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An exact form of the local Whittle likelihood is studied with the
intent of developing a general-purpose estimation procedure for the memory
parameter (d) that does not rely on tapering or differencing prefilters. The
resulting exact local Whittle estimator is shown to be consistent and to have
the sameN(0, 1

4) limit distribution for all values ofd if the optimization
covers an interval of width less than92 and the initial value of the process is
known.

1. Introduction. Semiparametric estimation of the memory parameter (d) in
fractionally integrated (I (d)) time series is appealing in empirical work because of
the general treatment of the short-memory component that it affords. Two common
statistical procedures in this class are log-periodogram (LP) regression [1, 10]
and local Whittle (LW) estimation [5, 11]. LW estimation is known to be more
efficient than LP regression in the stationary (|d| < 1

2) case, although numerical
optimization methods are needed in the calculation. Outside the stationary region,
it is known that the asymptotic theory for the LW estimator is discontinuous at
d = 3

4 and again atd = 1, is awkward to use because of nonnormal limit theory
and, worst of all, the estimator is inconsistent whend > 1 [8]. Thus, the LW
estimator is not a good general-purpose estimator when the value ofd may take on
values in the nonstationary zone beyond3

4. Similar comments apply in the case of
LP estimation [4].

To extend the range of application of these semiparametric methods, data
differencing and data tapering have been suggested [3, 15]. These methods
have the advantage that they are easy to implement and they make use of
existing algorithms once the data filtering has been carried out. Differencing has
the disadvantage that prior information is needed on the appropriate order of
differencing. Tapering has the disadvantage that the filter distorts the trajectory of
the data and inflates the asymptotic variance. As a consequence, there is presently
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no general-purpose efficient estimation procedure when the value ofd may take
on values in the nonstationary zone beyond3

4.
The present paper studies an exact form of the local Whittle estimator which

does not rely on differencing or tapering and which seems to offer a good general-
purpose estimation procedure for the memory parameter that applies throughout
the stationary and nonstationary regions ofd. The estimator, which we call the
exact LW estimator, is shown to be consistent and to haveN(0, 1

4) limit distribution
when the optimization covers an interval of width less than9

2. The exact LW
estimator therefore has the same limit theory as the LW estimator has for stationary
values ofd. The approach seems to offer a useful alternative for applied researchers
who are looking for a general-purpose estimator and want to allow for a substantial
range of stationary and nonstationary possibilities ford. The method has the
further advantage that it provides a basis for constructing asymptotic confidence
intervals ford that are valid irrespective of the true value of the memory parameter.

The exact LW estimator given here assumes the initial value of the data to
be known. This restriction can be removed by estimating it along withd, as
shown by Shimotsu [14]. Also, computation of the estimator involves a numerical
optimization that is more demanding than conventional LW estimation. Our
experience from simulations indicates that the computation time required is about
ten times that of the LW estimator and is well within the capabilities of a small
notebook computer.

2. Exact local Whittle estimation. We consider the fractional processXt

generated by the model

(1− L)d0Xt = utI {t ≥ 1}, t = 0,±1, . . . ,(1)

whereI {·} is the indicator function andut is stationary with zero mean and spectral
densityfu(λ) ∼ G0 asλ → 0. Expanding the binomial in (1) gives the form

t∑
k=0

(−d0)k

k! Xt−k = utI {t ≥ 1},(2)

where

(d0)k = �(d0 + k)

�(d0)
= (d0)(d0 + 1) · · · (d0 + k − 1)

is Pochhammer’s symbol for the forward factorial function and�(·) is the gamma
function. Whend0 is a positive integer, the series in (2) terminates, giving the usual
formulae for the model (1) in terms of differences and higher-order differences
of Xt. An alternative form forXt is obtained by inversion of (1), giving a valid
representation for all values ofd0,

Xt = (1− L)−d0utI {t ≥ 1} =
t−1∑
k=0

(d0)k

k! ut−k.(3)
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Define the discrete Fourier transform (d.f.t.) and the periodogram of a time series
at evaluated at frequencyλ as

wa(λ) = (2πn)−1/2
n∑

t=1

ate
itλ,

Ia(λ) = |wa(λ)|2.

2.1. Exact local Whittle likelihood and estimator. We start with the likelihood
function of the stationary innovationut . The (negative) Whittle likelihood ofut

based on frequencies up toλm and up to scale multiplication is

m∑
j=1

logfu(λj ) +
m∑

j=1

Iu(λj )

fu(λj )
, λj = 2πj

n
,(4)

where m is some integer less thann. We want to transform the likelihood
function (4) to be data dependent.

If |d0| < 1
2, it is known that Iu(λj ) can be approximated byλ2d0

j Ix(λj )

[10, 12]. Therefore, if one viewsIu(λj ) as thej th observation ofut in the

frequency domain, replacingIu(λj ) in (4) withλ
2d0
j Ix(λj ) and adding the Jacobian∑m

j=1 logλ−2d
j to (4) makes it data dependent. Indeed, the resulting objective

function coincides with that of the LW estimator.
However, whend0 takes a larger value, in particular when|d0| > 1, λ2d0

j Ix(λj )

no longer provides a good approximation ofIu(λj ). In this paper, we propose
to use a “corrected” d.f.t. ofXt that can approximateIu(λj ) and validly
transform (4) in such cases. Lemma 5.1 in Section 5 provides the necessary
algebraic relationship for these quantities for any value ofd0, namely,

Iu(λj ) = I�d0x(λj ) = |Dn(e
iλj ;d0)|2|vx(λj ;d0)|2,

(5)
vx(λj ;d) = wx(λj ) − Dn(e

iλj ;d)−1(2πn)−1/2X̃λj n(d),

where

Dn(e
iλ;d) =

n∑
k=0

(−d)k

k! eikλ

and

X̃λn(d) =
n−1∑
p=0

d̃λpe−ipλXn−p with d̃λp =
n∑

k=p+1

(−d)k

k! eikλ.

The functionvx(λj ;d0) in (5) adds a correction term that involves̃Xλjn(d0)

to the d.f.t.wx(λj ), which ensures that the relationship (5) holds exactly for
all d0. Accordingly, we may interpretvx(λj ;d0) as a well-suited proxy for the
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j th frequency domain observation ofXt . Consequently, replacingIu(λj ) in (4)
with |Dn(e

iλj ;d)|2|vx(λj ;d)|2, adding the Jacobian
∑m

j=1 log|Dn(e
iλj ;d)|−2 and

using (5) again give, in conjunction with the local approximationfu(λj ) ∼ G and
|Dn(e

iλj ;d)|2 ∼ λ2d
j [8],

Qm(G,d) = 1

m

m∑
j=1

[
log(Gλ−2d

j ) + 1

G
I�dx(λj )

]
,

whereI�dx(λj ) is the periodogram of

�dXt = (1− L)dXt =
t∑

k=0

(−d)k

k! Xt−k.

We propose to estimated andG by minimizingQm(G,d), so that

(Ĝ, d̂ ) = argmin
G∈(0,∞),d∈[�1,�2]

Qm(G,d),(6)

where�1 and�2 are the lower and upper bounds of the admissible values ofd

such that−∞ < �1 < �2 < ∞. ConcentratingQm(G,d) with respect toG, we
find thatd̂ satisfies

d̂ = argmin
d∈[�1,�2]

R(d),

where

R(d) = logĜ(d) − 2d
1

m

m∑
j=1

logλj , Ĝ(d) = 1

m

m∑
j=1

I�dx(λj ).

The estimator̂d is based on the transformation of the Whittle likelihood function
of ut by (5). Since (5) follows from a purely algebraic manipulation and holds
exactly for anyd, we call d̂ the exact local Whittle estimator ofd. [The word
“exact” is used to distinguish the proposed estimator (which relies on an exact
algebraic manipulation) from the conventional local Whittle estimator, which
is based on the approximationIx(λj ) ∼ λ−2d

j Iu(λj ). Of course, the Whittle
likelihood is itself an approximation of the exact likelihood, but this should cause
no confusion.]

2.2. Consistency. We now introduce the assumptions onm and the stationary
componentut in (1).

ASSUMPTION1.

fu(λ) ∼ G0 ∈ (0,∞) asλ → 0+ .
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ASSUMPTION2. In a neighborhood(0, δ) of the origin,fu(λ) is differentiable
and

d

dλ
logfu(λ) = O(λ−1) asλ → 0+ .

ASSUMPTION3.

ut = C(L)εt =
∞∑

j=0

cj εt−j ,

∞∑
j=0

c2
j < ∞,

where

E(εt |Ft−1) = 0, E(ε2
t |Ft−1) = 1 a.s.,t = 0,±1, . . . ,

in which Ft is the σ -field generated byεs , s ≤ t , and there exists a ran-
dom variableε such thatEε2 < ∞ and for all η > 0 and someK > 0,
Pr(|εt | > η) ≤ K Pr(|ε| > η).

ASSUMPTION4.

1

m
+ m(logm)1/2

n
+ logn

mγ
→ 0 for anyγ > 0.

ASSUMPTION5.

�2 − �1 ≤ 9
2.

Assumptions 1–3 are analogous to Assumptions A1–A3 of [11]. However, we
impose them in terms ofut rather thanXt . Assumption 4 is slightly stronger
than Assumption A4 of [11]. Assumption 5 restricts the length of the interval
of permissible values in the optimization (6), although it imposes no restrictions
on the value ofd0 itself. For instance, if we assume the data are overdifferenced
at most once and henced0 ≥ −1, then taking[�1,�2] = [−1,3.5] makes
d̂ consistent for anyd0 ∈ [�1,�2]. When one wants to allow the interval
of permissible values to be wider than9

2, the tapered estimators with sufficiently
high order of tapering provide useful alternatives.

Under these conditions we may now establish the consistency ofd̂ .

THEOREM 2.1. Suppose Xt is generated by (1) with d0 ∈ [�1,�2] and

Assumptions 1–5hold. Then d̂
p→ d0 as n → ∞.

Assumption 5 is necessary for the following reason. Loosely speaking, we prove
consistency by showing that (i) when|d − d0| is small,R(d) − R(d0) converges
uniformly to a nonrandom function that achieves its minimum atd0, and (ii) when
|d − d0| is large,R(d)−R(d0) is uniformly bounded away from 0. When|d − d0|
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is larger than1
2, the periodogramI�dx(λj ) in the objective function does not

behave likeλ2(d−d0)
j Iu(λj ). Consequently,R(d) − R(d0) does not converge to a

nonrandom function, and we need an alternative way to bound it away from zero.
For instance, when12 ≤ d − d0 ≤ 3

2, the normalized d.f.t. is expressed as [cf. (30)
in the proof of consistency]

λ
−(d−d0)
j w�dx(λj ) � e−(π/2)(d−d0)iwu(λj ) + λ

−(d−d0)
j (2πn)−1/2eiλj Zn,

where

Zn =
n∑

t=1

(1− L)dXt .

The leakage from the last term prevents the uniform convergence ofR(d)−R(d0)

and complicates the proof. When|d − d0| is larger,λ−(d−d0)
j w�dx(λj ) has further

additional terms [e.g., the equation below (51)], and we were able to show the
necessary results only for|d − d0| ≤ 9

2, which is why we need Assumption 5.
Lemma 5.10 in Section 5 is the main tool in handling the effects of such additional
terms. We could relax Assumption 5 if we could extend Lemma 5.10 to hold with
more general summands(1− eiλj )kQk + · · · + Q0, but we were not able to do so.

REMARK 1. An alternative way of accommodating a wider range ofd without
sacrificing efficiency is to use a two-step procedure. A two-step estimator based
on the objective functionR(d) that uses a (higher-order) tapered estimator in the
first step would have the same asymptotic variance as the exact LW estimator.
(Strictly speaking, the asymptotic properties of tapered estimators have been
established only under the alternative type of fractionally integrated process
generated as in (8), although some results on the difference between their d.f.t.’s
are available [12].)

REMARK 2. The model (1) assumes, in effect, that the initial value ofXt is
known. In practice, it is more natural to allow for an unknown initial value,µ0,
and modelXt as

Xt = µ0 + (1− L)−d0utI {t ≥ 1}
(7)

= µ0 +
t−1∑
k=0

(d0)k

k! ut−k.

