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STATISTICAL ANALYSIS ON HIGH-DIMENSIONAL SPHERES
AND SHAPE SPACES!

By IAN L. DRYDEN
University of Nottingham

We consider the statistical analysis of data on high-dimensional spheres
and shape spaces. The work is of particular relevance to applications where
high-dimensional data are available—a commonly encountered situation in
many disciplines. First the uniform measure on the infinite-dimensional
sphere is reviewed, together with connections with Wiener measure. We
then discuss densities of Gaussian measures with respect to Wiener measure.
Some nonuniform distributions on infinite-dimensional spheres and shape
spaces are introduced, and special cases which have important practical
consequences are considered. We focus on the high-dimensional real and
complex Bingham, uniform, von Mises—Fisher, Fisher—Bingham and the real
and complex Watson distributions. Asymptotic distributions in the cases
where dimension and sample size are large are discussed. Approximations
for practical maximum likelihood based inference are considered, and in
particular we discuss an application to brain shape modeling.

1. Introduction. Applications where high-dimensional data are available are
routinely encountered in a wide variety of disciplines. Hence the study of suitable
probability distributions and inferential methods for analyzing such data is very
important. A practical application that we shall consider is cortical surface
modeling from magnetic resonance (MR) images of the brain.

Consider the situation where we have a high-dimensional observagian
the unit sphere inp real dimensionss?~1(1) = {x,:||x,| = 1}. We wish to
consider modeling, asp — oo, and the observation tends to a function of some
kind (a generalized function), which is represented by a point on the infinite-
dimensional spher&®°(1). We investigate appropriate probability distributions
and statistical inference for this situation.

The unit norm constraint often arises naturally in high-dimensional data
analysis; for example, i ~ N, (0, I,/ p), wherel, is the p x p identity matrix,
then||Z|| = 14+ 0,(p~/?) and hence ap — oo we regardZ as a point or§ (1)
almost surely.
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The unit norm constraint is also commonly used in shape analysis, where one
requires invariance under scale changes, as well as location and rotation. Also,
the constraint arises in the analysis of curves. For example, a dataset may have
been recorded at arbitrary scales, and it is the general shapes of the curves that are
of interest. A common approach to dealing with this problem is to rescale each
curve to have unit norm. The models we consider are for generalized functions but
they may also be of relevance to functional data analysis (FDA) (e.g., see [24]).
However, in FDA various additional continuity and smoothness assumptions are
usually made.

Statistical analysis on the infinite-dimensional sphere is not straightforward. For
example surface area {S?~1(1)} — 0 asp — oo even though the radius is fixed
at 1. In order to define a uniform measure and other distributions on the infinite-
dimensional sphere one can use a relation with Wiener measure.

In Section 2 we review the Wiener measure and its connection with the infinite-
dimensional sphere. Work on densities of Gaussian measures with respect to
Wiener measure is also discussed. In Section 3 we define a nonuniform measure
on the infinite-dimensional sphere. We show that particular high-dimensional
Bingham and high-dimensional zero-mean multivariate normal distributions have
this distribution in the limit as the dimensign— oc. In Section 3.3 we describe
maximum likelihood based inference, and in particular we discuss practical
implementations. Asymptotic distributions in the cases where dimension and
sample size are large are also discussed. In Section 4 we make connections
with existing results and provide extensions for the high-dimensional uniform,
von Mises—Fisher and Watson distributions, and we discuss the Fisher—Bingham
distribution. We also investigate the high-dimensional complex Bingham and
complex Watson distributions, which have important applications in shape
analysis. In Section 5 we discuss an application to cortical surface analysis from
medical images of the brain, and finally we conclude with a brief discussion.

2. Wiener measure and Gaussian measur es.

2.1. Wlener measure and the infinite-dimensional sphere. Let C = {w €
C[0, 1]: w(0) = 0} be the set of continuous paths @i 1] starting at 0. When
considering an observation, = (xp(l),...,xp(p))T on a high-dimensional
spheres?~1(1) it will also be useful to construct the following path defined®n

k
) Qp(xp, k/p) = xp(0),
i=1

whereQ ,(x,,0)=0andQ,(x,, ) is linearly interpolated betweeit — 1)/p <

t<k/p,k=1,..., p.If x, is uniformly distributed ons”?~1(1), then 0, tends
to the Wiener process (i.e., Brownian motion) 6énmas p — oo [8]. Hence, the
uniform measure or5*°(1) is related to the Wiener measure én Despite a
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relatively recent rigorous proof, the connection between Wiener measure and the
uniform measure or§*°(1) has a long history starting with Poincaré [23] and
Wiener [30].

The formal sense in which the Wiener measure is related to the uniform
distribution onS*°(1) is now described. The Wiener process is writterlas=
{W():t €0, 1]}. The Wiener measure an is the probability measure given by

1 2
(W0 = Wis) € DY) = o=y [ exo{ 55 )

for s <t and a Borel seD C R, and the disjoint increment® (r) — W (s) of paths

in ¢ are independent. Lets , be the uniform probability measure on the finite-
dimensional spher&”~1(1). Then consider the probability measurg , on C of

a Borel setD,

PLW,p(D) = MS,p({xp : Qp(xpa ) € D})
THEOREM2.1 ([8]). uw,p — uw weakly as p — oo.

