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Boosting is one of the most significant advances in machine learning
for classification and regression. In its original and computationally flexible
version, boosting seeks to minimize empirically a loss function in a greedy
fashion. The resulting estimator takes an additive function form and is built
iteratively by applying a base estimator (or learner) to updated samples
depending on the previous iterations. An unusual regularization technique,
early stopping, is employed based on CV or a test set.

This paper studies numerical convergence, consistency and statistical rates
of convergence of boosting with early stopping, when it is carried out over
the linear span of a family of basis functions. For general loss functions, we
prove the convergence of boosting’s greedy optimization to the infinimum
of the loss function over the linear span. Using the numerical convergence
result, we find early-stopping strategies under which boosting is shown to
be consistent based on i.i.d. samples, and we obtain bounds on the rates of
convergence for boosting estimators. Simulation studies are also presented
to illustrate the relevance of our theoretical results for providing insights to
practical aspects of boosting.

As a side product, these results also reveal the importance of restricting the
greedy search step-sizes, as known in practice through the work of Friedman
and others. Moreover, our results lead to a rigorous proof that for a linearly
separable problem, AdaBoost with— 0 step-size becomes dnt-margin
maximizer when left to run to convergence.

1. Introduction. In this paper we consider boosting algorithms for classifi-
cation and regression. These algorithms represent one of the major advances in
machine learning. In their original version, the computational aspect is explicitly
specified as part of the estimator/algorithm. That is, the empirical minimization of
an appropriate loss function is carried out in a greedy fashion, which means that
at each step a basis function that leads to the largest reduction of empirical risk
is added into the estimator. This specification distinguishes boosting from other
statistical procedures which are defined by an empirical minimization of a loss
function without the numerical optimization details.
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Boosting algorithms construct composite estimators using often simple base es-
timators through the greedy fitting procedure. An unusual regularization technique,
early stopping, is employed based on CV or a test set. This family of algorithms
has been known as the stagewise fittingadditive models in the statistics litera-
ture [18, 17]. For the squared loss function, they were often referred to in the signal
processing community asatching pursuit [29]. More recently, it was noticed that
the AdaBoost method proposed in the machine learning community [13] can also
be regarded as stagewise fitting of additive models under an exponential loss func-
tion [7, 8, 15, 31, 34]. In this paper we use the tdyoosting to indicate a greedy
stagewise procedure to minimize a certain loss function empirically. The abstract
formulation will be presented in Section 2.

Boosting procedures have drawn much attention in the machine learning
community as well as in the statistics community, due to their superior empirical
performance for classification problems. In fact, boosted decision trees are
generally regarded as the best off-the-shelf classification algorithms we have today.
In spite of the significant practical interest in boosting, a number of theoretical
issues have not been fully addressed in the literature. In this paper we hope to
fill some gaps by addressing three basic issues regarding boosting: its numerical
convergence when the greedy iteration increases, in Section 4.1; its consistency
(after early stopping) when the training sample size gets large, in Sections
3.3 and 5.2; and bounds on the rate of convergence for boosting estimators, in
Sections 3.3 and 5.3.

It is now well known that boosting forever can overfit the data (e.g., see [16,
19]). Therefore, in order to achieve consistency, it is necessary to stop the
boosting procedure early (but not too early) to avoid overfitting. In the early
stopping framework, the consistency of boosting procedures has been considered
by Jiang for exponential loss [19] boosting (but the consistency is in terms of
the classification loss) and Buhlmann under squared loss [10] for tree-type base
classifiers. Jiang’'s approach also requires some smoothness conditions on the
underlying distribution, and it is nonconstructive (hence does not lead to an
implementable early-stopping strategy). In Sections 3.3 and 5.2 we present an
early-stopping strategy for general loss functions that guarantees consistency.

A different method of achieving consistency (and obtaining rate of convergence
results) is through restricting the weights of the composite estimator using the
1-norm of its coefficients (with respect to the basis functions). For example, this
point of view is taken up in [5, 28, 30]. In this framework, early stopping is
not necessary since the degree of overfitting or regularization is controlled by
the 1-norm of the weights of the composite estimator. Although this approach
simplifies the theoretical analysis, it also introduces an additional control quantity
which needs to be adjusted based on the data. Therefore, in order to select an
optimal regularization parameter, one has to solve many different optimization
problems, each with a regularization parameter. Moreover, if there are an infinite
(or extremely large) number of basis functions, then it is not possible to solve the
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associated 1-norm regularization problem. Note that in this case greedy boosting
(with approximate optimization) can still be applied.

A question related to consistency and rate of convergence is the convergence
of the boosting procedure as an optimization method. This is clearly one of the
most fundamental theoretical issues for boosting algorithms. Previous studies
have focused on special loss functions. Specifically, Mallat and Zhang proved the
convergence of matching pursuit in [29], which was then used in [10] to study
consistency; in [9] Breiman obtained an infinite-sample convergence result of
boosting with the exponential loss function fid -trees (under some smoothness
assumptions on the underlying distribution), and the result was used by Jiang to
study the consistency of AdaBoost. In [12] a Bregman divergence-based analysis
was given. A convergence result was also obtained in [31] for a gradient descent
version of boosting.

None of these studies provides any information on the numerical speed of
convergence for the optimization. The question of numerical speed of convergence
has been studied when one works with the 1-norm regularized version of boosting
where we assume that the optimization is performed in the convex hull of the
basis functions. Specifically, for function estimation under least-squares loss, the
convergence of the greedy algorithm in the convex hull was studied in [1, 20,
25]. For general loss functions, the convergence of greedy algorithms (again,
the optimization is restricted to the convex hull) was recently studied in [37]. In
this paper we apply the same underlying idea to the standard boosting procedure
where we do not limit the optimization to the convex hull of the basis functions.
The resulting bound provides information on the speed of convergence for the
optimization. An interesting observation of our analysis is the important role of
small step-size in the convergence of boosting procedures. This provides some
theoretical justification for Friedman’s empirical observation [14] that using small
step-sizes almost always helps in boosting procedures.

Moreover, the combination of numerical convergence results with modern
empirical process bounds (based on Rademacher complexity) provides a way to
derive bounds on the convergence rates of early-stopping boosting procedures.
These results can be found in Sections 3.3 and 5.3. Section 6 contains a simulation
study to show the usefulness of the insights from our theoretical analyses in
practical implementations of boosting. The proofs of the two main results in
the numerical convergence section (Section 4.1) are deferred to Section A.2.
Section A.3 discusses relaxations of the restricted step-size condition used for
earlier results, and Section A.4 uses numerical convergence results to give a
rigorous proof of the fact that for separable problems, AdaBoost with small step-
size becomes ah; margin maximizer at its limit (see [18]).

2. Abstract boosting procedure. We now describe the basics to define the
boosting procedure that we will analyze in this paper. A similar setup can be found
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in [31]. The main difference is that the authors in [31] use a gradient descent rule
in their boosting procedure while here we use approximate minimization.
Let S be a set of real-valued functions and define

m
spans) = {waff:fj eS,w eR me Z+},
j=1
which forms a linear function space. For gl span(S), we can define the 1-norm
with respect to the basis as

m
(1) ||f||1=inf{||w||1;f=Zw-’f-’:ffes,mez+}.
j=1
We want to find a functionf e span(S) that approximately solves the
optimization problem
2 inf  A(Y),
@ Joinf A
whereA is a convex function off defined on spai$). Note that the optimal value
may not be achieved by any € sparn(S), and for certain formulations (such as
AdaBoost) it is possible that the optimal value is not finite. Both cases are still
covered by our results, however.
The abstract form of the greedy boosting procedure (with restricted step-size)
considered in this paper is given by the following algorithm:

ALGORITHM 2.1 (Greedy boosting).

Pick fp € spans)

for k=0,1,2,...
Select a closed subsaf, C R such that &= Ay andA = — Ay
Find @, € Ay andg, € S to approximately minimize the function:

(%) (otk, 8k) = A(fr + ok gi)
Let fit1= fi + gk
end

REMARK 2.1. The approximate minimization of)in Algorithm 2.1 should
be interpreted as findingy, € Ay andgi € S such that

3) A(fk +arg) < inf A(fk +owgr) + ek,
o €Nk, gKES
whereg; > 0 is a sequence of nonnegative numbers that converges to zero.

REMARK 2.2. The requirement that® Ay is not crucial in our analysis. It
is used as a convenient assumption in the proof of Lemma 4.1 to simplify the
conditions. Our convergence analysis allows the choica oto depend on the
previous steps of the algorithm. However, the most interestipfpr the purpose
of this paper will be independent of previous steps of the algorithm:
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(@) Ak=R, _ . 3
(b) supAy = hy wherehy, > 0 andh; — 0.

As we will see later, the restriction ef;, to the subseA; C R is useful in the
convergence analysis.

As we shall see later, the step-size plays an important role in our analysis.
A particular interesting case is to restrict the step-size explicitly. That is, we assume
that the starting pointfp, as well as quantities; and Ay in (3), are sample-
independent, and; = supA satisfies the conditions

o e.¢]
(4) Zhj:OO, Zh§<oo.
j=0 j=0

The reason for this condition will become clear in the numerical convergence
analysis of Section 4.1.

3. Assumptions and main statistical results. The purpose of this section
is to state assumptions needed for the analyses to follow, as well as the main
statistical results. There are two main aspects of our analysis. The first is the
numerical convergence of the boosting algorithm as the number of iterations
increases, and the second is the statistical convergence of the resulting boosting
estimator, so as to avoid overfitting. We list respective assumptions separately. The
statistical consistency result can be obtained by combining these two aspects.

3.1. Assumptionsfor the numerical convergenceanalysis. Forall f € span(s)
andg € S, we define a real-valued functioty,,(-) as

Ago(h)y=A(f +hg).