Estimation ofµ0 affects the limiting behavior of the estimator. According to
Shimotsu [14], (i) ifµ0 is replaced with the sample average�X = n−1 ∑n

t=1 Xt ,
then the estimator is consistent ford0 ∈ (−1

2,1) and asymptotically normal for
d0 ∈ (−1

2, 3
4), but simulations suggest that the estimator is inconsistent ford0 > 1;

and (ii) if µ0 is replaced byX1, then the estimator is consistent ford0 ≥ 1
2 and
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asymptotically normal ford0 ∈ [1
2,2), but simulations suggest that the estimator

is inconsistent ford0 ≤ 0. To accommodate unknownµ0, it is possible to extend
Theorem 2.1 forXt generated by (7) by estimatingµ0 along withd0. For instance,
Shimotsu [14] proposes estimatingµ0 by

µ̂(d) = w(d)�X + (
1− w(d)

)
X1,

wherew(d) is a smooth (twice continuously differentiable) weight function such
that w(d) = 1 for d ≤ 1

2, w(d) ∈ [0,1] for 1
2 ≤ d ≤ 3

4 andw(d) = 0 for d ≥ 3
4,

and replacingXt with Xt − µ̂(d) in the periodograms in the objective function.
Shimotsu [14] shows the resulting estimator ofd is consistent and asymptotically
normal for d0 ∈ (−1

2,2), excluding arbitrary small intervals around 0 and 1.
Another possibility would be to replaceXt with Xt − µ in the periodogram
ordinates and minimize the objective function with respect to(d,G,µ).

REMARK 3. Fractionally integrated processes as defined in (1) are more
restrictive in some ways than the stationary frequency domain characterization
used in [11] and elsewhere. It might be possible to extend the results in this paper
to the class of nonstationary processes analyzed by [13] and seek to achieve a
similar degree of generality to Robinson [11], but we do not attempt to do so here.

REMARK 4. Another popular definition of a fractionally integrated process
provides for different generating mechanisms according to the specific range of
values taken byd0, as in

Xt =


(1− L)−d0ut , d0 ∈ (−∞, 1

2

)
,

µ0 +
t∑

k=1

Zk, Zt = (1− L)1−d0ut , d0 ∈ [1
2, 3

2

)
,

(8)

with corresponding extensions for larger values ofd0, so thatXt or its (higher-
order) difference is stationary. While we do not explore the effects of these
alternative generating mechanisms here, simulation results suggest that the version
of the exact LW estimator in [14] is consistent for this type of fractionally
integrated process.

2.3. Asymptotic normality. We introduce some further assumptions that are
used to derive the limit distribution theory.

ASSUMPTION1′. Assumption 1 holds, and also for someβ ∈ (0,2]
fu(λ) = G0

(
1+ O(λβ)

)
asλ → 0+ .

ASSUMPTION 2′. In a neighborhood(0, δ) of the origin,C(eiλ) is differen-
tiable and

d

dλ
C(eiλ) = O(λ−1) asλ → 0+ .
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ASSUMPTION3′. Assumption 3 holds and also

E(ε3
t |Ft−1) = µ3, E(ε4

t |Ft−1) = µ4 a.s.,t = 0,±1, . . . ,

for finite constantsµ3 andµ4.

ASSUMPTION4′. As n → ∞,

1

m
+ m1+2β(logm)2

n2β
+ logn

mγ
→ 0 for anyγ > 0.

ASSUMPTION5′. Assumption 5 holds.

Assumptions 1′–3′ are analogous to Assumptions A1′–A3′ of [11], except that
our assumptions are in terms ofut rather thanXt . Assumption 4′ is slightly
stronger than Assumption 4′ of [11].

The following theorem establishes the asymptotic normality of the exact local
Whittle estimator ford0 ∈ (�1,�2). (The approximate mean squared error and
the corresponding optimal bandwidth can be obtained heuristically in the same
manner as in [2].)

THEOREM 2.2. Suppose Xt is generated by (1) with d0 ∈ (�1,�2) and
Assumptions 1′–5′ hold. Then

m1/2(d̂ − d0)
d→ N

(
0, 1

4

)
as n → ∞.

3. Simulations. This section reports some simulations that were conducted to
examine the finite sample performance of the exact LW estimator (hereafter, exact
estimator), the LW estimator (hereafter, untapered estimator) and the LW estimator
with two types of tapering studied by Hurvich and Chen [3] and Velasco [15] with
Bartlett’s window [hereafter, tapered (HC) and tapered (V) estimator, resp.]. The
tapered (HC) estimator and tapered (V) estimator are consistent and asymptotically
normal for d ∈ (−0.5,1.5) with limiting variances 1.5/(4m) and 2.1/(4m),
respectively (see Remark 1). We generateI (d) processes according to (3) with
ut ∼ i.i.d.N(0,1). �1 and�2 are set to−6 and 6. Although this setting violates
Assumption 5, it does not appear to adversely affect the performance of the
exact estimator. The bias, standard deviation and mean squared error (MSE) were
computed using 10,000 replications. The sample size and band parameterm were
chosen to ben = 500 andm = n0.65 = 56. Values ofd were selected in the interval
[−3.5,3.5].

Tables 1 and 2 show the simulation results. The exact estimator has little
bias for all values ofd. The untapered estimator has a large bias ford > 1,
corroborating the theoretical result that it converges to unity in probability [8].
When −0.5 < d < 1, the exact and untapered estimators have similar variance



1898 K. SHIMOTSU AND P. C. B. PHILLIPS

TABLE 1
Simulation results: n = 500,m = n0.65 = 56

Exact estimator Untapered estimator

d bias s.d. MSE bias s.d. MSE

−3.5 −0.0024 0.0787 0.0062 3.1617 0.2831 10.076
−2.3 −0.0020 0.0774 0.0060 1.6345 0.3041 2.7640
−1.7 −0.0020 0.0776 0.0060 0.8709 0.2788 0.8363
−1.3 −0.0014 0.0770 0.0059 0.4109 0.2170 0.2160
−0.7 −0.0024 0.0787 0.0062 0.0353 0.0885 0.0091
−0.3 −0.0033 0.0777 0.0060 −0.0027 0.0781 0.0061

0.0 −0.0029 0.0784 0.0061 −0.0075 0.0781 0.0062
0.3 −0.0020 0.0782 0.0061 −0.0066 0.0785 0.0062
0.7 −0.0017 0.0777 0.0060 0.0099 0.0812 0.0067
1.3 −0.0014 0.0781 0.0061 −0.2108 0.0982 0.0541
1.7 −0.0025 0.0780 0.0061 −0.6288 0.1331 0.4130
2.3 −0.0026 0.0772 0.0060 −1.2647 0.1046 1.6104
3.5 −0.0016 0.0770 0.0059 −2.4919 0.0724 6.2150

and MSE. The variances of the tapered estimators are always larger than those
of the exact estimator. Again, this outcome corroborates the theoretical result that
the tapered estimators have larger asymptotic variance. The tapered (HC) estimator
has small bias and performs better than the tapered (V) estimator for−0.5< d < 2.
However, the tapered (HC) estimator has around 50% larger MSE than the exact
estimator even for those values ofd due to its large variance.

TABLE 2
Simulation results: n = 500,m = n0.65 = 56

Tapered (HC) estimator Tapered (V) estimator

d bias s.d. MSE bias s.d. MSE

−3.5 2.5889 0.3037 6.7946 1.6126 0.3380 2.7148
−2.3 1.1100 0.2893 1.3157 0.2155 0.1726 0.0762
−1.7 0.4474 0.2154 0.2466 0.0259 0.1235 0.0159
−1.3 0.1551 0.1231 0.0392 0.0081 0.1211 0.0147
−0.7 0.0278 0.0957 0.0099 −0.0068 0.1219 0.0149
−0.3 0.0100 0.0971 0.0095 −0.0133 0.1224 0.0151

0.0 0.0034 0.0985 0.0097 −0.0138 0.1224 0.0152
0.3 −0.0033 0.1004 0.0101 −0.0132 0.1235 0.0154
0.7 −0.0066 0.0994 0.0099 −0.0068 0.1227 0.0151
1.3 −0.0079 0.0987 0.0098 0.0140 0.1232 0.0154
1.7 0.0008 0.0972 0.0095 0.0456 0.1288 0.0187
2.3 0.0528 0.0981 0.0124 −0.1781 0.1419 0.0519
3.5 −0.4079 0.1142 0.1795 −1.4541 0.1338 2.1322
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Figures 1 and 2 plot kernel estimates of the densities of the four estimators
for the valuesd = −0.7,0.3,1.3 and 2.3. The sample size andm were chosen as
n = 500 andm = n0.65, and 10,000 replications were used. Whend = −0.7, the
exact and tapered (V) estimators have symmetric distributions centered on−0.7,
with the tapered estimator having a flatter distribution. The untapered and tapered
(HC) estimators appear to be biased. Whend = 0.3, the untapered and exact
estimators have almost identical distributions, whereas the two tapered estimators
have more dispersed distributions. Whend = 1.3, the untapered estimator is
centered on unity. In this case, the exact estimator seems to work well, having
a symmetric distribution centered on 1.3. The tapered estimators have flatter
distributions than the exact estimator but otherwise appear reasonable and they
are certainly better than the inconsistent untapered estimator. Whend = 2.3, the
untapered and tapered (V) estimators appear centered on 1.0 and 2.0, respectively.
In this case, the tapered (HC) estimator is upward biased. Again, the exact
estimator has a symmetric distribution centered on the true value 2.3.

In summary, there seems to be little doubt from these results that the exact LW
estimator is the best general-purpose estimator over a wide range ofd values.

FIG. 1. Densities of the four estimators: n = 500,m = n0.65.
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FIG. 2. Densities of the four estimators: n = 500,m = n0.65.

4. Proofs. In this and the following section,|x|+ denotes max{x,1} andx∗
denotes the complex conjugate ofx. C, c and ε denote generic constants such
that C,c ∈ (1,∞) and ε ∈ (0,1) unless specified otherwise, and they may take
different values in different places.

4.1. Proof of consistency. Define G(d) = G0
1
m

∑m
1 λ

2(d−d0)
j and S(d) =

R(d) − R(d0). RewriteS(d) as

S(d) = R(d) − R(d0)

= log
Ĝ(d)

G(d)
− log

Ĝ(d0)

G0
+ log

(
1

m

m∑
j=1

j2d−2d0
/ m2(d−d0)

2(d − d0) + 1

)

− 2(d − d0)

[
1

m

m∑
j=1

logj − (logm − 1)

]

+ 2(d − d0) − log
(
2(d − d0) + 1

)
.
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DefineU(d) = 2(d − d0) − log(2(d − d0) + 1) and

T (d) = log
Ĝ(d0)

G0
− log

Ĝ(d)

G(d)
− log

(
1

m

m∑
j=1

j2d−2d0
/ m2d−2d0

2(d − d0) + 1

)

+ 2(d − d0)

[
1

m

m∑
j=1

logj − (logm − 1)

]
,

so thatS(d) = U(d) − T (d). For arbitrarily small� > 0, define�1 = {d0 − 1
2 +

� ≤ d ≤ d0 + 1
2} and �2 = {d ∈ [�1, d0 − 1

2 + �] ∪ [d0 + 1
2,�2]}, �2 being

possibly empty. Without loss of generality we assume� < 1
8 hereafter. For

1
2 > ρ > 0, defineNρ = {d : |d − d0| < ρ}. Then it follows (cf. [11], page 1634)
that

Pr(|d̂ − d0| ≥ ρ) ≤ Pr
(

inf
d∈�1\Nρ

S(d) ≤ 0
)

+ Pr
(

inf
�2

S(d) ≤ 0
)
.(9)

Robinson ([11], (3.4), page 1635) shows

inf
d∈�1\Nρ

U(d) ≥ ρ2/2.(10)

Therefore, Pr(|d̂ − d0| ≥ ρ) → 0 if

sup
�1

|T (d)| p→ 0, Pr
(

inf
�2

S(d) ≤ 0
)

→ 0

asn → ∞. From [11], the fourth term ofT (d) is O(logm/m) uniformly in d ∈ �1
and

sup
�1

∣∣∣∣∣2(d − d0) + 1

m

m∑
j=1

(
j

m

)2d−2d0

− 1

∣∣∣∣∣ = O

(
1

m2�

)
.(11)

Note that
Ĝ(d) − G(d)

G(d)

= m−1 ∑m
1 λ

2(d−d0)
j λ

2(d0−d)
j I�dx(λj ) − G0m

−1 ∑m
1 λ

2(d−d0)
j

G0m−1 ∑m
1 λ

2(d−d0)
j

= m−1 ∑m
1 (j/m)2(d−d0)λ

2(d0−d)
j I�dx(λj ) − G0m

−1 ∑m
1 (j/m)2(d−d0)

G0m−1 ∑m
1 (j/m)2(d−d0)

(12)

= [2(d − d0) + 1]m−1 ∑m
1 (j/m)2(d−d0)[λ2(d0−d)

j I�dx(λj ) − G0]
[2(d − d0) + 1]G0m−1 ∑m

1 (j/m)2(d−d0)

= A(d)

B(d)
.
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Therefore, by the fact that Pr(| logY | ≥ ε) ≤ 2Pr(|Y − 1| ≥ ε/2) for any

nonnegative random variableY andε ≤ 1, sup�1
|T (d)| p→ 0 if

sup
�1

|A(d)/B(d)| p→ 0.(13)

Defineθ = d − d0, and define

Yt (θ) = (1− L)dXt = (1− L)d−d0(1− L)d0Xt = (1− L)θutI {t ≥ 1}.
Hereafter, we use the notationat ∼ I (α) when at is generated by (1) with
parameterα. SoYt ∼ I (−θ). Note that

d ∈ �1 ⇐⇒ −1
2 + � ≤ θ ≤ 1

2.

