansion) to the bias ofm1/2(α̌(λ0) − α) is
proportional to

m−1/2
m∑

p=1

wp

(−λp + O(λ2
p)

) + m−1/2
m∑

p=1

wp

(
λp + O(λ2

p)
) = O(m5/2n−2).

Note that the latter holds true also forλ0 = {0, π}. So, the “symmetrized” estimator
α̌(λ0) would have a smaller bias order and thus it would have a faster rate of
convergence toα thanα̈(λ0).

THEOREM3.4. Denote �2 = 2−1 ∫ 1
0 w2(x) dx and B = (∂2/∂λ2 logg(λ0))×∫ 1

0 u2w(u)du. Let λ̆0 be an estimator of λ0 such that |λ̆0 − λ0| = Op(k1/2/n).
Assuming Conditions C.1–C.4with k1 = nγ1 and k = nγ2, where 2τ/(τ2 + 2) <

γ1 < 8/15, 3γ1/2 < γ2 < min{ 2γ1
1+ι

, 4
5}, τ as in Condition C.2, and Conditions

C.6and C.7, then
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(a) (2m)1/2(α̌(λs) − α)
d→ N(4π2c5/2B/(21/2hw),�2/h2

w),

(b) (2m)1/2(α̌(λ̆0) − α)
d→ N(4π2c5/2B/(21/2hw),�2/h2

w).

REMARK 3.1. It is worth mentioning that the results of Theorem 3.4 hold true
if the weightψ(u) employed to estimateλ0 is used inα̌(λ0). However, this weight
will not guarantee an asymptotic variance smaller than 1, as is the case with the
weight used in the Monte Carlo experiment. In fact, for the weight used in the
Monte Carlo experiment,h−2

w �2 ∼ 0.70, which is smaller than the corresponding
asymptotic variance of other estimators ofα suggested in the literature. Finally,
the theorem indicates that although any preliminary estimator ofλ0 which satisfies
|λ̆0 − λ0| = Op(k1/2/n) is adequate for the results to follow, in practice it appears
that one may use that given in (2.4) for computational simplicity.

Theorem 3.4 provides a consistent estimator of the asymptotic variance ofλ̂0,
that is,� in Corollary 3.3, by replacingα by α̌(λ̆0). But more importantly, it
indicates that thetwo-step estimatorα̌(λ̆0), apart from having the same asymptotic
distribution asα̌(λ0), achieves the optimal semiparametric rate of convergence
obtained by Giraitis, Robinson and Samarov [14] whenλ0 = 0. So, asymptotically,
there is no loss by usinĝλ0 instead ofλ0. However, to achieve the latter, as in
other nonparametric estimates,α̌(λ̆0) will have a bias term of the same order of
magnitude as the standard deviation.

4. Finite sample behavior. In this section we study via Monte Carlo analysis
the finite sample performance of the estimatorsλ̂0 and α̌(λ̂0). The models
employed throughout the simulations are

(1− L)α/2xt = εt , t = 0,±1, . . . ,(4.1) (
1− 2cos(π/2)L + L2)α/2

xt = εt , t = 0,±1, . . . ,(4.2)

where{εt} is a zero-mean sequence of i.i.d. Gaussian random variables. Model (4.1)
generates a pole atλ0 = 0, whereas model (4.2) does so atλ0 = π/2. We have cho-
senα = 0.2,0.4,0.6 and 0.8. The autocorrelation functions of (4.1) and (4.2) are
given by

ρj = j − 1+ α/2

j − α/2
ρj−1, j = 1,2, . . . ,

and

ρ2j = 1− j − α/2

j − α/2
ρ2(j−1), ρ2j−1 = 0, j = 1,2, . . . ,

respectively; see, for example, [3]. For each combination ofα andλ0, 2500 repli-
cations of series of lengthsn = 256 and 1024 were generated by the method of
Davies and Harte [8].
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Also, we have compared the performance ofλ̂0 and α̌(λ̂0) with the corre-
sponding estimators obtained using the log-periodogram estimator of [31] popular
among practitioners. That is, considerλ̃0 = λq̃ = (2πq̃)/n, where

q̃ = argmax
q=0,...,[n/2]

α̂LOG(λq),(4.3)

α̂LOG(λq) = −
(

2
k∑

j=1

φj logj

)−1 k∑
j=1

φj (logIj+q + logIq−j ),(4.4)

with φj = logj − k−1 ∑k
	=1 log	. Moreover, we have examined the behavior of

the estimatorα̂LOG(λ̃0) of α, wherek = m in (4.4). For the estimation ofλ0,
the chosen bandwidth parameters were, forn = 256 and 1024,k = 14 and 24,
respectively, andk1 = k0.6 log log 2k, whereas for thetwo-step estimatorsα̌(λ̂0)

and α̂LOG(λ̃0) of α, we have chosenm = n/4 and m1 = m0.6 log log2m. The
weight functions used wereψ(u) = −u2 + 35u2.5/6 − 29u3/6 + 2u3 logu and
w(u) = u1/3 − 9u1/2/8, respectively.

Table 1 illustrates the bias and standard deviation of the estimatorsλ̂0 given
in (2.4) and λ̃0 in (4.3). More specifically, sincêλ0 = (2πq̂)/n and λ̃0 =
(2πq̃)/n, we have reported the bias and standard deviation ofq̂ and q̃. Table 2
summarizes the bias, standard deviation and mean square error ofα̌(λ̂0) and
α̌(λ0). The motivation to includeα̌(λ0) is to investigate the relative loss we
incur by lack of knowledge ofλ0 in small samples. Recall that Theorem 3.4
indicates that asymptotically there is no loss. Moreover, Table 2 illustrates the
finite sample performance of the corresponding estimators ofα obtained using the
log-periodogram estimator in (4.4), that is,α̂LOG(λ0) andα̂LOG(λ̃0).

TABLE 1
Bias and standard deviation of q̂ and q̃

α

0.2 0.4 0.6 0.8

λ0 = 0 n 256 9.35 (8.33) 6.38 (6.96) 4.24 (5.39) 2.80 (4.04)
9.26 (7.88) 7.32 (6.85) 5.94 (6.01) 4.85 (5.25)

1024 15.40 (15.50) 8.43 (10.74) 4.81 (7.64) 2.62 (5.76)
22.91 (25.31) 15.55 (20.89) 9.60 (14.02) 6.73 (9.96)

λ0 = π
2 n 256 0.003 (7.64) −0.084 (5.33) −0.091 (2.96) −0.054 (1.56)

0.209 (9.59) 0.270 (9.21) 0.272 (8.66) 0.320 (7.28)

1024 0.051 (11.87) 0.117 (4.77) 0.063 (1.89) 0.216 (1.13)
0.435 (27.89) 0.144 (25.77) −0.213 (21.30) −0.060 (13.52)

The first row in each cell corresponds toq̂, whereas the second row is that ofq̃.
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TABLE 2
Bias, standard deviation and MSE of the long-memory parameter estimators

α

0.2 0.4 0.6 0.8

λ0 n BIAS S.D. M.S.E. BIAS S.D. M.S.E. BIAS S.D. M.S.E. BIAS S.D. M.S.E.
0 256 −0.020 0.064 0.004 −0.022 0.067 0.005 −0.017 0.071 0.005 −0.006 0.072 0.005

−0.019 0.057 0.004 −0.030 0.065 0.005 −0.024 0.074 0.006 −0.006 0.075 0.006
−0.001 0.089 0.008 −0.003 0.089 0.008 −0.003 0.089 0.008 −0.007 0.082 0.007
−0.015 0.084 0.007 −0.043 0.090 0.010 −0.064 0.099 0.014 −0.079 0.105 0.017

1024 −0.006 0.024 0.001 −0.003 0.025 0.001 0.007 0.031 0.001 0.026 0.031 0.002
−0.015 0.030 0.001 −0.014 0.035 0.001 0.002 0.040 0.002 0.032 0.045 0.003
−0.002 0.042 0.002 −0.003 0.042 0.002 −0.005 0.042 0.002 −0.005 0.042 0.002
−0.022 0.045 0.003 −0.039 0.054 0.004 −0.046 0.059 0.006 −0.051 0.066 0.007

π
2 256 −0.020 0.055 0.003 −0.035 0.059 0.005 −0.041 0.064 0.006 −0.040 0.070 0.006

−0.010 0.046 0.002 −0.020 0.053 0.003 −0.004 0.062 0.004 0.043 0.059 0.005
0.002 0.094 0.009 0.000 0.094 0.009 0.000 0.093 0.009 0.005 0.084 0.007

−0.050 0.098 0.012 −0.083 0.121 0.022 −0.100 0.156 0.034 −0.083 0.182 0.040

1024 −0.012 0.022 0.001 −0.015 0.024 0.001 −0.007 0.028 0.001 0.014 0.034 0.001
−0.014 0.018 0.001 −0.017 0.020 0.001 0.003 0.024 0.001 0.044 0.035 0.003
−0.002 0.038 0.001 −0.004 0.038 0.001 −0.006 0.038 0.001 −0.007 0.038 0.001
−0.039 0.046 0.004 −0.064 0.069 0.009 −0.061 0.096 0.013 −0.023 0.097 0.010

The first row in each cell corresponds to the estimatorα̌(λ0), whereas the second, third and fourth correspond to the estimatorsα̌(λ̂0), α̂LOG(λ0) and
α̂LOG(λ̃0), respectively.
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Inspection of Table 1 indicates better performance ofλ̂0 thanλ̃0 across different
models and sample sizes, especially forα > 0.2. For example, whenα = 0.8, the
finite sample performance ofλ̂0 is clearly superior to that of̃λ0, this superiority
being greater with the sample size. With regard to the estimators of the memory
parameterα, we observe that the proposed two-step estimatorα̌(λ̂0) outperforms
α̂LOG(λ̃0) and has better finite sample properties for allα andλ0. In some cases,
the performance of̂αLOG(λ̃0) is very poor compared to that ofα̌(λ̂0), especially
for large values ofα. Finally, when comparing their performances with the
estimators obtained when the location of the poleλ0 is known, we observe that the
relative loss of efficiency of̌α(λ̂0) is smaller than that of̂αLOG(λ̃0). Moreover, as
Theorem 3.4 indicates, it appears that knowledge ofλ0 is not relevant to estimateα
whenα̌(λ̂0) is used, although it seems not to be the case when the log-periodogram
is employed. Altogether, we can conclude thatλ̂0 and α̌(λ̂0) enjoy better finite
sample properties than the corresponding ones based onλ̃0 andα̂LOG(λ̃0).

5. Auxiliary results and proofs. We begin with the proof of Theorem 3.2.

5.1. Proof of Theorem 3.2. Let t = −[υk1/2]. We examine the caset > 0; that
for t < 0 is similarly handled. First, since Condition C.5 and Lemma 6.10 imply
that |h̄ψ − hψ | = O(k−1), we have by the definition of̂α(λq) that

ξ̂n(t/k1/2) = 2−1h−1
ψ

( 6∑
i=1

ξ̂ (i)
n (t)

)(
1+ Op(k−1)

)
after observing that̂ξn(t/k1/2) = ξ̂n(υ), and where

ξ̂ (1)
n (t) = −α

k∑
p=1

ψp log(|p − t |+/p),

ξ̂ (2)
n (t) = −α

k∑
p=1

ψp log
(
(p + t)/p

)
,

ξ̂ (3)
n (t) =

k∑
p=1

ψp log
( f̃p+s−tλ

α|p−t |+
f̃p+sλα

p

)
,

ξ̂ (4)
n (t) =

k∑
p=1

ψp log
(

f̃s−p−tλ
α
p+t

f̃s−pλα
p

)
,

ξ̂ (5)
n (t) =

k∑
p=1

ψp log
(

f̃ −1
p+s−t f̂p+s−t

f̃ −1
p+s f̂p+s

)
,

ξ̂ (6)
n (t) =

k∑
p=1

ψp log
(

f̃ −1
s−p−t f̂s−p−t

f̃ −1
s−pf̂s−p

)
,
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where f̃	 = (2k1 + 1)−1 ∑k1
j=−k1

f(j+	)I(j+	 =s)+(s+1)I(j+	=s) and |q|+ =
max(|q|,1).