DerINITION 3.1. LetA(f) be afunction off defined on spai$). Denote by
span(S)’ the dual space of spés$) [i.e., the space of real-valued linear functionals
on spariS)]. We say thatA is differentiable with gradienV A e spans)’ if
it satisfies the following Fréchet-like differentiability condition for afl g €

span(S):
1 T
lim ~(A(f +hg) = A() = VAN g,
whereVA(f)T ¢ denotes the value of the linear functionali ( f) at g. Note that

we adopt the notatiorf” ¢ from linear algebra, where it is just the scalar product
of the two vectors.

For reference, we shall state the following assumption, which is required in our
analysis.



BOOSTING WITH EARLY STOPPING 1543

AsSsSuMPTION3.1. LetA(f) be a convex function of defined on spais),
which satisfies the following conditions:

1. The functional is differentiable with gradienv A.
2. For all f € spar(S) andg € S, the real-valued functiod 7, is second-order
differentiable (as a function @f) and the second derivative satisfies

(5) A} (0) < Ml f 1D,
whereM (-) is a nondecreasing real-valued function.

REMARK 3.1. A more general form of (5) iA’JL,g(O) <2(eM( fll1), where
£(g) is an appropriate scaling factor gf For example, in the examples given
below, £(g) can be measured by sug(x)| or Exg(X)2. In (5) we assume
that functions inS are properly scaled so thétg) < 1. This is for notational
convenience only. With more complicated notation techniques developed in
this paper can also handle the general case directly without any normalization
assumption of the basis functions.

The function M (-) will appear in the convergence analysis in Section 4.1.
Although our analysis can handle unboundéd ), the most interesting boosting
examples have bounded (-) (as we will show shortly). In this case we will also
useM to denote a real-valued upper bound of sif(a).

For statistical estimation problems such as classification and regression with a
covariate or predictor variabl® and a real response variabfehaving a joint
distribution, we are interested in the following form &€ 1) in (2):

(6) A =¥ (Exyo(f(X),Y)),

where ¢ (-, -) is a loss function that is convex in its first argument apdis
a monotonic increasing auxiliary function which is introduced so théf) is
convex andV (-) behaves nicely (e.g., bounded). We note that the introductign of
is for proving numerical convergence results using our proof techniques, which
are needed for proving statistical consistency of boosting with early stopping.
However, ¥ is not necessary for the actual implementation of the boosting
procedure. Clearly the minimizer of (6) that solves (2) does not depend on the
choice ofyr. Moreover, the behavior of Algorithm 2.1 is not affected by the choice
of ¥ as long assx in (3) is appropriately redefined. We may thus always take
¥ (u) = u, but choosing other auxiliary functions can be convenient for certain
problems in our analysis since the resulting formulation has a bounfen
function (see the examples given below). We have also éseg to indicate the
expectation with respect to the joint distribution(af, Y).

When not explicitly specifiedEx y can denote the expectation either with
respect to the underlying population or with respect to the empirical samples. This
makes no difference as far as our convergence analysis in Section 4.1 is concerned.
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When it is necessary to distinguish an empirical quantity from its population
counterpart, we shall denote the former by a hat above the corresponding quantity.
For example,E denotes the expectation with respect to the empirical samples,
and A is the function in (6) withEx y replaced byEA‘X’)/. This distinction will
become necessary in the uniform convergence analysis of Section 4.2.

An important application of boosting is binary classification. In this case it is
very natural for us to use a set of basis functions that satisfy the conditions

(7) sup [g(x)] =1, y==L
gesS,x
For certain loss functions (such as least squares) this condition can be relaxed. In
the classification literaturg ( f, y) usually has a forng (fy).
Commonly used loss functions are listed in Section A.1. They show that
for a typical boosting loss functio, there exists a constar such that
sup, M(a) <M.

3.2. Assumptions for the statistical convergence analysis. In classification or
regression problems with a covariate or predictor variablen R? and a real
response variabl&, we observen i.i.d. samplesZ* = {(X1, Y1), ..., X, Yin)}
from an unknown underlying distributioR. Consider a loss functiog( f, y) and
defineQ(f) (true risk) andQ(f) (empirical risk) as

~ ~ 12
®) QN =Ep¢(f(X).Y).  O(f)=E¢(f(X).Y)=— > (f(X). Yi),
i=1

whereEp is the expectation over the unknown true joint distributiorof (X, Y)
(denoted byEy.y previously); E is the empirical expectation based on the
sampleZ?'.

Boosting estimators are constructed by applying Algorithm 2.1 with respect to
the empirical expectatioi with a setS of real-valued basis functions(x). We
useA( f) to denote the empirical objective function,

AN =v(00)) =¥ (Ed(f(X),Y)).

Similarly, quantitiesfi, o; and g in Algorithm 2.1 will be replaced b)fk, Qg
andgy, respectively.

Techniques from modern empirical process theory can be used to analyze the
statistical convergence of a boosting estimator with a finite sample. In particular,
we use the concept of Rademacher complexity, which is given by the following
definition.

DEFINITION 3.2. LetG = {g(x, y)} be a set of functions of inputx, y).
Let {0;}7_, be a sequence of binary random variables such d¢hat £1 with
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probability 1/2. The (one-sided) sample-dependRatlemacher complexity of G
is given by

1 m
Rn(G, Z') = Eq sup—>_0ig(X;, Y;),
geG M ;21

and the expected Rademacher complexitgzaé denoted by

The Rademacher complexity approach for analyzing boosting algorithms first
appeared in [21], and it has been used by various people to analyze learning
problems, including boosting; for example, see [3, 2, 4, 6, 30]. The analysis using
Rademacher complexity as defined above can be applied both to regression and
to classification. However, for notational simplicity we focus only on boosting
methods for classification, where we impose the following assumption. This
assumption is not essential to our analysis, but it simplifies the calculations and
some of the final conditions.

AssuMPTION 3.2. We consider the following form af in (8): ¢(f,y) =
¢ (fy) with a convex functio® (a) : R — R such thatp(—a) > ¢ (a) foralla > 0.
Moreover, we assume that

(i) Condition (7) holds.
(i) S in Algorithm 2.1 is closed under negation (i.¢.€ S — — f € S).
(iif) There exists a finite Lipschitz constap () of ¢ in [—8, B]:

Vifil lfe2l=B  1o(f1) —o(f2l = ve(B)lf1— f2l.

The Lipschitz condition of a loss function is usually easy to estimate. For
reference, we lisy, for loss functions considered in Section A.1:

(a) Logistic regressiop (f) =In(1+exp(—f)) :yp(B) < 1.

(b) Exponentialp(f) =exp(—f): vp(B) < exp(B).

(c) Leastsquares(f) = (f — D% ys(B) <2(8 +1).

(d) Modified least squares(f) = max(1— f,0)%: y,(8) < 2(8 + 1).
(€) p-norme(f)=If —UP(p=2):y7s(B) < p(B+DP L.

3.3. Main datistical results. We may now state the main statistical results
based on the assumptions and definitions given earlier. The following theorem
gives conditions for our boosting algorithm so that consistency can be achieved in
the large sample limit. The proof is deferred to Section 5.2, with some auxiliary
results.
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THEOREM 3.1. Under Assumption 3.2 let ¢ be one of the loss functions
considered in Section A.1. Assume further that in Algorithm 2.1 we choose
quantities fp, g and A; to be independent of the sample Z7', such that
Z?‘;Osj < 00, and Ky = SUpA satisfies (4).

Consider two sequences of sample independent numbers k,,, and B, such that
liM - 00 ki = 00 and lim,,_, 00 Y (Bm) Bm R (S) = 0. Then as long as we stop
Algorithm 2.1 at a step k based on ZJ' suchthat k > k,, and || f;ll1 < B, We have
the consistency result

im EznQ(fp) = fesi[)‘i@ e

REMARK 3.2. The choice ofik,,, 8,) in the above theorem should not
be void, in the sense that for all sampl&$' it should be possible to stop

Algorithm 2.1 at a point such that the conditiohs> k, and || ;|1 < B are
satisfied.
In particular, if lim,,_, » R, (S) = 0, then we can always fing, < k;, such that

km — 00 andyy (Bn) B Rn (S) — 0 with 8, = || foll1 + Z'j‘.’iohj. This choice of
(km, Bn) is valid as we can stop the algorithm at d?ng [km. K, 1.

Similar to the consistency result, we may further obtain some rate of conver-
gence results. This work does not focus on rate of convergence analysis, and results
we obtain are not necessarily tight. Before stating a more general and more com-
plicated result, we first present a version for constant step-size logistic boosting,
which is much easier to understand.

THEOREM 3.2. Consider the logistic regression loss function, with basis S
which satisfies R,,(S) < % for some positive constant Cs. For each sample
size m, consider Algorithm 2.1 with fo = 0, sup Ax = ho(m) < 1//m and
ex < ho(m)?/2. Assume that we run boosting for k(m) = B,/ ho(m) steps. Then

@Cs+Dpn  Nflatl I/l }
Jm Vol B

Note that the conditionk,,(S) < Cs/+/m is satisfied for many basis func-
tion classes, such as two-level neural networks and tree basis functions (see
Section 4.3). The bound in Theorem 3.2 is independenigof:) [as long as
ho(m) < m—1/2]. Although this bound is likely to be suboptimal for practice prob-
lems, it does give a worst case guarantee for boosting with the greedy optimiza-
tion aspect taken into consideration. Assume that there efigtspan(S) such

that () = inf cspan@ (/). Then we may choosg,, asp, = Ol flly “mY/*),
which gives a convergence rate B 0(f) < 0(f) + O(||f||i/2m_1/4). As the

target complexity f|/1 increases, the convergence becomes slower. An example
is provided in Section 6 to illustrate this phenomenon.

Em0(f) < _ inf [Q(f) +
! fespan(s)
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We now state the more general result, on which Theorem 3.2 is based (see
Section 5.3).