Applying Lemma 5.1(a) to(Yt (θ), ut ) and reversing the role ofXt and ut , we
obtain

wy(λj ) = wu(λj )Dn(e
iλj ; θ) − (2πn)−1/2Ũλj n(θ),(14)

andA(d) can be written as, withg = 2(d − d0) + 1,

A(d) = g

m

m∑
j=1

(
j

m

)2θ

[λ−2θ
j Iy(λj ) − G0].(15)

Hereafter in this section letIyj denoteIy(λj ), let wuj denotewu(λj ), and employ
the same notation for the other d.f.t.’s and periodograms. From an argument similar
to that of [11], page 1636, sup�1

|A(d)| is bounded by

2
m−1∑
r=1

(
r

m

)2� 1

r2 sup
�1

∣∣∣∣∣
r∑

j=1

[λ−2θ
j Iyj − G0]

∣∣∣∣∣ + 2

m
sup
�1

∣∣∣∣∣
m∑

j=1

[λ−2θ
j Iyj − G0]

∣∣∣∣∣.(16)

Now

λ−2θ
j Iyj − G0

= λ−2θ
j Iyj − λ−2θ

j |Dn(e
iλj ; θ)|2Iuj

(17)
+ [λ−2θ

j |Dn(e
iλj ; θ)|2 − G0/fu(λj )]Iuj

+ [Iuj − |C(eiλj )|2Iεj ]G0/fu(λj ) + G0(2πIεj − 1).

For anyη > 0, Lemma 5.2 and Assumption 1 imply thatn can be chosen so that∣∣λ−2θ
j |Dn(e

iλj ; θ)|2 − G0/fu(λj )
∣∣ ≤ η + O(λ2

j ) + O(j−1/2),
(18)

j = 1, . . . ,m.

The results in [11], page 1637, imply that, uniformly inj = 1, . . . ,m,

E|wuj − C(eiλj )wεj |2 = O
(
j−1 log(j + 1)

)
,

(19)
E|Iuj − |C(eiλj )|2Iεj | = O

(
j−1/2(log(j + 1)

)1/2)
.
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It follows from (18) and (19) that

m∑
r=1

(
r

m

)2� 1

r2 sup
�1

r∑
j=1

∣∣[λ−2θ
j |Dn(e

iλj ; θ)|2 − G0/fu(λj )]Iuj

+ [Iuj − |C(eiλj )|2Iεj ]G0/fu(λj )
∣∣

= Op(η + m2n−2 + m−2� logm).

Robinson ([11], pages 1637–1638) shows
∑m

1 (r/m)2�r−2|∑r
1(2πIεj − 1)| p→ 0

andm−1 ∑m
1 (2πIεj −1)

p→ 0. From (14), the fact that||A|2−|B|2| ≤ |A+B||A−
B| and the Cauchy–Schwarz inequality we have

E sup
�1

∣∣λ−2θ
j Iyj − λ−2θ

j |Dn(e
iλj ; θ)

∣∣2Iuj |

≤
(
E sup

�1

∣∣∣∣2λ−θ
j Dn(e

iλj ; θ)wuj − λ−θ
j

Ũλj n(θ)√
2πn

∣∣∣∣2)1/2

(20)

×
(
E sup

�1

∣∣∣∣λ−θ
j

Ũλj n(θ)√
2πn

∣∣∣∣2)1/2

.

From (19) and Lemmas 5.2 and 5.3, it follows that, uniformly inj = 1, . . . ,m,

E sup
�1

|λ−θ
j Dn(e

iλj ; θ)wuj |2 = O(1),

E sup
�1

∣∣λ−θ
j (2πn)−1/2Ũλj n(θ)

∣∣2 = O
(
j−1(logn)2).

Therefore, we obtain

(20)= O(1+ j−1/2 logn)O(j−1/2 logn) = O
(
j−1/2(logn)2).(21)

It follows that

m−1∑
r=1

(
r

m

)2� 1

r2E sup
�1

∣∣∣∣∣
r∑

j=1

[λ−2θ
j Iyj − λ−2θ

j |Dn(e
iλj ; θ)|2Iuj ]

∣∣∣∣∣
= O

(
m−�(logn)2),

and hence the first term in (16) isop(1). Using the same technique, we can show

that the second term in (16) isop(1), and sup�1
|A(d)| p→ 0 follows. Equation (11)

gives sup�1
|B(d) − G0| = O(m−2�), and (13) follows.
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Now we take care of�2 = {d ∈ [�1, d0 − 1
2 + �] ∪ [d0 + 1

2,�2]} = {θ ∈
[�1 − d0,−1

2 + �] ∪ [1
2,�2 − d0]} to show Pr(inf�2 S(d) ≤ 0) → 0. Note that

S(d) = logĜ(d) − logĜ(d0) − 2(d − d0)
1

m

m∑
j=1

logλj

= log
1

m

m∑
j=1

I�dxj − log
1

m

m∑
j=1

I�d0xj

− 2(d − d0) log
2π

n
− 2(d − d0)

1

m

m∑
j=1

logj

= log
1

m

m∑
j=1

λ
2(d−d0)
j λ

2(d0−d)
j I�dxj − log

1

m

m∑
j=1

I�d0xj

− 2(d − d0) log
2π

n
− 2(d − d0) logp

= log
1

m

m∑
j=1

(
j

p

)2θ

λ−2θ
j I�dxj − log

1

m

m∑
j=1

I�d0xj

= logD̂(d) − logD̂(d0),

wherep = exp(m−1 ∑m
1 logj) ∼ m/e asm → ∞. Applying (17) withθ = 0 and

proceeding similarly to the argument below (17), we obtain

logD̂(d0) − logG0 = log

(
1+ G−1

0

(
1

m

m∑
j=1

Iuj − G0

))
= op(1).

Therefore, Pr(inf�2 S(d) ≤ 0) tends to 0 if there existsδ > 0 such that

Pr
(

inf
�2

logD̂(d) − logG0 ≤ log(1+ δ)

)
= Pr

(
inf
�2

D̂(d) − G0 ≤ δG0

)
→ 0

asn → 0. Now, for any fixedκ ∈ (0,1) we have

D̂(d) = 1

m

m∑
j=1

(
j

p

)2θ

λ−2θ
j Iyj ≥ 1

m

m∑
j=[κm]

(
j

p

)2θ

λ−2θ
j Iyj .

Let
∑′ denote the sum overj = [κm], . . . ,m. It follows that, ford ∈ �2,

D̂(d) − G0

(22) ≥ m−1
′∑

(j/p)2θ (λ−2θ
j Iyj − G0) + G0

(
m−1

′∑
(j/p)2θ − 1

)
.
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From Lemma 5.5, by choosingδ first and thenκ sufficiently small, for largem we
have

inf
�2

G0

(
m−1

′∑
(j/p)2θ − 1

)
> 4δG0.

Therefore, Pr(inf�2 S(d) ≤ 0) → 0 if there existsδ > 0 such that

Pr

(
inf
�2

(
m−1

′∑
(j/p)2θ (λ−2θ

j Iyj − G0)

)
≤ −3δG0

)
→ 0(23)

asn → ∞. We proceed to show (23) for subsets of�2.
First we consider�1

2 = {θ ∈ [−1
2,−1

2 + �]}. Rewrite

m−1
′∑

(j/p)2θ (λ−2θ
j Iyj − G0) = �1n(θ) + �2n(θ),

where

�1n(θ) = m−1
′∑

(j/p)2θ [λ−2θ
j Iyj − λ−2θ

j |Dn(e
iλj ; θ)|2Iuj ],(24)

�2n(θ) = m−1
′∑

(j/p)2θ [λ−2θ
j |Dn(e

iλj ; θ)|2Iuj − G0].(25)

For�1n(θ), since (20) and (21) are still valid forθ ∈ �1
2, we have

E sup
�1

2

∣∣λ−2θ
j Iyj − λ−2θ

j |Dn(e
iλj ; θ)|2Iuj

∣∣ = O
(
j−1/2(logn)2),

and it follows from Lemma 5.4 thatE sup�1
2
|�1n(θ)| = o(1). For�2n(θ), rewrite

�2n(θ) as

m−1
′∑

(j/p)2θ [λ−2θ
j |Dn(e

iλj ; θ)|2 − G0/fu(λj )]Iuj(26)

+ m−1
′∑

(j/p)2θ [Iuj − |C(eiλj )|2Iεj ]G0/fu(λj )(27)

+ m−1
′∑

(j/p)2θG0(2πIεj − 1).(28)

sup�1
2
|(26)|, sup�1

2
|(27)| = op(1) follows from (19) and Lemmas 5.2(b) and 5.4.

For (28), summation by parts gives

(28)= G0

(
m

p

)2θ 1

m

m−1∑
r=[κm]

((
r

m

)2θ

−
(

r + 1

m

)2θ) r∑
j=[κm]

(2πIεj − 1)

+ G0

(
m

p

)2θ 1

m

m∑
j=[κm]

(2πIεj − 1)

= I (θ) + II(θ).
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As in [11], page 1637, write

2πIεj − 1= 1

n

n∑
t=1

(ε2
t − 1) + 1

n

∑∑
s �=t

cos{(s − t)λj }εsεt ,

from which it follows that

sup
�1

2

|I (θ)| ≤ C

m

m∑
r=[κm]

∣∣∣∣sup
�1

2

(
r

m

)2θ ∣∣∣∣
∣∣∣∣∣1

n

n∑
t=1

(ε2
t − 1)

∣∣∣∣∣
+ C

m

m∑
r=[κm]

∣∣∣∣sup
�1

2

(
r

m

)2θ ∣∣∣∣ 1

rn

∣∣∣∣∣∑∑
s �=t

r∑
j=[κm]

cos{(s − t)λj }εsεt

∣∣∣∣∣.
From [11], (3.19) and (3.20), we haven−1 ∑n

1(ε
2
t − 1)

p→ 0 and

E

(∑∑
s �=t

εsεt

r∑
j=[κm]

cos{(s − t)λj }
)2

= O(rn2).

In conjunction with max[κm]≤r≤m sup�2
(r/m)2θ = O(1), we obtain sup�1

2
|I (θ)| =

op(1). sup�1
2
|II(θ)| = op(1) follows from a similar argument. Hence

sup�1
2
|(28)| = op(1) and sup�1

2
|�2n(θ)| = op(1) follow, and we have estab-

lished (23) forθ ∈ �1
2.