We examine the behavior of̂ξ (i)
n (t), for i = 1, . . . ,6, in four propositions.

Specifically, Propositions 5.1 and 5.2 deal with the limiting bias of
∑4

i=1 ξ̂
(i)
n (t),

although for the proof of Proposition 5.1 we will allowt < ρk for 0 < ρ < 1.
Proposition 5.3 examines the finite-dimensional limiting distribution ofξ̂

(5)
n (t) +

ξ̂
(6)
n (t) and Proposition 5.4 its tightness. Propositions 5.1–5.4 imply Theorem 3.2.

PROPOSITION5.1. ξ̂
(1)
n (t) + ξ̂

(2)
n (t) = −ψ̄ ′′α t2

k
+ O( t

k
+ t5/2

k3/2 ).

PROOF. We only examinêξ (1)
n (t), ξ̂

(2)
n (t) being identically handled. Assume

ρ < 1/2 first, so that 0< t < k/2. Then

ξ̂ (1)
n (t) = −α

t∑
p=1

ψp log(|p − t |+/p) − α

k∑
p=t+1

ψp log
(
(p − t)/p

)
,(5.1)

where the first term on the right-hand side isO(k−2t3) because|ψp| ≤ Dp2/k2 by
Condition C.5 and the integrability of|u2 log((1 − u)/u)|. Next, the second term
on the right-hand side of (5.1) is

−α

2t∑
p=t+1

ψp log
(
(p − t)/k

)

− α

k−t∑
p=t+1

(ψp+t − ψp) log(p/k) + α

k∑
p=k−t+1

ψp log(p/k).

Proceeding as with the first term on the right-hand side of (5.1), the first term of the
last displayed expression isO(k−2t3 log(k/t)), whereas the last term isO(k−2t3)

by Taylor expansion ofψ(u) aroundu = 1, noting that Condition C.5 implies
thatψ(1) = 0 and that

∑k
p=k−t+1 | log(p/k)| = O(t2/k) by Taylor expansion of

log(x) aroundx = 1. Finally, the second term of the last displayed expression is

−α
t

k

k−t∑
p=t+1

ψ ′
p log(p/k) − α

2

t2

k

1

k

k−t∑
p=t+1

ψ ′′
p log(p/k) + O

(
t5/2

k3/2

)
(5.2)

by integrability of | logu| and the fact thatψ ′′(u) is Lipschitz continuous of
order 1/2 by Condition C.5. By Lemma 6.10 and Condition C.5, the first term
of (5.2) is

−αt

∫ 1

0
ψ ′(u)(logu)du + O

(
t

k

)
+ O

(
t

k

({
t∑

p=1

+
k∑

p=k−t+1

}
|ψ ′

p log(p/k)|
))

= αt

∫ 1

0
ψ(u)u−1 du + O

(
k−1t

(
1+ t2k−1 log(k/t)

))
,
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noting that Condition C.5 implies thatψ(u)(logu)|10 = 0 and|ψ ′
p| ≤ Dp/k and

then proceeding as above. On the other hand, the second term of (5.2) is

−α

2

t2

k

∫ 1

0
ψ ′′(u)(logu)du + O

(
t3

k2 log
(

k

t

))
= −α

ψ̄ ′′t2

2k
+ O

(
t3

k2 log
(

k

t

))
,

so that, because|k−1/2t1/2 log(k/t)| ≤ D for 0< t ≤ k, we conclude that

ξ̂ (1)
n (t) = αt

∫ 1

0
ψ(u)u−1 du − α

ψ̄ ′′t2

2k
+ O

(
t

k
+ t5/2

k3/2

)
.

Now, when 1/2 ≤ ρ < 1, so thatk/2 ≤ t < k, the proof is identical since in this
case the left-hand side of (5.1) is−α

∑t
p=1 ψp log(|t −p|+/k)−α

∑k−t
p=1(ψp+t −

ψp) log(p/k) + α
∑k

p=k−t+1 ψp log(p/k). Then proceed as above. Proceeding

similarly, ξ̂
(2)
n (t) = −αt

∫ 1
0 ψ(u)u−1 du − α

ψ̄ ′′t2

2k
+ O( t

k
+ t5/2

k3/2 ). From here the
conclusion is obvious. �

PROPOSITION5.2. ξ̂
(3)
n (t) + ξ̂

(4)
n (t) = o(1).

PROOF. We only examinêξ (3)
n (t), asξ̂

(4)
n (t) is similar. By definitionξ̂ (3)

n (t) is

−
2k1∑
p=1

ψpap −
k∑

p=2k1+1

ψpap −
k∑

p=1

ψpg̃p,(5.3)

where

ap = log
(
f −1

(p+s)I(p =0)+(s+1)I(p=0)f̃p+s

)
− log

(
f −1

(p+s−t)I(p =t)+(s+1)I(p=t)f̃p+s−t

)
and

g̃p = log
(
λα

pf(p+s)I(p =0)+(s+1)I(p=0)

)
− log

(
λα|p−t |+f(p+s−t)I(p =t)+(s+1)I(p=t)

)
.

Since by Condition C.1 and|λ0 − λs | ≤ π
n

, D−1(k1/p)α < λα
k1

fp+s <

D(k1/p)α , it implies that, forp ≤ 2k1, |ap| = O(log(k1/p)) by Lemma 6.1. Note
thatat = O(logk1). Hence the absolute value of the first term of (5.3) is bounded
by

D|ψt | log(k1) + D

2k1∑
p=1;p =t

|ψp| log
(

k1

p

)
= O

(
k3

1

k2

)
= o(1)



SEMIPARAMETRIC ESTIMATION OF THE POLE 1859

by Condition C.4 and because Condition C.5 implies that|ψp| ≤ D(p/k)2. The
absolute value of the second term of (5.3) is bounded by

D

k1[log1/3 k1]∑
p=2k1+1

|ψpap| + D

k∑
p=k1[log1/3 k1]+1

|ψpap|

= O

(
k3

1 logk1

k2 + tk2
1

k2

(
1+ log

(
k

t

)))
= o(1),

where for the first term on the left-hand side we have used the fact that by
Lemma 6.1(a),D−1 < |f −1

p+s f̃p+s | < D and then Condition C.5, and for the second

term on the left-hand side the fact that by Lemma 6.1(a),|f −1
p+s f̃p+s − 1| =

O(p−2k2
1), which implies that| log(f −1

p+s f̃p+s)| = O(p−2k2
1) by the mean value

theorem, and then Lemma 6.4 withνp = k−2
1 log(f −1

p+s f̃p+s) there.
To complete the proof, it remains to show that the third term of (5.3) iso(1). By

Condition C.1,
∑k

p=1 ψpg̃p is

k∑
p=1

ψp

(
log

(
g(λp+s)

) − log
(
g(λp+s−t )

))
(5.4)

− α

k∑
p=1

ψp

(
log(|λp+s − λ0|λ−1

p ) − log
(|λp−t+s − λ0|+λ−1

|p−t |+
))

.

Denote the first and second derivatives of log(g(λ)) by h(λ) andh′(λ), respec-
tively. The first term of (5.4) is

−
(

2πt

n

) k∑
p=1

ψph(λp+s) −
(

2πt

n

)21

2

k∑
p=1

ψph′(λp+s−θ(p)t

)

= −4π2t

n2 h′(λs)

k∑
p=1

pψp + o(1),

whereθ(p) ∈ (0,1), by Condition C.4 and because Lemma 6.10 and Condition C.5
imply thatk−1 ∑k

p=1 ψp = O(k−1), so that

k∑
p=1

ψph(λp+s) =
k∑

p=1

ψp

(
h(λp+s) − h(λs)

) + O(1)

= 2π

n
h′(λs)

k∑
p=1

pψp + O(k3n−2 + 1).
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Next, the second term of (5.4) is

−α

{ 2t∑
p=1

+
k∑

p=2t+1

}
ψp

(
log

(
(λp+s − λ0)λ−1

p

) − log
(|λp−t+s − λ0|+λ−1

|p−t |+
))

.

The contribution due to
∑2t

p=1 is o(1) by Condition C.5 and then Condition C.4,

whereas the contribution due to
∑k

p=2t+1, by Taylor expansion of log(x), is

−αn

(
λs − λ0

2π

) k∑
p=2t+1

ψp

(
1

p
− 1

p − t

)

+ α

2
n2

(
λs − λ0

2π

)2 k∑
p=2t+1

ψp

{
1

p2(s)
− 1

p2(s − t)

}

= O(tk−1 logk) + O(k−1 + tk−2 logk) = o(1),

wherep(s − a) is an intermediate point betweenp − a and (p − a) + n(λs −
λ0)/(2π), and then becausen|λ0 − λs | ≤ π , |p−jψp| ≤ Dk−j for j = 1,2, by
Condition C.5 and the fact that|p2p−2(s)| + |(p − t)2p−2(s − t)| ≤ D. So, we
conclude that

ξ̂ (3)
n (t) = −4π2t

n2 h′(λs)

k∑
p=1

pψp + o(1).

Similarly, ξ̂
(4)
n (t) = 4π2th′(λs)

∑k
p=1 pψp/n2 + o(1). From here the conclusion

of the proposition is obvious.�

PROPOSITION 5.3. The finite-dimensional distributions of ξ̂
(5)
n (t) + ξ̂

(6)
n (t)

converge to those of a normal random variable.

PROOF. By the Wold device, it suffices to show that, for any finitel > 0,

l∑
i=1

φi

(
ξ̂ (5)
n (ti) + ξ̂ (6)

n (ti)
) d→ N

(
0, ς

l∑
i,j=1

φiφjυiυj

)
,

whereφi satisfies
∑l

i=1 |φi |2 = 1 andυi = lim ti/k1/2. Denotingf̃ −1
	 f̂	 by ĝ	,

ξ̂ (5)
n (t) = −

2t∑
p=1

ψp log(ĝp+s/ĝp+s−t ) −
k∑

p=2t+1

ψp log(ĝp+s/ĝp+s−t )

(5.5) := b1t + b2t .
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We begin by showing thatb1t = op(1). In particular, we will show something
stronger than needed, that is, that for eachε > 0 there existsn0 such that

Pr
{

sup
t1≤q≤t2

∣∣b1q − b1t1

∣∣ > ε

}
< DM3k−1/2ε−1 log−1 k1(5.6)

for all n ≥ n0 and 0≤ t1 < t2 ≤ [k1/2M]. Becauset2 ≤ [k1/2M],

sup
t1≤q≤t2

∣∣b1q − b1t1

∣∣ ≤ 2 sup
0≤|q|≤2[k1/2M]

| log ĝq+s |
2[k1/2M]∑

p=1

|ψp|

≤ D sup
0≤|q|≤2[k1/2M]

| log ĝq+s |M3k−1/2,

since Condition C.5 implies that
∑a

p=1 |ψp| ≤ Da3/k2. Then by Markov’s
inequality the left-hand side of (5.6) is bounded by

DM3k−1/2ε−1E sup
0≤|q|≤2[k1/2M]

| log ĝq+s | ≤ DM3k−1/2ε−1 log−1 k1,

because Lemma 6.1 and the definition off̂q+s imply that ĝq+s is bounded from
below byD−1n−h, for someh ≥ 1, and forx > D−1n−h,

| logx − (x − 1)| ≤ D(x − 1)2 logn,(5.7)

by Condition C.4,| logn/ logk1| ≤ D, and the fact that by Lemma 6.3 and
Condition C.4, for someβ > 0,

E

(
sup

q : |q|≤2k1

|ĝq+s − 1|µ
)

≤ D

log1+µ k1
,(5.8)

E

(
sup

q : 2k1<|q|
|ĝq+s − 1|µ

)
≤ D

k
βµ
1

.(5.9)

So (5.6) holds, which implies thatb1t = op(1).
Next we look at the second term on the right-hand side of (5.5), that is,b2t .

