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An exact form of the local Whittle likelihood is studied with the
intent of developing a general-purpose estimation procedure for the memory
parameterd) that does not rely on tapering or differencing prefilters. The
resulting exact local Whittle estimator is shown to be consistent and to have
the sameN (0, ‘—11) limit distribution for all values ofd if the optimization

covers an interval of width less tha%mnd the initial value of the process is
known.

1. Introduction. Semiparametric estimation of the memory parametgir(
fractionally integratedf((d)) time series is appealing in empirical work because of
the general treatment of the short-memory component that it affords. Two common
statistical procedures in this class are log-periodogram (LP) regression [1, 10]
and local Whittle (LW) estimation [5, 11]. LW estimation is known to be more
efficient than LP regression in the stationaly| (< %) case, although numerical
optimization methods are needed in the calculation. Outside the stationary region,
it is known that the asymptotic theory for the LW estimator is discontinuous at
d= ;31 and again at/ = 1, is awkward to use because of nonnormal limit theory
and, worst of all, the estimator is inconsistent whés- 1 [8]. Thus, the LW
estimator is not a good general-purpose estimator when the valumay take on
values in the nonstationary zone beyc%mSimiIar comments apply in the case of
LP estimation [4].

To extend the range of application of these semiparametric methods, data
differencing and data tapering have been suggested [3, 15]. These methods
have the advantage that they are easy to implement and they make use of
existing algorithms once the data filtering has been carried out. Differencing has
the disadvantage that prior information is needed on the appropriate order of
differencing. Tapering has the disadvantage that the filter distorts the trajectory of
the data and inflates the asymptotic variance. As a consequence, there is presently
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no general-purpose efficient estimation procedure when the valdenady take
on values in the nonstationary zone bey(ind

The present paper studies an exact form of the local Whittle estimator which
does not rely on differencing or tapering and which seems to offer a good general-
purpose estimation procedure for the memory parameter that applies throughout
the stationary and nonstationary regionsdofThe estimator, which we call the
exact LW estimator, is shown to be consistent and to hai@e 211) limit distribution

when the optimization covers an interval of width less t@nThe exact LW
estimator therefore has the same limit theory as the LW estimator has for stationary
values ofd. The approach seems to offer a useful alternative for applied researchers
who are looking for a general-purpose estimator and want to allow for a substantial
range of stationary and nonstationary possibilities dorThe method has the
further advantage that it provides a basis for constructing asymptotic confidence
intervals ford that are valid irrespective of the true value of the memory parameter.

The exact LW estimator given here assumes the initial value of the data to
be known. This restriction can be removed by estimating it along wijtlas
shown by Shimotsu [14]. Also, computation of the estimator involves a numerical
optimization that is more demanding than conventional LW estimation. Our
experience from simulations indicates that the computation time required is about
ten times that of the LW estimator and is well within the capabilities of a small
notebook computer.

2. Exact local Whittle estimation. We consider the fractional procesg
generated by the model
1) Q- L)X, =u, I{t > 1}, t=0,=+1,...,

wherel {-} is the indicator function and, is stationary with zero mean and spectral
density f;, (1) ~ Go asA — 0. Expanding the binomial in (1) gives the form

t
—d
(2) 3! k;’)kxt_k =uI{t > 1},
k=0
where
_ I'(do+ k) _ o B
(do)k = W =(do)(do+1)---(do+k—1)

is Pochhammer’s symbol for the forward factorial function &g is the gamma
function. Whendy is a positive integer, the series in (2) terminates, giving the usual
formulae for the model (1) in terms of differences and higher-order differences
of X, An alternative form forX, is obtained by inversion of (1), giving a valid
representation for all values @,

&2 (o)
3) X;=(1-L)y ul{t>1=Y" |

k=0

Ug_f.
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Define the discrete Fourier transform (d.f.t.) and the periodogram of a time series
a; evaluated at frequencyas

n
wa(W) = (2rn) Y2y " aget,
=1

L) = lwa(W)|2.

2.1. Exact local Whittle likelihood and estimator. We start with the likelihood
function of the stationary innovatiom,. The (negative) Whittle likelihood af;
based on frequencies upg and up to scale multiplication is

m m .
(4) Y log fukp)+ > L), )\j:@,

j:]- j=l fu()\']) n
where m is some integer less tham. We want to transform the likelihood
function (4) to be data dependent.

If |do| < % it is known that/,(x;) can be approximated by?dOIx(Aj)

[10, 12]. Therefore, if one viewd,(1;) as the jth observation ofu; in the
frequency domain, replacing (1 ;) in (4) with )Lfdolx (A ;) and adding the Jacobian

;”leogAJTZd to (4) makes it data dependent. Indeed, the resulting objective
function coincides with that of the LW estimator.

However, wheni takes a larger value, in particular whif| > 1, /\fdolx(kj)
no longer provides a good approximation Gf(% ;). In this paper, we propose
to use a “corrected” d.f.t. ofX, that can approximatd,(i;) and validly
transform (4) in such cases. Lemma 5.1 in Section 5 provides the necessary
algebraic relationship for these quantities for any valuégphamely,

LA ) = I, (A j) = | D (€™ do)|?|vx (A j; do) |2,

(5) . -
ve(hjsd) = we(hj) — Dp(e™; d) "1 2mn) V2K, u(d),
where
n
ih. 7y (=D
Dy(e*d)="Y" ¢
k=0
and

X "_1~ —ipA H 5 - (_d)k ikx
Xon(d) = Z dxpe Xn—p with dkp = Z Te i
p=0 k=p+1
The function v, (1;; do) in (5) adds a correction term that involves, , (do)

to the d.f.t.w,(%;), which ensures that the relationship (5) holds exactly for
all do. Accordingly, we may interpret, (A ;; do) as a well-suited proxy for the
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Jjth frequency domain observation &f. Consequently, replacing, (1 ;) in (4)
with | D, (e™/; d)|2|vy (1 d)|?, adding the Jacobial7_; log | D, (¢'*/; d)| 2 and
using (5) again give, in conjunction with the local approximatfgw. ;) ~ G and
1Dy (e™7; d) 1 ~ 237 [8],

18 1
On(G.d) =~ Z[bg(GA}Zd) + 5 lade (M)}
j=1

wherela, (1) is the periodogram of

t
AKX, = (1 - Lylx, =3 Tk

k=0

We propose to estimattandG by minimizing Q,,(G, d), so that

(6) (G.d)y= argmin  0,(G.d),

Ge(0,00),de[A1,A2]
where A; and A, are the lower and upper bounds of the admissible values of
such thai—oo < A1 < Az < 00. Concentrating,, (G, d) with respect toG, we
find thatd satisfies

d = argmin R(d),
de[A1,A7]

where

R(d) =logG(d) — 2dZ ]gllogkj, GWd) = ;;IMX(A_,).

The estimator/ is based on the transformation of the Whittle likelihood function
of u; by (5). Since (5) follows from a purely algebraic manipulation and holds
exactly for anyd, we calld the exact local Whittle estimator of. [The word
“exact” is used to distinguish the proposed estimator (which relies on an exact
algebraic manipulation) from the conventional local Whittle estimator, which
is based on the approximatioh.(1;) ~ A;Zdlu(kj). Of course, the Whittle
likelihood is itself an approximation of the exact likelihood, but this should cause
no confusion.]

2.2. Consistency. We now introduce the assumptions mrand the stationary
componenis; in (1).

ASSUMPTIONI.

fu(x) ~Go € (0, 00) asi — 0+.



1894 K. SHIMOTSU AND P. C. B. PHILLIPS

AsSsSUMPTION2. Inaneighborhood, §) of the origin, f,, (1) is differentiable
and

d
- log fu(M) =001  asr— 0+.
ASSUMPTION3.
o0 o0
M[=C(L)8[=ZCJ'8;_1‘, ZC§<OO,
j=0 j=0

where
E(g;|F,_1) =0, E(?|Fi_1)=1 as.;=0+1,...,

in which F; is the o-field generated by, s < ¢, and there exists a ran-
dom variablee such thatEs?2 < oo and for all n > 0 and someK > O,
Pr(le:| > n) < K Pr(|e| > n).

m n mY

-0 for anyy > 0.

ASSUMPTIONS.

Ap— A1 <

NI©

Assumptions 1-3 are analogous to Assumptions A1-A3 of [11]. However, we
impose them in terms of, rather thanX,. Assumption 4 is slightly stronger
than Assumption A4 of [11]. Assumption 5 restricts the length of the interval
of permissible values in the optimization (6), although it imposes no restrictions
on the value oflj itself. For instance, if we assume the data are overdifferenced
at most once and hencdy > —1, then taking[Aj, Ay] = [—1, 3.5] makes
d consistent for anydp € [A1, A2]. When one wants to allow the interval
of permissible values to be wider th%m the tapered estimators with sufficiently
high order of tapering provide useful alternatives.

Under these conditions we may now establish the consistenéy of

THEOREM 2.1. Suppose X, is generated by (1) with dp € [A1, A2] and
Assumptions 1-5hold. Thend 5 dg asn — oo.