For �2
2 = {θ : 1

2 ≤ θ ≤ 3
2} defineZn(θ) = ∑n

t=1 Yt (θ) ∼ I (1 − θ) with 1 − θ ∈
[−1

2, 1
2]. From Lemma 5.1(b) we have

wyj = (1− eiλj )wzj + (2πn)−1/2eiλj Zn(θ).(29)

Define
Dnj (θ) = λ−θ

j (1− eiλj )Dn(e
iλj ; θ − 1),

�Unj (θ) = λ−θ
j (1− eiλj )(2πn)−1/2Ũλj n(θ − 1),

and then applying (14) to(Zt (θ), ut ) gives

λ−θ
j wyj = Dnj (θ)wuj − �Unj (θ) + λ−θ

j (2πn)−1/2eiλj Zn(θ).(30)

Sinceθ − 1≥ −1
2, from Lemma 5.2 we have, forθ ∈ �2

2,

Dnj (θ) = e−(π/2)θi + O(λj ) + O(j−1/2) uniformly in θ.(31)

With a slight abuse of notation, rewrite

m−1
′∑

(j/p)2θ (λ−2θ
j Iyj − G0)

= m−1
′∑

(j/p)2θ [λ−2θ
j Iyj − |Dnj (θ)|2Iuj ]

(32)

+ m−1
′∑

(j/p)2θ [|Dnj (θ)|2Iuj − G0]
= �1n(θ) + �2n(θ).
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Therefore, (23) follows if, forθ ∈ �2
2,

Pr
(

inf
θ

�1n(θ) ≤ −2δG0

)
→ 0, sup

θ

|�2n(θ)| = op(1) asn → ∞.(33)

supθ |�2n(θ)| = op(1) follows straightforwardly from (31) and by the same
argument as the one forθ ∈ �1

2. For �1n(θ), substituting (30) to the definition
of �1n(θ) gives

�1n(θ) = m−1
′∑

(j/p)2θ |�Unj (θ)|2(34)

+ m−1
′∑

(j/p)2θλ−2θ
j (2πn)−1Z2

n(35)

− 2Re

[
m−1

′∑
(j/p)2θDnj (θ)∗w∗

uj
�Unj (θ)

]
(36)

− 2Re

[
m−1

′∑
(j/p)2θ �Unj (θ)λ−θ

j (2πn)−1/2eiλj Zn(θ)

]
(37)

+ 2Re

[
m−1

′∑
(j/p)2θDnj (θ)∗w∗

ujλ
−θ
j (2πn)−1/2eiλj Zn(θ)

]
.(38)

Equation (34) is almost surely nonnegative. Lemma 5.3 gives

E sup
θ

|�Unj (θ)|2 = O
(
j−1(logn)2),(39)

and hence supθ |(36)| = op(1) follows from (39) and Lemma 5.4. Therefore,
(33) and hence (23) follow if, for anyζ > 0,

Pr
(

inf
θ

[(35)+ (37)+ (38)] ≤ −ζ

)
→ 0 asn → ∞.(40)

We proceed to show (40). First, there existsη > 0 such that, uniformly inθ ,

(35)= p−2θ (2π)−2θ−1n2θ−1Zn(θ)2m−1
′∑

1≥ η
(
m−θnθ−1/2Zn(θ)

)2
.

From (39) and Lemma 5.4, we have, uniformly inθ ,

(37)= m−θnθ−1/2Zn(θ) · Op(m−1/2 logn).

For (38), it follows from (31),eiλj = 1+ O(λj ) and Lemmas 5.4 and 5.6 that

m−1
′∑

(j/p)2θDnj (θ)∗w∗
ujλ

−θ
j (2πn)−1/2eiλj Zn(θ)

= (2πn)−1/2Zn(θ)e(π/2)θim−1
′∑

(j/p)2θw∗
ujλ

−θ
j

(41)

+ (2πn)−1/2Zn(θ)m−1
′∑

(j/p)2θw∗
ujλ

−θ
j [O(λj ) + O(j−1/2)]

= m−θnθ−1/2Zn(θ)[Op(m−1/2 logm) + Op(mn−1)].
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Therefore, we can write

(37)+ (38)= m−θnθ−1/2Zn(θ) · Rn(θ,ω),(42)

whereω denotes an element of the sample space�, and

sup
θ

|Rn(θ,ω)| = Op(kn), kn = m−1/2 logn + mn−1 → 0.(43)

Before showing (40), define

�1 = {(ω, θ) ∈ � × � :m−θnθ−1/2|Zn(θ)| < kn logm},
�2 = {(ω, θ) ∈ � × � :m−θnθ−1/2|Zn(θ)| ≥ kn logm},

where� is the domain ofθ (�1
2 in this case), so that�1 ∪ �2 = � × �. Then{

(ω, θ) :η
(
m−θnθ−1/2Zn(θ)

)2 − |m−θnθ−1/2Zn(θ) · Rn(θ,ω)| ≤ −ζ
}

= {
(ω, θ) :

(
η
(
m−θnθ−1/2Zn(θ)

)2

− |m−θnθ−1/2Zn(θ) · Rn(θ,ω)| ≤ −ζ
) ∩ �1

}
∪ {

(ω, θ) :
(
η
(
m−θnθ−1/2Zn(θ)

)2

− |m−θnθ−1/2Zn(θ) · Rn(θ,ω)| ≤ −ζ
) ∩ �2

}
⊆ {

(ω, θ) :η
(
m−θnθ−1/2Zn(θ)

)2 − kn logm|Rn(θ,ω)| ≤ −ζ
}

∪ {(ω, θ) :m−θnθ−1/2|Zn(θ)|[ηkn logm − |Rn(θ,ω)|] ≤ −ζ }
⊆ {(ω, θ) : kn logm|Rn(θ,ω)| ≥ ζ } ∪ {(ω, θ) :ηkn logm − |Rn(θ,ω)| ≤ 0}.

Therefore,{
ω : inf

θ

[
η
(
m−θnθ−1/2Zn(θ)

)2 − |m−θnθ−1/2Zn(θ) · Rn(θ,ω)|] ≤ −ζ

}
⊆

{
ω : sup

θ

kn logm|Rn(θ,ω)| ≥ δG0

}

∪
{
ω :ηkn logm − sup

θ

|Rn(θ,ω)| ≤ 0
}
,

and it follows that

Pr
(

inf
θ

[
η
(
m−θnθ−1/2Zn(θ)

)2 − |m−θnθ−1/2Zn · Rn(θ,ω)|] ≤ −ζ

)
≤ Pr

(
kn logmsup

θ

|Rn(θ,ω)| ≥ ζ

)

+ Pr
(
ηkn logm − sup

θ

|Rn(θ,ω)| ≤ 0
)

→ 0,
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because supθ |Rn(θ,ω)| = Op(kn), andk2
n logm → 0 from Assumption 4. There-

fore (40) follows, and hence (23) holds forθ ∈ �2
2.

For�3
2 = {θ :−3

2 ≤ θ ≤ −1
2}, from Lemma 5.1 we have

wyj = (1− eiλj )−1w�yj − (1− eiλj )−1(2πn)−1/2eiλj Yn(θ),(44)

where�Yt(θ) ∼ I (−θ − 1). With a slight abuse of notation, define

Dnj (θ) = λ−θ
j (1− eiλj )−1Dn(e

iλj ; θ + 1),

�Unj (θ) = λ−θ
j (1− eiλj )−1(2πn)−1/2Ũλj n(θ + 1).

Then, applying (14) to(�Yt(θ), ut ) gives

λ−θ
j wyj = Dnj (θ)wuj − �Unj (θ) + λ−θ

j (2πn)−1/2eiλj (1− eiλj )−1Yn(θ).(45)

Dnj (θ) and �Unj (θ) satisfy (31) and (39) forθ ∈ �3
2, because−θ − 1 ∈ [−1

2, 1
2].

Using the decomposition (32) and the same argument as the one forθ ∈ �2
2, we

obtain

m−1
′∑

(j/p)2θ (λ−2θ
j Iyj − G0)

= m−1
′∑

(j/p)2θ [λ−2θ
j Iyj − |Dnj (θ)|2Iuj ] + op(1),

whereop(1) is uniform inθ ∈ �3
2. Using (45), rewrite the first term on the right-

hand side as

m−1
′∑

(j/p)2θ |�Unj (θ)|2(46)

+ m−1
′∑

(j/p)2θλ−2θ
j (2πn)−1|1− eiλj |−2Yn(θ)2(47)

− 2Re

[
m−1

′∑
(j/p)2θDnj (θ)∗w∗

uj
�Unj (θ)

]
(48)

− 2Re

[
m−1

′∑
(j/p)2θ �Unj (θ)λ−θ

j (2πn)−1/2eiλj (1− eiλj )−1Yn(θ)

]
(49)

+ 2Re

[
m−1

′∑
(j/p)2θDnj (θ)∗

(50)

× w∗
ujλ

−θ
j (2πn)−1/2eiλj (1− eiλj )−1Yn(θ)

]
.

Equation (46) is almost surely nonnegative. BecauseDnj (θ) and �Unj (θ) satisfy
(31) and (39), it follows from a decomposition similar to (41) and Lemmas
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5.4 and 5.6 that supθ |(48)| = op(1) and (49) + (50) = m−θ−1nθ+1/2Yn(θ) ×
Op(m−1/2 logn + mn−1). Finally, (47) is equal to

p−2θn2θ−1(2π)−2θ−1m−1
′∑ |1− eiλj |−2Yn(θ)2

= p−2θn2θ−1(2π)−2θ−1Yn(θ)2m−1
′∑

λ−2
j

(
1+ o(1)

)
(51)

≥ ηm−2θ−2n2θ+1Yn(θ)2,

for someη > 0. Therefore we can apply the argument following (42) with slight
changes to show (23) forθ ∈ �3

2.
For�4

2 = {θ : 3
2 ≤ θ ≤ 5

2}, by applying (29) twice and (14), we obtain

λ−θ
j wyj = Dnj (θ)wuj − �Unj (θ)

+ λ−θ
j (2πn)−1/2eiλj

[
(1− eiλj )

n∑
t=1

Zt(θ) + Zn(θ)

]
,

where

Dnj (θ) = λ−θ
j (1− eiλj )2Dn(e

iλj ; θ − 2),

�Unj (θ) = λ−θ
j (1− eiλj )2(2πn)−1/2Ũλj n(θ − 2),

andDnj (θ) and�Unj (θ) satisfy (31) and (39). We proceed to evaluate the terms in
m−1 ∑′(j/p)2θλ−2θ

j Iyj . First, observe that

m−1
′∑

(j/p)2θλ−2θ
j (2πn)−1

∣∣∣∣∣(1− eiλj )

n∑
t=1

Zt(θ) + Zn(θ)

∣∣∣∣∣
2

(52)

= p−2θn2θ−1(2π)−2θ−1m−1
′∑∣∣∣∣∣(1− eiλj )

n∑
t=1

Zt(θ) + Zn(θ)

∣∣∣∣∣
2

.

By applying Lemma 5.10(a) withQ3 = Q2 = 0,Q1 = ∑n
1 Zt(θ) andQ0 = Zn(θ),

there existsη > 0 such that, for sufficiently largen,

(52)≥ ηm−2θ+2n2θ−3

(
n∑

t=1

Zt(θ)

)2

+ ηm−2θn2θ−1Zn(θ)2 = �3n(θ)

uniformly in θ . Of the other terms inm−1 ∑′(j/p)2θλ−2θ
j Iyj , the terms involving

the cross products ofwuj , �Unj (θ) and(1− eiλj )
∑n

1 Zt(θ) + Zn(θ) are dominated
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by �3n(θ). For instance, proceeding as in (41) gives

m−1
′∑

(j/p)2θDnj (θ)wujλ
−θ
j (2πn)−1/2e−iλj

[
(1− e−iλj )

n∑
t=1

Zt(θ) + Zn(θ)

]

= m−θ+1nθ−3/2
n∑

t=1

Zt(θ) · Op(m−1/2 logn + n−1m)

+ m−θnθ−1/2Zn(θ) · Op(m−1/2 logn + n−1m),

where theOp(·) terms are uniform inθ . Therefore, the terms inm−1 ∑′(j/p)2θ ×
[λ−2θ

j Iyj −|Dnj (θ)|2Iuj ] are eitherop(1) or nonnegative or dominated by�3n(θ).

We obtain supθ |m−1 ∑′(j/p)2θ [|Dnj (θ)|2Iuj − G0]| = op(1) by using (31) and
proceeding as in (26)–(28) and the following argument, and thus (23) follows for
θ ∈ �4

2.
Since |θ | ≤ �2 − �1 ≤ 9

2, the proof is completed by showing (23) for the
remaining subsets of�2 :

�5
2 = {

θ :−5
2 ≤ θ ≤ −3

2

}
,

�6
2 = {

θ : 7
2 ≤ θ ≤ 5

2

}
,

�7
2 = {

θ :−7
2 ≤ θ ≤ −5

2

}
,

�8
2 = {

θ : 9
2 ≤ θ ≤ 7

2

}
,

�9
2 = {

θ :−9
2 ≤ θ ≤ −7

2

}
.