Denoting

b3t =
k−t∑

p=2t+1

(ψp+t − ψp) log(ĝp+s),(5.10)

we have thatb2t − b3t is

2t∑
p=t+1

ψp+t log(ĝp+s) −
k∑

p=k−t+1

ψp log(ĝp+s).(5.11)
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Because by Condition C.5,{∑2t
p=t+1 |ψp+t | + ∑2q

p=q+1 |ψp+q |} ≤ Dk−2(t3 +
q3) ≤ DM3k−1/2, the first term of (5.11) satisfies

Pr

{
sup

t1≤q≤t2

∣∣∣∣∣
2t1∑

p=t1+1

ψp+t1 log(ĝp+s) −
2q∑

p=q+1

ψp+q log(ĝp+s)

∣∣∣∣∣ > ε

}
(5.12)

≤ DM3

εk1/2 logk1

by Markov’s inequality and (5.7)–(5.8), whereas the second term satisfies

Pr

{
sup

t1≤q≤t2

∣∣∣∣∣
(

k∑
p=k−t1+1

−
k∑

p=k−q+1

)
ψp log(ĝp+s)

∣∣∣∣∣ > ε

}
≤ DM

ε logk1

(
t2 − t1

k1/2

)

by (5.7) and (5.9) and because
∑k

p=k−q+1 −∑k
p=k−t1+1 = ∑k−t1

p=k−q+1 and by

Condition C.5, supt1≤q≤t2

∑k−t1
p=k−q+1 |ψp| ≤ ∑k−t1

p=k−t2
|ψp| ≤ Dk−1(t2

2 − t2
1) ≤

DMk−1/2(t2 − t1).
So, (5.6), (5.12) and the last inequality imply that for anyε > 0 there existsn0

such that for alln ≥ n0,

Pr
{

sup
t1≤q≤t2

∣∣( ξ̂ (5)
n (q) − b3q

) − (
ξ̂ (5)
n (t1) − b3t1

)∣∣ > ε

}
(5.13)

≤ DM

εk1/2 logk1

(
M2 + (t2 − t1)

)
.

Clearly (5.13) implies that sup0≤t≤2[k1/2M] |ξ̂ (5)
n (t) − b3t | = op(1). Proceeding

similarly, we have that for anyε > 0 there existsn0 such that for alln ≥ n0,

Pr
{

sup
t1≤q≤t2

∣∣( ξ̂ (6)
n (q) − b4q

) − (
ξ̂ (6)
n (t1) − b4t1

)∣∣ > ε

}
(5.14)

≤ DM

εk1/2 logk1

(
M2 + (t2 − t1)

)
,

where

b4t =
k∑

p=3t+1

(ψp−t − ψp) log(ĝs−p).(5.15)

Next we examineb3t andb4t . Denotingϑ	 = ĝ	 − 1 and writing

b̃t =
k−t∑

p=2t+1

(ψp+t − ψp)ϑp+s,
˜̃
bt =

k∑
p=3t+1

(ψp−t − ψp)ϑs−p,(5.16)
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Lemma 6.5 implies thatb3t = b̃t + t/k1/2op(1) andb4t = ˜̃
bt + t/k1/2op(1), where

theop(1) term is uniformly int ≤ ρk, for ρ < 1/3.

So it remains to examinẽbt and ˜̃
bt . By Taylor expansion ofψp,

b̃t = t

k

k−t∑
p=2t+1

ψ ′
pϑp+s + 1

2

t2

k2

k−t∑
p=2t+1

ψ ′′
(

p

k
+ δ

t

k

)
ϑp+s,(5.17)

whereδ = δ(t) ∈ (0,1). The first term on the right-hand side of(5.17) is

t

k

k−2k1∑
p=2k1+1

ψ ′
pϑp+s + t

k

{ 2k1∑
p=2t+1

+
k−t∑

p=k−2k1+1

}
ψ ′

pϑp+s .

By Lemma 6.2 and Conditions C.4 and C.5, the second term of the last displayed
expression is clearlytk1/2

1 /kOp(1 + k−1k
α+1/2
1 I(α ≥ 1/2)) = t/k1/2op(1),

where theop(1) term does not depend ont ≤ ρk. On the other hand, writing
ηj = f −1

j+sIj+s − 1, the first term is

t

k

k−2k1∑
p=2k1+1

ψ ′
p

2k1 + 1

k1∑
j=−k1

ηp+j

(5.18)

+ t

k

k−2k1∑
p=2k1+1

ψ ′
p

2k1 + 1

k1∑
j=−k1

(
fp+j+s

f̃p+s

− 1
)
ηp+j .

Since |f̃ −1
p+sfp+s − 1| = f̃ −1

p+sfp+s |1 − f −1
p+s f̃p+s | = O(k2

1/p
2) by Lemma 6.1,

|f −1
p+sfp+j+s − 1| ≤ D k1

p
|j |
k1

by Condition C.3, and by an obvious extension

of Robinson [32],E|∑k1
j=−k1

cjηp+j | = O(k
1/2
1 ) for any |cj = c(j/k1)| ≤ D,

we obtain that the first absolute moment of the second term of (5.18) is
by Condition C.5 and then Condition C.4,tk−1/2O(k

1/2
1 k−1/2 ∑k

p=1 |ψ ′
p|/p) =

t/k1/2o(1), where theo(1) term does not depend ont ≤ ρk.
On the other hand, after rearranging subindices, the first term of (5.18) is

t

k

k−2k1∑
p=2k1+1

ηp

(
1

2k1 + 1

2k1∑
j=1

ψ ′
p+j

)

+ t

k

2k1∑
p=k1+1

ηp

(
1

2k1 + 1

p−k1∑
j=1

ψ ′
j+k1

)

+ t

k

k−k1∑
p=k−2k1+1

ηp

(
1

2k1 + 1

k−k1∑
j=p

ψ ′
j−k1

)
.
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After standard calculations and routine application of Robinson’s [32] Theorem 2,
the last two terms aret/kOp(k

1/2
1 ) = t/k1/2op(1) by Conditions C.4 and C.5,

whereas the first term of the last displayed expression is

t

k

k−2k1∑
p=2k1+1

ψ ′
pηp + t

k

k−2k1∑
p=2k1+1

ψ ′
pηp

(
1

ψ ′
p

[
1

2k1 + 1

2k1∑
j=1

ψ ′
p+j

]
− 1

)
.

We note thatψ ′(u) continuous by Condition C.5 implies thatψ ′
p+j /ψ

′
p → 1 as

k1/p → 0, and hence the expression inside the parentheses converges to zero as
p → ∞. So by Toeplitz’s lemma we conclude that the last displayed expression,
and therefore also the first term of (5.17), is

t

k1/2

(
1

k1/2

k−2k1∑
p=2k1+1

ψ ′
pηp + op(1)

)
.

Proceeding similarly as with the first term on the right-hand side of (5.17), the
second term of (5.17) isk−3/2t2(k−1/2 ∑k−2k1

p=2k1+1 ψ ′′(p
k

+ δ t
k
)ηp + op(1)), so that

b̃t = t

k1/2

(
1

k1/2

k−2k1∑
p=2k1+1

ψ ′
pηp + t

k
Op(1) + op(1)

)
,(5.19)

where theop(1) andOp(1) terms are uniform int ≤ ρk. Similarly, we obtain that

˜̃
bt = t

k1/2

(
1

k1/2

k−2k1∑
p=2k1+1

ψ ′
pη−p + t

k
Op(1) + op(1)

)
,(5.20)

where theop(1) andOp(1) terms are uniform int ≤ ρk.
Thus, (5.13), (5.14), Lemma 6.5, (5.19) and (5.20) imply that, forti ≤ [Mk1/2],

l∑
i=1

φi

(
ξ̂ (5)
n (ti) + ξ̂ (6)

n (ti)
) =

l∑
i=1

φi

(
b̃ti + ˜̃

bti

) + ti

k1/2op(1)

(5.21)
d→ N

(
0, ς

l∑
i,j=1

φiφjυiυj

)

by Robinson’s [32] Theorem 2 and Toeplitz’s lemma, since|k−1 ∑k−t
	=t+1(ψ

′
	)

2 −
ς | = o(1) by Lemma 6.10. �

PROPOSITION5.4. ξ̂
(5)
n (t) and ξ̂

(6)
n (t) are tight.

PROOF. Write ct = ξ̂
(5)
n (t) − b3t , whereb3t is given in (5.10). To show that

ξ̂
(5)
n (t) is tight it suffices to show thatct and b3t are tight. Since the finite-

dimensional distributions ofct converge to zero [cf. (5.13)], Billingsley’s [4]
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Theorem 15.4 implies thatct is tight if for eachε > 0 andν > 0 there exists a
δ ∈ (0,1) such that

Pr{ϑ ′′(ct , δ) ≥ ε} ≤ ν(5.22)

holds for alln ≥ n0, where

ϑ ′′(ct , δ) = supmin
{∣∣ct − ct1

∣∣, ∣∣ct2 − ct

∣∣},
and the supremum is overt1, t andt2 satisfyingt1 ≤ t ≤ t2 with t2 − t1 ≤ δ[k1/2M]
andδ ∈ (0,1). Observe that we can assumek−1/2 ≤ [t2/k1/2M] − [t1/k1/2M]. If
[t2/k1/2M] − [t1/k1/2M] < k−1/2, then eithert1 andt lie in the same subinterval
[(p − 1)/M,p/M) or elset and t2 do; in either of these cases the left-hand side
of (5.22) vanishes.

Inequalities (14.9) and (14.46) in [4] imply that (5.22) holds if

Pr{ϑ(ct , δ) ≥ ε} ≤ ν,

for some 0< δ ≤ 1, where

ϑ(ct , δ) = sup
|(t−v)/(k1/2M)|<δ

|ct − cv|.

(Observe that asct converges in probability to zero, which has continuous paths,
the Skorohod metric can be replaced by the uniform topology.) By the corollary of
Billingsley’s [4] Theorem 8.3, it suffices to show that

r∑
i=1

Pr
{

sup
ti−1≤v≤ti

∣∣cv − cti−1

∣∣ ≥ ε/3
}

≤ ν,(5.23)

where 2−1δ < [k1/2M]−1(ti − ti−1) < δ and 0= t0 < t1 < · · · < tr = [k1/2M]. But
this is the case since by (5.13),

Pr
{

sup
ti−1≤v≤ti

∣∣cv − cti−1

∣∣ ≥ ε/3
}

≤ DM3δ

ε logk1
.

Now choosen0 such thatDM3ε−1 log−1 k1 < ν sincer ≤ 2[δ−1] to obtain (5.23).
Proceeding similarly, but using (5.14) instead of (5.13),ξ̂

(6)
n (t) − b4t is also tight.

Next we show the tightness condition forb3t ; the proof forb4t is similar and is
omitted. Considert < q. Thenb3t − b3q is

k−t∑
p=2t+1

(ψp+t − ψp) log ĝp+s −
k−q∑

p=2q+1

(ψp+q − ψp) log ĝp+s

=
{ 2q∑

p=2t+1

+
k−t∑

p=k−q+1

}
(ψp+t − ψp) log ĝp+s(5.24)

+
k−q∑

p=2q+1

(ψp+t − ψp+q) log ĝp+s .
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The first term on the right-hand side of (5.24) is tight, as we now show. Because
by Condition C.5,

|ψp+t − ψp| ≤ Dk−1t,

∣∣∣∣∣
2q∑

p=2t+1

1+
k−t∑

p=k−q+1

1

∣∣∣∣∣ ≤ 3(q − t),

abbreviating the first term on the right-hand side of (5.24) byζt,q , we obtain that

r∑
i=1

Pr
{

sup
ti−1≤q≤ti

∣∣ζti−1,q

∣∣ ≥ ε

}
≤

r∑
i=1

Pr
{
D

ti − ti−1

k1/2 sup
p=2t+1,...,k

| log ĝp+s | ≥ ε

}

≤ DM

ε logk1

by Markov’s inequality and (5.7)–(5.8) withµ = 1 there. Then choosen0 such that
DMε−1 log−1 k1 < ν to complete.