Hence, we can think of the uniform distribution &°(1) as inducing the
Wiener measure o@. If X = {X(¢):¢ € [0, 1]} is uniformly distributed ors*°(1),
then the induced path (the indefinite integral o) on € is the Wiener process,
and we writeY ~ W. Note thatX is not a standard stochastic process [siite)
is nowhere differentiable], but rathéf is a generalized function or generalized
random field [11], which is also known as a Schwarz distribution. The generalized
random fieldX in the uniform case here is known as white noise [13] and we write
X ~ W to meanX is white noise. Note that the induced path @rmgiven by the
indefinite integral of white noise is defined, even though pointwise valu&gof
are not. Hence, the induced path®iis a standard stochastic process and it is often
more straightforward to work in the induced space of the continuous paths. Note
that in our work it is the white noise that satisfies the unit norm constraint, not the
induced path process. We shall reserve the notign andU (¢) for generalized
functions onS*° (1), andY (¢) and W (¢) for the induced path processes@n

We can also regard white noise as a limit of a standard multivariate normal
distribution as the dimension increases. From the definition of the Wiener process,

if z, ~N,(0,1,/p), then the pathQ,(z,, ) By (Wiener process) ag — oo,
D, el .
where “=" means convergence in distribution (i.e., weak convergence). We shall

also writez,, B (white noise) ap — oo in this case.

In Section 1 we noted thdlt,|| = 1+ 0,(p~1/?), and soz,, is approximately

on §7~1(1) for large p. This observation can be seen usifig,|? ~ x2/p,

Wherexg is a chi-squared random variable withdegrees of freedom. Therefore
Elllzp |1 = 1, van(izp)|?) = 2/p and solizp* = 1+ 0,(p™%) and |z, =
1+ 0,(p~Y2).
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2.2. Gaussian measures. Shepp [25] discussed absolute continuity and prob-
ability density functions of Gaussian measures with respect to Wiener measure.
Consider the Gaussian measusg g on C with mean

o0
m(t) = / Y (6) dptm, g (Y)
—0o0
and covariance function

R6.0 = [ T (¥ = m) (Y @) — m(®)) dpm 1 (V).

—o0

Let L2([0, 1]) be the space of Lebesgue square integrable functiori6,dm and
let £2 be the space of Lebesgue square integrable functiofi@, dih x [0, 1].

THEOREM 2.2 ([25]). The Gaussian measure w,, r iS absolutely continuous
with respect to Wiener measure if and only if:

(i) thereexistsakernel K e «£2 for which

R(s,t) =min(s, t) —/OS /OtK(u, v)dudv,

(i) theeigenvaluesa; of K all satisfya; <1,
(iii) there existsafunction n € L2([0, 1]) for which

t
m(t) :fo n(u)du.

The kernel K is unique and symmetric and is given by —3%R/ds 9 for almost
every (s, t). The function n is unique and is given by n(¢) = dm(t)/dt for almost
everyt.

Denote the complete orthonormal eigenfunctionkoés y1, y», ..., Yeo COI-
responding to eigenvalues, a, ..., ax. Sincek € £ we have)y % a5 < co.

Let M e «£2 have the same eigenfunctions Esand corresponding eigenvalues
1— (1—a;Y?, wherea; < 1. Define

I(s) = folM(s, w)dW ()
and
ro=wo - [ 16)ds+mo),
whereW (¢) is the Wiener process ab. Note

E[Y()]=m(), cov(Y (s), Y (#)) =min(s, ) — /OS _/: K(u,v)dudv.
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THEOREM 2.3 ([25]). Let w,, r be absolutely continuous with respect to
Wener measure. The probability density function of Y = {Y(¢): ¢ € [0, 1]} with
respect to Wiener measure is

ditm, R
du

(Y) fe(Y;m, R)

(2) 2 1
_ —g:)"1/2 J M -
= 1_[{(1 aj) ex 2(1—aj) + Y ”

j=1
where Y; = folyj(t)dY(t) is the Wiener integral evaluated at Y, and n; =
Jon@y;@dr.

PrRooF This follows directly from [25], equation (4.8). Sln@ la <0
this product converges, and sinceall< 1 the product is nonzero. D

Note that (2) is also known as the Radon—Nikodym derivative or likelihood
ratio.

2.3. Sequences of matrices. Consider the positive-definite self-adjoint linear
operator: with eigenvalues.1 > A2 > --- > Ao, > 0, and orthonormal eigenfunc-
tionsy1, o, . . ., Yo Which form a complete orthonormal basisfiA([0, 1]). From
the spectral decomposition theorem

0
Y= ijyj ><Yj,
j=1
where> < is the outer product. We shall define a particular sequence of matrices

which converges to the self-adjoint linear operaigrand this sequence imposes
some extra structure ai. Consider thep x p symmetric matrices with full rank:

%, = Zk(p)yj(p) - < V,(p)’
j=1

wherek(l”) > A(Zp) >...> )LE,") > 0 are the eigenvalues &f,,, with corresponding

eigenvectors given bygp), j=1,..., p. We shall consider sequences of symmet-
ric positive definite matriceX,, p =1, 2, ..., oo, which have the properties

(3) A;p)—>kj>0, yJ(p)—>yj asp—>o0,j=1,...,p,
p
(4) Y =p+o.
j=1
p
(5) Y)Y =p+ 0.

J=1
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From (3) %, — ¥ asp — oo, whereX is a positive-definite self-adjoint linear
operator. We write

(6) pILmoo(IP_EP)ZK’ aj=l—Aj,

whereK is a self-adjoint linear operator ang < 1. From (3) and (4) we have
Y% a;=0(1). From (5)X% 1a < 00, and hence& e L2.
We also consider a reparametenzatlon

() B,=3,— ;b
whereB,, has elgenvalues(p) - 1/)»3’”), j=1,...,p

ExaMPLE. An example of a sequence that satisfies (4) and (5) is where the
eigenvalues ok, are

and»” = 0(), j=1,...,h, thatis, the smallest —  eigenvalues ok, are
equaf’to 1, where ¥ 1 < oo is fixed.