Assumption 5 is necessary for the following reason. Loosely speaking, we prove
consistency by showing that (i) whed — dg| is small, R(d) — R(dp) converges
uniformly to a nonrandom function that achieves its minimurdpatind (i) when
|d — do| is large,R(d) — R(dp) is uniformly bounded away from 0. Whei — dp|
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is larger than%, the periodograny,a, (1) in the objective function does not

behave Iikekz(d_dO)Iu (xj). ConsequentlyR(d) — R(dp) does not converge to a
nonrandom f]unction, and we need an alternative way to bound it away from zero.
For instance, wheg < d — dp < 3, the normalized d.f.t. is expressed as [cf. (30)

in the proof of consistency]
)“;(d_dO)wAdx ()"]) ~ e—(ﬂ/2)(d—do)i wy, O‘]) + )\‘;(d_do) (Zn_n)—l/Zeikj Zn,

where

n
Z, =Y (1-L)X,.
=1
The leakage from the last term prevents the uniform convergenR&®f— R (dp)
and complicates the proof. Whéwh — dp| is Iarger,k;(d_dO)wAdx(Aj) has further
additional terms [e.g., the equation below (51)], and we were able to show the
necessary results only fo# — do| < %, which is why we need Assumption 5.
Lemma 5.10 in Section 5 is the main tool in handling the effects of such additional
terms. We could relax Assumption 5 if we could extend Lemma 5.10 to hold with
more general summands — e*/)*Qy + - - - + Qo, but we were not able to do so.

REMARK 1. An alternative way of accommodating a wider rangé afithout
sacrificing efficiency is to use a two-step procedure. A two-step estimator based
on the objective functiorR (d) that uses a (higher-order) tapered estimator in the
first step would have the same asymptotic variance as the exact LW estimator.
(Strictly speaking, the asymptotic properties of tapered estimators have been
established only under the alternative type of fractionally integrated process
generated as in (8), although some results on the difference between their d.f.t.'s
are available [12].)

REMARK 2. The model (1) assumes, in effect, that the initial valu&pis
known. In practice, it is more natural to allow for an unknown initial valug,
and modelX, as

X, =po+ (L — L)y %u,1{r > 1)
@)

t—1
(do)k
=uo+ I Ut—-

k=0

Estimation of ug affects the limiting behavior of the estimator. According to
Shimotsu [14], (i) if o is replaced with the sample average=n"1Y"_, X,,
then the estimator is consistent fds € (—%, 1) and asymptotically normal for
do € (—%, %), but simulations suggest that the estimator is inconsisteraffor1;
and (i) if wo is replaced byX1, then the estimator is consistent @y > % and
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asymptotically normal fotlp € [%, 2), but simulations suggest that the estimator
is inconsistent forlp < 0. To accommodate unknowry, it is possible to extend
Theorem 2.1 foX,; generated by (7) by estimating along withdg. For instance,
Shimotsu [14] proposes estimatipg by

ad) =w@d)X + (1—w(d)Xa,

wherew(d) is a smooth (twice continuously differentiable) weight function such
thatw(d) =1 ford < 3, w(d) € [0,1] for 3 <d < 3 andw(d) =0 ford > 3,
and replacingX, with X; — fi(d) in the periodograms in the objective function.
Shimotsu [14] shows the resulting estimatowlok consistent and asymptotically
normal fordp € (—%,2), excluding arbitrary small intervals around 0 and 1.
Another possibility would be to replac®, with X; — u in the periodogram

ordinates and minimize the objective function with respectitas, ).

REMARK 3. Fractionally integrated processes as defined in (1) are more
restrictive in some ways than the stationary frequency domain characterization
used in [11] and elsewhere. It might be possible to extend the results in this paper
to the class of nonstationary processes analyzed by [13] and seek to achieve a
similar degree of generality to Robinson [11], but we do not attempt to do so here.

REMARK 4. Another popular definition of a fractionally integrated process
provides for different generating mechanisms according to the specific range of
values taken byip, as in

(1_ L)_doulv dO S (—OO, %)’
8) X, = ! _
® X o+ Zr,  Zi=@A-L)"u,  doe[3.3),
k=1

with corresponding extensions for larger valuesigf so thatX; or its (higher-

order) difference is stationary. While we do not explore the effects of these
alternative generating mechanisms here, simulation results suggest that the version
of the exact LW estimator in [14] is consistent for this type of fractionally
integrated process.

2.3. Asymptotic normality. We introduce some further assumptions that are
used to derive the limit distribution theory.

AssUMPTION1'. Assumption 1 holds, and also for sofie (0, 2]
fu) =Go(l4+0(0F))  asir— O+.

AsSSUMPTION?'. In a neighborhood0, 8) of the origin, C(¢/*) is differen-
tiable and

d .
aC(e“) =00 Y asi — 0+ .
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AssuMPTION3'. Assumption 3 holds and also
E(|Fi_1) = ua. EEHF_1)=us as,t=0+1,...,
for finite constantgiz and 4.

ASSUMPTION4. Asn — o0,

1 1+28(logm)? o
—+m (ogm) + gn—>0 for anyy > 0.
m n2b mY

ASSUMPTIONS'. Assumption 5 holds.

Assumptions 3 are analogous to Assumptions’/AA3 of [11], except that
our assumptions are in terms of rather thanX,. Assumption 4 is slightly
stronger than Assumptiori 4f [11].

The following theorem establishes the asymptotic normality of the exact local
Whittle estimator fordp € (A1, A2). (The approximate mean squared error and
the corresponding optimal bandwidth can be obtained heuristically in the same
manner as in [2].)

THEOREM 2.2. Suppose X, is generated by (1) with dp € (A1, A2) and
Assumptions 1'-5 hold. Then

mY2(d — dp) 4 N(O, %1) asn — oo.

3. Simulations. This section reports some simulations that were conducted to
examine the finite sample performance of the exact LW estimator (hereafter, exact
estimator), the LW estimator (hereafter, untapered estimator) and the LW estimator
with two types of tapering studied by Hurvich and Chen [3] and Velasco [15] with
Bartlett's window [hereafter, tapered (HC) and tapered (V) estimator, resp.]. The
tapered (HC) estimator and tapered (V) estimator are consistent and asymptotically
normal ford € (—0.5,1.5) with limiting variances 15/(4m) and 21/(4m),
respectively (see Remark 1). We generatd) processes according to (3) with
u; ~i.i.d.N(O,1). A1 andA, are set to—6 and 6. Although this setting violates
Assumption 5, it does not appear to adversely affect the performance of the
exact estimator. The bias, standard deviation and mean squared error (MSE) were
computed using 10,000 replications. The sample size and band parametee
chosen to be = 500 andn = n%° = 56. Values of/ were selected in the interval
[—3.5,3.5].

Tables 1 and 2 show the simulation results. The exact estimator has little
bias for all values ofd. The untapered estimator has a large biasdfor 1,
corroborating the theoretical result that it converges to unity in probability [8].
When —0.5 < d < 1, the exact and untapered estimators have similar variance



1898 K. SHIMOTSU AND P. C. B. PHILLIPS

TABLE 1
Smulation results: n = 500,m = n%-65 =56

Exact estimator Untapered estimator

d bias s.d. M SE bias sd. MSE

-3.5 -0.0024 0.0787 0.0062 .B617 0.2831 1076
—2.3 -0.0020 0.0774 0.0060 .@345 0.3041 2640
—-1.7 -0.0020 0.0776 0.0060 .8709 0.2788 B363
-1.3 -0.0014 0.0770 0.0059 .8109 0.2170 (2160
—0.7 -0.0024 0.0787 0.0062 .0353 0.0885 091
—-0.3 -0.0033 0.0777 0.0060 —0.0027 0.0781 m061
0.0 -0.0029 0.0784 0.0061 —0.0075 0.0781 M062
0.3 -0.0020 0.0782 0.0061 —0.0066 0.0785 062
0.7 -0.0017 0.0777 0.0060 .0099 0.0812 mo67
1.3 -0.0014 0.0781 0.0061 —0.2108 0.0982 M541
1.7 -0.0025 0.0780 0.0061 —0.6288 0.1331 (1130
2.3 -0.0026 0.0772 0.0060 —1.2647 0.1046 5104
3.5 -0.0016 0.0770 0.0059 —2.4919 0.0724 2150

and MSE. The variances of the tapered estimators are always larger than those
of the exact estimator. Again, this outcome corroborates the theoretical result that
the tapered estimators have larger asymptotic variance. The tapered (HC) estimator
has small bias and performs better than the tapered (V) estimateffbr< d < 2.
However, the tapered (HC) estimator has around 50% larger MSE than the exact
estimator even for those valuesdtlue to its large variance.

TABLE 2
Smulation results: n = 500,m = 1965 =56

Tapered (HC) estimator Tapered (V) estimator

d bias s.d. M SE bias s.d. M SE

-3.5 25889 0.3037 6.7946  .6126 0.3380 2.7148
-2.3 11100 0.2893 1.3157 .P155 0.1726 0.0762
-17 04474 0.2154 0.2466 .0259 0.1235 0.0159
-13 01551 0.1231 0.0392 .0081 0.1211 0.0147
-0.7 00278 0.0957 0.0099 —0.0068 0.1219 0.0149
-0.3 00100 0.0971 0.0095 —-0.0133 0.1224 0.0151
0.0 00034 0.0985 0.0097 —-0.0138 0.1224 0.0152
0.3 -0.0033 0.1004 0.0101 -0.0132 0.1235 0.0154
0.7 -0.0066 0.0994 0.0099 —0.0068 0.1227 0.0151
1.3 -0.0079 0.0987 0.0098 .0140 0.1232 0.0154
1.7 00008 0.0972 0.0095 .0456 0.1288 0.0187
2.3 00528 0.0981 0.0124 -0.1781 0.1419 0.0519
3.5 -04079 0.1142 0.1795 —1.4541 0.1338 2.1322
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Figures 1 and 2 plot kernel estimates of the densities of the four estimators
for the valuesi = —0.7,0.3, 1.3 and 23. The sample size and were chosen as
n =500 andm = n%%°, and 10,000 replications were used. Whea: —0.7, the
exact and tapered (V) estimators have symmetric distributions centere@.@n
with the tapered estimator having a flatter distribution. The untapered and tapered
(HC) estimators appear to be biased. Whke: 0.3, the untapered and exact
estimators have almost identical distributions, whereas the two tapered estimators
have more dispersed distributions. Wheén= 1.3, the untapered estimator is
centered on unity. In this case, the exact estimator seems to work well, having
a symmetric distribution centered on31 The tapered estimators have flatter
distributions than the exact estimator but otherwise appear reasonable and they
are certainly better than the inconsistent untapered estimator. WhkeR 3, the
untapered and tapered (V) estimators appear centerefd@md 20, respectively.
In this case, the tapered (HC) estimator is upward biased. Again, the exact
estimator has a symmetric distribution centered on the true vabue 2

In summary, there seems to be little doubt from these results that the exact LW
estimator is the best general-purpose estimator over a wide ramgeabies.