Next, Taylor expansion implies that the second term on the right-hand side
of (5.24) is(

t − q

k

) k−q∑
p=2q+1

ψ ′
p+t log ĝp+s + 1

2

(
t − q

k

)2 k−q∑
p=2q+1

ψ ′′
p+	 log ĝp+s,(5.25)

where	 is an intermediate point betweent andq.
The second term of (5.25) is tight as we now show. Proceeding as with the proof

of tightness ofct , it suffices to show that for allν andε > 0 there existsn0 such
that

r∑
i=1

Pr

{
sup

ti−1≤q≤ti

∣∣∣∣(q − ti−1

k

)2 k−q∑
p=2q+1

|ψ ′′
p+	 log ĝp+s |

∣∣∣∣ ≥ ε

}
≤ ν

for all n ≥ n0 and 0≤ t0 < · · · < tr ≤ [k1/2M]. But by (5.7) and (5.8) and the
fact that|ψ ′′(u)| ≤ D by Condition C.5, the left-hand side of the last displayed
inequality is bounded by

Dε−1k−1 log−1 k1

r∑
i=1

(ti − ti−1)
2 ≤ DM2ε−1 log−1 k1

r∑
i=1

δ2 < ν,

sincer ≤ 2[δ−1] and 2−1δ < [k1/2M]−1(ti − ti−1) < δ.
To finish the proof it remains to examine the first term of (5.25), denoted bydt,q .

Since from the proof of Proposition 5.3, the finite-dimensional distributions ofdt,q

converge to those of the limiting Gaussian process which has continuous paths, by
Billingsley’s [4] Theorem 15.4, it implies that it suffices to check that

Pr{ϑ ′′(dt,q, δ) ≥ ε} ≤ ν
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for somen ≥ n0. Now by Billingsley’s [4] Theorem 15.6, it suffices to check the
moment condition

E|dt,qdq,v|β1 ≤ D

∣∣∣∣ t − v

k1/2

∣∣∣∣β2

(5.26)

for t ≤ q ≤ v and someβ1 > 0 andβ2 > 1. Write

dt,q =
(

q − t

k

) k−q∑
p=2q+1

ψ ′
p+t (ĝp+s − 1)

(5.27)

+
(

q − t

k

){ 3k1∑
p=2q+1

+
k−q∑

p=3k1+1

}
ψ ′

p+t (1− ĝp+s + log ĝp+s).

Using (5.7), the first absolute moment of the second term on the right-hand side
of (5.27) is bounded by

D

∣∣∣∣q − t

k

∣∣∣∣ logn

{ 3k1∑
p=2q+1

+
k−q∑

p=3k1+1

}
|ψ ′

p+t |E(ĝp+s − 1)2

≤ D|q − t | logn

(
k2α

1

k2 I(α ≥ 1/2) + 1

k1

)

≤ D

∣∣∣∣ t − q

k1/2

∣∣∣∣1+ξ

logn

(
k(ξ+1)/2

k1
+ k2α

1 k(1+ξ)/2

k2 I(α ≥ 1/2)

)

≤ D

∣∣∣∣ t − q

k1/2

∣∣∣∣1+ξ

for some 0< ξ < 3(1 − α) by Lemma 6.2 and observing that
∑3k1

p=2q+1 |ψ ′
p+t | ≤

Dk2
1k

−1 = o(k1/2) by Conditions C.4 and C.5. So, the second term on the
right-hand side of (5.27) satisfies (5.26), which follows by the Cauchy–Schwarz
inequality, choosingβ1 = 1/2 andβ2 = 1 + ξ , and the fact that(q − t)(v − q) ≤
(v − t)2. Finally, proceeding as with the proof ofb̃t given in (5.19),

E

∣∣∣∣∣
(

q − t

k

) k−q∑
p=2q+1

ψ ′
p+t (ĝp+s − 1)

∣∣∣∣∣
2

≤ D

(
q − t

k1/2

)2

,

which implies that the first term on the right-hand side of (5.27) satisfies (5.26)
choosingβ1 = 1 andβ2 = 2, and noting that(q − t)(v − q) ≤ (v − t)2. So, we
conclude thatb3t is tight. Proceeding similarly,b4t is also tight, which completes
the proof. �
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5.2. Proof of Corollary 3.3. (a) By Theorem 3.2,ξ̂n(υ)
weakly	⇒ ξ(υ) in

D[−M,M] for any arbitraryM > 0. Next, since the limiting Gaussian process
ξ(υ) has continuous paths, that is, it belongs toC[−M,M], the Skorohod metric
can be replaced by the uniform topology. On the other hand, by Eddy [10], the
argmaximum is a continuous functional in the set of parabolas with fixed second
derivatives inC[−M,M]. So, by van der Vaart and Wellner’s [34] Theorem 3.2.2,
we obtain that

υ̂n = argmax
υ

ξ̂n(υ)
d→ argmax

υ
ξ(υ) = υ∗,

where υ∗ = �1/2X and X = N(0,1). Observe that Theorem 3.1 shows that
Pr{|υ̂n| < L} > 1 − δ for n sufficiently large. This together with Problem 1.3.9
in [34], page 27, implies that̂υn is uniformly tight.

But by construction,̂λ0 = λ0 + n−1(2πk1/2)υ̂n + O(n−1), that is, (3.2), and
hence

(2πk1/2)−1n(λ̂0 − λ0) = υ̂n + O(k−1/2)
d→ υ∗ = �1/2X.

(b) As in (a), the limit process isξ(υ), where from the definition of̂λ0, υ ≥ 0.
Thus, if X takes a positive value, the restrictionυ ≥ 0 is not binding and the
maximum ofξ(υ) is achieved atυ∗. However, whenX takes a negative value,
the restriction is binding and thus the maximum is atυ = 0 due to the parabolic
structure ofξ(υ).

(c) The proof is identical to part (b) once the wording positive (negative) is
replaced by negative (positive).�

5.3. Proof of Theorem 3.1. Similarly to the proof of Theorem 3.2, it suffices
to show the theorem with̄hψ replaced byhψ . With that replacement and recalling
that ĝp = f̃ −1

p f̂p, α̂(λq) becomes

h−1
ψ

2k

k∑
p=1

ψp(log ĝp+q + log ĝq−p)

+ h−1
ψ

2k

k∑
p=1

ψp log
(
λα|p+q−s|+ f̃p+q

)
(5.28)

+ h−1
ψ

2k

k∑
p=1

ψp log
(
λα|q−p−s|+ f̃q−p

)

− α
h−1

ψ

2k

k∑
p=1

ψp

(
log(2π |p + q − s|+/n) + log(2π |q − p − s|+/n)

)
.
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Because (5.7)–(5.9) imply that sup	=0,...,[n/2] | log ĝ	| = op(1), we then have
that, uniformly in q, the first term of (5.28) converges to zero in probability.
Next, consider the second term of (5.28). (Recall that 0≤ q ≤ [n/2].) If q <

max{0, s − [k1 logk1] − k} or s + [k1 logk1] < q, this is

h−1
ψ

2k

k∑
p=1

ψp

{
log

(
f̃p+q

fp+q

)
− log

(
g(λq)

g(λp+q)

)
(5.29)

+ log
(

λα
p+q−s

|λp+q − λ0|α
)}

+ o(1),

because Lemma 6.10 and Condition C.5 imply thatk−1 ∑k
p=1 ψp = O(k−1) and

by Condition C.1,fp = |λp − λ0|−αg(λp). But by Lemma 6.1(a) and Taylor
expansion of log(z) aroundz = 1, (5.29) is bounded in absolute value by

D

k

k∑
p=1

|ψp|
(∣∣∣∣log

(
g(λq)

g(λp+q)

)∣∣∣∣ + k2
1

|q + p − s|2 + α log
(

λ|p+q−s |
|λp+q − λ0|

))
+ o(1).

The contribution due to the second term inside the brackets is easily shown to be
o(1), as is the contribution due to the third term by Taylor expansion and the fact
thatn|λs − λ0| < π . Finally, by the mean value theorem, the first term inside the
brackets is bounded by

D

k

k∑
p=1

p

n
|ψp| = O

(
k

n

)
,

because by Condition C.1,g(λ) is continuously differentiable. Next, whens −
[k1 logk1] < q ≤ s + [k1 logk1], the second term of (5.28) is alsoo(1), since there
are at mostO([k1 logk1]) terms such that|p + q − s| < [k1 logk1], and hence
by Lemma 6.1,D−1 logk1 ≤ log(f̃p+q{λα|p+q−s|+ + f −1

p+q}) ≤ D, whereas for the
remaining ones|p + q − s| > [k1 logk1], so that proceeding as before, it will
be o(1) by Condition C.4. Thus, we conclude that the second term of (5.28) in
this region isO(k−1k1 logk1) + o(1) = o(1) by Condition C.4. Similarly, when
max{0, s − [k1 logk1] − k} ≤ q ≤ s − [k1 logk1] we obtain that the second term
of (5.28) is alsoo(1). Proceeding as with the proof of the second term of (5.28), it
follows that the third term of (5.28) iso(1) uniformly in q.

Using
∫ 1
0 ψ(x)dx = 0 and Lemma 6.10, we conclude that

sup
0≤q≤[n/2]

∣∣α̂(λq) − 1
2δ+,n(λq) − 1

2δ−,n(λq)
∣∣ = op(1),

where δ+,n(λq) = −αh−1
ψ k−1 ∑k

p=1 ψp log(|p + q − s|+/k) and δ−,n(λq) =
−αh−1

ψ k−1 ∑k
p=1 ψp log(|q − p − s|+/k).



1870 J. HIDALGO

We now examine the properties ofδ+,n(λq); those ofδ−,n(λq) are handled
similarly. First, by Lemma 6.10,

δ+,n(λs) − α = −α
h−1

ψ

k

k∑
p=1

(
ψp log

(
p

k

)
+ hψ

)
= O(k−1).

Now, for arbitrarily smallρ > 0, supρ−1k≤|q−s| δ+,n(λq) < Dρ since by Taylor
expansion,

sup
ρ−1k≤|q−s|

∣∣log(|q − s|+) − log(|±p + q − s|+)
∣∣ ≤ Dρ.

Next, by Proposition 5.1, sup|q−s|≤ρk δ+,n(λq) − α < −Dρ2, whereas since
δ+,n(λq) is a nonincreasing function in|q − s|, supρk≤|q−s|≤ρ−1k δ+,n(λq) − α <

−Dρ2.
Therefore, writinĝ�n(t) = α̂(λs + (2πt)/n), we conclude that

Pr
(

sup
|t |≥ρk

(
�̂n(t) − �̂n(0)

)
> 0

)
→ 0,

that is, λ̂0 is a consistent estimator ofλ0. Thus, to complete the proof of the
theorem, it suffices to show that for anyε > 0, there existsL > 0 such that

Pr
(

sup
ρk>|t |>k1/2L

(
�̂n(t) − �̂n(0)

)
> 0

)
< ε.(5.30)

By Theorem 3.2 (cf. Propositions 5.1–5.3),

k

t

(
�̂n(t) − �̂n(0)

) = −ψ̄ ′′ tαh−1
ψ

k

(
1+ O

((
t

k

)1/2))
+ 1

t
(b̃t + ˜̃

bt )

+ 1

t
(b3t − b̃t ) + 1

t

(
ξ̂ (5)
n (t) − b3t

)
+ 1

t
(b4t − ˜̃

bt ) + 1

t

(
ξ̂ (6)
n (t) − b4t

)
.