3. Nonuniform distributions and the Bingham distribution.

3.1. Nonuniform distributions on $°°(1). In order to consider modeling
on S°(1) we need to define useful nonuniform distributions. Let us consider the
generalized functioX = lim,_, Ell,/zup, whereu, is uniformly distributed on
sP=1(1), =32 = Z?‘;l(x(f’))l/zyfp) >< y}p), with eigenvalues and eigenvectors
constructed as in Section 2.3. The noigeinduces a nonuniform distribution
for the limiting pathY =lim,_. Q,,(E,l/zup, -) € € in general with respect to
Wiener measure 0@, and we writeWy x, for this process o®. The noiseX itself
is not white noise in general o$f°(1). We write X ~ 'V'Vo’z for this generalized
function and we note tha? = Wy ;, wherel is the identity linear operator.

PrRoPOSITION3.1. If X =Ilim,_ Z;/ up ~ WO,E, then the induced mea-
sure of a Borel set D € C is uo x(D), the zero-mean version of the Gaussian
measure defined in Section 2.2. The probability density function of the induced

process Y = Ilim ,_, o Q,,(E,l/zup, -) € C with respect to Wiener measure is

o0
(Y) fG(Y, 0, Z) = 1_[ {(l_ aj)—l/Zefanjz/{Z(lfaj)}}’
j=1

duo, s

ORI

whereY; = fol yj(t)dY (¢) isthe Wener integral evaluated at Y.
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ProOF If u, is uniform on sP~1(1), then we know that the path

Opup,-) Bw as p — oo. Hence,y, = QP(E;/ZMP, ) — Y € C, whereY is
the Gaussian process given by

t p1
(10) Y(t):W(t)—f / M(s, u)ds dW (u),
o Jo
o)
(11) E[¥@®]1=0 cov(Y (s), Y (#)) = min(s t)—/s /ZK(u,v)dudv,
' ’ ' 0 Jo

and the relation between, and K is given by (6). Hence, the induced measure
on € is uo,x and the density follows from Theorem 2.3

The noiséWo,g can also be regarded as a limit of zero-mean multivariate normal
distributions, as shown in the next results.

PROPOSITION3.2. Under assumptions (4) and (5), if v, ~ N,(0, Z,/p),
then [|v, || = 1+ 0, (p™?).

PrRooOF This result follows from the properties of the multivariate normal
distribution and because traée,) = p+ 0(1) and traceElz,) = p+0(1). Hence,
E[llvpl°1 = p~*traca®,) =1+ 0(p™H),
var(|v, |[%) = 2p~*tracgx2) = O(p™H).
Thereforejv, | =1+ 0,(p~*?) and hencéjv, || = 1+ 0,(p~"%). O

So, for finitep, the pointv, does not lie ors”~1(1) but will be close for large.

PrROPOSITION3.3. Under assumptions (3)+5), if v, ~ N,(0, X,/p), then

D .
vy —> Wo,x,as p — oo.

PROOF Notez, = E;l/zv,, ~ N,(0,1,/p) 2 4 as p — oo. Hence the
pathy, = QP(E}/ZZP, ) — Y € C, whereY is the Gaussian process given by
(10) and (11). Hencey), L4 Wo,x and sov, 2 Wo.x asp — oo, as required. [

3.2. The Bingham distribution. Let us define the Binghanp@,) family of
distributions ons”~1(1) to have probability measure
dup.p.x =cp(pBy)~ texp(px] Byx,)dus.p.
wherex, € SP~1(1), B, is given in (7) and
1

(12) cs(pB,) = 1F1(§, ’ po)
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is the confluent hypergeometric function with matrix argument (e.g., see [21],
page 181). The addition of an arbitrary constant to the eigenvalugp$ pfdoes

not change the particular Bingham distribution. So to ensure identifiability we fix
the minimum eigenvalue oB, at 0, which is equivalent to fixing the minimum

eigenvalue oz, to be 1, that is}\i,”) =1. From (7)

dupp s = cB(po)_le‘”/2 exp(—%x?i);%,,) dus,p

(13)
= fp(xp» 2p)d/fLS,p,

say. The Bingham distribution is often used for modeling axial data in directional
data analysis, where the directions and —x, are indistinguishable (see [21],
page 180). Iﬂ(lp) > Aép), then the mode of the distribution j5. We regardy; as
the (j — 1)st principal component (PC) & 2). The Bingham(pB,,) distribution
is the N, (0, X,/ p) distribution conditioned to have unit norm.

Chikuse ([6] and [7], Chapter 8) has considered high-dimensional asymptotic
results for the Bingham distribution, the matrix Bingham and other nonuniform
distributions on spheres and Stiefel and Grassman manifolds. We discuss one
of her results in particular for the finite-dimensional projection of the high-
dimensional Bingham distribution. L&}, = [e1, ..., ep] be ap x h (p = h) matrix
of orthonormal columns with propertigy’ P, = I, and P, P! x, = x,,, wherex,,
is the projection ofc, into theh-dimensional subspace generated by the columns
of Py.

THEOREM 3.4 ([6]). If x, hasa Bingham distribution with parameter matrix
pB,and X, = (I, — 2B,) "1 is positive definite, then
— D
pY2Pl s, 2P Pl x, = p2P] (1, — 2B,)? Py Pl x, = Ni(O, I)

as p — oQ.