5 T T T T T

al = Untapered 4
—  Exact d=-0.7
23t A Tapered (HC) i
@ Tapered (V)
O
°

TaTa A A A A A AA A A AAAAA A A4 A.

14 ) ” . . . 0.2

5r = Untapered 7
—  Exact / ' d=0.3
>4 A Tapered (HC) T
@ 4l o) Tapered (V)
()
©

Fic. 1. Densities of the four estimators: n = 500,m = 96,
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7 T T T T
6l _/‘\.\ -—-  Untapered 7
sp d=1.3 L —  Exact 1
> ! \ A Tapered (HC)
=k : Tapered (V) N
c ' . 2
@ 3
©
2
1

o0

" r -—- Untapered
B b —  Exact d=2.3 .
r ! -\ A Tapered (HC) 7
- Tapered (V) .

density
o0 = N W & OO N 0 © O
C T
O

=
>
>
S
S
>
<
3
>

FiG. 2. Denditiesof the four estimators: n = 500,m = 1965,

4. Proofs. In this and the following sectiorjx|+ denotes maj«, 1} and x*
denotes the complex conjugate .of C, ¢ and e denote generic constants such
that C,c € (1, 00) ande € (0, 1) unless specified otherwise, and they may take
different values in different places.

4.1. Proof of consistency. Define G(d) = Gon—l1 >0 Ai(d_d‘)) and S(d) =
R(d) — R(dp). RewriteS(d) as

S(d) = R(d) — R(do)

= log 6@ _ log G (do) + Iog(% Y jd—2do
=1

/Z(d—do)+1

1 2(d—do)
G(d) Go

1 m
—2(d — do)[Z > logj — (logm — 1)]

j=1

+ 2(d — do) —09(2(d — do) + 1).
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DefineU (d) = 2(d — dp) —log(2(d — dp) + 1) and

1og G0 _ 10 C@ (LS aiay gm0
=106, 95w Iog(mjzzlj O/Z(d—do)+1

1 m
+2(d — do) [Z > logj — (logm — 1)},
j=1
so thatS(d) = U(d) — T (d). For arbitrarily smallA > 0, define®1 = {dy — % +
A<d<do+3)and©z={d € [A1,do— 3 + Al U[do + 3, Azl}, ©2 being
possibly empty. Without loss of generality we assume< % hereafter. For
% > p > 0, defineN, = {d:|d — do| < p}. Then it follows (cf. [11], page 1634)
that

(9) Pr(ld — dpo| = p) < Pr(de(larRNp Sd) < O) + PI’(I([’)]I Sd) < 0).

Robinson ([11], (3.4), page 1635) shows

: 2
(10) de([)q(Np Ud) = p*/2.

Therefore, Ptid — do| > p) — O if

sup|T ()| = 0, Pr(inf Sd) < o) -0
01 (CF]

asn — oo. From [11], the fourth term of (d) is O (logm /m) uniformly ind € ©4

and
_ m .\ 2d—2d,
1) sup| 2@ o) +1 (1) " 1’ _ O(L),
1 m

o1 m m 2A

Note that
G(d) — G(d)
G(d)

m—l Zi]l-’l )Lf(d—do))i(do—d) IAdx ()\'J) _ Gom—l ZT )\’i(d_dO)

Gom—1 Y k?(d—do)

_ . _ 2(do—d _ . _
m lzT(]/m)Z(d do))\j(o )IAdx()“j)_Gom lzT(]/m)Z(d do)

2 = Gom 157 (j/m)2d—d0

[2(d — do) + Lm ™2 35 (j /m)P @I D 1y (1)) — Gol
- [2(d — do) + L1Gom=1 Y1 (j /m)2d—do)

_AW)
= 5d
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Therefore, by the fact that RtogY| > ¢) < 2PK|Y — 1] > ¢/2) for any
nonnegative random variableande < 1, sup,, |7(d)| Zoif

(13) sup|A(d)/B(d)| % 0.
©1

Defined = d — dg, and define
Y,0)=1-L)¥X,=Q—-L)y" P -L)ox,=1—-L)u,1{t>1}.

Hereafter, we use the notatian ~ I(a) when g, is generated by (1) with
parametetr. SoY; ~ I (—6). Note that

de®; < -3+A<0<3
Applying Lemma 5.1(a) taY; (@), u;) and reversing the role ok, andu;, we
obtain
(14) wy (Aj) = wyu(A;) Du (™1 0) — (2rn) Y20, 0 (60),
andA(d) can be written as, witly = 2(d — dp) + 1,

g m J 20
(15) Ad) == (_) 7% 1,(00j) = Gol.
m =1 m
Hereafter in this section lgt,; denotel, (1), letw,; denotew, (A ;), and employ
the same notation for the other d.f.t.'s and periodograms. From an argument similar
to that of [11], page 1636, syp|A(d)| is bounded by

m—1 r 2A 1 r 2 2 m o
(16) 2 Z(-) = sup| Y [ 1y; — Gol| + —sup| Y _[1;%1,; — Gol|.
= N TR e [0 Mmooy |
Now
27% 1 - Go

+ 272 1Da (€75 0)12 = Go/ fuh )1 uj

+ [Lyj = 1C(€)P11Go/ fu(hj) + Go(2r I — 1).
For anyn > 0, Lemma 5.2 and Assumption 1 imply thatan be chosen so that

(18 721D (e™350)12 = Go/fuh )| <n+ 005 + 02,
j=1...,m.
The results in [11], page 1637, imply that, uniformlyjn=1, ..., m,
19) Elwyj — C(e*wg;1? = 0 og(j + 1)),
E|L; — |C(e™) Pl = 0(j~Y3(log(j + 1)) "?).
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It follows from (18) and (19) that

m r 2A 1 r .
Z<_> S supy_ |22 [Du(e™:0) 1 = Go/ fu (AL
N/ T ey T

+ [Iyj — 1C ) PI1Go/ fu(3))]
=0, +mPn %4 m2A logm).

Robinson ([11], pages 1637-1638) show§ (r/m)?Ar=2| Y (2x I; — 1)| 5 0
andm 1Y% (2 I.; — 1) 5 0. From (14), the fact thatA|2 — | B|?| < |A+ B||A —
B| and the Cauchy—Schwarz inequality we have

_ — i 2
ESSJPMJ' ZIyj = 25| Du(e™:0) |1
91

- Uy,n(0) 2\ Y2
20 s(Esu 270D,y 9wy — AT S )
(20) (~)1p i Dn R Ny
T, 012\ 1/2
x(Esup)ﬁG wn®) ) .
01 J 2nn

From (19) and Lemmas 5.2 and 5.3, it follows that, uniformly i 1, ..., m,

E sup|3;” Dy (™75 0)w,j1? = 0(D),
01

ES(;Jp|)\;9(2nn)_l/zl7xjn(9)|2 = 0(j*(logn)?).
91

Therefore, we obtain
(1)  (20)= 0@+ j~Y2logn)0(j~Y?logn) = 0(j~Y2(logn)?).
It follows that

m—1 r 2A1
Z(—) — E sup
\m r 1

,
D% Ly = 277 D™ 0)121,]
j=1

= 0(m~%(logn)?),

and hence the first term in (16) é5,(1). Using the same technique, we can show
that the second term in (16)4s,(1), and sup,, |A(d)| £ 0follows. Equation (11)
gives sup, |B(d) — Go| = O (m~2%), and (13) follows.
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Now we take care o, = {d € [A1,do — 5 + AU [do + 3, Azl} = {0 €
[A1—do, —3 + AlU[3, Az — dol} to show Peinfe, S(d) < 0) — 0. Note that

S(d) =logG(d) — logG (do) — 2(d — do)% Y " logh,
j=1

1z 1z
=log= Y Indy; —109= D" Ia,
m-.2 m-.2

2 1 m
—2(d — do)log == — 2(d — do)~ 3 " log j

1 N 2(d—do)  2(do—d) 1&
:Iog;lZAj V5 IAdxj—Iog;ZIAdoxj
j=1 j=1

—2(d — dp) log 2—” —2(d — dp)logp
n

1T &GN o 18
:Ioga Z:(;) )\./ IAdx]—IogZZ:IAdOXJ
j=1 j=1
=log D(d) — log D(do),
wherep = eXp(m_IZT logj) ~m/e asm — oo. Applying (17) withg = 0 and
proceeding similarly to the argument below (17), we obtain
—~ 1
log D(dp) — logGo = Iog<l+ G51<— Z I — G0>) =0,(1).
m
j=1
Therefore, Riinfe, S(d) < 0) tends to O if there exis&> 0 such that
Pr(i(r)n‘ log D(d) — logGo < log(1+ 3)) = Pr(i(r)n‘ D(d) — Go < SGO) —0
92 92

asn — 0. Now, for any fixedc € (0, 1) we have

-\ 20 -\ 20
5(d) [ i(l) )"Tzelyj > 1 i (i) ):ZGij‘
mize/ m i Zaem P

Let Y’ denote the sum ovegr= [km], ..., m. It follows that, ford € O,
D(d) — Gy

22 / ’
P Y05, - Go + Go<m1 >3/ - 1>.
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From Lemma 5.5, by choosirgfirst and thenc sufficiently small, for largen we
have

/
; -1 L N20
inf G0<m >.G/p) 1) > 45Go.
Therefore, Riinfe, S(d) < 0) — 0 if there exists$ > 0 such that
/
(23) Pr(ig;‘(m_lz( i 0571, — Go)> < —3aco> -0

asn — oo. We proceed to show (23) for subsetsay.
First we conside®} = {6 € [-3, —1 + A]}. Rewrite

m Y (j/p)? 077 1; — Go) = A1 (0) + A2 (0),
where

/
(24)  AL©O) =m"rY (/)PP L — 22 Da(e™; 0)12 11,

/
(25)  A2(0) =mt Y (j/ )12 |Da(eI; 0)1Lj — Gol.
For A1,(0), since (20) and (21) are still valid fére ©3, we have
Esup|3; % Iy; — 47 |Dy(e™: 0)1L,;| = 0(j~?(logn)?),

o3
and it follows from Lemma 5.4 that sup@)% [A1,(0)] =0(1). For Ay, (0), rewrite
Ao, () as

(26) m™tY (/PP ¥ D™ 0)1? = Go/ fu(h )
(27) +m™ Y G/ )P Ly — 1C(€)P1j1Go/ fu ()
(28) +m™ Y (/¥ Gor I, — ).