THEOREM 3.3. Under Assumption 3.2,let ¢ (f) > 0 be a loss function such
that A(f) satisfies Assumption 3.1 with the choice v (a) = a. Given a sample
size m, we pick a positive nonincreasing sequence {#;} which may depend on m.
Consider Algorithm2.1with fo =0, sup Ax = hy and g; < h,fM(skH)/Z, where
se =120 hi

Given training data, suppose we run boosting for k = k(m) steps, and let
Bm = skamy- ThenV f € span(S) such that Q(f) < Q(0)

Ezp Q(fp) < Q(F) + 2/ (Bn) Bu Rin (S)

1 w0y I 1260) -
+ = (11D + T 5 F ).
N R e (G
where
se+I1f N 12
(Ul = _nf [ SR () — ORE M (B + i)

If the target function isf which belongs to spas), then Theorem 3.3 can
be directly interpreted as a rate of convergence result. However, the expression
of §,, may still be quite complicated. For specific loss function and step-size
choices, the bound can be simplified. For example, the result for logistic boosting
in Theorem 3.2 follows easily from the theorem (see Section 5.3).

4. Preparatory results. As discussed earlier, it is well known by now that
boosting can overfit if left to run until convergence. In Section 3.3 we stated our
main results that with appropriately chosen stopping rules and under regularity
conditions, results of consistency and rates of convergence can be obtained. In this
section we begin the proof process of these main results by proving the necessary
preparatory results, which are interesting in their own right, especially those on
numerical convergence of boosting in Section 4.1.

Suppose that we run Algorithm 2.1 on the sampjeand stop at step. By the
triangle inequality and for any e spar(S), we have

Ezn Q(f) — Q(f) < Ezn|O(fp) — Q(f)l + Ezn|O(f) — Q(f)
+Ez[0(f) — O(H)].

The middle term is on a fixed, and thus it has a rate of convergemél//m )
by the CLT. To study the consistency and rates of convergence of boosting with
early stopping, the work lies in dealing with the first and third terms in (9). The
third term is on the empirical performance of the boosting algorithm, and thus a
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numerical convergence analysis is required and hence proved in Section 4.1. Using
modern empirical process theory, in Section 4.2 we upper bound the first term in
terms of Rademacher complexity.

We will focus on the loss functions (such as those in Section A.1) which
satisfy Assumption 3.1. In particular, we assume {has a monotonic increasing
function, so that minimizingA( f) or A(f) is equivalent to minimizingQ( f)
or O(f). The derivation in Section 4.2 works wit®(f) and O(f) directly,
instead ofA(f) and A(f). The reason is that, unlike our convergence analysis
in Section 4.1, the relatively simple sample complexity analysis presented in
Section 4.2 does not take advantageof

4.1. Numerical convergence analysis. Here we consider the numerical con-
vergence behavior of; obtained from the greedy boosting procedurekda-
creases. For notational simplicity, we state the convergence results in terms of the
population boosting algorithm, even though they also hold for the empirical boost-
ing algorithm. The proofs of the two main lemmas are deferred to Section A.2.

In our convergence analysis, we will specify convergence bounds in terms
of | fll1 (where f is a reference function) and a sequence of nondecreasing
numberss; satisfying the following condition: there exist positive numbgégs
such that

k—1
(10) || <he€ Ax  and letsy = || foll1 + Y _ hi,

i=0
where{a, } are the step-sizes in (3). Note thiatin (10) can be taken as any number
that satisfies the above condition, and it can dependa@h computed by the
boosting algorithm. However, it is often desirable to state a convergence result that
does not depend on the actual boosting outputs (i.e., the agteamputed). For
such results we may simply fix, by letting s, = supAy. This gives convergence
bounds for the restricted step-size method which we mentioned earlier.

It can be shown (see Section A.2) that even in the worse case, the value
A(fis1) — A(f) decreases fromA(fy) — A(f) by a reasonable quantity.
Cascading this analysis leads to a numerical rate or speed of convergence for the
boosting procedure.

The following lemma contains the one-step convergence bound, which is the
key result in our convergence analysis.

LEMMA 4.1. Assumethat A(f) satisfies Assumption 3.1. Consider i and s
that satisfy (10).Let f be an arbitrary reference function in span(S), and define

(11) AA(fr) = max0, A(fi) — A(f)),
2

_h
(12) B = EkM(Sk-&—l) + &.
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Then after k steps, the following bound holds for f;.1 obtained from Algo-

rithm2.1:
(13) AA(fisn) < (1 -

hy

——— |AA + &.
sk+||f||1> (fe) + &

Applying Lemma 4.1 repeatedly, we arrive at a convergence bound for the
boosting Algorithm 2.1 as in the following lemma.

LEMMA 4.2. Under the assumptions of Lemma 4.1, we have

I folls + /112 o AA(fo) + Z sj + ||f||1__

14 AA < —
a4 o == 7 s+ 1l

The above lemma gives a quantitative bound on the convergenee /)
to the valueA(f) of an arbitrary reference functiofi € spar(s). We can see
that the numerical convergence speedAaffy) to A(f) depends orj| |1 and
the accumulated or total step-size. Specifically, if we choosef such that
A(f) < A(fo), then it follows from the above bound that

so+ I flla } so+ I flla
seer+ 0 fl) sk + 1 flla
Ssit Il
e Vi i

Afisn) < A(f){l - A(fo)

(15)

Note that the inequality is automatically satisfied whyi1) < A(f).

Clearly, in order to selecf to optimize the bound on the right-hand side, we
need to balance a trade-off: we may selgcsuch thatA(f) (and thus the first
term) becomes smaller as we incredgd|1; however, the other two terms will
become large whefif||1 increases. This bound also reveals the dependence of
the convergence on the initial value of the algorithin the closerA( fo) gets
to the infinimum ofA, the smaller the bound. To our knowledge, this is the first
convergence bound for greedy boosting procedures with quantitative numerical
convergence speed information.

Previous analyses, including matching pursuit for least squares [29], Breiman’s
analysis [9] of the exponential loss, as well as the Bregman divergence bound
in [12] and the analysis of gradient boosting in [31], were all limiting results
without any information on the numerical speed of convergence. The key
conceptual difference here is that we do not compare to the optimal value directly,
but instead, to the value of an arbitrafye span(s), so that| f||1 can be used to
measure the convergence speed. This approach is also crucial for problems where
A(+) can take—oo as its infinimum, for which a direct comparison will clearly
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fail (e.g., Breiman’s exponential loss analysis requires smoothness assumptions to
prevent this—oo infinimum value).
A general limiting convergence result follows directly from the above lemma.

THEOREM 4.1. Assume that 3 %2 4&; < oo and > 52h; = oo; then we
have the following optimization convergence result for the greedy boosting
algorithm (2.1):

lim A = inf A(f).
Jm_A(fe) et s )

PrROOF The assumptions imply that lim , sy = co. We can thus construct a
nonnegative integer-valued functian— j (k) < k such that lim_ oo sjx)/sk =0
and |irﬂ<_>oo Sjk) =00

From Lemma 4.2 we obtain for any fixef

_ Ko _
aaG < ML LI o s+ 1
sk+ 11 fll s skl
Jj (k) k . F
o(1 )+ZSJ+”f”l_' L+ Z SJ+||Ji”l§j_1
Sk+“f“1 j=j(k)+1sk+”f”1

Jk k
50(1)_’_ ](k) + ||f|| Zé/fl‘i‘ Z 5171:0(1)

Sk + ”f”l j=1 j=j)+1

Therefore lim_ . max0, A(fi) — A(f)) = 0. Since our analysis applies to any
f € span(S), we can choosg; € spar(S) such that lim A(f;) = inf respans)A(f).
Now from limy_, oo max(0, A(f3) — A(f,-)) =0, we obtain the theorem.O

COROLLARY 4.1. For loss functions such as those in Section A.1, we have
sup, M(a) < oo. Therefore as long as there exist /; in (10) and ¢; in (3) such
that 50k, = 00, Y520h% < oo and Y-325¢; < oo, we have the following
convergence result for the greedy boosting procedure:

kll—>moo Al = feslggr(S) A

The above results regarding population minimization automatically apply to the
empirical minimization if we assume that the starting pgintas well as quantities
er and Ay in (3), are sample-independent, and the restricted step-size case where
hir = SUpA satisfies the condition (4).

The idea of restricting the step-size when we compujtevas advocated by
Friedman, who discovered empirically that taking small step-size helps [14]. In
our analysis, we can restrict the search region so that Corollary 4.1 is automatically
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satisfied. Since we believe this is an important case which applies for general loss
functions, we shall explicitly state the corresponding convergence result below.

COROLLARY 4.2. Consider a loss function (e.g., those in Section A.1) such
that sup, M(a) < +oo. Pick any sequence of positive numbers /; (j > 0) such
that 3% h; = 00, 3720 h? < o0o. If we choose Ay in Algorithm 2.1 such that
hi = supA, and ; in (3) such that -2 g&; < oo, then

Jim Afio= int CAGP).

Note that the above result requires that the step/site small E?io h? < 00),
but also not too smallXj?‘;O h; = 00). As discussed above, the first condition pre-
vents large oscillation. The second condition is needed to ensurgthanh cover
the whole space spés).

The above convergence results are limiting results that do not carry any
convergence speed information. Although with specific choicgs, @nds; one
may obtain such information from (14), the second term on the right-hand side is
typically quite complicated. It is thus useful to state a simple result for a specific
choice ofh;, ands;, which yields more explicit convergence information.

COROLLARY 4.3. Assume that A(f) satisfies Assumption 3.1. Pick a se-
quence of nonincreasing positive numbers #; (j > 0). Suppose we choose Ay
in Algorithm 2.1 such that #; = supAy, and choose ¢ in (3) such that g, <
h2M (sk41)/2. 1f we start Algorithm 2.1with fo = 0, then

[RAIE AA(fo)+ inf |:E(S€+||f||1)

AA(fi) = = =
sk+ 1 fll Lst=kl sp+ 1 fllx

3+ (k= 082 [ M (51,

PROOF Using notation of Lemma 4.1, we hagg < h(?M(skH). Therefore
each summand in the second term on the right-hand size of Lemma 4.2 is no more
than h%M(skH) when j > ¢ and is no more thahcz)M(Sk+1)(Sg + 1 FllD)/(sk +
| ll1) when j < £. The desired inequality is now a straightforward consequence
of (14). O

Note that similar to the proof of Theorem 4.1, the takm- Z)h% in Corollary 4.3
can also be replaced by’;:th?. A special case of Corollary 4.3 is constant
step-size k; = ho) boosting, which is the original version of restricted step-size
boosting considered by Friedman [14]. This method is simple to apply since there
is only one step-size parameter to choose. Corollary 4.3 shows that boosting with
constant step-size (also referred tocaboosting in the literature) converges to
the optimal value in the limit okg — 0, as long as we choose the number of
iterationsk and step-sizég such thathg — oo andkhg — 0. To the best of our
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knowledge, this is the only rigorously stated convergence result for-bHuosting
method, which justifies why one needs to use a step-size that is as small as possible.