PrROOF  Chikuse ([6], Theorem 4.5) used an asymptotic expansion of the joint
distribution of the components for the matrix Bingham distribution on the Stiefel
manifold v, ;. SinceV), 1 = $P—1(1), thek = 1 case is of interest. In particular,

- 1p o1 T _1/2
Jim sFa(5. 2 Pl By Py = 11— 2P By Pyl
leads to the required result]

Note that
_ D
px}h PhPl S PPl x, S «f,
asp — oo. Chikuse [7] also provides higher-order terms in the approximation of

Theorem 3.4, and many other finite projection results. We wish to examine the
distribution ofx,, in the continuous limit ag — oco.
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PROPOSITION 3.5. Define Q,(xp,-) as in (1). Consider the Bingham
probability measure uw,, x on C of a Borel set D given by uw , s(D) =
wB,p,x({xp:0p(xp,-) € D}), Where up , 5 is defined in (13) and the sequence
¥, satisfies (3)-(5)with X, — X. Then uw, , v — no,x weakly as p — oo.

PROOF Letg:C — R be a bounded continuous function. Define

E,lg] = /@ 2(0p(xp. ) ditw.p.s

= I))d
Sp—l(l)g(Qp(xp’ )) MB,p, %

= Spil(l)g(Qp(xpa‘))fp(xp,Ep)dMS’p

= /;g(Qp(-xp’ '))fp(-xp, Zp)dMW,p

»/g(Y)meo, Syduw  asp — oo
C

because’ =lim, 0o @ (xp, ), iM 0 px7 Byx, =332 —a;Y2/{2(1—a;)},
where Y; = folyj(t)dY(t) and pw,, — uw weakly asp — oo. Note that
fc(Y;0, %) is given by (9) andf(Y; 0, £)duw = duo,x. SO

E,lg] — f@ ¢(V)dpuo.s.

Hence, we have shown weak convergenge, s — o, x asp — oco. [

We can considex, ~ Bingham(pB,) — Wo x asp — oo. From the above
results a practical approximation is that, for laggand under assumptions (3)—(5),

(14) Binghan(pB,) ~ N, (0, p~X(I, — 2B,) 1) = N,,(0, =,/ p).

Since there is a constraintx,|| = 1 under the Bingham distribution, the
approximation will be best when a singular multivariate normal distribution is
used withp — 1 dimensions of variability; see Section 4.6 for a comparison in
an example.

3.3. Inference. Letx,; € sP=1(1),i =1, ...,n, denote arandom sample from
the Bingham distribution of (13). The log-likelihood is

[(xp1, - Xpnl Zp/P) = Y109 fp(xpis Zp)
i=1

n
= —nlogcp(pBy) +p prTinxpi,
i=1
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where cp is defined in (12). The maximum likelihood estimators (m.l.e.'s) of
the eigenvectors oB, are given by the eigenvectors éfZ?zlxpixgi, but the
m.l.e.’s of the eigenvalues must be obtained using numerical optimization, working
with the difficult normalizing constantz (pB,). Kume and Wood [18] provide a
saddlepoint approximation.

For largep, from (14) we can use the normal approximatigp ~ N, (0, (I —
ZBP)_l/p) = N,(0,X,/p). Hence, the m.lLe. ok, is approximatelyﬁ:p =
%Z?:lxpix;i, which has (exact Bingham m.l.e.) eigenvectgys. .., y, corre-
sponding to (approximate Bingham m.l.e.) eigenvalugs Ao > --- > 4, > 0,
and we write

wj=Aj/p, j=1...,p.

The m.l.e. for the mode of the distribution f§ (when the largest eigenvalue

of X, is unique). We can regard an estimate of the concentration about the mode
to bew1, and if o1 ~ 1 the data are highly concentrated. The sample eigenvector
yj is the (j — D)st sample principal component with estimated variatige
j=2,...,p.

Another option for practical analysis is to consider the special case with
eigenvalues (8). Choosk < n and fix the projection matrixP, in advance
(e.g., usingh Fourier or spline basis functions). Then, as— oo (fixed k),
from Theorem 3.4p,; = pY/2PI x,; B N0, %), i=1,....n wheres), =
PI'EP,. The m.le. ofS, is £, =1y, vpivh; and the distribution ot is
a Wishart distribution (e.g., [22], page 85). Expressions for the joint density of the
sample eigenvalues can be written down using the two-mgkighypergeometric
function (from [14]) and a large sample approximation is given by G. A. Anderson
[1]—see [22], pages 388, 392. The joint distribution of sample eigenvalues and
eigenvectors of covariance matrices of Gaussian data is known far, albut
difficult to work with (e.g., see [22]). Hence, we consider useful approximations
for largen, p.

The asymptotic joint distribution of the eigenvalues and eigenvectoxs, dor
large n is given by the classical result of T. W. Anderson [2], and we require
p/n® — oo andn — oo for this result to hold (with fixed). The details are
as follows. Assume for now that the eigenvaluesifare distinct” > 15" >
... > 2" > 0 with corresponding eigenvectoréh), j=1,...,h. From [2] as
n — o0, p/n®— oo we have

2 (h hyy D h)\2 .
(15) n2G0 ) S N©0.20)%).  j=1...h
independently, and

~ D
(16) n2(p" —y M) S Ny, V),
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where
() (h) (,, (T .
Vi=2" Y e i) =1,
joy ()\( ) )L( ))2
and)/(h) /\(m are all asymptotically independent. Similar results follow when there

are some muItipIicities of eigenvalues, using [2] again.

Asymptotic distributions for dimensiop fixed andn — oo are summarized by
Mardia and Jupp ([21], page 187) and Watson [28]. If we nowplet co and
n/p — oo, then we have a consistency result.

PROPOSITION3.6. Consider the Bingham (Z,/p) distribution on SP~1(1)
with %, = (I, — 2B,)"* and m.l.e. $,. As p — oo,n — oo and np~* — o0,
then f]p LS X,— 2.