Applying (29) or (44) repeatedly and (14) gives the required result for�·
2. For

instance, for�9
2 = {θ :−9

2 ≤ θ ≤ −7
2}, applying (44) four times and then (14), we

have

λ−θ
j wyj = Dnj (θ)wuj − �Unj (θ) − λ−θ

j (2πn)−1/2eiλj Wnj ,

where

Dnj (θ) = λ−θ
j (1− eiλj )−4Dn(e

iλj ; θ + 4),

�Unj (θ) = λ−θ
j (1− eiλj )−4(2πn)−1/2Ũλj n(θ + 4),

Wnj = (1− eiλj )−4�3Yn(θ) − (1− eiλj )−3�2Yn(θ)

− (1− eiλj )−2�Yn(θ) − (1− eiλj )−1Yn(θ),

andDnj (θ) and�Unj (θ) satisfy (31) and (39). We can easily obtain

m−1
′∑

(j/p)2θ (λ−2θ
j Iyj − G0)

= m−1
′∑

(j/p)2θ [λ−2θ
j Iyj − |Dnj (θ)|2Iuj ] + op(1),
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whereop(1) is uniform inθ ∈ �9
2. For the first term on the right-hand side, from

Lemma 5.10(b) we have, for largen andη > 0,

m−1
′∑

(j/p)2θλ−2θ
j (2πn)−1|Wnj |2

= (2π)−2θ−1n2θ−1p−2θm−1
′∑ |Wnj |2(53)

≥ ηn2θ−1m−2θ

[
m−8n8(�3Yn(θ)

)2 + m−6n6(�2Yn(θ)
)2

+m−4n4(�Yn(θ)
)2 + m−2n2Yn(θ)2

]
,

uniformly in θ . The terms involving the cross products betweenwuj , �Unj (θ)

and Wnj are dominated by (53). The other terms inm−1 ∑′(j/p)2θ [λ−2θ
j Iyj −

|Dnj (θ)|2Iuj ] are eitherop(1) or almost surely nonnegative, and hence (23)
follows.

4.2. Proof of asymptotic normality. Theorem 2.1 holds under the current
conditions and implies that with probability approaching 1, asn → ∞ d̂ satisfies

0= R′(d̂) = R′(d0) + R′′(�d)(d̂ − d0),(54)

where|�d − d0| ≤ |d̂ − d0|. From the fact that

∂

∂d
w�dxj = ∂

∂d

1√
2πn

n∑
t=1

eiλj t (1− L)dXt

= 1√
2πn

n∑
t=1

eiλj t log(1− L)(1− L)dXt ,

∂2

∂d2w�dxj = 1√
2πn

n∑
t=1

eiλj t (log(1− L)
)2

(1− L)dXt ,

we obtain

R′′(d) = Ĝ2(d)Ĝ(d) − Ĝ2
1(d)

Ĝ2(d)
= G̃2(d)G̃0(d) − G̃2

1(d)

G̃2
0(d)

,

where

Ĝ1(d) = 1

m

m∑
j=1

∂

∂d

[
w�dxjw

∗
�dxj

] = 1

m

m∑
j=1

2Re
[
wlog(1−L)�dxjw

∗
�dxj

]
,

Ĝ2(d) = 1

m

m∑
j=1

∂2

∂d2

[
w�dxjw

∗
�dxj

] = 1

m

m∑
j=1

Wx(L,d, j),
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Wx(L,d, j) = 2Re
[
w(log(1−L))2�dxjw

∗
�dxj

] + 2Ilog(1−L)�dxj ,

G̃0(d) = 1

m

m∑
j=1

j2θλ−2θ
j Iyj ,

G̃1(d) = 1

m

m∑
j=1

j2θλ−2θ
j 2Re

[
wlog(1−L)yjw

∗
yj

]
,

G̃2(d) = 1

m

m∑
j=1

j2θλ−2θ
j Wy(L,0, j),

andθ = d − d0 andYt (θ) = (1 − L)dXt = (1 − L)θutI {t ≥ 1}, as defined in the
proof of Theorem 2.1. Fixε > 0 and letM = {d : (logn)4|d − d0| < ε}. From (9)
in the proof of Theorem 2.1 we have

Pr(�d /∈ M) ≤
(

inf
�1\M

S(d) ≤ 0
)

+ o(1).

Hence, in view of (10), Pr(�d /∈ M) tends to zero if

sup
�1

|A(d)/B(d)| = op

(
(logn)−8),(55)

whereA(d) and B(d) are defined in (12) in the proof of Theorem 2.1. From
Assumption 1′, (18) is strengthened to∣∣λ−2θ

j |Dn(e
iλj ; θ)|2 − G0/fu(λj )

∣∣ = O(λ
β
j ) + O(j−1/2),

(56)
j = 1, . . . ,m.

Therefore, proceeding as in the proof of Theorem 2.1, we obtain

m∑
r=1

(
r

m

)2� 1

r2 sup
�1

∣∣∣∣∣
r∑

j=1

[λ−2θ
j Iyj − 2πG0Iεj ]

∣∣∣∣∣ = Op

(
mβn−β + m−�(logn)2).

Robinson ([11], (4.9), page 1643) shows

r∑
j=1

(2πIεj − 1) = Op(r1/2) asn → ∞ for 1≤ r ≤ m,(57)

and it follows that
∑m

1 (r/m)2�r−2|∑r
1(2πIεj − 1)| = O(m−2� logm). Applying

the same argument to the second term of (16), we obtain sup�1
|A(d)| =

op((logn)−8), and (55) follows in view of (11). Thus we assumed ∈ M in the
following discussion of̃Gk(d).
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Now we derive the approximation of̃Gk(d) for k = 0,1,2. ForG̃0(d) observe
that

E sup
θ∈M

|λ−2θ
j Iyj − Iuj |

≤ E sup
θ∈M

∣∣λ−2θ
j Iyj − λ−2θ

j |Dn(e
iλj ; θ)|2Iuj

∣∣
(58)

+ E sup
θ∈M

∣∣λ−2θ
j |Dn(e

iλj ; θ)|2 − 1
∣∣Iuj

= O
(
j−1/2(logn)2 + j2n−2), j = 1, . . . ,m,

where the third line follows from (21) and Lemma 5.2. Since|j2θ − 1|/|2θ | ≤
(logj)n2|θ | ≤ (logj)n1/ logn = e logj onM , we have

sup
M

|j2θ − 1| = O
(
(logn)−3),

(59)
sup
M

|j2θ | = O(1), j = 1, . . . ,m.

Therefore, in view of (58) andEIuj = O(1) [following from (19)], we obtain

sup
M

∣∣∣∣∣G̃0(d) − 1

m

m∑
j=1

Iuj

∣∣∣∣∣
≤ sup

M

∣∣∣∣∣ 1

m

m∑
j=1

j2θ [λ−2θ
j Iyj − Iuj ]

∣∣∣∣∣ + sup
M

∣∣∣∣∣ 1

m

m∑
j=1

(j2θ − 1)Iuj

∣∣∣∣∣
= op

(
(logn)−2).

For G̃1(d), from (14) and Lemma 5.9 we have

λ−2θ
j wlog(1−L)yjw

∗
yj + Jn(e

iλj )Iuj

= Jn(e
iλj )[1− λ−2θ

j |Dn(e
iλj ; θ)|2]Iuj

− Jn(e
iλj )λ−θ

j Dn(e
iλj ; θ)wuj · λ−θ

j (2πn)−1/2Ũλj n(θ)∗

− λ−θ
j Dn(e

iλj ; θ)∗w∗
uj · λ−θ

j (2πn)−1/2Vnj (θ)

− λ−2θ
j (2πn)−1Ũλj n(θ)∗Vnj (θ).

Then, sinceJn(e
iλj ) = O(logn), it follows from (59) and Lemmas 5.2, 5.3 and 5.9

that

1

m

m∑
j=1

sup
M

j2θ
∣∣Re

[
λ−2θ

j wlog(1−L)yjw
∗
yj + Jn(e

iλj )Iuj

]∣∣ = op

(
(logn)−1).
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In conjunction with (59),Jn(e
iλj ) = O(logn) andEIuj = O(1), it follows that

sup
M

∣∣∣∣∣G̃1(d) + 1

m

m∑
j=1

2Re[Jn(e
iλj )]Iuj

∣∣∣∣∣
= sup

M

∣∣∣∣∣ 1

m

m∑
j=1

(1− j2θ )2Re[Jn(e
iλj )]Iuj

∣∣∣∣∣ + op

(
(logn)−1)

= op

(
(logn)−1).

For G̃2(d), the same line of argument as above with Lemma 5.9(c) gives

sup
M

∣∣∣∣∣G̃2(d) − 1

m

m∑
j=1

{2Re[Jn(e
iλj )2] + 2Jn(e

iλj )Jn(e
iλj )∗}Iuj

∣∣∣∣∣
= sup

M

∣∣∣∣∣G̃2(d) − 1

m

m∑
j=1

4{Re[Jn(e
iλj )]}2Iuj

∣∣∣∣∣
= op(1).

From (19) and Assumption 1′, we obtain

E|Iuj − G0Iεj | ≤ E|Iuj − |C(eiλj )|2Iεj | + E2π |fu(λj ) − fu(0)|Iεj

= O
(
j−1/2(log(j + 1)

) + jβn−β)
, j = 1, . . . ,m.

Therefore, in view ofJn(e
iλj ) = O(logn), EIεj = 1, andCov(Iεj , Iεk) = O(1) if

j = k andO(n−1) if j �= k, we have

G̃0(�d) = m−1
m∑

j=1

Iuj + op

(
(logn)−2)

= G0m
−1

m∑
j=1

Iεj + op

(
(logn)−2)

= G0 + op

(
(logn)−2),

G̃1(�d) = −2m−1
m∑

j=1

Re[Jn(e
iλj )]Iuj + op

(
(logn)−1)

= −G0m
−1

m∑
j=1

2Re[Jn(e
iλj )]Iεj + op

(
(logn)−1)

= −G0m
−1

m∑
j=1

2Re[Jn(e
iλj )] + op

(
(logn)−1)
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and

G̃2(�d) = m−1
m∑

j=1

4{Re[Jn(e
iλj )]}2Iuj + op(1)

= G0m
−1

m∑
j=1

4{Re[Jn(e
iλj )]}2Iεj + op(1)

= G0m
−1

m∑
j=1

4{Re[Jn(e
iλj )]}2 + op(1).

It follows that

R′′(�d) = [G̃2(�d)G̃0(�d) − G̃2
1(

�d)][G̃0(�d)]−2

= G2
0m

−1 ∑m
1 4{Re[Jn(e

iλj )]}2 − {G0m
−1 ∑m

1 2Re[Jn(e
iλj )]}2 + op(1)

{G0 + op((logn)−2)}2(60)

= 4m−1
m∑

j=1

{Re[Jn(e
iλj )]}2 − 4

{
m−1

m∑
j=1

Re[Jn(e
iλj )]

}2

+ op(1).

From Lemma 5.8(a) and a routine calculation, we obtain

m−1
m∑

j=1

{Re[Jn(e
iλj )]}2 = m−1

m∑
j=1

(logλj )
2 + o(1),

{
m−1

m∑
j=1

Re[Jn(e
iλj )]

}2

=
(
m−1

m∑
j=1

logλj

)2

+ o(1).

Therefore,14 times (60) is, apart fromop(1) terms,

m−1
m∑

j=1

(logλj )
2 −

(
m−1

m∑
j=1

logλj

)2

= m−1
m∑

j=1

(logj)2 −
(
m−1

m∑
j=1

logj

)2

→ 1,

andR′′(�d) = 4+ op(1) follows.
Now we find the limit distribution ofm1/2R′(d0). In view of Lemma 5.9(b),

E|wuj − C(eiλj )wεj |2 = O(j−1 log(j + 1)) [see (19)] andE|J̃nλj
(eiλj L)εn|2 =

O(nj−1) [see (77)], we obtain

−wlog(1−L)ujw
∗
uj

= [Jn(e
iλj )wuj + rnj ]w∗

uj
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− C(1)(2πn)−1/2J̃nλj
(e−iλj L)εnC(eiλj )∗w∗

εj

− C(1)(2πn)−1/2J̃nλj
(e−iλj L)εn[w∗

uj − C(eiλj )∗w∗
εj ]

= Jn(e
iλj )Iuj − C(1)(2πn)−1/2J̃nλj

(e−iλj L)εnC(eiλj )∗w∗
εj + Rnj ,

wherernj is defined in Lemma 5.9(b), andE|j1/2Rnj | = o(1) + O(j−1/2 logm)

asn → ∞. It follows thatm1/2Ĝ1(d0) is equal to

−m−1/2
m∑

j=1

2Re[Jn(e
iλj )]Iuj(61)

+ C(1)m−1/2
m∑

j=1

2Re
[
(2πn)−1/2J̃nλj

(e−iλj L)εnC(eiλj )∗w∗
εj

]
(62)

+ op(1) + Op

(
m−1/2(logm)2).