It is also possible to handle sample-dependent choices, af Algorithm 2.1,
or allow unrestricted step-sizeAf = R) for certain formulations. However,
the corresponding analysis becomes much more complicated. According to
Friedman [14], the restricted step-size boosting procedure is preferable in practice.
Therefore we shall not provide a consistency analysis for unrestricted step-size
formulations in this paper; but see Section A.3 for relaxations of the restricted
step-size condition.

In addition to the above convergence results for general boosting algorithms,
Lemma 4.2 has another very useful consequence regarding the limiting behavior
of AdaBoost in the separable classification case. It asserts that the infinitely
small step-size version of AdaBoost, in the convergence limit, i€ amargin
maximizer. This result has been observed through a connection between boosting
with early stopping and.1 constrained boosting (see [18]). Our analysis gives
a direct and rigorous proof. This result is interesting because it shows that
AdaBoost shares some similarity (in the limit) with support vector machines
(SVMs) whose goal in the separable case is to find maximum margin classifiers;
the concept of margin has been popularized by Vapnik [36] who used it to analyze
the generalization performance of SVMs. The detailed analysis is provided in
Section A.4.

4.2. Uniform convergence. There are a number of possible ways to study
the uniform convergence of empirical processes. In this section we use a
relatively simple approach based on Rademacher complexity. Examples with
neural networks and tree-basis (left orthants) functions will be given to illustrate
our analysis.

The Rademacher complexity approach for analyzing boosting algorithms
appeared first in [21]. Due to its simplicity and elegance, it has been used and
generalized by many researchers [2—4, 6, 30]. The approach used here essentially
follows Theorem 1 of [21], but without concentration results.

From Lemma 4.2 we can see that the convergence of the boosting procedure is
closely related td| f||1 and || fx||1. Therefore it is natural for us to measure the
learning complexity of Algorithm 2.1 based on the 1-norm of the function family
it can approximate at any given step. We shall mention that this analysis is not
necessarily the best approach for obtaining tight learning bounds since the boosting
procedure may effectively search a much smaller space than the function family
measured by the 1-noriinf; ||1. However, it is relatively simple, and sufficient for
our purpose of providing an early-stopping strategy to give consistency and some
rate of convergence results.

Given any 8 > 0, we now would like to estimate the rate of uniform
convergence,

Rb =Ezn sup (Q(f)— O(f)),
lFli=<B
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whereQ andQ are defined in (8).

The concept of Rademacher complexity used in our analysis is given in
Definition 3.2. For simplicity, our analysis also employs Assumption 3.2. As
mentioned earlier, the conditions are not essential, but rather they simplify the final
results. For example, the condition (7) implies thgt € span(S), | f (x)| < || f 1.
Itfollows thatVg > || fll1, #(f, ¥) < ¢(—pB). This inequality, although convenient,
is certainly not essential.

LEMMA 4.3. Under Assumption 3.2,
(16) Rj=Ezp sup [Epd(f(X),Y) = E¢(£(X),Y)] < 2y5(B)BRn(S),

flli=p
where y,(B) is a Lipschitz constant of ¢ in [—8, B1:V|fil, | f2| < B:l¢(f1) —
d (2D =ve (Bl fL— f2l.

PROOFE Using the standard symmetrization argument (e.g., see Lemma 2.3.1
of [35]), we have

RS = Ezn ” glupﬂ[ED¢(f<X>, Y) = E¢(f(X),Y)]
Jli=

< 2Rn({o(f(X). Y): [ f1l1 < BY)).

Now the one-sided Rademacher process comparison result in [32], Theorem 7,
which is essentially a slightly refined result (with better constant) of the two-sided
version in [24], Theorem 4.12, implies that

Ru({¢(f(X), Y) N flla = BY) < v B)Ru({F (X211 fll2 = BY).

Using the simple fact thag = >"; «; fi (3; ;| = 1) impliesg < max(sup fi,
sup — fi), and thatS is closed under negation, it is easy to verify ti&af(S) =
Ry ({f € spans): | fll1 <1}). Therefore

Ru({f(X): N flla < B}) =BRu(S).
Now by combining the three inequalities, we obtain the lemnia.

4.3. Estimating Rademacher complexity. Our uniform convergence result
depends on the Rademacher complexity(S). For many function classes, it
can be estimated directly. In this section we use a relation between Rademacher
complexity andl>-covering numbers from [35].

LetX ={X4,..., X,,} be a set of points and 1€,,, be the uniform probability
measure over these points. We define théQ,,) distance between any two
functions f andg as

1 1/2
0(0n)(f. g) = (; SIf@) - g(x,->|2> .
i=1
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Let F be a class of functions. Thempirical ¢>-covering number of F, denoted
by N(e, F, £2(Q)), is the minimal number of ball§g: ¢2(0,,)(g, f) < &} of
radiuse needed to coveF. Theuniform 2 covering number is given by

Na(e, F,m) = SupN (e, F, £2(Qm)),
where the supremum is over all probability distributi@p over samples of siza.
If F contains O, then there exists a universal constrsee Corollary 2.2.8
in [35]) such that

R, (F) < </Ooo,/logN2(8, F, m)de)%,

where we assume that the integral on the right-hand side is finite. Note that for a
function classF’ with divergent integration value on the right-hand side, the above
inequality can be easily modified so that we start the integration from a4aoin0D
instead of 0. However, the dependencyryf(F) onm can be slower than/1/m.

ASSUMPTION4.1. F satisfies the condition
o0
sup| /logNa2(e, F,m)de < oc.
m JO

A function classF that satisfies Assumption 4.1 is also a Donsker class,
for which the central limit theorem holds. In statistics and machine learning,
one often encounters function classEswith finite VC-dimension, where the
following condition holds (see Theorem 2.6.7 of [35]) for some cons@rardV
independent ofn: Na(e, F,m) < C(1/¢)V. Clearly a function class with finite
VC-dimension satisfies Assumption 4.1.

For simplicity, in this paper we assume th&tsatisfies Assumption 4.1. It
follows that

(17) Ru(S) < Ru(SU{O]) < %

where Cy is a constant that depends Shonly. This is the condition used in
Theorem 3.2. We give two examples of basis functions that are often used in
practice with boosting.

Two-level neural networks. We consider two-level neural networks R¢,
which form the function space sp@) with S given by

S={o(w x+b):weR beR),

whereo (-) is a monotone bounded continuous activation function.

It is well known thatS has a finite VC-dimension, and thus satisfies Assump-
tion 4.1. In addition, for any compact subdéte R?, it is also well known that
span(S) is dense irC(U) (see [26]).
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Tree-basisfunctions. Tree-basis (left orthant) functions Rf’ are given by the
indicator function of rectangular regions,

S:{I((—oo,al] X +ee X (—oo,ad]):al,...,adeR}.

Similar to two-level neural networks, it is well known that has a finite
VC-dimension, and for any compact géte R?, spariS) is dense irC (U).

In addition to rectangular region basis functions, we may also consider ashasis
consisting of restricted size classification and regression trees (disjoint unions of
constant functions on rectangular regions), where we assume that the number of
terminal nodes is no more than a constéintSuch a basis set also has a finite
VC-dimension.

5. Consistency and rates of convergence with early stopping. In this
section we put together the results in the preparatory Section 4 to prove consistency
and some rate of convergence results for Algorithm 2.1 as stated in the main result
Section 3.3. For simplicity we consider only restricted step-size boosting with
relatively simple strategies for choosing step-sizes. According to Friedman [14],
the restricted step-size boosting procedure is preferable in practice. Therefore we
shall not provide a consistency analysis for unrestricted step-size formulations in
this paper. Discussions on the relaxation of the step-size condition can be found in
Section A.3.

5.1. General decomposition. Suppose that we run the boosting algorithm and
stop at an early stopping poit The quantityk, which is to be specified in
Section 5.2, may depend on the empirical samplé. Suppose also that the
stopping point is chosen so that the resulting boosting estimgf;csatisfies

(18) Jm Bz o(fp = inf 0,

where we useEz» to denote the expectation with respect to the random
sampleZy'. SinceQ(f,g) > inf respans) Q(f), we also have

Jim Ezn 1 Q(fp) — feslgefms) O(NH)|=lim EzO(fp) — fes'Q;mS) Q(f)=0.
If we further assume there is a uniqyié such that
o(f ):feslgafr(S)Q(f)’

and for any sequencgf,}, Q(fw) — Q(f*) implies thatf,, — f*, then since
O(fp) — O(f*) asm — oo, it follows that

fi— f*  inprobability,
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which gives the usual consistency of the boosting estimator with an appropriate
early stopping if the target functiosf coincides with f*. This is the case, for
example, if the regression functiofi(x) = Ep(Y|x) with respect to the true
distribution D is in spariS) or can be approximated arbitrarily close by functions
in spans).

In the following, we derive a general decomposition needed for proving (18) or
Theorem 3.1 in Section 3.3. Suppose that Assumption 3.2 holds. Then for all fixed
f € span(s), we have

Ezn|O(f) = QN < [Ezp10(f) — Q(HP]Y?
1 _ _ 1/2
= | > Eplo(F001) - 0P|
m

12
< [EEDMf(X)Y)Z} < s (=IfI.
m Jm

Assume that we run Algorithm 2.1 on the sam@g and stop at step. If
the stopping poink SatISerSP(llkal < B,) = 1 for some sample-independent
Bm > 0, then using the uniform convergence estimate in (16), we obtain

Ezn Q(fp) — O(f)
=Ezn[Q(fp) — QU1+ Ezp[Q(F) — Q()]

19) A A oa
+ Ezn[Q(fp) — ()]

< 2Y4(Bm) Bm Rin (S) + i<i>(—||f||1) +sud Q(fp) — (N1
Vm zy

5.2. Consistency with restricted step-size boosting. We consider a relatively
simple early-stopping strategy for restricted step-size boosting, where we take
hy = SUpA; to satisfy (4).