PROOF  Sinces, = £, + 0,(pY2n~Y2) and as/p — oo, we haves, >
Y,—> Xasp—oo. U

Other results fop fixed andn — oo are worth investigating fop — oo and
n/p — oo, for example, the central limit results of Watson [28], Fisher, Hall, Jing
and Wood [10] and Bhattacharya and Patrangenaru [5].

4. Other distributions. We now consider results for other high-dimensional
distributions which are useful in directional data analysis and shape analysis.
Table 1 provides a summary of the notation used in the paper for the different
measures, and the limiting path processes and noises.

TABLE 1
Notation used in the paper for the different measures, the limiting path processes and limiting noise

Measures

Distribution (@ (b) () Limiting path process Limiting noise
Uniform IS, p W, p ww w W
Bingham UB,p,x UW,p,s  MO,T Wo, s Wo,z

von Mises—Fisher  uy ¢ WW,povie  MET We 1 We 1
Fisher-Bingham  up v s HUw, pva S M3 We, x We,x
Complex uniform K » /’LW » Wy we we
Complex Bingham H%,p,z MW %> Mﬁ,z ch),z W6,2

Column (a) denotes measures for Borel setss8mi(1) or CSP~1(1) in the complex case, col-
umn (b) denotes measures for Borel sets®oasing the continuous piecewise linear approximation
Q) of (1) and column (c) denotes the limiting Gaussian measure asip — oc. The final columns
show the limiting path Gaussian process®and the limiting noise.
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4.1. Uniform distribution. Let P, be ap x h matrix so thatP!x, is the
h-vector of the first: components of ,. Stam [26] showed that if,, is uniformly
distributed ons?~1(1), then

pY2PTx, B NyO. 1) asp— oo.
The result also holds for any x & matrix P, of 4 orthonormal columns.
Theorem 2.1 provides the extension to the infinite-dimensional case and we have
xp 2 Wasp — oo.
4.2. von Mises—Fisher distribution. Watson [27, 29] considered the fixed rank
case for the von Mises—Fisher distribution (which Watson called the Langevin
distribution). Letx, have a von Mises—Fisher distribution with parameters given

by the modev, € S»~1(1) and concentratiop/2¢. The density with respect to
uniform measure o§?~1(1) is

d/-'LV,p,U,K
d/fLS,p

1/2 1/2

:f\/,p(xm v[)? pl/ZK) :c;l(p K) exmp Kx;”p)a

where
1/2,\ 1-p/2
cv(pl/zlc) = <pT) F(p/Z)Ip/z—l(Pl/zK),

with 7;(-) the modified Bessel function of the first kind and ordez R* (e.g.,
see [21], page 168) and wheFd-) is the gamma function. Note that this von
Mises—Fisher distribution can be regarded as the multivariate normal distribution
N, (kv,/pY?, 1,/p) conditioned to have unit norm.

Watson [27] showed that for this von Mises—Fisher distribution

pY2PTx, B Ny(PTvpk. 1) asp— oo,

for any p x h matrix P, of h orthonormal columns spanning a subspace
containing v,. We write z, = x, — xv,/p¥2 and lim,_,skv,/pY/? = n €
L?([0,1]). Since

1/2 o .
fV,p(Zanp»p K)_>fG<Y—p|£noon(Zpa ): 0, I) asp — oo,

and using a similar argument to that in the proof of Proposition 3.5, it follows that
Zp 2 9. Equivalently, consider the probability measwrg , , . on C of a Borel
setD:

MW,p,v,/c(D) = /’LV,p,U,K({xp : Qp(xpa ) € D})§

thenuw, p.vc — e 1 weakly asp — oo, whereg (1) = fé n(s)ds. From [8] the
probability density function of the shifted measure is given by the Cameron—
Martin (Girsanov) formula

dpe 1 _ p{ 1 _} L 2 }
o) =ex /on(r)dW(t) 2/0 n(n)2di |,
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which can also be seen using Shepp’s [25] result of Theorem 2.3 in this special
case wherea; =0forall j=1,..., cc.

The practical implication is that we can choose fiXe& n, use P, as any
suitable choice of: basis functions, and then carry out inference usipg=
pY2PIx,/hY% ~ Ny PT v,/ hY?, 1,/ ). In particular, if v,,...,v,, are a
random sample from this multivariate normal distribution, then the m.l.e.’s are

n
1/2 -1
hY%n va,-

i=1

— n n
T, _— _ .
Py VP—Z”/N/ > Vpi
i=1 i=1
—_—

Also, &2 ~ 1 x2(nk?) (which was given by Watson [29]) an®}! v, has an offset
Gaussian distribution ([21], page 178). Also, from [29] if we write pos
(PIv)TPlv,, then

’

;e:‘

(17)

n
=hZn7Y vy k.
i=1

ni?p? ~ y? 4 asp,n — 0o,

wherep/n? — cc.

4.3. Watson distribution. Again let P/ x,, select the first: points from the
p-vector x,, wherex, € SP~1(1). Let x, have a distribution with density with
respect to the uniform measure §A~1(1) given by

eyt (pie) exp(pic | P x 112,

where cy (px) = 1F1(%, £, pr) is here the confluent hypergeometric function
with scalar argument (see [21], page 181). Watson [27] showed that, foriixed
under this distribution

1—20)Y2pY2pTx, B Ny(0. 1)  asp— oo,

whenk < 1/2. (Note that it seems clear that there is a typographical error in (47)
of [27], where the square root ¢ — 2«) was not taken.)

The Watson distribution is a special case of the Bingham distribution, and a
suitable choice of matrix sequence that satisfies (3)—(5,);%: I, —2¢ Py PhT,
which is positive definite ik < 1/2 and Py, is any p x h matrix of orthonormal
columns (noteB, = « P, PI'). From Theorem 3.4, for this particular Bingham
distribution

pl/ZPthp 24 Np(0,(1— ZK)_llh) asp — oo,

if k <1/2. Hence, Watson'’s result is confirmed as a special case of Theorem 3.4.