SURyy [(26)], SUR,1 |(27)| = 0,(1) follows from (19) and Lemmas 5.2(b) and 5.4.
For (28), summation by parts gives

wa(®)" 2 (O () 5

r=liem] SN " j=lkm]

20 m
m 1

Jj=lkm]

=100)+11().
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Asin[11], page 1637, write

2nl; — 1= %Z(et D+ - ZZcos{(s — Dhjeser,
t=1
C
suplZ(6)| = — >

s#1
03 r=lxm] ®%F<m>
o 2 o)

r [km]

from which it follows that

m

1
Z(gt ‘
3 Z COS(s — DA }eses|.

s#t j=lkm]

From [11], (3.19) and (3.20), we hawe > (¢2 — 1) 5 0 and

- 2
E(ZZsss, > cos{(s—z)xj}> = O(rn®).

st j=lkm]
In conjunction with mayuj<r<m sup)z(r/m)z" 0(1), we obtain sup; [1(6)] =
0p,(D). SUR,1 (@) = o0,(1) follows from a similar argument Hence
SURyy [(28)| = 0,(1) and Supy |A2,(0)] = 0,(1) follow, and we have estab-
lished (23) ford € ©3.
For@3={0:3 <60 < 3} definez,(0) = Y/_, Y,(6) ~ I(1— 6) with 1 — 6 €
[—3, 1. From Lemma 5.1(b) we have
(29) wy; = (L —e™wj + 2rn) 2% 7,(9).
Define . .
Dyj(0) =27 (L= &™) Dy(e™;6 - 1),
Unj(0) =277 (L= &) un) " 20, 10 (6 - 1),
and then applying (14) t6Z,(0), u,) gives
(30) 270wy = Dij @) wij — Unj(0) + 177 2n)~ Y261 2,(6).
Sinced — 1> —3, from Lemma 5.2 we have, for e 03,
(31) Dy (@) =e 2% L 00+ 0% uniformly iné.
With a slight abuse of notation, rewrite

m 3 G/p)* 0P 1y — Go)

) =m= Y G/P P Ly = 1D (0) L]
+m ™Y G/ )P 1D (0) Ly — Gol

= A1,(0) + A2, (0).
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Therefore, (23) follows if, fop € ©3,
(33) Pr(igf A1, (0) < —25Go) — 0, Sup|A2,(8)| =o0,(D) asn — o0.
0

sup, |A2,(0)| = 0,(1) follows straightforwardly from (31) and by the same

argument as the one fere @%. For A1,(0), substituting (30) to the definition
of A1,(9) gives

(34) A (@) =m™1Y (j/p)? U, O

(35) +mtY (/PP 2an) "t ZE

(36) —2Rem™ 1Y " (j/p)? Duj (0) w}; Uy (9)}

(37) —2Regm ™Y (/PP Unj(0)1;° 2rn)~Y2e*i 7, (9)]

(38) +2Relm™t Y i/ p)¥ Dy (0) w0 (2en) "M Z, (9)].

Equation (34) is almos-t surely nonnegative. Lemma 5.3 gives
(39) EsuplUy; 9)1° = 0(j~" (logm)®),

and hence syg(36)| = o0,(1) follows from (39) and Lemma 5.4. Therefore,
(33) and hence (23) follow if, for any > 0,

(40) Pr(igf[(35)+ (37)+ (38)] < —;> 50 asn— oo

We proceed to show (40). First, there exists 0 such that, uniformly i,

/
35)= p~2 (27)" 21?17, (6)2m~1 Z 1> n(m~n®=Y2z, (9))2'
From (39) and Lemma 5.4, we have, uniformlygin
BN =mn%"Y27,0)- 0,(mY?logn).
For (38), it follows from (31)¢'*/ = 1+ O(1;) and Lemmas 5.4 and 5.6 that

/
m™1Y i/ p)? Duj(0) w270 (2rn) M2 2,(0)

/
_ -1/2 (m/2)0i, —1 . \20 -0
) = @rn)M2Z,(0)e™ P m™Y (i /p)P wiiA;

+ @) 22, @m ™ 3 PP w100 + 0P

=m~n?=Y27,0)[0,(m Y2logm) 4+ 0, (mn~h)].
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Therefore, we can write
(42) (37)+(38)=m~"n""Y22,(6) - Ru(6, ),
wherew denotes an element of the sample sp@cand

(43)  SUp|R.(0, w)| = O, (ky), ky =m~Y?logn + mn~t
(%

— 0.

Before showing (40), define
Q1={(.0) e x O:m "n""12|2,(0)| < k, logm},
Q2= {(0,0) €2 x ©:m 0’ Y?Z,(6)| > ky logm},
where® is the domain ob (@% in this case), so tha&2; U Q2 = Q x ©. Then
{(@,6):0(m~0n®"Y22,0))” — Im™0n"~Y22,(6) - Ry(6, )| < —¢}
= {(@.0): (n(m~"n®~Y?2,(6))
—m " 12Z2,(0) - Ry (0, )| < —¢) N Q1)
U{(@.0): (n(m~"n®=Y?2,(0))?
—m ™ 12Z2,(0) - Ry (0, )| < —¢) N Q2}
< {(@,0):(m~"n®"2Z,(6))% — ky logm|R, 0, )| < —¢ )
U{(w,0):m ™ n® 2|2, (6)|[nk, logm — |R, (6, 0)[] < —¢}
€ {(@,0) tkylogm| R, (0, )| = £} U {(w. 0) :ky logm — | R, (8, )| < O}
Therefore,

{w : igf[n(m_en(’_l/zzn(e))z —m~n? Y27, (0) - Ry(0, w)|] < —c}
C {a):supkn logm|R, (6, w)| > (SGO}
0

U {w:nkn logm — sup|R, (6, w)| < O},
0

and it follows that

Pr(igf[n(m"n@1/22,1(9))2 —m~ Y27, . R, (0, w)|] < —g)
< Pr(kn logm Sup|R, (0, w)| > ;)
0

+ Pr(nkn logm — sup|R, (0, w)| < O)
0

— 0,
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because sygR, (6, w)| = Op(ky), andk,f logm — 0 from Assumption 4. There-
fore (40) follows, and hence (23) holds fok ©3.
For®3={0:-3 <6 < -3}, from Lemma 5.1 we have

44)  wy=A—eM)rway — Q- M) rn) T2, 0),
whereAY; (0) ~ I (—6 — 1). With a slight abuse of notation, define
Dyj(8) = 27" (L= e™) 7Dy (116 + 1),
Unj(©) = 17" (A= &™) 2rn) 205 0 (0 + D).
Then, applying (14) tdAY;(0), u;) gives
(45) 37 %wyj = Dyj@)wij — Unj 0) + 257 2y~ 2™ (1 — ™) 72y, ).

D,j(6) andU,;(0) satisfy (31) and (39) foé € ®3, because-0 — 1 € [—3, 3].
Using the decomposition (32) and the same argument as the oﬂezf@%, we
obtain

m Y (/P 0¥ 1, — Go)

=m Y (/PP A7 Ly — |Duj(0)PLij1 + 0, (1),

whereo, (1) is uniform inf e @2. Using (45), rewrite the first term on the right-
hand side as

@6) m~ 1> "(j/p)? U0

(47) +m~t i(j/p)z‘)x;” @rn) 1= e |72Y, ()

(48) ~2 Re_m‘li(j/p)zeDnjw)*w:j l_fnj<9>]

(49) -2 Re_m—liU/p)Z@ Unj(0)2° 2n) M2 (1 - )71y, <9>]
+2 Re_m*i(j/p)” D,,j (6)*

(50) )
x w jx;e(znn)*l/zel*f (1 — i)y, (9)}.