By Proposition 5.3 [cf. (5.19) and (5.20)] and Lemma 6.9,

sup
|t |<ρk

∣∣∣∣1t (b̃t + ˜̃
bt )

∣∣∣∣ = 1

k1/2 sup
|t |<ρk

∣∣∣∣∣ 1

k1/2

k−|t |∑
p=|t |

ψ ′
p(2πIε,p+s − 1) + op(1)

∣∣∣∣∣
= Op

(
1

k1/2

)
,

since by Condition C.5ψ ′(u) is continuous, so that sup|t |<ρk |k−1/2 ∑k−|t |
p=|t | ψ ′

p ×
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(2πIε,p+s − 1)| = Op(1) by Lemma 6.7, and thence by Lemma 6.5,

sup
|t |<ρk

∣∣∣∣1t (b̃t + ˜̃
bt ) + 1

t
(b3t − b̃t ) + 1

t
(b4t − ˜̃

bt )

∣∣∣∣ = Op(k−1/2).(5.31)

By Condition C.4, there exists a finite positive integerr such thatk(r−1)β
1 <

k1/2 < k
(r+1)β
1 . Consider first the case 2k

1+rβ
1 < k. Then the left-hand side

of (5.30) is bounded by
r∑

	=1

Pr
(

sup
L	−1k/k

(	−1)β
1 ≥|t |>L	k/k

	β
1

k

t

(
�̂n(t) − �̂n(0)

)
> 0

)

+ Pr
(

sup
Lrk/k

rβ
1 ≥|t |>2k1L̃

k

t

(
�̂n(t) − �̂n(0)

)
> 0

)
(5.32)

+ Pr
(

sup
2k1L̃≥|t |>k1/2L

k

t

(
�̂n(t) − �̂n(0)

)
> 0

)
,

whereL0 = ρ, L	 > 0 for 	 > 1 and L̃ > 0. Sinceh−1
ψ αψ̄ ′′ > 0 and�̂n(t) −

�̂n(0) > 0, the third term of (5.32) is bounded by

Pr
{∣∣∣∣Op

(
k2

1

k3/2 logk1
+ k1

k
β
1 k1/2

+ 1
)∣∣∣∣ > α|ψ̄ ′′| inf

2k1L̃≥|t |>k1/2L

∣∣∣∣ t

k1/2

∣∣∣∣} < ε

for L large enough, by Lemma 6.8(b) and (5.31), and because Condition C.5
implies that k2

1k
−3/2 = o(1), and k−1/2k

1−β
1 = k1/2k

1+rβ
1 /(kk

(1+r)β
1 ) = O(1).

Next, the second term of (5.32) is bounded by

Pr
{∣∣∣∣Op

(
k

k
(r+1)β+1
1

+ 1

k
rβ
1 logk1

+ k1/2

k1

)∣∣∣∣ = op(1)

> α|ψ̄ ′′| inf
L	k/k

	β
1 >|t |>2L̃k1

∣∣∣∣ t

k1

∣∣∣∣} < ε

for L̃ large enough, by Lemma 6.8(a), (5.31) and the fact thatk1/2 = o(k1),
k1/2 < k

(r+1)β
1 and Condition C.4.

Finally, consider the first term of (5.32), whose typical element is, proceeding
as before, bounded by

Pr
{∣∣∣∣Op

(
k
	β
1

k
	β
1

+ k
1+β
1

k logk1
+ k

	β
1

k1/2

)∣∣∣∣ = Op(1)

> α|ψ̄ ′′| inf
L	−1k/k

(	−1)β
1 >|t |>L	k/k

	β
1

∣∣∣∣ tk	β
1

k

∣∣∣∣} < ε,
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because
k
	β
1

k1/2 ≤ k
	β+1
1

k1/2k1
= o(k−1k

	β+1
1 ) = o(1) by Condition C.4 and	 ≤ r .

Next consider the casek < 2k
1+rβ
1 . In this case, let̃r be the biggest integer such

that 2k1+r̃β
1 < k < k

1+rβ
1 but k < k

1+(r̃+1)β
1 . The proof now proceeds identically

as in the previous case, but now the sum of the first term of (5.32) runs from	 = 1
to r̃ . Note that ifk < 2k

1+β
1 , so thatr = 1, then the left-hand side of (5.30) is

bounded by

Pr
(

sup
ρk>|t |>2L̃k1

k

t

(
�̂n(t) − �̂n(0)

)
> 0

)

+ Pr
(

sup
2L̃k1≥|t |>k1/2L

k

t

(
�̂n(t) − �̂n(0)

)
> 0

)
,

and then proceed as in the proof of the second and third terms of (5.32), since
Condition C.4 implies thatk3

1 = o(k2), and recalling that nowk < 2k
1+β
1 , we have

k
1−β
1 k−1/2 = o(1) by Condition C.4. �

5.4. Proof of Theorem 3.4. We begin with part (a). Observing that Condi-
tion C.7 implies that|h̄w − hw| = O(m−1) and m−1 ∑m

p=1 wp = O(m−1) by

Lemma 6.10, the behavior of(2m)1/2(α̌(λs) − α) is governed by that of

h−1
w

(2m)1/2

m∑
p=1

wp log(ĝp+s ĝs−p) + h−1
w

(2m)1/2

m∑
p=1

wp log
(

f̃p+s

λ−α
p

f̃s−p

λ−α
p

)
(5.33)

− (2m)1/2α

hw

(
1

m

m∑
p=1

wp log
(

p

m

)
+ hw

)
.

Recall thatf̃ −1
p f̂p = ĝp. By Lemma 6.10 the last term of (5.33) iso(1). Denoting

m∗
1 = [m1 logm1], the second term of (5.33) is

h−1
w

(2m)1/2

{ m∗
1∑

p=1

wp log
(

f̃p+s

λ−α
p

f̃s−p

λ−α
p

)
+

m∑
p=m∗

1+1

wp log
(

f̃p+s

λ−α
p

f̃s−p

λ−α
p

)}
.(5.34)

Next, because by Lemma 6.1D−1 < λα
m1

f̃s±p < D for |p| ≤ 2m∗
1, we have that

the first term of (5.34) isO(m−1/2 log(m1)
∑m∗

1
p=1 |wp|) = O(m

1+ζ
1 m−(2ζ+1)/2 ×

log1+ζ (m1)) = o(1) by Conditions C.6 and C.7 sinceζ ≥ 1/3. Denoting
g(λp) = gp, the second term of (5.34) is

h−1
w

(2m)1/2

m∑
p=m∗

1+1

wp log
(

f̃p+s

fp+s

f̃s−p

fs−p

)
+ h−1

w

(2m)1/2

m∑
p=m∗

1+1

wp log(gp+sgs−p)

− αh−1
w

(2m)1/2

m∑
p=m∗

1+1

wp{log(λ−1
p |λp + λs − λ0|) + log(λ−1

p |λs − λ0 − λp|)}.



SEMIPARAMETRIC ESTIMATION OF THE POLE 1873

Because, for|p| > 2m∗
1, Lemma 6.1(a) implies thatD−1 ≤ m−2

1 p2|f −1
p+s f̃p+s −

1| ≤ D, we obtain by the mean value theorem that logf −1
p+s f̃p+s = O(m2

1p
−2)

and so the first term of the last displayed expression is bounded in absolute value
by

Dm2
1

(2m)1/2

m∑
p=m∗

1+1

|wp|p−2 = o
(
m

1+ζ
1 m−(2ζ+1)/2),

whereas the second term is 4π2Bc5/2/(21/2hw) + O(m−1/2) because

1

(2m)1/2

m∑
p=m∗

1+1

wp log(gp+sgs−p)

= 2

(2m)1/2

m∗
1∑

p=1

wp log(gs) + 4π2Bc5/2

21/2hw

+ O

(
1

m1/2

)
by Condition C.6 and Taylor expansion of log(gp+s) and log(gs−p) around
log(gs) and that by Lemma 6.10 and Condition C.7,

∑m
p=1 wp = O(1). So,

the second term of (5.33) is 4π2Bc5/2/(21/2hw) + o(1). Finally, proceeding as
with the second term of (5.4), the third term is easily shown to be bounded by
Dm−1/2 ∑

p |wp|p−1 = o(1).
Denotingϑb = ĝb − 1, and proceeding as with the proof of Lemma 6.5, to

complete the proof of the theorem, it suffices to show that

h−1
w

(2m)1/2

m∑
p=1

wp(ϑp+s + ϑs−p)
d→ N (0, h−2

w �2),(5.35)

1

(2m)1/2

{2m1∑
p=1

+
m∑

p=2m1+1

}
wp(ϑ2

p+s + ϑ2
s−p)

P→ 0.(5.36)

We begin with (5.36). By Lemma 6.2(b), the first moment of the first sum
inside the braces on the left-hand side of (5.36) iso(m−1/2 ∑2m1

p=1 |wp|) =
o(m

1+ζ
1 m−(2ζ+1)/2) = o(1) by Conditions C.7 and C.6 sinceζ ≥ 1/3, whereas

the contribution due to the second sum inside the braces on the left-hand side
of (5.36) isOp(m−1

1 m1/2) = op(1) by Lemma 6.2(a), Condition C.6 and Markov’s
inequality. So, it remains to show (5.35), whose left-hand side is

h−1
w

(2m)1/2

(2m1∑
p=1

wp(ϑp+s + ϑs−p) +
m∑

p=2m1+1

wp(ϑp+s + ϑs−p)

)
.(5.37)

Because Lemma 6.2(b) implies thatE|ϑb| = o(1) for |b − s| < 2m1, the first
term of (5.37) isop(m

1+ζ
1 m−(2ζ+1)/2) = op(1) by Conditions C.7 and C.6 and
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Markov’s inequality. But proceeding as in the proof of Proposition 5.3 [cf. (5.21)],
the second term of (5.37) converges in distribution toN (0, h−2

w �2), which
completes the proof of part (a).

Part (b). Dropping the constanthw and(2m)−1/2, it suffices to show that
m∑

p=1

wp{log(ĝp+s−t /ĝp+s) + log(ĝs−p−t /ĝs−p)} = op(m1/2)(5.38)

holds uniformly in |t | ≤ [k1/2M] = o(m1/2). We only examine the contribution
due to the first term on the left-hand side of (5.38); the contribution due to the
second term follows by identical steps. The first term on the left-hand side of (5.38)
is

2t∑
p=1

wp log(ĝp+s−t /ĝp+s) +
m∑

p=2t+1

wp log(ĝp+s−t /ĝp+s).(5.39)

Using (5.7)–(5.9) and Markov’s inequality, the first term of (5.39) is, uniformly

in t , op(
∑[2k1/2M]

p=1 |wp|) = op(m1/2) by Condition C.6. Next, the second term
of (5.39) is

2t∑
p=t+1

wp+t log ĝp+s −
m∑

p=m−t+1

wp log ĝp+s +
m−t∑

p=2t+1

(wp+t − wp) log ĝp+s .

By (5.7)–(5.9), the first two terms of the last displayed expression, uniformly int ,
areop(k1/2) = op(m1/2) by Condition C.6.

Finally, we consider the third term in the last displayed expression. Letϑp =
ĝp −1. Since by Lemma 6.3 and Markov’s inequality, supp=1,...,[n/2] |ϑp| = op(1),
except in a set�n such that limn→∞ Pr{�n} = 0, it implies that loĝgp+s =
ϑp+s − 2−1ϑ2

p+s(1 + op(1)) by Taylor expansion. So, the third term of the last
displayed expression is{

m−t∑
p=2m1+1

+
2m1∑

p=2t+1

}
(wp+t − wp)ϑp+s

(5.40)

+ D

m−t∑
p=2t+1

|wp+t − wp|ϑ2
p+s

(
1+ op(1)

)
.