From Lemma 5.8(a) we have

(61)= 2m−1/2
m∑

j=1

(logλj )Iuj + Op(m5/2n−2) + Op(m−1/2 logm).

For (62), in view of the fact that

w∗
εj = (2πn)−1/2

n∑
p=1

e−ipλj εp = (2πn)−1/2
n−1∑
q=0

eiqλj εn−q,

we obtain the decomposition

m−1/2
m∑

j=1

(2πn)−1/2J̃nλj
(e−iλj L)εnC(eiλj )∗w∗

εj

(63)

= m−1/2
m∑

j=1

C(eiλj )∗(2πn)−1

(
n−1∑
p=0

j̃λjpe−ipλj εn−p

)(
n−1∑
q=0

eiqλj εn−q

)
.

Because theεt are martingale differences, the second moment of (63) is bounded
by

1

mn2

m∑
j=1

m∑
k=1

n−1∑
p=0

∣∣j̃λjp

∣∣∣∣j̃λkp

∣∣ + 2

mn2

m∑
j=1

m∑
k=1

n−1∑
p=0

∣∣j̃λjp

∣∣ n−1∑
r=0

∣∣j̃−λkr

∣∣(64)

+ 1

mn2

m∑
j=1

m∑
k=1

n−1∑
p=0,p �=q

∣∣j̃λjp

∣∣∣∣j̃−λkp

∣∣∣∣∣∣∣
n−1∑
q=0

eiq(λj−λk)

∣∣∣∣∣.(65)
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Sincej̃λjp = O(max{|p|−1+ nj−1, logn}) from Lemma 5.8, (64) is bounded by

1

mn2

m∑
j=1

m∑
k=1

[
n−1∑
p=0

(logn)2 +
n−1∑
p=0

n

j |p|+
n−1∑
r=0

n

k|r|+

]

= O
(
mn−1(logn)2 + m−1(logn)4),

and, in view of the fact that
∑n−1

q=0 eiq(λj−λk) = nI {j = k}, (65) is bounded by

1

mn

m∑
j=1

n−1∑
p=0

∣∣j̃λjp

∣∣2 = O

(
1

mn

m∑
j=1

n−1∑
p=0

j−1|p|−1+ n logn

)
= O

(
m−1(logn)3),

giving (62)= op(1). Therefore, we obtain

m1/2Ĝ1(d0) = 2m−1/2
m∑

j=1

(logλj )Iuj + op(1).

Let νj = logλj − m−1 ∑m
1 logλj = logj − m−1 ∑m

1 logj with
∑m

1 νj = 0. Then
it follows that

m1/2R′(d0) = m1/2

[
Ĝ1(d0)

Ĝ(d0)
− 2

1

m

m∑
j=1

logλj

]

= 2m−1/2 ∑m
1 (logλj )Iuj + op(1) − (m−1 ∑m

1 logλj )2m−1/2 ∑m
1 Iuj

m−1 ∑m
1 Iuj

= 2m−1/2 ∑m
1 νj Iuj + op(1)

G0 + op(1)

= 2m−1/2 ∑m
1 νj (Iuj − G0) + op(1)

G0 + op(1)

= 2m−1/2 ∑m
1 νj (2πIεj − 1) + op(1)

1+ op(1)

d→ N(0,4),

where the fifth line follows from [11], page 1644, completing the proof.

5. Technical lemmas. Lemma 5.2 extends Lemma A.3 of Phillips and
Shimotsu [8] to hold uniformly inθ . Its proof follows easily from the proof of
Lemmas A.2 and A.3 of [8] and is therefore omitted.

LEMMA 5.1 ([7], Theorem 2.2). (a)If Xt follows (1), then

wu(λ) = Dn(e
iλ;d)wx(λ) − (2πn)−1/2einλX̃λn(d),



EXACT LOCAL WHITTLE ESTIMATION 1919

where Dn(e
iλ;d) = ∑n

k=0
(−d)k

k! eikλ and

X̃λn(d) = D̃nλ(e
−iλL;d)Xn =

n−1∑
p=0

d̃λpe−ipλXn−p, d̃λp =
n∑

k=p+1

(−d)k

k! eikλ.

(b) If Xt follows (1) with d = 1, then

wx(λ)(1− eiλ) = wu(λ) − (2πn)−1/2ei(n+1)λXn.

LEMMA 5.2 (cf. [8], Lemmas A.2 and A.3). (a)Uniformly in θ ∈ [−C,C]
and in j = 1,2, . . . ,m with m = o(n), as n → ∞,

λ−θ
j (1− eiλj )θ = e−(π/2)θi + O(λj ), λ−2θ

j |1− eiλj |2θ = 1+ O(λ2
j ).

(b) Uniformly in θ ∈ [−1 + ε,C] and in j = 1,2, . . . ,m with m = o(n), as
n → ∞,

λ−θ
j Dn(e

iλj ; θ) = e−(π/2)θi + O(λj ) + O(j−1−θ ),

λ−2θ
j |Dn(e

iλj ; θ)|2 = 1+ O(λ2
j ) + O(j−1−θ ).

LEMMA 5.3. Let Ũλn(θ) = D̃nλ(e
−iλL; θ)un = ∑n−1

p=0 θ̃λpe−ipλun−p. Under
the assumptions of Theorem 2.1,we have, uniformly in j = 1, . . . ,m, as n → ∞,

E sup
θ∈[−1/2,1/2]

∣∣nθ−1/2j1/2−θ Ũλj n(θ)
∣∣2 = O

(
(logn)2).

PROOF. When θ = 0, the result follows immediately becausẽUλjn(0) = 0.

When θ �= 0, define ap = θ̃λjpe−ipλj so that Ũλj n(θ) = ∑n−1
p=0 apun−p. We

suppress the dependence ofap on θ andλj . Summation by parts gives

Ũλj n(θ) =
n−2∑
p=0

(ap − ap+1)

p∑
q=0

un−q + an−1

n−1∑
q=0

un−q.

Phillips and Shimotsu ([8], page 670) show that (note that Phillips and Shimotsu
useλs instead ofλj to denote Fourier frequencies)

ap − ap+1 = bnp(θ) + (−θ)n

n! e−ipλj ,

where

bnp(θ) =
n−1∑

k=p+1

(1+ θ)�(k − θ)

�(−θ)�(k + 2)
ei(k−p)λj .(66)
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Then, sincean−1 = (−θ)ne
−i(n−1)λj /n!, we have

Ũλj n(θ) =
n−2∑
p=0

bnp(θ)

p∑
q=0

un−q

+ (−θ)n

n!
n−2∑
p=0

e−ipλj

p∑
q=0

un−q + (−θ)n

n! e−i(n−1)λj

n−1∑
q=0

un−q

(67)

=
n−2∑
p=0

bnp(θ)

p∑
q=0

un−q + (−θ)n

n!
n−1∑
p=0

e−ipλj

p∑
q=0

un−q

= U1n(θ) + U2n(θ).

We proceed to show that the elements ofnθ−1/2j1/2−θU·n(θ) are of the stated
order. First, forU1n, we have

sup
θ

|nθ−1/2j1/2−θU1n(θ)| ≤
n−2∑
p=0

sup
θ

|nθ−1/2j1/2−θbnp(θ)|
∣∣∣∣∣

p∑
q=0

un−q

∣∣∣∣∣.
Because

∑∞−∞ Eutut+q = 2πfu(0) = 2πG0 < ∞, it follows from Kronecker’s
lemma that, uniformly inp = 0, . . . , n − 1,

E

( p∑
q=0

un−q

)2

= (p + 1)

p∑
q=−p

(
1− |q|/(p + 1)

)
Eutut+q = O(|p|+).(68)

Therefore, if we have, uniformly inp = 0, . . . , n − 1 andj = 1, . . . ,m,

sup
θ∈[−1/2,1/2]

|nθ−1/2j1/2−θbnp(θ)| = O(|p|−3/2
+ ),(69)

it follows from Minkowski’s inequality that

E sup
θ

|nθ−1/2j1/2−θU1n(θ)|2 = O

((
n−2∑
p=0

|p|−1+

)2)
= O

(
(logn)2).(70)

To show (69), Phillips and Shimotsu ([8], page 670, equation (21)) show that

|bnp(θ)| = O(min{|p|−θ−1+ , |p|−θ−2+ nj−1})(71)

uniformly in θ ∈ [−1
2, 1

2], p = 0, . . . , n − 1, andj = 1, . . . ,m. Although Phillips
and Shimotsu do not state explicitly that the bound (71) holds uniformly in
θ ∈ [−1

2, 1
2], it is clear from its proof that (71) holds uniformly inθ ∈ [−1

2, 1
2].

Then (69) follows from (71) because

0 ≤ p ≤ n/j :nθ−1/2j1/2−θ |p|−θ−1+ = (j |p|+/n)1/2−θ |p|−3/2
+ ≤ |p|−3/2

+ ,

n/j ≤ p ≤ n :nθ−1/2j1/2−θp−θ−2nj−1 = (jp/n)−θ−1/2p−3/2 ≤ p−3/2.
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ForU2n = ((−θ)n/n!)∑n−1
0 e−ipλj

∑p
0 un−q , first we rewrite the sum as

n−1∑
p=0

e−ipλj

p∑
q=0

un−q =
n∑

n−p=1

ei(n−p)λj

n∑
n−q=n−p

un−q

=
n∑

k=1

uk

k∑
q=1

eiqλj

(72)

=
n∑

k=1

uk

eiλj (1− eikλj )

1− eiλj

= eiλj

1− eiλj

n∑
k=1

uk − eiλj

1− eiλj
(2πn)1/2wu(λj ).

Since (−θ)n/n! = O(n−θ−1) uniformly in θ ∈ [−1
2, 1

2] and (1 − eiλj )−1 =
O(nj−1), E supθ |nθ−1/2j1/2−θU2n|2= O(1) follows from (68) andE|wu(λj )|2 =
O(1) ([11], page 1637). �

LEMMA 5.4. For κ ∈ (0,1) and C ∈ (1,∞), as m → ∞,

(a) sup
−C≤γ≤C

∣∣∣∣∣ 1

m

m∑
j=[κm]

(
j

m

)γ

−
∫ 1

κ
xγ dx

∣∣∣∣∣ = O(m−1),

(b) sup
−C≤γ≤C

∣∣∣∣∣m−1
m∑

j=[κm]
(j/m)γ

∣∣∣∣∣ = O(1),

lim inf
m→∞ inf−C≤γ≤C

(
m−1

m∑
j=[κm]

(j/m)γ

)
> ε > 0.

PROOF. Note that[κm] ≥ 3 for largem. For part (a), since

1

m

m∑
j=[κm]

(
j

m

)γ

=
m∑

j=[κm]

∫ j/m

(j−1)/m

(
j

m

)γ

dx,

∫ 1

κ
xγ dx =

m∑
j=[κm]

∫ j/m

(j−1)/m
xγ dx −

∫ κ

([κm]−1)/m
xγ dx,

their difference is bounded uniformly inγ by, for sufficiently largem:
m∑

j=[κm]

∣∣∣∣ ∫ j/m

(j−1)/m

{(
j

m

)γ

− xγ

}
dx

∣∣∣∣ + ∫ κ

κ−(2/m)
xγ dx

≤ c

m2

m∑
j=[κm]

(
j

m

)−C−1

+ c

m
= O(m−1),
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by the mean value theorem. Part (b) follows immediately from part (a).�

LEMMA 5.5. For p ∼ m/e as m → ∞ and � ∈ (0, 1
2e

), there exist ε ∈ (0,0.1)

and κ̄ ∈ (0, 1
4) such that, for all fixed κ ∈ (0, κ̄] and sufficiently large m:

(a) inf−C≤γ≤−1+2�

1

m

m∑
j=[κm]

(
j

p

)γ

≥ 1+ 2ε,

(b) inf
1≤γ≤C

1

m

m∑
j=[κm]

(
j

p

)γ

≥ 1+ 2ε.