Equation (46) is almost surely nonnegative. BecaDgg(¢) and (_]nj () satisfy
(31) and (39), it follows from a decomposition similar to (41) and Lemmas
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5.4 and 5.6 that syp(48)| = 0,(1) and (49) + (50) = m~9~1n0+Y2y, (9) x
0,(m~Y2logn + mn=1). Finally, (47) is equal to

/
p_29n29_1(27'[)_29_1m_1 Z 11— e“‘f |_2Yn (9)2

(51) =p Zn® 1 2m) Y, 0P m Y07 (14 o(D)

> nm—29—2n29+1Yn (9)2’

for somen > 0. Therefore we can apply the argument following (42) with slight
changes to show (23) fore ©3.
For@®%=1{0:3 <0 < 3}, by applying (29) twice and (14), we obtain

35 wyj = Duj @) wuj — Upj (0)
+ 270 (2rn) M2 [(1 — e’y Z Z:(0) + Zn(e)},
t=1

where

Dyj(0) =177 (L= e™)2Dy(e™1:6 —2),

Unj 0) =1 (L= e™)2@2rn) Y20, (6 - 2),
andD,;(#) and l7nj (9) satisfy (31) and (39). We proceed to evaluate the terms in
m=1Y(j/p)¥1;% I,;. First, observe that

2

(L—e™)>"Z:0) + Z,(0)
=1

m=ty G/ PP rE @)t

(52) 5

L—e™)>"Z,0) + Z,(6)
=1

/
= p D@ L2r) Py 1Y

By applying Lemma 5.10(a) witlD3 = 02 =0, Q1 =>"7 Z,(9) andQo = Z,(6),
there exists; > 0 such that, for sufficiently large,

2
n
=1

uniformly in 6. Of the othEr terms im 1 Zf(j/p)z")ujfze I,;, the terms involving
the cross products af,;, U,;(6) and(1— ) Y1 Z:(0) + Z,(0) are dominated
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by A3, (0). For instance, proceeding as in (41) gives

m Y (/P)? Duj@)wijr; 2n) M e [(1 —e )Y 740) + Zs (9)}
=1

n
=m0 Tn=32%" 7,(0) - 0,(m™Y?logn + n~tm)
t=1
+m=n?7Y27,0) - 0,(m™Y?logn +n~1m),
where theO, (-) terms are uniform i. Therefore, the terms im=15(i/p)? x
[A;Zf’lyj — | Dy;j (9)|21uj] are eithewo, (1) or nonnegative or dominated bys, ().
We obtain sup|m=1Y"(j/p)?[|1Dn;j(©)|?1,; — Gol| = 0,(1) by using (31) and
proceeding as in (26)—(28) and the following argument, and thus (23) follows for
0 € ©3.
Since|f| < Ar — A1 < %, the proof is completed by showing (23) for the

remaining subsets @, :

O3={0:-3=0=-3.
ef={0:i<0<3}
ei={0:-5<0<-3],
03— (0:3<0<3)
O3={0:-3=0=-3}.

Applying (29) or (44) repeatedly and (14) gives the required resultfar For
instance, for@% ={0: —% <0< —%}, applying (44) four times and then (14), we
have

270wy = Dj @) wj — Unj(0) = 27° (2rn) ™ H2e™ Wy,
where
Dyj(0) =177 (L— ™) *Dy(e™; 6 + 4,
Unj(©) = 45" (A = &)~ @2rn) 205,00 + 4),
Wi = (1—e*)T4A3Y,(0) — (L — %) 73A%Y,(6)
— (1= ™) 2AY,(0) — (1= )71, (0),
andD,;(¢) and Unj (9) satisfy (31) and (39). We can easily obtain

m™1Yy (j/ P %1y — Go)

=m 1Y (/PP ¥ Iy — |Daj 01211+ 0,p(),
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whereo,,(1) is uniform in® € ®3. For the first term on the right-hand side, from
Lemma 5.10(b) we have, for largeandn > 0,

/
m™tY (/PP AT 2rn) T Wi
/

20—1m—29|:m_8”8(A3Yn(9))2 —I—m_Gns(AzYn(@))z]

> nn
+m =44 (AY,(0))% + m—2n2Y,(0)?

uniformly in 6. The terms involving the cross products betweeyy, Unj(e)
and W,; are dominated by (53). The other termsnirr* Z/(j/p)ze[xjfzglyj -

|D,,j(9)|21,,j] are eithero,(1) or almost surely nonnegative, and hence (23)
follows.

4.2. Proof of asymptotic normality. Theorem 2.1 holds undeLthe current
conditions and implies that with probability approaching 1z as oo d satisfies

(54) 0=R'(d) = R'(do) + R"(d)(d — do),
where|d — do| < |d — do|. From the fact that

0 d
@wAdxj 3d 2tn

Z Pi1— L)X,

Ze”‘ "log(1— L)(1— L)?X,,

«/ 2rtn |

82

2 Wadx = FZa“ (log(1— L))*(1 — L)*X,,

we obtain

Go(d)G(d) — G3(d)  Ga(d)Go(d) — G3(d)

Ridy= G2(d) - G2(d)

where

~ 1 9
Gud) = — 3 = [watwiho] =~ D SELEIIART I

Jj=1 j=1
12 52 1
Ga(d) = — 3 ——5[waijwia,; ] = — =Y Wi(L.d, ),

j=1 j=1
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Wi(L.,d,j)=2 Re[w(log(l—L))zAdxjw*Adxj] + 2log1—1)Adxj>

~ 1 29, 2
Go(d)=%211 Ay,
J:

~ 1 .

Grd) = =3 j* 477 2Ruioga-1yyjwi],
j=1

~ 13 5 .

Go(d) = — 3~ j#A7¥Wy(L,0, ),
j=1

andd =d —do andY,(0) = (1 — L)X, = (1 — L)%u,I{t > 1}, as defined in the
proof of Theorem 2.1. Fix > 0 and letM = {d : (logn)*|d — do| < €}. From (9)
in the proof of Theorem 2.1 we have

Prd ¢ M) < (@ilr{fM S(d) < o) +o(D).

Hence, in view of (10), Rt ¢ M) tends to zero if
(55) SuplA(d)/B(d)| = op((logn)~®),
J1

where A(d) and B(d) are defined in (12) in the proof of Theorem 2.1. From
Assumption 1, (18) is strengthened to

o5 |A;29|Dn(eikf? 0)12 — Go/fu(r))| = 0(?»_’,?) +o(~Y?,
j=1...,m.

Therefore, proceeding as in the proof of Theorem 2.1, we obtain

m r 2A 1

Z(—) — sup
.

r=1 " 1

Robinson ([11], (4.9), page 1643) shows

,
>o1x; 1y = 2w Golj1| = Op (mPn~ 4 m™ (logn)?).
j=1

(57) Y @rlj-1)=0,0"" asn—ocoforl<r<m,
=1

and it follows thaty" (r/m)?2r=2| 1 (2 I.; — 1)] = O (m~2" logm). Applying
the same argument to the second term of (16), we obtain, $Ufd)| =
op((logn)—s), and (55) follows in view of (11). Thus we assunie= M in the
following discussion oG4 (d).
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Now we derive the approximation @, (d) for k =0, 1, 2. For Go(d) observe
that

E sup|2; ¥ 1y; — 1|

0eM
< Esup|a; 21y — 277Dy (e 0) 21
oeM
(58) )
+ E sup[a; %Dy (e 0) 7 — 1|1,
0eM

=0(j Y%(logn)? + j*n~%),  j=1,....m,

where the third line follows from (21) and Lemma 5.2. Sing& — 1|/|26| <
(log j)n??! < (log j)n/1°9" = ¢log j on M, we have
sup|j¥ — 1/ = 0((logn) %),
(59) " N
sAl;p|j |=0(), j=1...,m.

Therefore, in view of (58) and'7,; = O (1) [following from (19)], we obtain

sup Go(d)——Zlu,
j=1
15 oo, -2, N
SSUme] 4y — +SUIO Z(] )L
j:l

= o,,((logn)_z).
For G1(d), from (14) and Lemma 5.9 we have
2P wiog— 1)y wi; 4 Jn(€™)
= Ju (€)1 = 277Dy (™75 0) P11,
= Jn(€*)A0 Du(e™T: 0wy - 177 @)U, (6)*
— x;gpn(e’*f; 0) wy; - A;G (2n)"Y2V,,;(0)
— 352 @) T ;0 (0) Vi 0).-

Then, sincel, (e!*i) = O (logn), it follows from (59) and Lemmas 5.2, 5.3 and 5.9
that

m

1 _ - _
o3 vl | Re[A* wiog(a—Lyyjwy; + Ja(e™) 1uj]| = 0, ((logm) %),
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In conjunction with (59),J,(e’*/) = O(logn) andE1,; = O(1), it follows that

~ 12 .
G+~ > 2R T, (€)1

sup
M -1

1 .
— 2 (= j22Re (™) lus |+ 0p((logm) )

j=1

= sup
M

=0, ((logn)™1).

For G2(d), the same line of argument as above with Lemma 5.9(c) gives

Ga(d) — % Y (2R (€)] + 20, () T (€)Y L
j=1

sup
M

~ 1 .
God) = =3 MRSy ]V
j=1

=sup
M

=0,(D).
From (19) and Assumption’ we obtain
E|lj — Golej| < Ellyj — |C(e*DP1ej| + E2x| fu(hj) — fu(O)|1s;
=0 Y(log(j + )+ jfnP),  j=1...m.
Therefore, in view of/, (¢'*/) = O(logn), El; = 1, andCov(l;, Ix) = O (1) if
j=kandOn™ 1) if j #k, we have

Go@)=m™13" Ij +o,((logn)~?)
j:l

=Gom ™Y I +0,((logn)~?)
j=1
= Go +0p((logn)~?),

G1(d) = —2m~1 Y ReJ,(e*)]11,; +0p((logn) 1)
j=1

=—Gom™ 1Y 2R J,(e™)]I,j + 0, ((logn) 1)
j=1

=—Gom 'Y 2R J,(e'")] +0,((logn)~t)
j=1
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and

Ga(d) =m 1Y MR Ty (€N} 1, + 0p(D)
j=1

=Gom 1Y AR T, (M)} L + 0, (1)
j=1

=Gom 1Y AR Ty ()]} + 0, (D).
j=1
It follows that
R"(d) = [G2(d)Go(d) — GZ@)][Go(d)] >
Gam~ LY MR T, (e*)]}2 — {Gom™ L 5 2R T, (e*)]}2 + 0,,(1)
{Go + 0, ((logn)=—2))2

60) =

m m 2
=4m™ 1Y (R, (e™)]}2 - 4{m_1 > RdJ, (e”f)]} +0,(1).

j=1 Jj=1

From Lemma 5.8(a) and a routine calculation, we obtain

m 1Y (R ()2 =m™ Y (logr;)® + o(1),

j=1 j=1

m 2 m 2
{m—lzRe[Jn(e“.f)]} :<m—12|og,\j) +0(1).

j=1 j=1

Therefore ! times (60) is, apart from, (1) terms,

m m 2
m~t X:(Iogkj)2 - (m_l Z Iogkj)
j=1

j=1
m m 2

=m™! X:(logj)2 — (m_l Z |Ogj) — 1,
j=1 j=1

andR"(d) = 4+ 0,(1) follows.