Clearly, in order to prove consistency, we only need to stop at a point such that
Y f € span($), all three terms in (19) become nonpositive in the limit> co. By
estimating the third term using Lemma 4.2, we obtain the following proof of our
main consistency result (Theorem 3.1).

PrROOF OFTHEOREM 3.1. Obviously the assumptions of the theorem imply
that the first two terms of (19) automatically converge to zero. In the following, we
only need to show that f € spans): Supzy max(O0, Q(fk) — Q(f)) — 0 when
m — OQ.

From Section A.1 we know that there exists a distribution-independent number
M > 0 such thatM (a) < M for all underlying distributions. Therefore for all
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empirical sampleZ’*, Lemma 4.2 implies that

PN [Pt A9 s+ 1 Fll
AA(f) < LTI A A (fy + 3 L g
= i AT
wmmm%n=mmaﬁn—&hx&=Mm+2§%ﬁme=§M+%

NOYV using the inequalityA A(fo) < max(y (¢ (=l foll0) — ¥ (@ (I fll1),0) =
c(f) andk > k;,,, we obtain

“hm+yml . XI”HVM‘ }
se+ 111 15c+ 171

Observe that the right-hand side is independent of the sampleFrom the
assumptions of the theorem, we haE?" 0€j < oo and lim_ o sx = co. Now

the proof of Theorem 4.1 implies that &3 — oo, the right-hand side of (20)
converges to zero. Therefore |jm supzy AA(fk =0. O

(20) supAA(f)< sup
k>kp,

The following universal consistency result is a straightforward consequence of
Theorem 3.1.

COROLLARY 5.1. Under the assumptions of Theorem 3.1, for any Borel set
U c R?, if span(S) is dense in C(U)—the set of continuous functions under the
uniform-norm topol ogy, then for all Borel measure D on U x {—1, 1},

I|m EZmQ(fk) = Q(f)

where B(U) isthe set of Borel measurable functl ons.

PROOFE  We only need to show intspars) Q(f) = infrepw) Q(f). This
follows directly from Theorem 4.1 of [38].J

For binary classification problems whenre= +1, given any real-valued
function f, we predicty =1 if f(x) >0 andy = -1 if f(x) < 0. The
classification error is the following 0-1 loss function:

C(f(x),y) =1lyf(x) =0,
wherel[E] is the indicator function of the eveift, and the expected loss is
(21) L(f)=Ept(f(X),Y).
The goal of classification is to find a predictgrto minimize (21). Using the
notationn(x) = P(Y = 1| X = x), itis well known thatZ*, the minimum ofL ( f),
can be achieved by setting(x) = 2n(x) — 1. Let D be a Borel measure defined
on U x {—1,1}; it is known (e.g., see [38]) that iD(f) — infrecpw) Q(f),
then L(f) — L*. We thus have the following consistency result for binary-
classification problems.



1558 T. ZHANG AND B. YU

COROLLARY 5.2. Under the assumptions of Corollary 5.1, we have
mli_r)noo EZTL(fIQ) =L"*

The stopping criterion given in Theorem 3.1 depends Rp(S). For S
that satisfies Assumption 4.1, this can be estimated from (17). The condition
Yé(Bm) BmRm(S) — 0 in Theorem 3.1 becomeg, (B,,) B = o(v/m). Using the
bounds fory, () in Section 4.2, we obtain the following condition.

ASSUMPTIONS.1. The sequencg,, satisfies:

(i) Logistic regression (f) =IN(1+ exp(—f)) : B = o(m??).
(i) Exponentialg (f) =exp(—f): Bn = o(logm).
(iii) Leastsquare® (f) = (f —1)2: Bn = o(m™*).
(iv) Modified least squares(f) = max©0, 1 — f)?: B, = o(m/%).
(V) p-norme (f) =1|f — 1P (p = 2): B = o(m*/?P).

We can summarize the above discussion in the following theorem, which applies
to boosted VC-classes such as boosted trees and two-level neural networks.

THEOREM 5.1. Under Assumption 3.2, let ¢ be one of the loss functions
considered in Section A.1. Assume further that in Algorithm 2.1 we choose
the quantities fo, e and A to be independent of the sample Z*, such that
>720€j <00, and hy = supA satisfies (4).

Quppose S satisfies Assumption 4.1 and we choose sample-independent
ki — o0, such that 8, = || foll1 + Z';';Ohj satisfies Assumption 5.1. If we stop

Algorithm 2.1 at step k,,, then ||fkm Il1 < B, and the following consistency result
holds:
im EmQ(f,)= inf :
Jm Ezp O(fy,) = inf 0(f)
Moreover, if span(S) isdensein C(U) for a Borel set U c R?, then for all Borel
measures D on U x {—1, 1}, we have
M Ezp Q(fin) = Inf Q). lim EzpL(fi,)=L".

Note that in the above theorem the stopping critekigiis sample-independent.
However, similar to Theorem 3.1, we may allow other sample-deperdsuth
that || f;[l1 stays within theg,, bound. One may be tempted to interpret the
rates ofg,,. However, since different loss functions approximate the underlying

distribution in different ways, it is not clear that one can rigorously compare them.
Moreover, our analysis is likely to be loose.
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5.3. Some bounds on the rate of convergence. In addition to consistency, it is
also useful to study statistical rates of convergence of the greedy boosting method
with certain target function classes. Since our analysis is based on the 1-norm of
the target function, the natural function classes we may consider are those that can
be approximated well using a function in sp&nwith small 1-norm.

We would like to emphasize that rate results, that have been stated in Theorems
3.2 and 3.3 and are to be proved here, are not necessarily optimal. There are
several reasons for this. First, we relate the numerical behavior of boosting to
1-norm regularization. In reality, this may not always be the best way to analyze
boosting since boosting can be studied using other complexity measures such
as sparsity (e.g., see [22] for some other complexity measures). Second, even
with the 1-norm regularization complexity measure, the numerical convergence
analysis in Section 4.1 may not be tight. This again will adversely affect our final
bounds. Third, our uniform convergence analysis, based on the relatively simple
Rademacher complexity, is not necessarily tight. For some problems there are more
sophisticated methods which improve upon our approach here (e.g., see [2-6, 22,
30)).

A related point is that bounds we are interested in here are a priori convergence
bounds that are data-independent. In recent years, there has been much interest
in developing data-dependent bounds which are tighter (see references mentioned
above). For example, in our case we may alpim (16) to depend on the observed
data (rather than simply setting it to be a value based only on the sample size).
This approach, which can tighten the final bounds based on observation, is a quite
significant recent theoretical advance. However, as mentioned above, there are
other aspects of our analysis that can be loose. Moreover, we are mainly interested
in worst case scenario upper bounds on the convergence behavior of boosting
without looking at the data. Therefore we shall not develop data-dependent bounds
here.

The statistical convergence behavior of the boosting algorithm relies on its
numerical convergence behavior, which can be estimated using (14). Combined
with statistical convergence analysis, we can easily obtain our main rate of
convergence result in Theorem 3.3.

PROOF OFTHEOREM3.3. From (19) we obtain

. . 1 , A A A -
EznQ(fp) < Q(f)+2y¢(,8m),3mRm(S)+ﬁqb(_”f”l)'i‘SZL’iF[Q(f];) —0(N]

Now we simply apply Corollary 4.3 to bound the last term. This leads to the desired
bound. O

The result for logistic regression in Theorem 3.2 follows easily from Theo-
rem 3.3.
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PrROOF OF THEOREM 3.2. Consider logistic regression loss and constant
step-size boosting, whevg, = ho(m). Note that for logistic regression we have
Ye(B) <1,M(a) <1,¢(—|fll1) <1+ fl1ands(0) < 1.Using these estimates,
we obtain from Theorem 3.3,

IF1a+1,  Ifl
V1l B

Using the estimate ok, (S) in (17), and lettingio(m) < 1/./m, we obtain

(2Cs+1)Bm . ||f||1+1+ _||f||1
m m 12+ B

Ezn Q(fp) < Q(F) + 2B Rn(S) + + Buho(m).

EznQ(fp) < 0(f) +
This leads to the claim.Od

6. Experiments. The purpose of this section is not to reproduce the large
number of already existing empirical studies on boosting. Although this paper is
theoretical in nature, it is still useful to empirically examine various implications
of our analysis, so that we can verify they have observable consequences. For this
reason our experiments focus mainly on aspects of boosting with early stopping
which have not been addressed in previous studies.

Specifically, we are interested in testing consistency and various issues of
boosting with early stopping based on our theoretical analysis. As pointed out
in [28], experimentally testing consistency is a very challenging task. Therefore,
in this section we have to rely on relatively simple synthetic data, for which we can
precisely control the problem and the associated Bayes risk. Such an experimental
setup serves the purpose of illustrating main insights revealed by our theoretical
analyses.

6.1. Experimental setup. In order to fully control the data generation mecha-
nism, we shall use simple one-dimensional examples. A similar experimental setup
was also used in [23] to study various theoretical aspects of voting classification
methods.

Our goal is to predictt € {+1} based onX € [0, 1]. Throughout the exper-
iments, X is uniformly distributed in[0O, 1]. We consider the target conditional
probability of the formP (Y = 1|X) = 2{dX}I({dX} < 0.5) + 2(1 — {dX}) x
I({dX} > 0.5), whered > 1 is an integer which controls the complexity of the
target function, and denotes the set indicator function. We have also used the
notation{z} = z — | z] to denote the decimal part of a real numbgwith the stan-
dard notation of z] for the integer part of. The Bayes error rate of our model is
always 0.25.