The case wheré = 1 is commonly encountered in directional data analysis
with parameters, P1, with modes att P; for ¥ > 0, and isotropically distributed
about these modes.



1656 I. L. DRYDEN

4.4, Fisher—Bingham distribution. Similar high-dimensional results follow
for the Fisher-Bingham distribution ([19], [21], page 174). The parameters of
the distribution are the mode,, a concentration parameter and a matrix (with
constraints) specifying the structure of variability about the mode. Consider the
parameterization where the Fisher—Binghavg;,pl/zx, pB)) distribution has
density with respect to the uniform measures#it(1) given by

d:uF,p,v,K,Z
d:“«S,p

1/2, .. T T
/ KXpVp + px, Bpxp),

(xp) = cr(vp, ™%k, pBy) T exp(p
wherev, is one of the first: eigenvectors ofB,,, and we shall consideE, =
p— ZBP)—1 to be positive definite. The integrating constant

1/2 12, T T
cr(vp, p /2y, pBp) = /Sl'—l(l) exp(p / Kx,Vp+ px, Bpxp)dus, p
can be expressed in terms of the density of a linear combination of noncentral
Xf random variables [18], which can be evaluated using a saddlepoint approx-
imation. The Fisher—Binghar(vp,pl/ZK, pB)) distribution can be regarded as
N(kZ,v,/pY2, % ,/p) conditioned to have norm 1.

PROPOSITION4.1. Ifx, hasaFisher-Bingham (v, pY/%«, pB,,) distribution
on $P~1(1), with v, one of the first 4 eigenvectors of B, and positive definite
¥, =, —2B,)"1 then

_ D
(18) PP B, 2P Pl x, S Nu(@. 1) asp— oo,

where Py, isthe p x h matrix with columns given by the first /2 eigenvectors of B),
and ¢ =1im,_ ok PL S, P, Pl v),.

PROOF Let x, = tx, + (1 — t?)Y2x}, wherex, is a unit vector in the
subspacé’ of R” spanned by the firgt eigenvectors ok, x;- is a unit vector in
the orthogonal complement &f ands = ||x;|| is the norm ofy, =tx, = Py Pthp,
which is the part of,, in V. An invariant measure of”~1(1) may be written as

ps p(dxp) =" 2L =P ar gy (dxy) s, p-n(dx));

see [27]. So, the Fisher—-Bingham measure with parame}grﬁl/zx, pB, =
pU, —=,1/2in terms of(z, x,, x;") is proportional to
2 2
°p — “p
eXp{Kpl/ztxUTvp — 7xUTEp 1xv + 7}

x t"=1(1 — 2)(P=m/2-1 g ws,h(dxy) ks, p—h (dxj‘).
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NotexvL is independently uniformly distributed. Writing= p1/2s and integrating
outx;- we have the joint density afi, x,) as

2 2

Fu, xy) occu" YA — u?/p)p—m/2-1 eXp<KuxUTvp — %vaEljlxv + %)

Let y = p¥2P]'s,?P,P] x, be theh-vector such thay”y = u?x] T 1x,.

Hence transforming frongu, x,) to y and with Jacobian proportional o',
and noting that1 — u2/p)(P="/2=1 5 o=4*/2 a5 p —» o0, we see that

/o 1 u?
FO)oc(L—u?/p)P=hir2 leXP<yT¢p — EyTy + 5)

1 T
—exp| 20 =070 -]
asp — oo, whereg, =« PT S, P, Pl v,. Hencey 3 N (¢, I;) as required. [

Note that if B, = 0, then the result reduces to the result for the von Mises—
Fisher distribution described in Section 4.2y} = 0, then the result reduces to
Chikuse’s [6] result of Theorem 3.4.

Consider the probability measuggy, .., ., on C of a Borel setD

MW,p,v,K,E(D) = MF,p,v,/c,E({xp : Qp(xps )€ D}),

thenuw, pv,x = ne s weakly asp — oo, using the same argument as in the
proof of Proposition 3.5. The limiting measures in particular cases are summarized
in Table 1.

4.5. Complex Bingham distribution. The complex unit sphere is written
CsP~1(1) and we consideCS?~1(1) = $27~1(1). As p — oo the uniform
measure orCS*>°(1) induces a Wiener process @h In this case we writdV ¢
for the Wiener process using complex notatior lis complex white noise which
induces this Wiener proce$s“ on C, then we writeZ ~ we.

The complex Bingham family of distributions is the complex analogue of
the real Bingham distribution [17]. The complex Bingham distributions are
particularly useful in shape analysis of landmarks in two dimensions (e.g.,
see [9]), where the distribution is used for rotation-invariant shape modeling
because the density has the property tliagt) = f(¢!?z) for any rotation6.

The complex Bingham distribution is actually a special case of the real Bingham
distribution [17].

The high-dimensional results for the complex Bingham proceed in an analogous
way to the real Bingham case, with inner product replacedhw) = z*w,
wherez* =z is the transpose of the complex conjugate. Positive (semi-) definite
symmetric matrices are replaced by positive (semi-) definite Hermitian matrices,
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and positive (semi-) definite self-adjoint linear operators are replaced with positive
(semi-) definite Hermitian linear operators. The complex Bingham®,( family
of distributions onCS?~1(1) has probability measure

dug px = CCB(PBp)_leXp(pzj;szp) dis

wherez, € csr1, Mg,p is the uniform probability measure ofS?~1(1),
pB, is Hermitian and

p
ccg(po)=27rprj expr;, bj_l=1_[(1:j—1:,-),
j=1 i#]
in the case when the real eigenvalue®f p B, are all distinct.