Now we find the limit distribution ofn/2R’(do). In view of Lemma 5.9(b),
Elwyj — C(e™wej)? = 0(j~tlog(j + 1)) [see (19)] andE |,y (¢ L)e,|* =
O(nj~1Y) [see (77)], we obtain

%
~Wiog(1—L)uj Wy

= [ (e wyj + rojlw};
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— C()(2rn) Y2y, (e L)e, C (™) w};
— C(D)@rn) Y20y (e Lygy[w); — Ce™)*w};]
:h@Wﬂw—aD@mrmjxwﬂwmpw%wu+RW

wherer,; is defined in Lemma 5.9(b), anll| j%/2R,;| = o(1) + O(j~Y?logm)
asn — oo. It follows thatm/2G 1 (do) is equal to

(61) —m 2> 2RIl

j=1
(62) +C(Hm 2 i 2R (2mn) M2 T, (€7 L)e, C (e )]
j=1
+0,(1) + 0,(m Y%(logm)?).
From Lemma 5.8(a) we have
(61)=2m~1/? %(log,\j)luj + 0,(m*?n72) + 0,(m~?logm).
j=1
For (62), in view of the fact that
= (2nn)~Y? 2": e Pk ep= (Znn)*l/znijle"q)‘fsn_q,
p=1 q=0

we obtain the decomposition

m
m=H2 Y @) Y2, (e LyenC (M) wy;
j=1
(63) . n—1 n-1
_ m_]_/2 Z C(ei)»j)*(hn)—l< Z ;\jpe—ip)»jé‘n—p) ( Z e q)hjgn Q>
j=1 =0 =

Because the; are martingale differences, the second moment of (63) is bounded
by

m m n—1

m m n—1
(64) mnzZZZ‘JMPHMWH' 2222‘1171”2‘] hir|
j=1

j=1k=1p=0 k=1p=0

1 mom n—1 - N
(65) WZZ Z ’j)»jPHj*)tkI”

J=1k=1p=0.p#q

n_ .
Z el j—r) |
q=0
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Slnce],\ p»=0(max|pl|; 12j=1, logn}) from Lemma 5.8, (64) is bounded by
1 m om[n 1 n—1 n

m—ZZ[Z(Iogn) +Z > ]

- J|p|+, o klrl+

= 0(mn~ (Iogn)2+m‘ (logn)®),

and, in view of the fact tha{j’;;é e'4%j=*) = n{j =k}, (65) is bounded by

1 non- 1 m n—1
—ZZ\JW! —0< Yoy iTtely n|09n> O(m™*(logn)?),

leO leO

giving (62)=0,(1). Therefore, we obtain

m
m*2G1(do) = 2m~ Y2 " (logA ;) I;j + 0p(1).
=1
Letv; =logr; —m~13 T logr; =logj —m~1Y 7logj with 5" v; = 0. Then
it follows that

G1(do) 1&
Y2R"(do) = mY/? —2= % logx;
m (do) [G(do) - Z g
2m~Y2 (|og,\j)luj +0,(1) — (m~ 1Y loghr)2m= Y2y 1,
m_lZT Iuj

_ 2Ty vl +0p(D)
Go+o0,(D)

2m=Y2¥y (1, — Go) + 0, (1)
Go+ Op(l)

_ 2Py @le — D +0p(D) 4
1+o0,(1)

where the fifth line follows from [11], page 1644, completing the proof.

— N(,4),

5. Technical lemmas. Lemma 5.2 extends Lemma A.3 of Phillips and
Shimotsu [8] to hold uniformly irp. Its proof follows easily from the proof of
Lemmas A.2 and A.3 of [8] and is therefore omitted.

LEMMA 5.1 ([7], Theorem 2.2). (df X, follows (1), then
wy (W) = Dy (e dyw, (1) — (2rn) Y2 X, ,(d),
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where D, (eix; d)= ZZ:o (—kd!)k % and

n—1 n
~ ~ . ~ ~ (=i ;
Xon(d) =Dup(e "L d)Xp =Y drpe P Xup,  dip= ) Te’“.
p=0 k=p+1

(b) If X, follows (1) with d = 1, then

we(W)(L— ™) =w, (1) — (2rn) 2! DAY,

LEMMA 5.2 (cf. [8], Lemmas A.2 and A.3). (d)niformly in 6 € [—C, C]
andinj=12,...,mwithm =o0(n),asn — oo,
)\‘J—Q(l_ ei)»j)@ — e—(ﬂ/Z)ei 4+ 0(}\‘/)’ )\‘J—29|1_ eiAJ«IZe =14+ 0()\(?)

(b) Uniformly in @ e [-1+¢,Cland in j =1,2,...,m with m = o(n), as
n— 0o,

170 Dy(e*i10) = "2 4 0 ) + 070,
22Dy )P =14+ 005 + 0.
LEMMA 5.3. Let U, (6) = Dy (e L; 0)uy = 35 0rpe™"Pru, . Under
the assumptions of Theorem 2.1, we have, uniformlyin j =1,...,m,asn — oo,

E sup [n7Y2jY2700, ,0)]* = O((ogn)?).
hel-1/2,1/2)

PROOF When# = 0, the result follows immediately becaugajn(O) =0.
When 6 # 0, definea, = 51_/4,)6_"“1‘ so that lN/A_,-_n(e) = Z’;;%.apun,p. We
suppress the dependencezgfoné andi ;. Summation by parts gives

n—2 p n—1
Uljn(e) = Z (ap - ap—l—l) Z Un—qg +an-1 Z Up—q-
p=0 q=0 q=0

Phillips and Shimotsu ([8], page 670) show that (note that Phillips and Shimotsu
usei, instead of) ; to denote Fourier frequencies)

—0 )
ap_ap-l-l:bnp(e)-'-ge_lpkf’
where
n—1
1+0)I'k—06) .
(66) bup(0) = Z d+)I( )el(k_p))‘f

o T=OT (K +2)
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Then, sincer,_1 = (—0),e ' "~D% /n!, we have

n—2 p
Upn(0) = bup(0) Y un_g
= =0

2
LCOE i, e 95
(67) n: p=0 q=0 q=0
n—1 p
- Z bup(©) z e+ S Y
! p=0 q=0

= Uln(e) + Uzn(Q).
We proceed to show that the elements:6f1/2j1/2=90, (9) are of the stated
order. First, forlU/1,,, we have

n—2
p=0

Z”n —q|

q=0

Because)_ > Euuqg = 21 f,(0) = 21 Go < oo, it follows from Kronecker’s
lemma that, uniformly irp =0, ...,n — 1,

p 2 p
(68) E(Z Mn—q) =(p+1 Z (L—1gl/(p+D)Eususyqg = O(Ipl4).

q=0 q=—p
Therefore, if we have, uniformly ip =0,...,n —1andj =1,.

—3/2
(69) sup  [n?~ Y2V, 6) = O(|pl3Y
0e[—1/2,1/2]

),

it follows from Minkowski’s inequality that

n—2 2
(70)  Esupln’ Y2120y, 0)% = 0(( > |p|+1) ) = 0((logn)?).
0 =0

To show (69), Phillips and Shimotsu ([8], page 670, equation (21)) show that
(72) by @) = OMIn{Ip|* %, |pI37~2nj )

uniformly in@ € [~3, 31, p=0,...,n— 1, andj = 1,..., m. Although Phillips
and Shimotsu do not state explicitly that the bound (71) holds unlformly in
6 € [—3. 3], it is clear from its proof that (71) holds uniformly e [—3, 3].
Then (69) follows from (71) because

6-1/2 ;1/2-6 1/2—6

. —_H— . —3/2 —3/2
0<p=<n/jin Ipl5? 1=(J|P|+/”) P12 < 1p17¥

njj<p<n: 1’19 1/2 -1/2— Hp—é 2 =(jp/n)” —6— 1/2 -3/2 ip—S/Z‘
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For Uz, = ((—=0)n/n!) X5 te=iP%i Y5 u,_,, first we rewrite the sum as

n

n—1 p n
S Y = Y S Y
p=0 q=0

n—p=1 n—q=n—p

n k .
= Z Uy Z elq)‘j
k=1 ¢g=1
(72) )
’)‘J (1 lk)\.j)

—Zuk

— Mj Z = T )Y ?w, (1)).

Since (—6),/n! = O(n—e‘l) uniformly in 6 € [—3, 3] and (1 — f*z‘)—l
O(nj~Y), Esup, [n?~1/212-0y,,1°= 0(1) foIIowsfrom (68) andE |wy (A ))]? =
0 (1) ([11], page 1637) O

LEMMA 5.4. Forke(0,1) and C € (1, c0), asm — o0,

1 2 J\’ 1
@ sup |= ) <—> —/ xVdx|=0(m™Y),
—C=y=c|m j=lkm] m Kk
(b) sup |m™t Y (i/m)?|=0(D),
—C=r=C Jj=lkm]

liminf inf <m—1 > (j/m)”>>8>0.

m—o0 —C<y<C .
=r= J=lkm]

PROOF Note thatixm] > 3 for largem. For part (a), since

SO

j=lkm] Jj=lkm]

j/m K
f xVdx = Z / xydx—/ xVdx,
K (G=D/m ([km]=1)/m

=[km]

their difference is bounded uniformly i by, for sufficiently largen:

m j/m ] 14 K
/ {(—) —xy}dx +/ xVdx
(G=D/mL\m k—(2/m)

>
<5 Y <l>_c_l+%=0(m‘l),

Jj=lkm]
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by the mean value theorem. Part (b) follows immediately from part (@).