Graphically, the target conditional probability contaiidriangles. Figure 1
plots such a target faf = 2.
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FIG. 1. Target conditional probability for d = 2.

We use one-dimensional stumps of the fofidi0, a]) as our basis functions,
wherea is a parameter ifi0, 1]. They form a complete basis since each interval
indicator function/ ((a, b]) can be expressed &¢[0, b]) — I ([0, a]).

There have been a number of experimental studies on the impact of using
different convex loss functions (e.g., see [14, 27, 28, 39]). Although our theoretical
analysis applies to general loss functions, it is not refined enough to suggest that
any one particular loss is better than another. For this reason, our experimental
study will not include a comprehensive comparison of different loss functions. This
task is better left to dedicated empirical studies (such as some of those mentioned
above).

We will only focus on consequences of our analysis which have not been
well studied empirically. These include various issues related to early stopping
and their impact on the performance of boosting. For this purpose, throughout
the experiments we shall only use the least-squares loss function. In fact, it is
known that this loss function works quite well for many classification problems
(see, e.g., [11, 27]) and has been widely applied to many pattern-recognition
applications. Its simplicity also makes it attractive.

For the least-squares loss, the target function which the boosting procedure
tries to estimate isf.(x) = 2P(Y = 1|X = x) — 1. In our experiments, unless
otherwise noted, we use boosting with restricted step-size, where at each iteration
we limit the step-size to be no larger thian= (i +1)~%/3. This choice satisfies our
numerical convergence requirement, where we need the condiiphs= oo and
> hl? < 0o. Therefore it also satisfies the consistency requirementin Theorem 3.1.

6.2. Early stopping and overfitting. Although it is known that boosting forever
can overfit (e.g., see [16, 19]), it is natural to begin our experiments by graphically
showing the effect of early-stopping on the predictive performance of boosting.
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FIG. 2. Graphs of boosting estimators after k = 32 and 1024iterations.

We shall use the target conditional probability described earlier with complexity
d = 2, and training sample-size of 100. Figure 2 plots the graphs of estimators
obtained afterk = 32 and 1024 boosting iterations. The dotted lines on the
background show the true target functign(x) = 2P(Y = 1| X = x). We can see
that after 32 iterations, the boosting estimator, although not perfect, roughly has the
same shape as that of the true target function. However, after 1024 iterations, the
graph appears quite random, implying that the boosting estimator starts to overfit
the data.

Figure 3 shows the predictive performance of boosting versus the number of
iterations. The need for early stopping is quite apparent in this example. The
excessive classification error quantity is defined as the true classification error
of the estimator minus the Bayes error (which is 0.25 in our case). Similarly,
the excessive convex loss quantity is defined as the true least-squares loss of the
estimator minus the optimal least-squares loss of the target fungtian. Both
excessive classification error and convex loss are evaluated through numerical

execess convex loss
execess classification error

015

0,05 L
10 10

10° 10 10° 10 10° 10°

10° 102
number of iterations number of iterations

Excessive convex loss Excessive classification error

FiG. 3. Predictive performance of boosting as a function of boosting iterations.
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integration for a given decision rule. Moreover, as we can see from Figure 4, the
training error continues to decrease as the number of boosting iterations increases,
which eventually leads to overfitting of the training data.

6.3. Early stopping and total step-size. Since our theoretical analysis favors
restricted step-size, a relevant question is what step-size we should choose. We
are not the first authors to look into this issue. For example, Friedman and his co-
authors suggested using small steps [14, 15]. In fact, they argued that the smaller
the step-size, the better. They performed a number of empirical studies to support
this claim. Therefore we shall not reinvestigate this issue here. Instead, we focus on
a closely related implication of our analysis, which will be useful for the purpose
of reporting experimental results in later sections.

Let @; be the step-size taken by the boosting algorithm aitthéeration. Our
analysis characterizes the convergence behavior of boosting aftéththstep,
not by the number of iterations itself, but rather by the quantity, = 3", &;
in (10), as long a&; < h; € A;. Although our theorems are stated with the quantity
Y i<k hi, instead of)_, ., «;, it does suggest that in order to compare the behavior
of boosting under different configurations, it is more natural to use the quantity
Y i<k @ (which we shall calltotal step-size throughout later experiments) as a
measure of stopping point rather than the actual number of boosting iterations.
This concept of total step-size also appeared in [18, 17].

Figure 5 shows the predictive performance of boosting versus the total step-
size. We use 100 training examples, with the target conditional probability of
complexity d = 3. The unrestricted step-size method uses exact optimization.
Note that for least-squares loss, as explained in Section A.3, the resulting step-
sizes will still satisfy our consistency conditioﬁji<k&i2 < 00. The restricted
step-size scheme with step-sizes employs a constant step-size restriction of
@; < h. This experiment shows that the behavior of these different boosting



execess convex loss

T. ZHANG AND B. YU

O unrestricted stepsize
+-- restricted stepsize <0.05 [
x-- restricted stepsize < 0.025

30 35 40 45
total stepsize

Excessive convex loss

execess classification error

0.14

o12f

o1

0.08f

*0

©-- unrestricted stepsize
+- restricted stepsize < 0.05

x:- restricted stepsize < 0.025

10 15 20 25 30 35 40 45
total stepsize

Excessive classification error

Fic. 5. Predictive performance of boosting as a function of total step-size.

methods is quite similar when we measure the performance not by the number of

boosting iterations, but instead by the total step-size. This observation justifies our

theoretical analysis, which uses quantities closely related to the total step-size to

characterize the convergence behavior of boosting methods. Based on this result, in
the next few experiments we shall use the total step-size (instead of the number of
boosting iterations) to compare boosting methods under different configurations.

6.4. The effect of sample-size on early stopping. An interesting issue for
boosting with early stopping is how its predictive behavior changes when the
number of samples increases. Although our analysis does not offer a quantitative
characterization, it implies that we should stop later (and the allowable stopping
range becomes wider) when sample size increases. This essentially suggests that
the optimal stopping point in the boosting predictive performance curve will
increase as the sample size increases, and the curve itself becomes flatter. It follows
that when the sample size is relatively large, we should run boosting algorithms for
a longer time, and it is less necessary to do aggressive early stopping.

The above qualitative characterization of the boosting predictive curve also has
important practical consequences. We believe this may be one reason why in many
practical problems it is very difficult for boosting to overfit, and practitioners
often observe that the performance of boosting keeps improving as the number
of boosting iterations increases.

Figure 6 shows the effect of sample size on the behavior of the boosting method.
Since our theoretical analysis applies directly to the convergence of the convex
loss (the convergence of classification error follows implicitly as a consequence
of convex loss convergence), the phenomenon described above is more apparent
for excessive convex loss curves. The effect on classification error is less obvious,
which suggests there is a discrepancy between classification error performance and
convex loss minimization performance.
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FIG. 6. Predictive performance of boosting at different sample sizes.

6.5. Early stopping and consistency. In this experiment we demonstrate that
as sample size increases, boosting with early stopping leads to a consistent
estimator with its error rate approaching the optimal Bayes error. Clearly, it is
not possible to prove consistency experimentally, which requires running a sample
size ofco. We can only use a finite number of samples to demonstrate a clear trend
that the predictive performance of boosting with early stopping converges to the
Bayes error when the sample size increases. Another main focus of this experiment
is to compare the performance of different early stopping strategies.

Theoretical results in this paper suggest that for least squares loss, we can
achieve consistency as long as we stop at total step-size approximeiteiyth
p < 1/4, wherem is the sample size. We call such an early stopping strategy
the p-strategy. Since our theoretical estimate is conservative, we examine the
p-strategy both fop = 1/6 and forp = 1/4. Instead of the theoretically motivated
(and suboptimalp-strategy, in practice one can use cross validation to determine
the stopping point. We use a sample size of one-third the training data to estimate
the optimal stopping total step-size which minimizes the classification error on the
validation set, and then use the training data to compute a boosting estimator which
stops at this cross-validation-determined total step-size. This strategy is referred
to as thecross validation strategy. Figure 7 compares the three early stopping
strategies mentioned above. It may not be very surprising to see that the cross-
validation-based method is more reliable. Tdstrategies, although they perform
less well, also demonstrate a trend of convergence to consistency. We have also
noticed that the cross validation scheme stops later thap-gimategies, implying
that our theoretical results impose more restrictive conditions than necessary.

It is also interesting to see how well cross validation finds the optimal stopping
point. In Figure 8 we compare the cross validation strategy with two oracle
strategies which are not implementable: one selects the optimal stopping point
which minimizes the true classification error (which we refer togtemal error),
and the other selects the optimal stopping point which minimizes the true convex
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FiG. 7. Consistency and early stopping.

loss (which we refer to agptimal convex risk). These two methods can be regarded
as ideal theoretical stopping points for boosting methods. The experiment shows
that cross validation performs quite well at large sample sizes.

In the log coordinate space, the convergence curve of boosting with the cross
validation stopping criterion is approximately a straight line, which implies that the
excess errors decrease as a power of the sample size. By extrapolating this finding,
it is reasonable for us to believe that boosting with early stopping converges to
the Bayes error in the limit, which verifies the consistency. The pwsiopping
rules, even though showing much slower linear convergence trend, also lead to
consistency.

6.6. The effect of target function complexity on early stopping. Although we
know that boosting with an appropriate early stopping strategy leads to a consistent
estimator in the large sample limit, the rate of convergence depends on the
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FIiG. 8. Consistency and early stopping.
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complexity of the target function (see Section 5.3). In our analysis the complexity
can be measured by the 1-norm of the target function. For target functions
considered here, it is not very difficult to show that in order to approximate to an
accuracy withire, it is only necessary to use a combination of our decision stumps
with the 1-normCd/e¢. In this formulaC is a constant and is the complexity of

the target function.

Our analysis suggests that the convergence behavior of boosting with early
stopping depends on how easy it is to approximate the target function using a
combination of basis functions with small 1-norm. A target with- u is u-times
as difficult to approximate as a target with= 1. Therefore the optimal stopping
point, measured by the total step-size, should accordingly increasmeareases.
Moreover, the predictive performance becomes worse. Figure 9 illustrates this
phenomenon withl = 1, 3,5 at the sample size of 300. Notice again that since
our analysis applies to the convex risk, this phenomenon is much more apparent
for the excessive convex loss performance than the excessive classification error
performance. Clearly this again shows that although by minimizing a convex loss
we indirectly minimize the classification error, these two quantities do not behave
identically.