PROOF. From Lemma 5.4 we obtain, for largem,

inf−C≤γ≤−1+2�

1

m

m∑
j=[κm]

(
j

p

)γ

≥ inf−C≤γ≤−1+2�

1

m

p∑
j=[κm]

(
j

p

)γ

≥ 1

m

p∑
j=[κm]

(
j

p

)−1+2�

∼ 1

e

∫ 1

κe
x2�−1 dx = 1− (κe)2�

2�e
,

inf
1≤γ≤C

1

m

m∑
j=[κm]

(
j

p

)γ

∼ inf
1≤γ≤C

eγ

γ + 1
(1− κγ+1) ≥ e

2
(1− κ2),

where the last inequality holds becauseeγ /(γ + 1) is monotone increasing for
γ ≥ 1. Since 2�e < 1, choosingκ sufficiently small gives the stated results.�

LEMMA 5.6. For κ ∈ (0,1), C ∈ (1,∞) and m = o(n), as n → ∞,

E sup
α∈[−C,C]

∣∣∣∣∣ 1

m

m∑
j=[κm]

(
j

m

)α

wu(λj )

∣∣∣∣∣ = O(m−1/2 logm).

PROOF. Summation by parts gives

1

m

m∑
j=[κm]

(
j

m

)α

wu(λj )

= 1

m

m−1∑
r=[κm]

[(
r

m

)α

−
(

r + 1

m

)α] r∑
j=[κm]

wu(λj ) + 1

m

m∑
j=[κm]

wu(λj ).

Note that, uniformly inr = 1, . . . ,m − 1 andα,∣∣∣∣( r

m

)α

−
(

r + 1

m

)α∣∣∣∣ =
(

r

m

)α∣∣∣∣1−
(

1+ 1

r

)α∣∣∣∣ ≤ c

(
r

m

)−C 1

r
,(73)
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because supα |(1+x)α −1| ≤ C2Cx for 0≤ x ≤ 1. The results in ([11], page 1637)
imply that E|wu(λj ) − C(eiλj )wε(λj )|2 = O(j−1 log(j + 1)) uniformly in j =
1, . . . ,m, giving

E

∣∣∣∣∣
r∑

j=[κm]
wu(λj )

∣∣∣∣∣
2

= O
(
r log(r + 1)

)
, r = [κm], . . . ,m.(74)

From (73), (74) and Lemma 5.4,E supα∈[−C,C] |m−1 ∑m[κm](j/m)αwu(λj )| is
bounded by

m−1
m−1∑

r=[κm]
(r/m)−Cr−1/2 logr + m−1/2 logm = O(m−1/2 logm),

giving the required result.�

LEMMA 5.7. Define Jn(L) = ∑n
k=1 Lk/k and Dn(L;d) = ∑n

k=0
(−d)k

k! Lk .
Then:

(a) Jn(L) = Jn(e
iλ) + J̃nλ(e

−iλL)(e−iλL − 1),

(b) Jn(L)Dn(L;d) = Jn(e
iλ)Dn(e

iλ;d) + Dn(e
iλ;d)J̃nλ(e

−iλL)(e−iλL − 1)

+Jn(L)D̃nλ(e
−iλL;d)(e−iλL − 1),

where

J̃nλ(e
−iλL) =

n−1∑
p=0

j̃λpe−ipλLp, j̃λp =
n∑

p+1

1

k
eikλ,

D̃nλ(e
−iλL;d) =

n−1∑
p=0

d̃λpe−ipλLp, d̃λp =
n∑

p+1

(−d)k

k! eikλ.

PROOF. For part (a) see [9], formula (32). For part (b), from Lemma 2.1 of [7]
we haveDn(L;d) = Dn(e

iλ;d)+D̃nλ(e
−iλL;d)(e−iλL−1), and the stated result

follows immediately. �

LEMMA 5.8. Let Jn(e
iλ) = ∑n

k=1 eikλ/k and j̃λp = ∑n
k=p+1 eikλ/k, as

defined in Lemma 5.7.Then uniformly in p = 0, . . . , n − 1 and j = 1, . . . ,m with
m = o(n), as n → ∞:

(a) Jn(e
iλj ) = − logλj + i

2
(π − λj ) + O(λ2

j ) + O(j−1),

(b) j̃λjp = O(min{|p|−1+ nj−1, logn}).
PROOF. For (a), first we have

Jn(e
iλj ) =

n∑
k=1

1

k
eikλj =

∞∑
k=1

1

k
eikλj −

∞∑
k=n+1

1

k
eikλj .(75)
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The first term on the right-hand side of (75) is equal to ([16], page 5)

∞∑
k=1

coskλj

k
+ i

∞∑
k=1

sinkλj

k
= − log

∣∣∣∣2sin
λj

2

∣∣∣∣ + i
1

2
(π − λj ).

Since 2sin(λj/2) = λj + O(λ3
j ) = λj (1+ O(λ2

j )), the right-hand side is equal to

− logλj − log
(
1+ O(λ2

j )
) + i

1

2
(π − λj )

= − logλj + O(λ2
j ) + i

2
(π − λj ).

For the second term on the right-hand side of (75), summation by parts gives∣∣∣∣∣
∞∑

k=n+1

1

k
eikλj

∣∣∣∣∣
=

∣∣∣∣∣ lim
N→∞

[
n+N−1∑
r=n+1

(
1

r
− 1

r + 1

) r∑
k=n+1

eikλj + 1

n + N

n+N∑
k=n+1

eikλj

]∣∣∣∣∣
≤ C

(
nj−1

∞∑
k=n

r−2 + j−1

)
= O(j−1),

giving (a). Part (b) follows from the fact that

|j̃λjp| ≤ (p + 1)−1 max
p+1≤N≤n

∣∣∣∣∣
N∑

k=p+1

eikλj

∣∣∣∣∣ and j̃λjp = O

(
n∑

k=0

|k|−1+

)
.

�

LEMMA 5.9. Suppose Yt = (1 − L)θutI {t ≥ 1} . Under the assumptions of
Theorem 2.2we have:

(a) −wlog(1−L)y(λj ) = Jn(e
iλj )Dn(e

iλj ; θ)wu(λj ) + n−1/2Vnj (θ),

(b) −wlog(1−L)u(λj ) = Jn(e
iλj )wu(λj )

− C(1)(2πn)−1/2J̃nλj
(e−iλj L)εn + rnj ,

(c) w(log(1−L))2y(λj ) = Jn(e
iλj )2Dn(e

iλj ; θ)wu(λj ) + n−1/2�nj (θ),

where, uniformly in j = 1, . . . ,m, as n → ∞,

E sup
θ

|nθ−1/2j1/2−θVnj (θ)|2 = O
(
(logn)4),

E|j1/2rnj |2 = o(1) + O(j−1),

E sup
θ

|nθ−1/2j1/2−θ�nj (θ)|2 = O
(
(logn)6).
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PROOF. Define�ut = utI {t ≥ 1}, so thatYt = Dt−1(L; θ)�ut = Dn(L; θ)�ut for
t ≤ n. SinceYt = 0 for t ≤ 0, we have

log(1− L)Yt = (−L − L2/2− L3/3− · · ·)Yt = −Jn(L)Yt .

For parts (a) and (b), from Lemma 5.7(b) we have

− log(1− L)Yt

= Jn(L)Dn(L; θ)�ut

= Jn(e
iλj )Dn(e

iλj ; θ)�ut + Dn(e
iλj ; θ)J̃nλj

(e−iλj L)(e−iλj L − 1)�ut

+ Jn(L)D̃nλj
(e−iλj L; θ)(e−iλj L − 1)�ut .

Since
∑n

t=1 eitλj (e−iλj L − 1)�ut = −�un, taking the d.f.t. of the right-hand side
gives

Jn(e
iλj )Dn(e

iλj ; θ)wu(λj ) − (2πn)−1/2Dn(e
iλj ; θ)J̃nλj

(e−iλj L)�un

(76)
− (2πn)−1/2Jn(L)D̃nλj

(e−iλj L; θ)�un.

Note that Lemma 5.2(b) gives|Dn(e
iλj ; θ)| ≤ cλθ

j . Therefore part (a) follows if

E
∣∣J̃nλj

(e−iλj L)�un

∣∣2 = O(nj−1),(77)

E sup
θ

∣∣nθ−1/2j1/2−θJn(L)D̃nλj
(e−iλj L; θ)�un

∣∣2 = O
(
(logn)4).(78)

First we show (77). Definea′
p = j̃λjpe−ipλj = ∑n

k=p+1 k−1ei(k−p)λj , so that

J̃nλj
(e−iλj L)�un = ∑n−1

p=0 a′
p�un−p = ∑n−1

p=0 a′
pun−p. Then summation by parts

gives

J̃nλj
(e−iλj L)�un =

n−2∑
p=0

(a′
p − a′

p+1)

p∑
q=0

un−q + a′
n−1

n−1∑
q=0

un−q.

Observe that

a′
p − a′

p+1 =
n∑

k=p+1

1

k
ei(k−p)λj −

n∑
k=p+2

1

k
ei(k−p−1)λj

=
n−1∑

k=p+1

[
1

k
− 1

k + 1

]
ei(k−p)λj + 1

n
e−ipλj

=
n−1∑

k=p+1

1

k(k + 1)
ei(k−p)λj + 1

n
e−ipλj .
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Define cnp = ∑n−1
k=p+1

1
k(k+1)

ei(k−p)λj . Then sincea′
n−1 = n−1e−i(n−1)λj , we

obtain

J̃nλj
(e−iλj L)�un

=
n−2∑
p=0

cnp

p∑
q=0

un−q + 1

n

n−2∑
p=0

e−ipλj

p∑
q=0

un−q + 1

n
e−i(n−1)λj

n−1∑
q=0

un−q

=
n−2∑
p=0

cnp

p∑
q=0

un−q + 1

n

n−1∑
p=0

e−ipλj

p∑
q=0

un−q(79)

=
n−2∑
p=0

cnp

p∑
q=0

un−q +
[

1

n

eiλj

1− eiλj

n∑
k=1

uk − 1

n

eiλj

1− eiλj
(2πn)1/2wu(λj )

]

= J̃1n + J̃2n,

where the fourth line follows from (72).E|J̃2n|2 = O(nj−2) in view of the order
of magnitude ofE|∑n

1 uk|2 andE|wu(λj )|2. For J̃1n, since

|cnp| =
∣∣∣∣∣

n−1∑
k=p+1

1

k(k + 1)
ei(k−p)λj

∣∣∣∣∣
≤ |p|−2+ max

1≤N≤n

∣∣∣∣∣
p+N∑
p+1

eikλj

∣∣∣∣∣ ≤ C|p|−2+ nj−1,

|cnp| ≤
∣∣∣∣∣

n−1∑
k=p+1

1

k(k + 1)

∣∣∣∣∣ ≤ C|p|−1+ ,

we have

|cnp| ≤ C min{|p|−1+ , |p|−2+ nj−1}.(80)

Therefore, it follows from (68) and Minkowski’s inequality that

E|J̃1n|2 = O

(( n/j∑
p=0

|p|−1/2
+ +

n∑
p=n/j

n

j
|p|−3/2

+

)2)
= O(nj−1),(81)

and hence (77) follows.
Now we move to the proof of (78). Whenθ = 0, thenD̃nλj

(e−iλj L; θ) = 0,
and (78) follows immediately. Assumeθ �= 0. If we have, uniformly inr =
0,1, . . . ,

E sup
θ

|nθ−1/2j1/2−θLrD̃nλj
(e−iλj L; θ)�un|2 = O

(
(logn)2),(82)
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then (78) follows because Minkowski’s inequality gives

E sup
θ

∣∣nθ−1/2j1/2−θJn(L)D̃nλj
(e−iλj L; θ)�un

∣∣2
≤ E

(
n−1∑
p=1

p−1 sup
θ

∣∣nθ−1/2j1/2−θLpD̃nλj
(e−iλj L; θ)�un

∣∣)2

≤
(

n−1∑
p=1

p−1
(
E sup

θ

∣∣nθ−1/2j1/2−θLpD̃nλj
(e−iλj L; θ)�un

∣∣2)1/2
)2

= O
(
(logn)4).