Since Condition C.7 implies that|wp+t − wp| ≤ D(t/m)ζ , we have that

sup
t≤[k1/2M]

∣∣∣∣∣
m−t∑

p=2t+1

|wp+t − wp|ϑ2
p+s

∣∣∣∣∣
≤ D sup

t≤[k1/2M]

(
t

m

)ζ
(

m∑
p=2m1+1

ϑ2
p+s

)
+ sup

t≤[k1/2M]

∣∣∣∣∣
2m1∑

p=2t+1

wpϑ2
p+s

∣∣∣∣∣.
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But by Lemma 6.2,E|ϑp+s |2 = O(m−1
1 ) if |p| > 2m1, whereas Lemma 6.3

implies that supp=1,...,[n/2] ϑ2
p+s = op(1). Hence, by Markov’s inequality and

Conditions C.6 and C.7, the third term of (5.40) isop(kζ/2m1−ζ/2m−1
1 +

m−ζm
1+ζ
1 ) = op(m1/2). Proceeding similarly and in view of Condition C.7, the

second term of (5.40) isop(m
1/2
1 (k1/2/m)ζ ) = op(m1/2). So, denotingbt =∑m−t

p=2m1+1(wp+t −wp)ϑp+s , that is, the first term of (5.40), to complete the proof
we need to show that supt≤[k1/2M] |bt | = supq=1,...,[Mk1/4] sup(q−1)k1/4≤t≤qk1/4 |bt |
is op(m1/2). Now, by the triangle inequality, supt≤[k1/2M] |bt | is bounded by

sup
q=1,...,[Mk1/4]

sup
(q−1)k1/4≤t≤qk1/4

∣∣∣∣∣
m−t∑

p=2m1+1

(wp+t − wp+qk1/4)ϑp+s

∣∣∣∣∣
+ sup

q=1,...,[Mk1/4]
sup

(q−1)k1/4≤t≤qk1/4

∣∣∣∣∣
{

m∑
p=2m1+1

(5.41)

−
m∑

p=m−t+1

}
(wp+qk1/4 − wp)ϑp+s

∣∣∣∣∣.
Because(supj |cj |)µ = supj |cj |µ ≤ ∑

j |cj |µ for µ > 0, the second moment of
the second term of (5.41) is bounded by

[Mk1/4]∑
q=1

{
E

∣∣∣∣∣
m∑

p=2m1+1

(wp+qk1/4 − wp)ϑp+s

∣∣∣∣∣
2

+
[Mk1/2]∑

	=1

E

∣∣∣∣∣
m∑

p=m−	+1

(wp+qk1/4 − wp)ϑp+s

∣∣∣∣∣
2}

≤ D

[Mk1/4]∑
q=1

{
m +

[Mk1/2]∑
	=1

	

}(
qk1/4

m

)2ζ

= D
kζ+1/4

m2ζ−1 = o(m),

proceeding as with the proof of (5.16) and noting that Condition C.7 implies that
|(m/p)ζwp| ≤ D and |(m/(qk1/4))ζ (wp+qk1/4 − wp)| ≤ D with ζ ≥ 1/3. The
second moment of the first term of(5.41) is bounded by

[Mk1/4]∑
q=1

qk1/4∑
t=(q−1)k1/4+1

E

∣∣∣∣∣
m−t∑

p=2m1+1

(wp+t − wp+qk1/4)ϑp+s

∣∣∣∣∣
2

= kζ/2

m2ζ

[Mk1/4]∑
q=1

qk1/4∑
t=(q−1)k1/4+1

E

∣∣∣∣∣
m−t∑

p=2m1+1

w∗
p,tϑp+s

∣∣∣∣∣
2

,
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where|w∗
p,t | = |(m/k1/4)ζ (wp+t − wp+qk1/4)| ≤ D by Condition C.7. Now pro-

ceeding as with the proof of (5.16), the right-hand side of the last displayed equa-
tion is O(m1−2ζ k(1+ζ )/2) = o(m) sinceζ ≥ 1/3 andk = o(m) by Condition C.6.
Using Markov’s inequality we conclude that (5.41) isop(m1/2) and the proof is
complete. �

6. Technical lemmas. From now on
∑

j denotes
∑k1

j=−k1
andk1n

−1 → 0.

LEMMA 6.1. Let f̃p be as defined in the proof of Theorem 3.2.Then

D−1 < f −1
p f̃p < D,

(a)
(f −1

p f̃p − 1) = O(k2
1/|p − s|2), |p − s| ≥ 2k1.

D−1 ≤ λα
k1

f̃p ≤ D if |p − s| < 2k1.(b)

PROOF. First observe that by definition of̃fp, f −1
p f̃p = (2k1+1)−1 ∑

j f
−1
p ×

fj+p. We begin with (a). We first show thatD−1 < (2k1 + 1)−1 ∑
j f −1

p fj+p <

D. Because|λ0 − λs | ≤ π
n

, D−1 < |1 + n|λ0−λs |
2π(j+p−s)

| < D, for |j | ≤ k1, so that
Condition C.1 implies that

D−1

k1

[k1/2]∑
j=[k1/4]

∣∣∣∣ p − s

j + p − s

∣∣∣∣α ≤ 1

2k1 + 1

∑
j

fj+p

fp

≤ D

k1

∑
j

∣∣∣∣ p − s

j + p − s

∣∣∣∣α.

But |p − s| ≥ 2k1 and|j | ≤ k1 imply that 2/3 < |(p − s)/(j + p − s)| < 2. From
here the conclusion is standard sinceα > 0; we conclude the first part of (a). Next,
we show the second part of (a). By Taylor expansion offj+p, the left-hand side is

1

2k1 + 1

∑
j

{
(2π)j

n

f ′
p

fp

+ (2π)2j2

2n2

f ′′(λ̄)

fp

}
≤ D

k1

∑
j

(
j

p − s + δj

)2(
1+ o(1)

)
,

whereλ̄ = λ̄(p+δj) is an intermediate point betweenλp andλp+j andδ = δ(j) ∈
(0,1), by Condition C.1 and the fact thatf −1

p f (λ̄) is bounded. The conclusion
follows since|p − s + δj | ≥ |p − s| − |δj | > |p − s|/2.

(b) It is immediate since by Condition C.1,f(j+p)I(j+p =s) = Dλ−α
|j+p−s|+(1 +

o(1)) andλ−α
1 λα

k1
= o(k1). �

LEMMA 6.2. Denote ϕ(k1) = O(k
−1/2
1 ) + O(kα−1

1 )I(α ≥ 1/2)I(|p − s| <

2k1). Then

E|f̃ −1
p f̈p − 1| = ϕ(k1),(a)

E|f̃ −1
p f̂p − 1| = ϕ(k1).(b)
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PROOF. We begin with (a).f̃ −1
p f̈p − 1 is

f̃ −1
p (2k1 + 1)−1

∑
j+p =s

fj+p

(
Ij+p

fj+p

− 1
)

(6.1) + f̃ −1
p (2k1 + 1)−1(Is − fs+1)I(|p − s| ≤ k1).

In view of Propositions A.1 and A.2 of [22] and Lemma 6.1, the first term of (6.1)
is ϕ(k1), whereas the second term of (6.1) is alsoϕ(k1) by Lemma 6.1(b) and
E(n−αIs) < D.

To show part (b), it suffices to examinẽf −1
p (f̂p − f̈p), which is by definition

f̃ −1
p (n−1 − f̈p)I(f̈p < n−1)

(6.2) = (
(f̃ −1

p n−1 − 1) − (f̃ −1
p f̈p − 1)

)
I(f̈p < n−1).

By the Cauchy–Schwarz inequality, the second moment of the right-hand side
of (6.2) is bounded by

2E(f̃ −1
p f̈p − 1)2 + 2(f̃ −1

p n−1 − 1)2E
(
I(f̈p < n−1)

) ≤ DE(f̃ −1
p f̈p − 1)2,

using the fact thatE(I(f̈p < n−1)) is

Pr{f̃ −1
p f̈p − 1 < f̃ −1

p n−1 − 1} ≤ Pr{|f̃ −1
p f̈p − 1| > |1− f̃ −1

p n−1|},
because by Lemma 6.1,̃f −1

p n−1 − 1 < −D for n large enough. Now use part (a)
and Markov’s inequality to conclude.�

LEMMA 6.3. Let 2k1 < v < u ≤ [n/2] and p = 0,1, . . . , [n/2]. Denoting

ψ(v,u) = O(max(u−v,k1)
1/τ

k
(2+τ2)/2τ2
1

) and ϕ(k) = O(log−µ−1 k),

E

(
sup

p : |p−s|≤2k1

|f̃ −1
p (f̈p − f̃p)|µ

)
= ϕ(k1),

(a)
E

(
sup

p : 2k1<|p−s|=v+1,...,u

|f̃ −1
p (f̈p − f̃p)|

)
= ψ(v,u),

E sup
p : |p−s|≤2k1

|f̃ −1
p (f̈p − f̂p)|µ = ϕ(k1),

(b)
E sup

p : 2k1<|p−s|=v+1,...,u

|f̃ −1
p (f̈p − f̂p)| = ψ(v,u).

PROOF. For notational simplicity we shall takes = 0. We begin with part (a).
From Hidalgo and Robinson’s [22] Proposition A.1, it suffices to examine the
behavior off̃ −1

p (f̈p − Ef̈p). On the other hand, Hidalgo and Robinson’s [22]
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Proposition A.3(a) and (b) implies that it suffices to examine the behavior of
f̃ −1

p (f̈ε,p − Ef̈ε,p), where

f̈ε,p = 1

2k1 + 1

∑
j

fj+pIε,j+p

andIε,p = Iε(λp) is the periodogram of{εt }nt=1. We examine supp=v+1,...,u |f̃ −1
p ×

(f̈ε,p − Ef̈ε,p)| only; that of supp=1,...,2k1
|f̃ −1

p (f̈ε,p − Ef̈ε,p)| is similarly han-

dled. Because supj |aj | = (supj |aj |τ )1/τ , theτ th power of supp=v+1,...,u |f̃ −1
p ×

(f̈ε,p − Ef̈ε,p)| is, except for constants,

sup
p=v+1,...,u

∣∣∣∣∣ 1

2k1 + 1

∑
j

φj+p,p

(
(2π)Iε,j+p − 1

)∣∣∣∣∣
τ

,

whereφj,p = f̃ −1
p fj . The last displayed expression is bounded by

2τ−1 sup
q

sup
p

∣∣∣∣∣ 1

2k1 + 1

∑
j

(
φj+p,p

(
(2π)Iε,j+p − 1

)

− φj+b,p

(
(2π)Iε,j+b − 1

))∣∣∣∣∣
τ

(6.3)

+ 2τ−1 sup
q

sup
p

∣∣∣∣∣ 1

2k1 + 1

∑
j

φj+b,p

(
(2π)Iε,j+b − 1

)∣∣∣∣∣
τ

,

where supq and supp denote sup
q=1+v/k

1/τ
1 ,....,u/k

1/τ
1

and sup
p=1+b−k

1/τ
1 ,...,b

,

respectively, andb = qk
1/τ
1 .