7. Conclusion. Inthis paper we have studied a general version of the boosting
procedure given in Algorithm 2.1. The numerical convergence behavior of this
algorithm has been studied using the so-called averaging technique, which was
previously used to analyze greedy algorithms for optimization problems defined
in the convex hull of a set of basis functions. We have derived an estimate
of the numerical convergence speed and established conditions that ensure the
convergence of Algorithm 2.1. Our results generalize those in previous studies,
such as the matching pursuit analysis in [29] and the convergence analysis of
AdaBoost by Breiman [9].
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Furthermore, we have studied the learning complexity of boosting algorithms
based on the Rademacher complexity of the basis functions. Together with the
numerical convergence analysis, we have established a general early stopping
criterion for greedy boosting procedures for various loss functions that guarantees
the consistency of the obtained estimator in the large sample limit. For specific
choices of step-sizes and sample-independent stopping criteria, we have also been
able to establish bounds on the statistical rate of convergence. We would like to
mention that the learning complexity analysis given in this paper is rather crude.
Consequently, the required conditions in our consistency strategy may be more
restrictive than one actually needs.

A number of experiments were presented to study various aspects of boosting
with early stopping. We specifically focused on issues that have not been covered
by previous studies. These experiments show that various quantities and concepts
revealed by our theoretical analysis lead to observable consequences. This suggests
that our theory can lead to useful insights into practical applications of boosting
algorithms.

APPENDIX

A.l. Loss function examples. We list commonly used loss functions that
satisfy Assumption 3.1. They show that for a typical boosting loss funetion
there exists a constaM such that supM (a) < M. All loss functions considered
are convex.

A.1.1. Logisticregression. This is a traditional loss function used in statistics,
which is given by (in natural log form here)

¢ (f,y) =In(1+exp(—fy)), V() =u.
We assume that the basis functions satisfy the condition

sup [g(x)| <1, y==l
geS,x

It can be verified tha# (/) is convex differentiable. We also have
g(X)?y?
A+ exp(f (X)Y)(L+exp(—f(X)Y))

A.1.2. Exponential loss. This loss function is used in the AdaBoost algorithm,
which is the original boosting procedure for classification problems. It is given by

¢ (f, y) =exp(—fy), V(u) =Inu.
Again we assume that the basis functions satisfy the condition

b0 =Exy

1
<.
4

sup [g(x)] =1, y==L
geS,x
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In this case itis also not difficult to verify that( f) is convex differentiable. Hence
we also have

Ex,yg(X)?Y?exp(—f(X)Y) _ [Exyg(X)Y exp(— f(X)Y)1? -
Ex yexp(—f(X)Y) [Exyexp(—f(X)V)]?  —7

A’}vg(O) =

A.1.3. Least squares. The least squares formulation has been widely studied
in regression, but can also be applied to classification problems [10, 11, 14, 30].
A greedy boosting-like procedure for least squares was first proposed in the
signal processing community, where it was caleatching pursuit [29]. The loss
function is given by

¢ =3/ -P> YW =u
We impose the following weaker condition on the basis functions:

SUPExg(X)2 <1, EyY? < .
ges

Itis clear thatA (/) is convex differentiable, and the second derivative is bounded
as

7.0 =Exg(X)*<1.

A.1.4. Modified least squares. For classification problems we may consider
the following modified version of the least squares loss, which has a better
approximation property [38]:

¢(f,y)=3maxl—fy,0% Y =u
Since this loss is for classification problems, we impose the condition
SUpPExg(X)? <1, y==1.
ges
Itis clear thatA(f) is convex differentiable, and we have the following bound for
the second derivative:

(0 < Exg(X)? <1

A.1.5. p-norm boosting. p-norm loss can be interesting both for regression
and for classification. In this paper we will only consider the case with2,
1

2/p
T
2(p—-1)

p(fy)=1f =y, Y(u) =

We impose the condition

SUPEx|g(X)|” <1, Ey|Y|P < oo.
ges
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Now letu = Ex y|f(X) + hg(X) — Y|?; we have

1 .
Fat == T4 &P Ex v g(X) sign(f (X) + hg(X) = ¥)

X |f(X)+hg(X)—Y|P~L
Therefore the second derivative can be bounded as
o) =u®PIPEx yo(X)?| £ (X) + hg(X) — Y |P~2
_ Z_:iu@zm/p
x [Ex.yg(X)sign(f (X) + hg(X) = Y)| £ (X) + hg(X) — Y|P~ 1]?
<u@PIPEy yg(X)?| f(X) +hg(X) — Y |P~2
<u@ PP ELL 1001 ELYPP1F(X) 4 hg(X) — Y|P

= EZR1g001P <1,

where the second inequality follows from Hoélder’s inequality with the duality pair
(p/2,p/(p —2)).

REMARK A.1. Similar to the least squares case, we can define the modified
p-norm loss for classification problems. Although the case (1,2) can be
handled by the proof techniques used in this paper, it requires a modified analysis
since in this case the corresponding loss function is not second-order differentiable
at zero. See related discussions in [37]. Note that the hinge loss used in support
vector machines cannot be handled directly with our current technique since its
first-order derivative is discontinuous. However, one may approximate the hinge
loss with a continuously differentiable function, which can then be analyzed.

A.2. Numerical convergence proofs. This section contains two proofs for
the numerical convergence analysis section (Section 4.1).

PROOF OF THE ONESTEP ANALYSIS ORLEMMA 4.1. Given an arbitrary
fixed reference functiorf e spans) with the representation

(22) =Y w'fj,  fjes,
j

we would like to compareA(fi) to A(f). Since f is arbitrary, we use such a
comparison to obtain a bound on the numerical convergence rate. )
Given any finite subseS’ C S such thatS” > {f;}, we can represenf

minimally as
Z wS’g’

ges’



BOOSTING WITH EARLY STOPPING 1571

wherew$, = w/ wheng = f; for somej, andw?$, = 0 wheng ¢ { f;}. A quantity
that will appear in our analysis iy [l1 = > ey |U_J§,|. Since||wg |1 = ||w]|1,
without any confusion, we will still denot@g by w with the convention that
wé =0forall g ¢ {f;}. )

Given this reference functiofi, let us consider a representationfpfas a linear
combination of a finite number of function& c S, where S, D {fj} is to be
chosen later. That is, with indexing an arbitrary function i, we expandfy in
terms of £;¥’s which are members df; with coefficientsg;:

(23) fe= ) BSE.

8ESk

With this representation, we define

AWe=w—Belli=)_ [0 — B¢l
8ESk

Recall that in the statement of the lemma, the convergence bounds are in terms
of |w||1 and a sequence of nondecreasing numkenshich satisfy the condition

k—1
sk =l folli+)_ hi, |lak| < hi € Ag,
i=0

whereh; can be any real number that satisfies the above inequality, which may or

may not depend on the actual step-sizecomputed by the boosting algorithm.
Using the definition of 1-norm fof and sincefy € span(s), it is clear that for

all ¢ > 0 we can choose a finite subsgtc S, vectorp; and vectonv such that

1 BkllL = Z IBE| < sk +¢/2, lwlly <1 fllL+¢e/2.
8ESk

It follows that with appropriate representation, the following inequality holds for
alle > 0:

(24) AW <sp+ I fll1+e.

We now proceed to show that even in the worse case, the ¥alfig.1) — A(f)
decreases from (i) — A(f) by a reasonable quantity.

The basic idea is to upper bound the minimum of a set of numbers by an
appropriately chosen weighted average of these humbers. This proof technique,
which we shall call “averaging method,” was used in [1, 20, 25, 37] for analysis of
greedy-type algorithms.

For iy that satisfies (10), the symmetry af, implies iy, sign(w® — ,B,f) € Ag.
Therefore the approximate minimization step (3) implies that fog al S, we
have

A(fir1) < A(fi +his8g) +ex, 58 =signw® — B5).
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Now multiply the above inequality by — ,B,f| and sum oveg € Si; we obtain

(25)  AW(A(firD) —ex) < D 1BF — w¥A(fi + his®g) =: B(hy).
8E€Sk
We only need to upper boun&(h;), which in turn gives an upper bound

oNA(fi+1)-
We recall a simple but important property of a convex function that follows

directly from the definition of convexity ol (/) as a function off :for all f1, f>

(26) A(f2) > A(f) + VAT (o= ).
If A(fr) — A(f) <0, thenAA(fy) = 0. From Oc A, and (3), we obtain

A(fir1) — A(f) < A(fo) — A(f) + e < &,

which implies (13). Hence the lemma holds in this case. Therefore in the following,
we assume that (fr) — A(f) > 0.
Using Taylor expansion, we can bound each term on the right-hand side of (25)
as
2

h
Alfi+his®g) < AU + s VA g + = U Al g Ehis®).
€Y,

Since Assumption 3.1 implies that

sup A’ ,(Ehgs®) = sup A’} O <Ml fill1 + he),
£e0.1] Ji.g £e01] Jietéhi.g

we have

4 4 h2
A(fi +his®8) < A(fi) + isSVA(fi) g + 3"M(||fk 1+ hi)-
Taking a weighted average, we have

B(h) = ) B — w8 A(fi + his®g)
8ESK

h2
<Y 18 - wg|[A<fk> F VA hisg + 52 M fill + hk)}
8ESk

_ h2
= AW A(fi) + VAR (fF = fio) + gAWkM(ufknl + hy)

_ h2
< AWLA(f) + [ A(F) — A(f)l + gAWkM(nfknl + ).