LEMMA 5.5. For p~m/easm — coand A € (0, ), thereexist e € (0, 0.1)
and i € (0, §) such that, for all fixed « € (0, ¥] and sufficiently large m:

| 1 &V
@ it = % (—) > 142,
_C§y§—1+2Amj:[Km] p
RN
(b) nf = 3 (i> > 14 2.
l<y<Cm .
Jj=lkm]

PROOF From Lemma 5.4 we obtain, for large,
inf > (i) > inf > <i>
—C<y=<-— 1+2Am j p —C<y=<-— l+2Am j p

=[km] =[km]
14
=[x

1
m i

()

1 r1 - 2A
_/ L2861, 1— (ke) ’
€ Jke 2Ae

m]

. 1 i\7
inf = Y (i> ~ inf —(1 K7+l > S22,
l<y<Cm i) p 1<y<Cy +1 2

where the last inequality holds becauge/ (y + 1) is monotone increasing for
y > 1. Since 2\e < 1, choosinge sufficiently small gives the stated result$.]

LEMMA 5.6. Forke€(0,1),C e€(1,00) andm =o(n),asn — oo,

E sup 1 i <%>awu()\j)

o:e[—C,C] m j:[Km]

= O(m_l/zlogm).

PROOF Summation by parts gives

EE ()

M i Zlem]

_1 mil [<L)a_<r+1)a} i wu(lj”n% i* wa ().

r=[xm] m mn J=lxm] J=lxm]
Note that, uniformly inr =1,..., m — 1 ande,
(n)
<c|l — -,
- \m r

o |G - (55 =G ()
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because syp(1+x)* — 1] < C2¢x for0<x < 1. Theresults in ([11], page 1637)
imply that E|w, (%) — C(e"*)w,(x;)|> = 0(j~tlog(j + 1)) uniformly in j =
1,...,m, giving

2

= O(rlog(r + 1)), r=I[km],..., m.

r

Z wy ()

Jj=lkm]

From (73), (74) and Lemma 5.45'sup,¢;_c.c) |m‘1Z'[’fcm](j/m)°‘wu()LJ-)| is
bounded by

(74) E

m—1
m=t 3" (r/m)=CrY2logr +m~2logm = 0(m~*2logm),

r=[km]

giving the required result.(]

LEMMA 5.7. Define J,(L) = Y4_y L¥/k and D,(L;d) = Y7 _o SR Lk
Then:
@) Ja(L) = Jp(e™) + Tps (e Ly(e 7" L — 1),
(b) Ju(L)Dy(L; d) = J,(e*) Dy (e™; d) + Dy(e™; d)Jns(e L) (e "L — 1)
+Jp (L) Dy (e ™ L; d)(e7™* L — 1),

where

n—1 n
~ . ~ ~ 1 .
Jni(e ML)Z E Jap€ szLp’ Jap = E _elk)h,
_ k
p=0 p+1

-1
D =il .4 _nzg —iph p d o = = (= ikh
n)\(e ;d) = rp€ s Ap—E —e .
p=0 p+1

PROOF.  For part (a) see [9], formula (32). For part (b), from Lemma 2.1 of [7]
we haveD,,(L; d) = D,(e'*; d)+ D, (e **L; d)(e"** L — 1), and the stated result
follows immediately. [J

LEMMA 5.8. Let J,(e™) = Yj_se**/k and Jo, = Y4_, 1¢**/k, as
defined in Lemma 5.7. Then uniformlyin p=0,...,n —1and j =1, ..., m with
m =o(n), asn — oo.

@) Ju(e™) = —logh; + %(n — ) +00DH+0G™Y,
(0)  Ji;p=0min{p|;'nj~t logn}).

ProOOF For (a), first we have

A E: ik 2: ikX; 2: kX
(75) Jn(el j):k 1;61 j=k 1%61 j_k %el "
= = =n+1
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The first term on the right-hand side of (75) is equal to ([16], page 5)

O\ COSkAj o SiNkA; CAj
> i - =—log|2sin=
k=1 k=1

1

Since 2sitiA;/2) = A + O(A?) =A1;(1+ 0()@)), the right-hand side is equal to
20, 4
—logx; —log(1+ O(15)) +z§(n — 1))

= —logi; + 0G3) + 5t = 1,).

For the second term on the right-hand side of (75), summation by parts gives

i }eikkj
k:n-i—lk
n+N-1 1 1 r " 1 n+N .
- Iim[Z(—— )Zelkw—ze’*/}
Nooo| = \r r+1) 25, ntN, 5,

o0
< C<nj—12r‘2+j‘1) =0(™,

k=n

giving (a). Part (b) follows from the fact that

N n
~ -1 ikA; ~ _ -1
Fpl = (p+ 7" max k_§p+1e /| and ijp—0<k§|kl+ )

LEMMA 5.9. Suppose Y; = (1 — L)%u,I{t > 1} . Under the assumptions of
Theorem 2.2 we have:

(@) —wioga—1)y(A;) = Ju(€™) Dy (™5 O)wy, (1) +n"Y2V,;(0),

(0) —wioga—Lyu(hj) = Ju(e™Hwy (1))
— C(V)@rn) 2Ty (e Lyey + raj,

(©) Wioga—ry2y(Aj) = Jn(€)2Dy (™5 O)wy (1)) +n~ Y20, (9),
where, uniformlyin j =1,...,m,asn — oo,

Esgplne_l/zjl/z_e Vi (0)1? = 0((logn)®),

E|jY?r 12 =00+ 0™,
ES;Jp|l’l0_1/2j1/2_9anj(9)|2 = 0((logn)").
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Proor Defineu; = u,I{r > 1}, so thatY; = D;_1(L; 0)u; = D, (L; 0)u, for
t <n. SinceY; =0 forr <0, we have

log(l— L)Y, =(—L — L?/2—L%/3—--)Y; = —J,(L)Y;.
For parts (a) and (b), from Lemma 5.7(b) we have
—log(1— L)Y,
= Ju(L)Dp(L; 0)u,
= (€M) Dy (€15 01ty + Dy (e150) I, (7 L) (e L — Iy
+ Ju(L) Dup; (e Ly 0) (e ™M L — Lyuy.

Since Y.'_; e''*i(e7"* L — Lyu; = —uy,, taking the d.f.t. of the right-hand side
gives
Tn (€Y Dy (™ 0wy, (1) — (2rn) 2Dy (e 0) T, (e LYy

(76) - 4
— 2run) 27, (L) Dy (e L; Oty

Note that Lemma 5.2(b) give®, (¢'*/; 0)| < ci.}. Therefore part (a) follows if
(77) E|Ju; (e Lyi, | = 0(nj ™Y,
(78)  Esup|n® Y2270 (L) Dy, (7 L; 6)r, |° = O((logn)?).
0
First we show (77). Define/, = j, e~ '"% = Yi_ 1k~ te!®=P%i, so that

T =ik T\ -1 ,— -1 .
J{l,\j(e Wi LY, = Z’;:Oa;un_p = Z’;):Oa;,un_p. Then summation by parts
gives

n—2 p n—1
Jnaj (€™ Lyuy = Z(a; — a;,+l) Z Un—q +ay_q Z Un—g-
p=0 q=0 q=0
Observe that

n n

1. 1.

o _ = itk—p)A; = itk—p—=1)X;

a,—da,. 1= E € J E ¢ J
k=p+1 k=p+2

- ¥ w1

k=p+1
n—1

itk=pj L in
n

_ L iy L ipy

kD) n
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l(k— i ; / _ =1 —i(n—Dx;
Dsflne Cnp = Zk bl k(k+l) P)*j. Then sincea, ; =n""e 7, we
obtain

Tux; (€™ Ly,
n—2 p 1 n—2 . p 1 ' n—1
= Z Cnp Z Un—q + — Z e~ Z Un—q + e D Z Un—q
n n
p=0  ¢=0 p=0 q=0 g=0
n—2 p 1 n—1 . p
p=0 q=0 n p=0 q=0

irj n ixj

—nf i i > L S e
= Cnp Up—g n 1o Ug n 1o wy (A
p=0 q=0 k=1

=f1n+f~2n,

where the fourth line follows from (72)|J2,|2 = O (nj—2) in view of the order
of magnitude off | Y% ux|? and E|w, (x ;) |?. For J1,,, since

v !
— k(k+1)

lenpl = e k=i

k=

p+N

Z etkkj

p+1

-1

<|plF? 1maX < Clpl32nj ™,

1

n—1
|Cnp| =< Z
keprr K+ D)

’§C|p|;1,

we have

(80) lenpl < Cminf|pI 3L, 11720 1.

Therefore, it follows from (68) and Minkowski’s inequality that

n/j 2
(81) E|Jln|2=0(<2|p|+ Z |p|+ >>=0<nj—l>,
p=0

p=n/j’
and hence (77) follows. B _
Now we move to the proof of (78). Wheth= 0, then Dy, (e7*iL;0)=0
and (78) follows immediately. Assumg # 0. If we have, uniformly inr =
0,1,...,

(82) E s;lp|n9_l/2 JYZOL Dy, (71 L; 0)un|? = O((logn)?),
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then (78) follows because Minkowski’s inequality gives

_1/2 .1/2— ~ i — 2
E Sup‘ng 1/2J 12 GJn (L)Dn)»j (e MJL; Q)Mn|
%

n—1 2
< E(Z ptsup|n® Y220 LPD,, (eT ML, e)ﬁn})
p=1 0

n—1 N ‘ )\ 12 2
:{Zp%mmﬁ”ﬂ”wmmwmwmw )
p=1 0

= O((logm)*).