After the change of indicesj = j ′ − k1, the second term of (6.3) is bounded by

D sup
q

sup
p

∣∣∣∣∣ 1

2k1 + 1

2k1−1∑
j=0

(
φj+b−k1,p − φj+b+1−k1,p

)

×
j∑

a=0

(
(2π)Iε,a+b−k1 − 1

)∣∣∣∣∣
τ

(6.4)

+ D sup
q

sup
p

∣∣φb+k1,p

∣∣τ ∣∣∣∣ 1

2k1 + 1

2k1∑
j=0

(
(2π)Iε,j+b−k1 − 1

)∣∣∣∣τ ,
by Abel summation by parts. On the other hand, by Conditions C.1 and C.3,∣∣φj+b−k1,p − φj+b+1−k1,p

∣∣ ≤ Df̃ −1
p (j + b − k1)

−1−αnα

≤ D

(
p

j + b − k1

)α

(j + b − k1)
−1,
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since by Lemma 6.1(a)D−1 < |f −1
p f̃p| < D. So, using supj |aj |τ ≤ ∑

j |aj |τ , by
Hölder’s inequality andD−1 < |φb+k1,p| < D by Lemma 6.1(a), we obtain that
the first moment of (6.4) is bounded by

D

2k1 + 1

u/k
1/τ
1∑

q=1+v/k
1/τ
1

2k1∑
j=0

sup
p

(
p

j + b − k1

)τα

(j + b − k1)
−τ

× E

∣∣∣∣∣
j∑

a=0

(
(2π)Iε,a+b−k1 − 1

)∣∣∣∣∣
τ

+ D

u/k
1/τ
1∑

q=1+v/k
1/τ
1

E

∣∣∣∣∣ 1

2k1 + 1

2k1∑
j=0

(
(2π)Iε,j+b−k1 − 1

)∣∣∣∣∣
τ

,

which, because(2π)EIε,j+p = 1 and proceeding as in the proof of Brillinger’s [5]
Theorem 7.4.4, is bounded by

D

u/k
1/τ
1∑

q=1+v/k
1/τ
1

((
b

b − k1

)τα 1

2k1

2k1∑
j=0

(j + 1)τ/2

(j + b − k1)τ
+ k

−τ/2
1

)

≤ D

u/k
1/τ
1∑

q=1+v/k
1/τ
1

((
1

b

)τ/2

+
(

1

k1

)τ/2)
= O

(
max(u − v, k1)

k
τ/2+1/τ
1

)
,

becauseα < 1, b ≤ 2(b − k1), q ≥ 1+ v/k
1/τ
1 andb = qk

1/τ
1 . Thus, we conclude

that the second term of (6.3) isO(max(u − v, k1)/k
τ/2+1/τ
1 ).

Next, we examine the first term of (6.3). Because

ap,k1 =
2k1∑
j=0

(
φj+p−k1,p

(
(2π)Iε,j+p−k1 − 1

) − φj+b−k1,p

(
(2π)Iε,j+b−k1 − 1

))
has at mostk1/τ

1 terms, and because(2π)EIε,j+p = 1 and proceeding as in the

proof of Brillinger’s [5] Theorem 7.4.4, itsτ th moment is bounded byk1/2
1 , so that

the expectation of the first term of (6.3) is bounded by

D

u/k
1/τ
1∑

q=1+v/k
1/τ
1

b∑
p=1+b−k

1/τ
1

k
1/2−τ
1 = op

(
u − v

k
τ/2+1/τ
1

)
,

becauseτ > 2. This completes the proof of part (a).
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To show part (b), denotingap = f̃ −1
p n−1 − 1 and using (6.2), it suffices to

examine

sup
p

|ap|I(f̈p < n−1) ≤ D sup
p

I(f̃ −1
p f̈p − 1< ap).

But the expectation of the right-hand side is bounded by

DEI

(
sup
p

|f̃ −1
p f̈p − 1| > min

p
|ap|

)

= D Pr
{
sup
p

|f̃ −1
p f̈p − 1| > min

p
|ap|

}

≤ D

(
min

p
|ap|

)−τ

E

(
sup
p

|f̃ −1
p f̈p − 1|

)τ

≤ D
(
ϕ(k1)I(p ≤ 2k1) + ψ(v,u)I(p > 2k1)

)
by Markov’s inequality and because(supp |cp|)τ = supp |cp|τ . �

LEMMA 6.4. Let h(u) be a twice continuously differentiable function in (0,1)

such that h(0) = h′(0) = h(1) = 0, where h′(u) = d
du

h(u). Consider a sequence
{νj } such that |j2νj | ≤ D for all j . Then, for a > 2t and denoting q = p − t + 1,

p∑
j=a+1

h(j/p)(νj − νj−t ) = O

(
t

p2 log
(

p

t

)
+ t2

pq2 + t

p2

)
.(6.5)

PROOF. The left-hand side of (6.5) is
p∑

j=p−t+1

h(j/p)νj −
a∑

j=a−t+1

h
(
(j + t)/p

)
νj

(6.6)

+
p−t∑

j=a+1

(
h(j/p) − h

(
(j + t)/p

))
νj .

Since the first derivative ofh(u) is continuous andh(1) = 0, from the mean value
theorem it follows that the absolute value of the first term of(6.6) is bounded by

D

p∑
j=p−t+1

|(p − j)/p||νj | = O
(
t2/

(
p(p − t + 1)2)) = O(p−1q−2t2),

using|j2νj | ≤ D. The absolute value of the second term of (6.6) is bounded by

D

a∑
j=a−t+1

(
j + t

p

)2

|νj | = O

(
t

p2

)
,
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sinceh(0) = h′(0) = 0 and|j2νj | ≤ D, whereas the absolute value of the third
term of (6.6) is bounded by

D
t

p

p−t∑
j=a+1

∣∣∣∣h′
(

j

p

)
+ t

p
h′′

(
j

p
+ ξ

t

p

)∣∣∣∣|νj | = O

(
t

p2 log
(

p

t

))

by Taylor expansion ofh′(x) and usingh′(0) = 0, whereξ = ξ(j) ∈ (0,1).
�

LEMMA 6.5. Let b̃t ,
˜̃
bt , b3t and b4t be given in (5.16), (5.10)and (5.15),

respectively. Then, for ρ < 1/3,

(a) supt≤ρk t−1|b3t − b̃t | = op(k−1/2),

(b) supt≤ρk t−1|b4t − ˜̃
bt | = op(k−1/2).

PROOF. We only examine part (a); part (b) is identical. Because by
Lemma 6.3, sup	=1,...,[n/2] |ĝ	 − 1| = Op(log−2 k1), then except in a set�n such
that limn Pr{�n} = 0, logĝ·+s = ϑ·+s − 2−1ϑ2·+s(1+ op(1)) by Taylor expansion,
which implies that forn sufficiently large, by definition ofb3t ,

sup
t≤ρk

t−1|b3t − b̃t | ≤ D sup
t≤ρk

t−1
k−t∑

p=2t+1

|ψp − ψp+t |ϑ2
p+s .

Because by Lemma 6.2, for|p| > 2k1, ϑ2
p+s = Op(k−1

1 ), for |p| < 2k1, ϑ2
p+s =

Op(k
2(α−1)
1 I(α ≥ 1/2) + k−1

1 ) and by Condition C.5,|ψp − ψp+t | ≤ D|ψ ′
ξ |t/k,

whereψ ′
p = ψ ′(p/k) andp ≤ ξ ≤ p + t , the last displayed expression is

Op

(
I(α ≥ 1/2)

k
2(1−α)
1

2k1∑
p=1

supt<2k1
|ψ ′

ξ |
k

+ 1

k1

k∑
p=1

supt≤ρk |ψ ′
ξ |

k

)
= op(k−1/2)

by Conditions C.5 and C.4.�

LEMMA 6.6. Let φp = φ(p/k), where φ(u) is a continuous function in (0,1).
Define

cr(µ;ϑ) = 2

nk1/2

[kϑ]∑
p=[kµ]+1

φp cos(rλp),

where 0≤ µ < ϑ ≤ 1. For any µ < ϑ1 < ϑ2 ≤ 1, if k/n → 0, then

n−1∑
r1=1

n−r1∑
r2=1

cr2(µ;ϑ1)cr2(µ;ϑ2) =
∫ ϑ1

µ
φ2(u) du

(
1+ o(1)

)
.(6.7)
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PROOF. The left-hand side of (6.7) is

4

n2k

[kϑ1]∑
p1=[kµ]+1

φp1

[kϑ2]∑
p2=[kµ]+1

φp2

n−1∑
r1=1

n−r1∑
r2=1

cos
(
r2λp1

)
cos

(
r2λp2

)

= 4

n2k

[kϑ1]∑
p=[kµ]+1

φ2
p

n−1∑
r1=1

n−r1∑
r2=1

cos2(r2λp)

(6.8)

+ 2

n2k

[kϑ1]∑
p1=[kµ]+1

φp1

[kϑ2]∑
p2=[kµ]+1,p2 =p1

φp2

n−1∑
r1=1

n−r1∑
r2=1

{
cos

(
r2λp1+p2

)
+ cos

(
r2λp1−p2

)}
.

Because (see [32])
∑n−1

r1=1
∑n−r1

r2=1 cos2(r2λp) = (n − 1)2/4 and

n−1∑
r1=1

n−r1∑
r2=1

{
cos

(
r2λp1+p2

) + cos
(
r2λp1−p2

)} = −n for p1 = p2,

the right-hand side of (6.8) is

(n − 1)2

n2

(
1

k

[kϑ1]∑
p=[kµ]+1

φ2
p

)
− 2

nk

[kϑ1]∑
p1=[kµ]+1

φp1

[kϑ2]∑
p2=[kµ]+1,p2 =p1

φp2

=
∫ ϑ1

µ
φ2(u) du

(
1+ o(1)

)
,

becauseφ(u) is continuous inu andk/n → 0. �

LEMMA 6.7. Denote ηp = (2π)Iε,p − 1 and φ(u) as in Lemma 6.6. The
process

Rn(ϑ) = 1

k1/2

k−[kϑ]∑
p=[kϑ]+1

φpηp, 0≤ ϑ ≤ 1/2,

is tight.

PROOF. Since by Proposition 5.3, the finite limit distributions ofRn(ϑ) con-
verge to those of a Gaussian process with continuous paths, then by Billingsley’s
[4] Theorem 15.6, it suffices to check the moment condition

E
(|Rn(ϑ2) − Rn(ϑ)|τ |Rn(ϑ) − Rn(ϑ1)|τ ) ≤ D(ϑ2 − ϑ1)

ψ(6.9)

for someτ > 0,ψ > 1, where 0≤ ϑ1 < ϑ < ϑ2 ≤ 1/2. Because

Rn(ϑ) − Rn(ϑ2) = 1

k1/2

[kϑ2]∑
p=[kϑ]+1

φpηp + 1

k1/2

k−[kϑ]∑
p=k−[kϑ2]+1

φpηp,



SEMIPARAMETRIC ESTIMATION OF THE POLE 1883

a sufficient condition for(6.9) to hold is

E

(∣∣∣∣∣ 1

k1/2

[kϑ2]∑
p=[kϑ]+1

φpηp

∣∣∣∣∣
τ ∣∣∣∣∣ 1

k1/2

[kϑ]∑
p=[kϑ1]+1

φpηp

∣∣∣∣∣
τ)

≤ D(ϑ2 − ϑ1)
ψ,

(6.10)

E

(∣∣∣∣∣ 1

k1/2

k−[kϑ]∑
p=k−[kϑ2]+1

φpηp

∣∣∣∣∣
τ ∣∣∣∣∣ 1

k1/2

k−[kϑ1]∑
p=k−[kϑ]+1

φpηp

∣∣∣∣∣
τ)

≤ D(ϑ2 − ϑ1)
ψ .

We will examine the first inequality of (6.10) only; the second displayed inequality
is similarly handled.