The last inequality follows from (26). Now using (25) and the bolifid| 1 + 2 <
Sk+1, We obtain

_ h _ h2
(AferD) — ACP) — ex < (1 - A—V’;k)(A(fk) — AGD) + L M5k,
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Now replaceA Wy by the right-hand side of (24) with— 0; we obtain the lemma.
O

PROOF OF THE MULTISTEP ANALYSIS ORLEMMA 4.2. Note that for all
a>0,

k

[1(1- ) ~os( Sn(a-2220))

l=j
k — Sk+1 1
Sexp Z_M Sexp<_/ " dU>
Py s¢ +a 5j v+a

Sj +a
a Sk+1+a '
By recursively applying (13) and using the above inequality, we obtain

k
AA < (1 ) A + —— ¢
i) Eo e+||f||1 o 4,203111( Sz+||f||1>
_ . i
- So+||f|l1 AACFo) + Sj+l+||]i||1__.
= et IR A O

A.3. Discussion of step-size.  We have been deriving our results in the case of
restricted step-size in which the crucial small step-size condition is explicit. In this
section we investigate the case of unrestricted step-size under exact minimization,
for which we show that the small step-size condition is actually implicit if the
boosting algorithm converges. The implication is that the consistency (and rate of
convergence) results can be extended to such a case, although the analysis becomes
more complicated.

Let A = R for all k, so that the size ofy; in the boosting algorithm is
unrestricted. For simplicity, we will only consider the case thaf,suya) is upper
bounded by a consta .

Interestingly enough, although the sizeagf is not restricted in the boosting
algorithm itself, for certain formulations the inequaliy ; 64]2. < oo still holds.
Theorem 4.1 can then be applied to show the convergence of such boosting
procedures. For convenience, we will impose the following additional assumption
for the step-sizé; in Algorithm 2.1:

(27) A(fr +argr) = aikflfR A(frx + ok &),

which means that given the selected basis funcignthe corresponding; is
chosen to be the exact minimizer.
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LEMMA A.1l. Assumethat o, satisfies (27). If there exists a positive constant
¢ such that

U
nt ot Ao ieninn @z 6

then

k
> a2 < 20 A (fo) — AUfisD)].
j=0

PROOF.  Sincea; minimizesAy, 3, (o), A’ﬁ“g/< (ax) = 0. Using Taylor expan-
sion, we obtain '

Ag5(0) = Ag g @) + 3A% & Ea0at,

whereg, € (0,1). That is, A(fi) = A(fir1) + 347, 5, (Ex@)aZ. By assumption,
we haveA’JCk’gk (&xay) > c. It follows that,Vv j > 0, &jz. < 2c‘1[A(fj) — A(fj+].
We can obtain the lemma by summing frgre=0 tok. O

By combining Lemma A.1 and Corollary 4.1, we obtain:

COROLLARY A.1. Assume that sup, M(a) < +oo and ¢; in (3) satisfies
Z?‘;Osj < 00. Assume also that in Algorithm 2.1 we let Ay = R and let a;
satisfy (27).If

; ; "
nt nf Ao sreion & © >0

then

kli—>mooA(fk) - fesigrr\r(S) AP

ProOFR If lim;_. o A(fi) = —o0, then the conclusion is automatically true.
Otherwise, Lemma A.1 implies thi?‘;o&f < 0o. Now choosenr; = |a;| +
1/(j + 1) in (10); we have}-32h; = oo, ande?‘;oh§ < oco. The convergence
now follows from Corollary 4.1. O

Least squares loss. The convergence of unrestricted step-size boosting using
least squares loss (matching pursuit) was studied in [29]. Since a scaling of the
basis function does not change the algorithm, without loss of generality we can
assume thaEx g(X)%2 =1 forall g € S (assumes does not contain function 0). In
this case it is easy to check that for glE S,

(0= Exg(X)*=1.
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Therefore the conditions in Corollary A.1 are satisfied as Iongjégoej < 00.
This shows that the matching pursuit procedure converges, that is,

k“—>moo Alfi) = feslggr(S) AU

We would like to point out that for matching pursuit, the inequality in Lemma A.1
can be replaced by the equality

k

Y @b =2[A(fo) — A(fis)].

j=0
which was referred to as “energy conservation” in [29], and was used there to
prove the convergence.

Exponential loss. The convergence behavior of boosting with exponential
loss was previously studied by Breiman [9] feil-trees under the assumption
inf, P(Y = 1jx)P(Y = —1]x) > 0. Using exact computation, Breiman obtained
an equality similar to the matching pursuit energy conservation equation. As part
of the convergence analysis, the equality was used to @@\()&2 < 00.

The following lemma shows that under a more general condition, the conver-
gence of unrestricted boosting with exponential loss follows directly from Corol-
lary A.1. This result extends that of [9], but the condition still constrains the class
of measures that generate the joint distributioXofY).

LEMMA A.2. Assume that
inf Ex|g(X)/ P(Y = 1 X)P(Y = —1]X) > 0.
ges

If & satisfies (27), theninfi infzc0,.1) Ay_¢) f, 12,15, (0) > O-Hence - ; &% < oo,

PROOF  For notational simplicity, we legy y = exp(—f(X)Y). Recall that
the direct computation M’;’g(O) in Section A.1.2 yields

[Ex.yqx.y 1A}, (0)
=[Ex.yg(X)%qx.vlEx.vax.y] — [Ex.yg(X)Yqx y1?
= [EXg(X)ZEY|XQX,Y][EXEY|XQX,Y] - [EXg(X)EY\XYQX,Y]Z
> [Exg(X)*Ey|xqx.yl[Ex Ey|xqx.v]
—[Exg(X)?|Ey\xYqx.y IEx|Ey|xYqx.v|]
> [Exg(X)?Eyqx.v1Ex[Ey\xqx.y — |EvixYqx.y|]

2
> [Exlg(X)l\/Equ,Y(EnXCIX,Y — |EyixYqxy])]

> [Exlg(X)ly2P(Y = IX)P(¥ = —1|X) >
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The first and the third inequalities follow from Cauchy-Schwarz, and the
last inequality used the fact that + b)((a + b) — |a — b|) > 2ab. Now
observe thatEx ygx.y = exp(A(f)). The exact minimization (27) implies that
A(fr) < A(Jfo) for all k > 0. Therefore, using Jensen’s inequality we know that
VEe(0,1), A((L—&) fi +&frr1) < A(fo). This implies the desired inequality,

14
A6 firefirra O

> exp(—2A(fo) [Ex|@(X)2P(Y =IX)P(Y = -1X) . O

Although unrestricted step-size boosting procedures can be successful in certain
cases, for general problems we are unable to prove convergence. In such cases the
crucial condition onj?‘;O &]2. < 00, as required in the proof of Corollary A.1, can
be violated. Although we do not have concrete examples at this point, we believe
boosting may fail to converge when this condition is violated.

For example, for logistic regression we are unable to prove a result similar
to Lemma A.2. The difficulty is caused by the near-linear behavior of the loss
function toward negative infinity. This means that the second derivative is so small
that we may take an extremely large step-size wigis exactly minimized.

Intuitively, the difficulty associated with largg; is due to the potential problem
of large oscillation in that a greedy step may search for a suboptimal direction,
which needs to be corrected later on. If a large step is taken toward the suboptimal
direction, then many more additional steps have to be taken to correct the mistake.
If the additional steps are also large, then we may overcorrect and go to some other
suboptimal directions. In general it becomes difficult to keep track of the overall
effect.

A.4. Thereationship of AdaBoost and Li-margin maximization. Given
a real-valued classification functiop(x), we consider the following discrete
prediction rule:

28) V= { 1, if p(x) >0,

-1, if p(x) <O.
Its classification error [for simplicity we ignore the poipt(x) = 0, which is
assumed to occur rarely] is given by

1,  ifpx)y=vy,
0, if p)y>vy,
with y = 0. In general, we may consider> 0 and the parameter > 0 is often
referred to as margin, and we shall call the corresponding error funttionargin
error.

In [33] the authors proved that under appropriate assumptions on the base
learner, the expected margin errdr, with a positive marginy > 0 also

L, (p(x).y) = {
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decreases exponentially. It follows that regularity assumptions of weak learning
for AdaBoost imply the following margin condition: there exists- 0 such that

inf respancs), | Fli=1 Ly (f; ¥) = 0, which in turn implies the inequality for ail> 0,

29 inf Exyexp(—sf(X)Y) <exp(—ys).

(29) fespan), |l flli=1 Xy p( F&X) ) < eXp-ys)

We now show that under (29) the expected margin errors (with small margin)

from Algorithm 2.1 may decrease exponentially. A similar analysis was given

in [37]. However, the boosting procedure considered there was modified so that
the estimator always stays in the scaled convex hull of the basis functions. This
restriction is removed in the current analysis:

fo=0,  supAp<hi, e <hi/2.

Note that this implies tha, < 4?2 for all k.
Now applying (15) with f = sf for any s > 0 and letting f approach the
minimum in (29), we obtain (recallf||1 = 1)

k—1
Sk Si+s_ Sk
A(fi) < —sy +3 g < sy + Y 5
Sk +s 20

+s ] S+ Sk
Now lets — oo; we have
k-1
A(fi) < —ysc+ Y h5.
j=0

Assume we pick a constait< y and leth; = k; then

(30) Ex,y exp(— fi(X)Y) < exp(—kh(y — h)),

which implies that the margin error decreases exponentially for all margins less
thany — h. To see this, consider < y —h. Since|| fx||1 < kh, we have from (30),

Ly (fr@)/I fellz, y) < P(fr(X)Y <khy')
< Exyexp(— fi(X)Y + khy') < exp(—kh(y —h —y")).
Therefore

kli_)mooLy/(fk(X)/llfklll, y)=0.

This implies that ag — 0, fx(x)/|| fx|l1 achieves a margin that is withinof the
maximum possible. Therefore, whén~ andk — oo, fi(x)/| fx|l1 approaches a
maximum margin separator.

Note that in this particular case we allow a small step-size(y), which
violates the condition} " h,f < oo imposed for the boosting algorithm to converge.
However, this condition that prevents large oscillation from occurring is only a
sufficient condition to guarantee convergence. For specific problems, especially
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when infrespans) A(f) = —o0, it is still possible to achieve convergence even if
the condition is violated.
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