PROPOSITION 4.2. Let z, have a complex Bingham (pB,) distribution.
Consider the sequence of Hermitian positive-definite matrices £, = (I, — B,) 1,
p=12 ..., 00, which satisfy (3)—(5) and let P, = [y1, ..., y»], Where y;, are
complex eigenvectors of X,,. By direct analogy with Theorem 3.4 we have

pY2Prs 2P, Pz, B CNYO ) asp— oo

We can use the complex normal approximation to the high-dimensional
complex Bingham distribution and carry out inference in an analogous way to
the procedure for the real Bingham distribution in Section 3.3. Weak convergence
of the complex Bingham measure to a Gaussian measupe -asoo follows
directly from Proposition 3.5, as the complex Bingham is a special case of the
real Bingham.

4.6. Complex Watson. The complex Watson distribution is a special case
of the complex Bingham distribution WitIE;1 =1, — kpup* (see [20]). The
distribution is useful in planar shape analysis as an isotropic distribution about the
modal shapeg:. As the form of the density is particularly simple in this case, we
shall compare the high-dimensional complex Watson distribution with the complex
normal approximation for varioup. Consider a particular form of the complex
Watson density given by

few zp) = cow M) exp{—pzy (I, — kup*)z,p),
where
ccw (k) =2nP1F1(L; p;kple”? /(p — DL
Now, asp — oo, 1F1(1; p; kp) — (1 —«)~%, and so using Stirling’s approxima-
tion,

27 P12 p=(p=1/2)

cow (i) = - (L+0(p™).
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TABLE 2
Values of log(ccw (k) /cn (k) for different p, «

K

p 0.02 0.2 0.4 0.6 0.8 0.9 0.98 0.998

2 0.04148 0.05783 0.12564 0.29834 0.74630 1.31239 2.81813 5.09713

5 0.01671 0.02567 0.06778 0.19128 0.56143 1.07649 2.53515 4.80278

10 0.00837 0.01354 0.04005 0.12750 0.42875 0.89228 2.29969 4.55444

20 0.00419 0.00700 0.02247 0.07944 0.30906 0.71003 2.04892 4.28558

50 0.00167 0.00287 0.00982 0.03853 0.18134 0.48686 1.70299 3.90438

100 0.00084 0.00145 0.00508 0.02098 0.11193 0.34247 1.43873 3.60139
1000 0.00008 0.00015 0.00053 0.00231 0.01526 0.06727 0.64364 2.55192
10000 0.00001 0.00001 0.00005 0.00023 0.00160 0.00792 0.16451 1.52600
100000 0.00000 0.00000 0.00001 0.00002 0.00016 0.00081 0.02268 0.66978

Since there is a constrairjtz,|| = 1, we take the singular complex normal
approximation in @ — 1 real dimensions of variability. We can write the density as

SN (@) = en M) expl—p2 (I — kup*)z,),
where

en(e) = 2P~ Y213,/ pl,,

where |X,/pl, is the determinant in the/2— 1 real dimensions of variability
given by|%,/pl, = p~P~Y2/(1 - k). Hence,

cow @) =en () (L+0(p™h).

In Table 2 we see some numerical comparisons ofldeg (x)/cy(k)) for
different p, x. Note that the approximation is better wheris small. For very

high concentrations close to 1 a very large valuepofs required for a good
approximation.

5. Practical application: brain shape modeling. Shape is the geometri-
cal information that remains when translation, rotation and scale effects are re-
moved [16]. We consider an application where the shape of the cortical surface
of the brain is of interest. The data form part of a larger study with collaborators
Bert Park, Antonio Gattone, Stuart Leask and Sean Flynn that will be reported
elsewhere.

A sample ofn = 74 MR images of adult brains is taken. The brains are
preregistered into a standard frame of reference (Talairach space) and so location
and rotation are regarded as fixed—see Figure 1 for an example.

We actually restrict the analysis to tpe= 62,501 points on the cortical surface
along a hemisphere of rays which radiate from the origin at a central landmark
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FiGc. 1. An example brain showing the points on the surface. In the analysis we restrict ourselves
to the upper hemisphere of the cortex only (above the origin landmark) and consider p = 62,501
points.

(midway between the anterior and posterior commissures). The measurements
taken for theith brain ¢ =1,...,n) are {r,;(t):t = 1,..., p}, which are the
lengths of the rays measured at the locatighg):t = 1,..., p} on the upper
hemisphere, that i®(r) € Si(l). Since{6(r) :t =1, ..., p} are fixed and equal

for all the brains, our data for thgh brain are solely the ray lengths, which we
write as thep-vectorr,; = (rpi(l),...,rp,-(p))T, i=1,...,n. We remove the

scale information by taking ,; = r,;/llrpill, so that|x,;| =1 fori =1,...,n.

Since the location and rotation are treated as fixed, this application involves
statistical analysis on a high-dimensional sphere rather than in shape space itself.
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We wish to obtain an estimate of the modal cortical shape and the principal
components of shape variability for the dataset. We initially consider a model for
the data as the high-dimensional Bingham distribution, and use the multivariate
normal approximations from (14). We consider maximum likelihood estimation
as in Section 3.3, and the parameters of the model are given,Bstimated by

X,=L37" 1xp,xp = pS, say.

First we need to be able to compute the spectral decomposition in high-
dimensional spaces. In the case where we have p, the eigenvalues and
eigenvectors can be computed using a straightforward procedure. Let us write

= [xp1, ..., xp,] for the n columns of vectors from a random sample. Now,
using the spectral decomposition we have

—XX ijyjy].