We proceed to show (82). For > n, (82) follows immediately because
L’DnAj (e7iL;0)u, =0. Forr =0,...,n — 1, using a decomposition similar
to (67) gives

L' Dy, (e L; 0)u,

=Y bupOL" Y ly—g+—L" Y PN
p=0 q=0 n p=0 q=0

= Uy,,(0) + Uy, (0),
1/2

whereb,, (0) is defined in (66). Fot/;, (0), sinceE (L" Z;’:Oﬁn_q)zz O(pli),
the arguments in the proof of Lemma 5.3 go through Arsai, [n¢~1/2j/2=0 x
U3, (0)1? = O((logn)?) holds. ForUj, (9), using a decomposition similar to (72)
gives

oil

_ i _
Uén(e):( O e ' erﬁk_( O)n

n! 11— et

; n

J .

i Lr lk)\,j_
n! 1—etti kzle ”"

(0 e (=), et

n—r

irk; igh;

n upr — —€ J e Ju,.

Y l—e’)‘fz TR Ry 2 q
k=1 g=1

Since E(Y{Zj ux)? = 0(n/?) for any r, Esup, |n?~Y2j1/2-0y; (0)]? = 0(1)
and (82) follow if, form = o(n),
- 2
(27'[}’)_1/2 Z e’“fuk
k=1
We establish (83) to complete the proof of part (a). An elementary calculation
gives

(83) max max E

1<r<nl<j<m

=0().

E

2

r ) T

2rr) V2N ety =/ FuQK (A — 1)) dn,
-7

k=1
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wherek, (1) = (2rr) 1Y _ S_; €/ =% is Fejér's kernel. From Zygmund [16],
pages 88-90,/7 |K,(\)|dxr < A and |K,.(\)| < Ar~11=2 for a finite con-
stant A. Furthermore from Assumption 1 there exisise (0, 7) such that
SUR.e[—p.y | fu(M)] < C, and infy = |2 — A;] > n/2 if A; < n/2. It follows that
for sufficiently largen

[ f0K 6= rpan

=[ ROKG-rpd+ FLOVKy 0= 1)) do
Al <n n<|r|<m
<AC + Ar_l(n/Z)_Z/ Fu() dr < oo,

=il

uniformly in j =1, ..., m, and (83) follows. _ .
For part (b), in view of (76)D, (¢"*; 0) = 1 and D, (e~**/ L; 0) = 0, part (b)
follows if, asn — oo, uniformly in j =1, ..., m,

84)  E|jY2nY2],, (7ML (0 — C(De) [P = 0D + 0.

Using the same decomposition as (79), writd/?n=Y2J,; (e=™*/L)(u, —
C(De,) as
n—2 1/2 p

(85) Z cnp Z Up— - — C(l)é?n q)
j1/2 ol M
" nynl— e kZ::l(””‘k — CWen—s)
(86)
-1/2 i}‘J\/Z
J7ce
- Tm[wu(h) — C(Dwe(1))].
If we have
P 2
E [ > (n—g = C(l)enq)}
q=0
(87)

[ odply), uniformly in p=0,...,n — 1,
o(p), asp — oo,

then it follows from Minkowski’s inequality and the order of, given by (80) that

njj
(E|(85))"% = 0((j/n>1/2 3 |p|;1/2)

p=0

n/j n
. _ . n _
+o(<1/n>1/2 o pV2HG/mY? Y Sp 3/2>
p=vinfj p=n/j !
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= 0((Gi/mY* + o)
=o(1),

because/n/j > \/n/m — oo from Assumption 4 To prove (87), note that when
p =0, (87) follows immediately. Whep > 1, observe that

» 2
E|: > (un—g — C(l)enq)]
q=0

P 2 P 2
< ZE[ > un_q} +2E |:C(1) > en_q} :

q=0 q=0

Since the first term on the right-hand side is unifornilyp) from (68) and the
second term on the right-hand side is equal@D?2(p + 1), the first part of (87)
holds. For the second part of (87), note that the left-hand side of (87) is equal to

(Vq = EututJrq)

p P 4
Yo p+1=1rhy =20 Y. cqor + (p+DC D)3
r=—p q=0r=0

P P
=—(p+D Y %»-2>ryp+20QH(P+D Y —2CD)Y rc
[r|=p+1 r=1 r>p+1 r=1

If >°> a- converges, thelr',~ 1 a- tends to 0 ap — oo; thus the first and
third terms areo(p) because bot}"> y, and > ¢, converge. The second
and fourth terms are(p) from Kronecker’s lemma, and the second part of (87)
follows. ObviouslyE|(86)|2 = O(j~1), and (84) follows.

For part (c), first from Lemma 2.1 of [7] and Lemma 5.7 we have

Jn(L)? = Ty (L) [ (€) + Jus (e LY(e 7 L — 1)]
= Ju(L)Jn(€™) + Ju (L) Jur (e *L) (e L — 1)
= Ju(€™)? + Ty (€™ Jprle L) (e 7L — 1)

+ Ju(L)Jur(e L) (e L - 1),
Dy(L; 0) = Dy(e™;0) + Dus(e *L; 0) (e L — 1).
It follows that
(log(1 — L)%Y, = Ju(L)?D,(L; 6)7;
= Ju(e™)?Dy (™ 0)i;

+ Dy (™ 0)[Jn(e™) + Ju (L)) Jns (e * LY (e L — iy
+ Ju(L)2Dps (e L 0) (e L — D).
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Taking its d.f.t. gives
Jn(€?)2Dy(e™; 0)wy (3.))
— (2n) Y2 Dy (e 0) [ Jn(€™) + Ty (L)) s (e~ Ly,
— (2mn) Y24, (L)*Dps, (eI L; )ity
By the same argument as the ones used in showing (77) and (82), we obtain
E|L' Ty (e M Ly = 0mj™,  ¢=0,1,....

In conjunction with J,(e'*/) = O(logn), Minkowski’s inequality and (82), it
follows that

E sup|n® Y2270 D, (™15 0) [ Ju(e™)) + Ju (L)) Ts; (e Lty |?
0

= 0((logn)?),
E sup|n’ Y2270 1, (L)? D, (™ L; 0)ity
o
= 0((logn)®)
for j =1,...,m, giving the stated result.(]
LEMMA 5.10. Let Ok, k =0,...,3, be any real numbers, « € (0, 3), and

1/m +m/n — 0asn — oo. Then there exists n > 0 not depending on Q. such
that, for sufficiently large n:

@ mt Y |- e*)PQ3+ (L e*)200+ (1—¢™) Q1+ Qof?

Jj=lkm]

> n(mGn_ng + m4n_4Q% + mzn_zQ% + ch)),

() m™t > |L—e*)TT0s+ (1—e*) 20,

j=[km]
] +(1—e?) 3014+ (1 - i) 74Q0f?
> n(m_2n2Q§ +m_4n4Q% +m_6n6Q% +m_8n8Q%).
ProoORr Define
AWM =(1—e"P03+ (1 —eM?02+ (1— ™) Q01+ Qo.
Since 1- ¢* = —ix 4+ 0(A2) asr — 0, we have
AW =ir303—2%02—ir01+ Qo

(88)
+00MN03+ 003024+ 00301
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Applying 2la||b| < |a|?+ |b|? to the product terms involving the remainder terms,
we obtain

(89) [AG)I? = (202 — Q0)° + (1303 — 1Q1)% + R(),
whereR(A) = 0(L") 03+ 0 (1) 05+ 0(23) 02 + 0 (1) Q3. First we show that
(90) mt 3" (A502— 00)? = n(m*n 105+ 0F).

Jj=lxkm]

When sgiiQ2) # sgn(Qo), then (90) holds from Lemma 5.4. When $@?) =
sgn(Qop), without loss of generality assum@,, Qo > 0. Note that)@Qz is

an increasing function ofi. Now suppose(km/z)zQz — Qo > 0. Then, since
(A3m/4)2 = 3(hm2)?, we have, forj =3m/4,...,m,

k?Qz — Qo> %(km/z)ZQz — Qo
= 10un/2)?02 4+ 2(Am/2)* 02 — Qo
> 2(Amy2)2Q2+ Qo.

Now SUppose&h,.2)2Q2 — Qo < 0. Then, SinC&i,,/4)? = §(Am/2)?, we have, for
j=1,...,m/4,

2202 — Q0 < 5(hm2)?02— Qo
= —3 02?02+ [3(lmy2)2Q2 — Q0]

< —zll(km/z)zQz - %Qo-
Therefore, eitherfoj =1, ...,m/4 orforj =3m/4, ..., m, we have

(91) 12302 — Qol = % (m/2)* Q2+ 300
and (90) follows immediately. The same argument gives, if ah = sgn(Q1),
(92) 11303 — 1011 = {5 (m/2)%| Q3| + 31 1l }.

either forj =1,...,m/4 or for j = 3m/4,...,m, and it follows from (91) and
(92) that

m
mt Y (0303-2;01% = nmn 005+ m*n209).
J=lkm]
For R(%) in (89), it follows from Lemma 5.4 that
m
m™t Y R
J=lkm]

=0m'n~ Q%+ 0m®n>) 05+ 0(m°n3) Q% + 0(mn~1)Q3,
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and part (a) follows. For part (b), rewrite the term inside the summation as
(A= e™) AP =741+ 00 ))AM)|%.

Applying (88) and the following argument with (91) and (92) gives part (I).
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