By definition ofηp,

1

k1/2

[kϑ2]∑
p=[kϑ]+1

φpηp =
(

1

k

[kϑ2]∑
p=[kϑ]+1

φp

)(
k1/2

n

n∑
r=1

(ε2
r − 1)

)

+
n∑

r=2

εr

r−1∑
a=1

εacr−a(ϑ,ϑ2)

:= E1,n(ϑ,ϑ2) + E2,n(ϑ,ϑ2),

wherecr(ϑ,ϑ2) was defined in Lemma 6.6. Because|∑[kϑ2]
p=[kϑ]+1 φp| ≤ Dk|ϑ2 −

ϑ | by continuity of φ(x) and E(
∑n

r=1(ε
2
r − 1))2 < Dn by Condition C.2,

E(|E1,n(ϑ,ϑ2)||E1,n(ϑ1, ϑ)|) ≤ (ϑ2−ϑ1)
2 by the Cauchy–Schwarz inequality and

|ϑ2 − ϑ ||ϑ − ϑ1| < |ϑ2 − ϑ1|2. That is,E1,n(ϑ,ϑ2) satisfies the first inequality
in (6.10) withτ = 1 andψ = 2. So, to complete the proof, it suffices to examine
that the first inequality in (6.10) holds forE2,n(ϑ,ϑ2). The fourth moment of
E2,n(ϑ,ϑ2) is

E

[
n∑

2=r1≤r2≤r3≤r4

4∏
j=1

εrj

( rj−1∑
aj=1

εaj
crj−aj

(ϑ,ϑ2)

)]

≤ D

4∏
j=1

( ∑
1≤aj≤rj≤n

c2
rj−aj

(ϑ,ϑ2)

)1/2

= D

( ∑
1≤a≤r≤n

c2
r−a(ϑ,ϑ2)

)2

,

proceeding as in the proof of Lemma 5.4 of [12]. But proceeding as in Lemma 6.6,
the right-hand side of the last displayed equation is bounded by

D

(∫ ϑ2

ϑ
φ2(u) du

)2

≤ D(ϑ2 − ϑ1)
2

sinceφ(u) is continuous. This concludes the proof, choosingτ = ψ = 2. �
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LEMMA 6.8. Let 2k1 ≤ t0 < ρk for some arbitrarily small ρ > 0. Then

(a) sup
2k1<t≤t0

∣∣t−1( ξ̂ (5)
n (t) − b3t

)∣∣ = Op

(
t0

kk
β
1

+ k1t0

k2 logk1

)
,

(6.11)

sup
2k1<t≤t0

∣∣t−1( ξ̂ (6)
n (t) − b4t

)∣∣ = Op

(
t0

kk
β
1

+ k1t0

k2 logk1

)
,

(b)
sup

Lk1/2<t≤2k1

∣∣t−1( ξ̂ (5)
n (t) − b3t

)∣∣ = Op

(
k2

1

k2 logk1
+ k1

kk
β
1

)
,

(6.12)

sup
Lk1/2<t≤2k1

∣∣t−1( ξ̂ (6)
n (t) − b4t

)∣∣ = Op

(
k2

1

k2 logk1
+ k1

kk
β
1

)
,

where b3t and b4t are given by (5.10) and (5.15), respectively, and L > 0 and
β > 0.

PROOF. We begin with (a). We only examine the first equality in (6.11);
the proof of the second equality is similarly handled. By definition (see Propo-
sition 5.3) ξ̂

(5)
n (t) = b1t + b2t . First, sup2k1<t≤t0

|t−1b1t | satisfies the equality
in (6.11) by Condition C.5 and since the sum inp has at most 2k1 terms, say
p∗ = 1, . . . ,2k1, for which supp∗=1,...,2k1

| log ĝp∗+s | = Op(log−1 k1), whereas for

the remaining terms supp=1,...,k;p =p∗ | log ĝp+s | = Op(k
−β
1 ) using (5.7) and (5.9).

Next we estimateb2t − b3t . First by (5.11), sup2k1<t≤t0
t−1|b2t − b3t | is

sup
2k1<t≤t0

t−1

∣∣∣∣∣
k∑

p=k−t+1

ψp log(ĝp+s) −
2t∑

p=t+1

ψp+t log(ĝp+s)

∣∣∣∣∣
= Op(t0k

−1k
−β
1 + t2

0k−2k
−β
1 ),

by Condition C.5 and using (5.7) and (5.9) and Markov’s inequality.
Part (b). As was done in part (a), we only examine the first equality

in (6.12); the second is similarly handled. By Condition C.5 and (5.7) and (5.9)
together with Markov’s inequality, it follows easily that supLk1/2<t≤2k1

|t−1b1t | =
Op(k−2k2

1 log−1 k1). Finally, we estimateb2t − b3t . As was done in part (a), it
suffices to examine

sup
Lk1/2<t≤2k1

t−1

{∣∣∣∣∣
k∑

p=k−t+1

ψp log(ĝp+s)

∣∣∣∣∣ +
∣∣∣∣∣

2t∑
p=t+1

ψp+t log(ĝp+s)

∣∣∣∣∣
}
.

The second term of the last displayed expression isOp(k2
1k

−2 log−1 k1) by

Condition C.5 and using (5.7)–(5.8), whereas the first term isOp(k1k
−1k

−β
1 ) using

Condition C.5 and (5.7) and (5.9), which concludes the proof.�
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LEMMA 6.9. Let φ(u) be as in Lemma 6.6.Then

sup
ω∈[0,1]

∣∣∣∣∣ 1

k1/2

[kω]∑
j=1

φj

(
Ij+s

fj+s

− 2πIε,j+s

)∣∣∣∣∣ = op(1).

PROOF. Writing uj = f
−1/2
j+s ωj+s,x and vj = (2π)1/2ωj+s,ε whereωj+s,x

andωj+s,ε are the discrete Fourier transforms ofxr andεr , respectively, the left-
hand side of the last displayed expression is, by the triangle inequality, bounded
by

sup
ω∈[0,1]

1

k1/2

[kω]∑
j=1

|φj ||uj − vj |2 + 2 sup
ω∈[0,1]

∣∣∣∣∣ 1

k1/2

[kω]∑
j=1

φjvj (ūj − v̄j )

∣∣∣∣∣,(6.13)

wherec̄ denotes the conjugate of the complex numberc.
The first term of (6.13) isop(1) since its expectation is bounded by

k−1/2
k∑

j=1

|φj |{(E|uj |2 − 1)

− (
E(uj v̄j ) − 1

) − (
E(ūj vj ) − 1

) + (E|vj |2 − 1)
}

(6.14)

= O

(
k−1/2

k∑
j=1

logj

j

)
,

becauseE|vj |2 = 1, |φj | ≤ D and by the extension of Theorems 1 and 2 of [31]
given in Lemma 4.4 of [12].

Next, to show that the second term of (6.13) isop(1), it suffices to show
that the finite-dimensional distributions of the term inside the absolute value
converge to zero and the tightness condition. First, choosingω∗

1 such that
[kω∗

1] = max([kζ ], [kω1]) for some 0< ζ < 1/4, then for any 0< ω1 < ω2 < 1,

E|k−1/2 ∑[kω2]
j=1+[kω1] φjvj (ūj − v̄j )|2 is bounded by

2E

∣∣∣∣∣k−1/2
[kω2]∑

j=1+[kω∗
1]

φjvj (ūj − v̄j )

∣∣∣∣∣
2

+ 2k−1[kω∗
1]([kω∗

1] − [kω1])

≤ Dk−1 log2 k
(
([kω2]1/2 − [kω∗

1]1/2)(6.15)

× (
log(kω2) − log(kω∗

1)
) + [kω∗

1]([kω∗
1] − [kω1])),

proceeding as with (4.8) in [32]. So, the finite-dimensional distributions of the
second term of (6.13) converge to zero in probability by Markov’s inequality.
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To complete the proof we need to show tightness. Since the limiting process has
continuous paths, by Billingsley’s [4] Theorem 15.6, it suffices to show that

E

∣∣∣∣∣k−1/2
[kω2]∑

j=1+[kω1]
φjvj (ūj − v̄j )

∣∣∣∣∣
4

≤ D
(
H(ω2) − H(ω1)

)1+δ
,(6.16)

whereδ > 0, 0< ω1 < ω2 < 1 andH(ω) is a nondecreasing continuous function.
The left-hand side of (6.16) is bounded by

k−2(|M4| + 3M2
2),

where Mr denotes ther th cumulant of
∑[kω2]

j=1+[kω1] φjvj (ūj − v̄j ). Using the

inequality in (6.15),k−2M2
2 ≤ D(H(ω2) − H(ω1))

1+δ , so it remains to show that
k−2|M4| satisfies the inequality in (6.16). Nowk−2|M4| is

1

k2

[kω2]∑
j1,j2,j3,j4=1+[kω1]

( 4∏
i=1

φji

)
cum

(
vj1z̄j1, vj2z̄j2, vj3z̄j3, vj4z̄j4

)
,(6.17)

where we have abbreviateduj − vj by zj . By Theorem 2.3.2 of [5] and denoting
Xj1 = φjvj andXj2 = φjzj ,

(6.17)= 1

k2

∑
ϑ

cum(Xj	; j	 ∈ ϑ1) · · ·cum(Xj	; j	 ∈ ϑp),

where the summation is over all indecomposable partitionsϑ = ϑ1 ∪ · · · ∪ ϑp.
A typical component in cum(Xj	; j	 ∈ ϑ1) hasq1 elementsvj andq2 elementszj ,
so applying formulae of [5], (2.6.3), page 26, and (2.10.3), page 39, we deduce
after straightforward calculations that cum(Xj	; j	 ∈ ϑ1) is

∏
j∈υ1

φj times

µq1+q2

k(q1+q2)/2

×
∫
[−π,π ]q1+q2−1

β(λ1 + · · · + λ(q1−1) + ν1 + · · · + νq2)β(−λ1) . . . β(−λq1−1)

βj1 · · ·βjq1

× β̃(−ν1) · · · β̃(−νq2)

× Ej1···jq1	1···	q2

(
λ1, . . . , λ(q1−1), ν1, . . . , νq2

)
dλ1 · · ·dλ(q1−1) dν1 · · ·dνq2,

whereEj1···jq	1···	p(λ1, . . . , λ(q−1), ν1, . . . , νp) is

G
(
λj1 − [

λ1 + · · · + λ(q−1) + ν1 + · · · + νp])
G

(
λj2 + λ1)

× · · · × G
(
λjq + λ(q−1))G(

ν1 − λ	1

) × · · · × G
(
νp − λ	p

)
,

with G(λ) = ∑n
t=1 eitλ and, say,β̃(−ν1) = β−1

	1
β(−ν1) − 1. But by a routine

extension of Lemma 3 of [32] and observing that in each partitionedυ, the
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subindexji, i = 1, . . . ,4, appears only once,

(6.17)≤ Dk−2

( [kω2]∑
j=1+[kω1]

1

j1/2

)4

≤ D
(
H(ω2) − H(ω1)

)4
,

whereH(ω) = ω1/2, which is a nondecreasing continuous function.�

REMARK 6.1. An alternative proof of this lemma can be found in Lemma 4
of [9].

LEMMA 6.10 ([5], page 15). Let h(x), 0≤ x ≤ 1, be integrable and have an
integrable derivative h(1)(x). Then

1

n

n∑
j=0

h

(
j

n

)
−

∫ 1

0
h(x) dx

= 1

2n

(
h(0) + h(1)

) + 1

n

∫ 1

0

(
nx − [nx] − 1

2

)
h(1)(x) dx.

7. Conclusions. In this paper we have studied a nonparametric estimator
for the pole of a long-memory process under mild conditions on the spectral
densityf (λ). Specifically, we have only assumed thatf (λ) ∼ C|λ − λ0|−α with
C > 0, but smooth elsewhere, and whereα, the memory parameter, belongs to the
interval(0,1). We have shown that the estimatorλ̂0 of the poleλ0 is consistent and
we have characterized its limit distribution. More precisely,λ̂0, centered around
λ0 and appropriately renormalized, is asymptotically normal whenλ0 ∈ (0, π),
whereas ifλ0 = {0, π}, the asymptotic distribution is a mixture of a discrete and
continuous random variable. In particular, whenλ0 = 0 the asymptotic distribution
takes the value 0 with probability 1/2 and behaves as a (truncated) normal random
variable for positive values. In addition, we have shown that the asymptotic
statistical properties of a two-step estimator ofα are the same as whenλ0 is known.
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