Consider then x n matrix A = %XTX, and the spectral decomposition As=
Zﬁzl (qujqu, which can be computed i@ (n3) steps. Now

1 n
52 = ﬁXXTXXT = Z@Z;WJT

1 "5
==XAXT =3 L(Xq))(Xqp".
n . n
j=1
Hence, by equating coefficients,
7i=Xq;/IXqil. & =1XqINs;/n,  j=1...n

Thus calculating the PCs is practical for huge> n. Practical statistical analysis

is carried out by choosing a low number of PCs which hopefully summarize a large
percentage of variability, and then carrying out multivariate tests in the reduced
space.

So, returning to the cortical brain surface example, we stack tiaglial lengths
into vectors of lengthy = 62,501, and since we are not interested in size we divide
through by the norm of each stacked vector, to giye=r,;/|7pill € sP—1(1),
i=1,...,n. We then obtain the spectral decompositionSo£ ip/p. The data
are extremely concentrated, with a very high contribution from the first eigenvector
(@1 =0.99885).

We displayé)i/z;?l + 3&)%/2)92 in Figure 2, which shows the mode cortical sur-
face shapet 3 standard deviations along the first PC, for each of three orthogonal
views. Note that this PC appears to show variability in the location of the origin
landmark relative to the surface. This PC explainsdf®_; ,»; = 26.9% of

the variability about the mode. We dlsplaj/zyl + 3w1/2y3 in Figure 3, which
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FiGc. 2. Plots of the modal cortical shape + 3 standard deviations along PC1: (a) Sagittal view.
Lighter gray: wl/ y1; darker gray: a)l/ o/ 2)/2 (b) Sagittal view. Lighter gray: a)l/ y1; darker
gray: d)}/zyl — a);'/zyz (c) Axial view. Lighter gray: a)l/ vz, 71+ a);'/ 7.
(d) Axial view. Lighter gray: wl/ 1 darker gray: “’1/ 71— wl/ zyz (e) Coronal view. Lighter
gray: “’1/ y1; darker gray: “)1/ y1+a) y2 (f) Coronal view. Lighter gray: “’1/ y1; darker gray:
&)i/ 2)/1 — d);/ 7. Additional shading has been added so that the higher the distance above the
horizontal base (the line joining the anterior and posterior commissures) the lighter the shade of

gray.

y1+a)
71, darker gray. @3

shows the mode cortical surface shape3 standard deviations along the sec-
ond PC, for each of three orthogonal views. Note that this PC is largely pick-
ing up “taller” “thinner” brains versus “shorter” “fatter” brains. This PC explains
10Qw3/ Y7, »; = 12.8% of the variability about the mode. Note that the modal
shape can only be identified up to a reflection, but in this case the correct choice is
obvious.

It could be argued that the Fisher—Bingham is a more appropriate model here
given that we have the reflection information in our data. In this case the high-
dimensional approximation is the multivariate normal distribution with nonzero
mean. The estimated parameters of the approximating model are the sample mean
and sample covariance matrix, and for this example the sample meah}/gm%j
are indistinguishable up to machine accuracy, and so the conclusions are identical.
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FiGc. 3. Plots of the modal cortical shape + 3 standard deviations along PC2. The caption is the

same as Figure 2, except that d); 2)92 isreplaced by c?)%/ 2)93.

6. Discussion. The noise models considered in the paper should have further
applications in addition to those in high-dimensional directional data analysis and
shape analysis. For example, the work could be used to model noise in (high-
dimensional) images where the parameters of the noise process would depend
on the particular imaging modality and the object(s) in the image. The models
could be suitable for nonstationary and long-range correlation noise. There is a
large literature on stochastic models in image analysis, and particularly successful
models include Markov random field models (e.g., [3, 12]) and intrinsic random
fields [4]. Our models have far more parameters in general, and so their use as
image noise models would be restricted to situations where there is a reasonable
amount of training data (or strong prior knowledge) available.

In the brain application the points on the cortical surface provide a rough
correspondence of parts. An improved analysis would be to locate points at more
accurate points of biological homology, and then the mean shape and principal
components would give more accurate estimates of the population properties of the
cortical surfaces. Such a task is far from straightforward. However, our approach
does give an approximate assessment of the main global features of brain shape
and variability.



1664 I. L. DRYDEN

We have considered the size of an objegtto be||x, ||, but other choices are
possible which would change the practical analysis. For example, with the brain
application one might fit a smooth surfageto a brain using a finite series of
orthogonal functions and then take the sizd|&. Two brains which look to be
quite similar in size with similajx|| values could have rather differejn,, || values
if one is a much rougher surface than the other.

For inference we discussed the capg¢s — oo andn/p — oo in Section 3.3.

The asymptotic regima/p — y fixed asn — oo, p — oo is of great interest

in many disciplines, including mathematical physics—see [15]. In particular,
Johnstone [15] describes developments based on the Tracy—Widom distribution
for the largest eigenvalue, and associated work.

As mentioned in the Introduction, the analysis of functions is somewhat
different from our situation due to the smoothness assumptions that are usually
made in FDA. The models for the induced pathGirare of more relevance to
FDA, where the functions are of a standard type and continuity is present.

It is of interest to extend the work to other manifolds, in particular the
Stiefel manifold of orthonormal frames and the Grassmann manifold (which
is appropriate for affine shape). Watson [27] provides some asymptotic high-
dimensional results, and in particulgs}/2 multiplied by the firstiz rows of
a uniformly distributed matrixX on the Stiefel manifoldV,, , tend to an
hm-dimensional zero-mean Gaussian distribution with identity covariance matrix
as p — oo. Chikuse [6, 7] provides many extensions. However, the study of
probability distributions in the continuous limit & — oo requires further
developments.
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