We proceed to show (82). Forr ≥ n, (82) follows immediately because
LrD̃nλj

(e−iλj L; θ)�un = 0. For r = 0, . . . , n − 1, using a decomposition similar
to (67) gives

LrD̃nλj
(e−iλj L; θ)�un

=
n−2∑
p=0

bnp(θ)Lr
p∑

q=0

�un−q + (−θ)n

n! Lr
n−1∑
p=0

e−ipλj

p∑
q=0

�un−q

= U ′
1n(θ) + U ′

2n(θ),

wherebnp(θ) is defined in (66). ForU ′
1n(θ), sinceE(Lr ∑p

q=0�un−q)
2= O(|p|1/2

+ ),

the arguments in the proof of Lemma 5.3 go through andE supθ |nθ−1/2j1/2−θ ×
U ′

1n(θ)|2 = O((logn)2) holds. ForU ′
2n(θ), using a decomposition similar to (72)

gives

U ′
2n(θ) = (−θ)n

n!
eiλj

1− eiλj
Lr

n∑
k=1

�uk − (−θ)n

n!
eiλj

1− eiλj
Lr

n∑
k=1

eikλj�uk

= (−θ)n

n!
eiλj

1− eiλj

n−r∑
k=1

uk − (−θ)n

n!
eiλj

1− eiλj
eirλj

n−r∑
q=1

eiqλj uq.

SinceE(
∑n−r

k=1 uk)
2 = O(n1/2) for any r , E supθ |nθ−1/2j1/2−θU ′

2n(θ)|2 = O(1)

and (82) follow if, form = o(n),

max
1≤r≤n

max
1≤j≤m

E

∣∣∣∣∣(2πr)−1/2
r∑

k=1

eikλj uk

∣∣∣∣∣
2

= O(1).(83)

We establish (83) to complete the proof of part (a). An elementary calculation
gives

E

∣∣∣∣∣(2πr)−1/2
r∑

k=1

eikλj uk

∣∣∣∣∣
2

=
∫ π

−π
fu(λ)Kr(λ − λj ) dλ,
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whereKr(λ) = (2πr)−1∑r
s=1

∑r
t=1 ei(t−s)λ is Fejér’s kernel. From Zygmund [16],

pages 88–90,
∫ π
−π |Kr(λ)|dλ < A and |Kr(λ)| ≤ Ar−1λ−2 for a finite con-

stant A. Furthermore, from Assumption 1 there existsη ∈ (0, π) such that
supλ∈[−η,η] |fu(λ)| < C, and inf|λ|>η |λ − λj | ≥ η/2 if λj < η/2. It follows that
for sufficiently largen∫ π

−π
fu(λ)Kr(λ − λj ) dλ

=
∫
|λ|≤η

fu(λ)Kr(λ − λj ) dλ +
∫
η≤|λ|≤π

fu(λ)Kr(λ − λj ) dλ

≤ AC + Ar−1(η/2)−2
∫
η≤|λ|≤π

fu(λ) dλ < ∞,

uniformly in j = 1, . . . ,m, and (83) follows.
For part (b), in view of (76),Dn(e

iλj ;0) = 1 andD̃nλj
(e−iλj L;0) = 0, part (b)

follows if, asn → ∞, uniformly in j = 1, . . . ,m,

E
∣∣j1/2n−1/2J̃nλj

(e−iλj L)
(�un − C(1)εn

)∣∣2 = o(1) + O(j−1).(84)

Using the same decomposition as (79), writej1/2n−1/2J̃nλj
(e−iλj L)(�un −

C(1)εn) as
n−2∑
p=0

j1/2
√

n
cnp

p∑
q=0

(
un−q − C(1)εn−q

)
(85)

+ j1/2

n
√

n

eiλj

1− eiλj

n∑
k=1

(
un−k − C(1)εn−k

)
(86)

− j1/2

n

eiλj
√

2π

1− eiλj
[wu(λj ) − C(1)wε(λj )].

If we have

E

[ p∑
q=0

(
un−q − C(1)εn−q

)]2

(87)

=
{

O(|p|+), uniformly in p = 0, . . . , n − 1,
o(p), asp → ∞,

then it follows from Minkowski’s inequality and the order ofcnp given by (80) that

(
E|(85)|2)1/2 = O

(
(j/n)1/2

√
n/j∑

p=0

|p|−1/2
+

)

+ o

(
(j/n)1/2

n/j∑
p=√

n/j

p−1/2 + (j/n)1/2
n∑

p=n/j

n

j
p−3/2

)
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= O
(
(j/n)1/4) + o(1)

= o(1),

because
√

n/j ≥ √
n/m → ∞ from Assumption 4′. To prove (87), note that when

p = 0, (87) follows immediately. Whenp ≥ 1, observe that

E

[ p∑
q=0

(
un−q − C(1)εn−q

)]2

≤ 2E

[ p∑
q=0

un−q

]2

+ 2E

[
C(1)

p∑
q=0

εn−q

]2

.

Since the first term on the right-hand side is uniformlyO(p) from (68) and the
second term on the right-hand side is equal to 2C(1)2(p + 1), the first part of (87)
holds. For the second part of (87), note that the left-hand side of (87) is equal to
(γq = Eutut+q )

p∑
r=−p

(p + 1− |r|)γr − 2C(1)

p∑
q=0

q∑
r=0

cq−r + (p + 1)C(1)2

= −(p + 1)
∑

|r|≥p+1

γr − 2
p∑

r=1

rγr + 2C(1)(p + 1)
∑

r≥p+1

cr − 2C(1)

p∑
r=1

rcr .

If
∑∞−∞ ar converges, then

∑
|r|≥p+1 ar tends to 0 asp → ∞; thus the first and

third terms areo(p) because both
∑∞−∞ γr and

∑∞−∞ cr converge. The second
and fourth terms areo(p) from Kronecker’s lemma, and the second part of (87)
follows. ObviouslyE|(86)|2 = O(j−1), and (84) follows.

For part (c), first from Lemma 2.1 of [7] and Lemma 5.7 we have

Jn(L)2 = Jn(L)[Jn(e
iλ) + J̃nλ(e

−iλL)(e−iλL − 1)]
= Jn(L)Jn(e

iλ) + Jn(L)J̃nλ(e
−iλL)(e−iλL − 1)

= Jn(e
iλ)2 + Jn(e

iλ)J̃nλ(e
−iλL)(e−iλL − 1)

+ Jn(L)J̃nλ(e
−iλL)(e−iλL − 1),

Dn(L; θ) = Dn(e
iλ; θ) + D̃nλ(e

−iλL; θ)(e−iλL − 1).

It follows that(
log(1− L)

)2
Yt = Jn(L)2Dn(L; θ)�ut

= Jn(e
iλ)2Dn(e

iλ; θ)�ut

+ Dn(e
iλ; θ)[Jn(e

iλ) + Jn(L)]J̃nλ(e
−iλL)(e−iλL − 1)�ut

+ Jn(L)2D̃nλ(e
−iλL; θ)(e−iλL − 1)�ut .



1930 K. SHIMOTSU AND P. C. B. PHILLIPS

Taking its d.f.t. gives

Jn(e
iλj )2Dn(e

iλj ; θ)wu(λj )

− (2πn)−1/2Dn(e
iλj ; θ)[Jn(e

iλj ) + Jn(L)]J̃nλj
(e−iλj L)�un

− (2πn)−1/2Jn(L)2D̃nλs (e
−iλj L; θ)�un.

By the same argument as the ones used in showing (77) and (82), we obtain

E
∣∣LqJ̃nλj

(e−iλj L)�un

∣∣2 = O(nj−1), q = 0,1, . . . .

In conjunction withJn(e
iλj ) = O(logn), Minkowski’s inequality and (82), it

follows that

E sup
θ

∣∣nθ−1/2j1/2−θDn(e
iλj ; θ)[Jn(e

iλj ) + Jn(L)]J̃nλj
(e−iλj L)�un

∣∣2
= O

(
(logn)2),

E sup
θ

∣∣nθ−1/2j1/2−θJn(L)2D̃nλj
(e−iλj L; θ)�un

∣∣2
= O

(
(logn)6)

for j = 1, . . . ,m, giving the stated result.�

LEMMA 5.10. Let Qk , k = 0, . . . ,3, be any real numbers, κ ∈ (0, 1
8), and

1/m + m/n → 0 as n → ∞. Then there exists η > 0 not depending on Qk such
that, for sufficiently large n:

(a) m−1
m∑

j=[κm]
|(1− eiλj )3Q3 + (1− eiλj )2Q2 + (1− eiλj )Q1 + Q0|2

≥ η(m6n−6Q2
3 + m4n−4Q2

2 + m2n−2Q2
1 + Q2

0),

(b) m−1
m∑

j=[κm]
|(1− eiλj )−1Q3 + (1− eiλj )−2Q2

+ (1− eiλj )−3Q1 + (1− eiλj )−4Q0|2
≥ η(m−2n2Q2

3 + m−4n4Q2
2 + m−6n6Q2

1 + m−8n8Q2
0).

PROOF. Define

A(λ) = (1− eiλ)3Q3 + (1− eiλ)2Q2 + (1− eiλ)Q1 + Q0.

Since 1− eiλ = −iλ + O(λ2) asλ → 0, we have

A(λ) = iλ3Q3 − λ2Q2 − iλQ1 + Q0
(88)

+ O(λ4)Q3 + O(λ3)Q2 + O(λ2)Q1.
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Applying 2|a||b| ≤ |a|2 + |b|2 to the product terms involving the remainder terms,
we obtain

|A(λ)|2 = (λ2Q2 − Q0)
2 + (λ3Q3 − λQ1)

2 + R(λ),(89)

whereR(λ) = O(λ7)Q2
3 + O(λ5)Q2

2 + O(λ3)Q2
1 + O(λ)Q2

0. First we show that

m−1
m∑

j=[κm]
(λ2

jQ2 − Q0)
2 ≥ η(m4n−4Q2

2 + Q2
0).(90)

When sgn(Q2) �= sgn(Q0), then (90) holds from Lemma 5.4. When sgn(Q2) =
sgn(Q0), without loss of generality assumeQ2,Q0 > 0. Note thatλ2

jQ2 is

an increasing function ofj . Now suppose(λm/2)
2Q2 − Q0 ≥ 0. Then, since

(λ3m/4)
2 = 9

4(λm/2)
2, we have, forj = 3m/4, . . . ,m,

λ2
jQ2 − Q0 ≥ 9

4(λm/2)
2Q2 − Q0

= 1
4(λm/2)

2Q2 + 2(λm/2)
2Q2 − Q0

≥ 1
4(λm/2)

2Q2 + Q0.

Now suppose(λm/2)
2Q2 −Q0 < 0. Then, since(λm/4)

2 = 1
4(λm/2)

2, we have, for
j = 1, . . . ,m/4,

λ2
jQ2 − Q0 ≤ 1

4(λm/2)
2Q2 − Q0

= −1
4(λm/2)

2Q2 + [1
2(λm/2)

2Q2 − Q0
]

≤ −1
4(λm/2)

2Q2 − 1
2Q0.

Therefore, either forj = 1, . . . ,m/4 or for j = 3m/4, . . . ,m, we have

|λ2
jQ2 − Q0| ≥ 1

4(λm/2)
2Q2 + 1

2Q0(91)

and (90) follows immediately. The same argument gives, if sgn(Q3) = sgn(Q1),

|λ3
jQ3 − λjQ1| ≥ λj

{1
4(λm/2)

2|Q3| + 1
2|Q1|},(92)

either forj = 1, . . . ,m/4 or for j = 3m/4, . . . ,m, and it follows from (91) and
(92) that

m−1
m∑

j=[κm]
(λ3

jQ3 − λjQ1)
2 ≥ η(m6n−6Q2

3 + m2n−2Q2
1).

ForR(λ) in (89), it follows from Lemma 5.4 that

m−1
m∑

j=[κm]
R(λj )

= O(m7n−7)Q2
3 + O(m5n−5)Q2

2 + O(m3n−3)Q2
1 + O(mn−1)Q2

0,
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and part (a) follows. For part (b), rewrite the term inside the summation as

|(1− eiλj )−4A(λj )|2 = ∣∣λ−4
j

(
1+ O(λj )

)
A(λj )

∣∣2.
Applying (88) and the following argument with (91) and (92) gives part (b).�
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