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COMPLEXITIES OF CONVEX COMBINATIONS AND BOUNDING
THE GENERALIZATION ERROR IN CLASSIFICATION

BY VLADIMIR KOLTCHINSKIIT AND DMITRY PANCHENKO?
University of New Mexico and Massachusetts I nstitute of Technology

We introduce and study several measures of complexity of functions
from the convex hull of a given base class. These complexity measures
take into account the sparsity of the weights of a convex combination
as well as certain clustering properties of the base functions involved in
it. We prove new upper confidence bounds on the generalization error of
ensemble (voting) classification algorithms that utilize the new complexity
measures along with the empirical distributions of classification margins,
providing a better explanation of generalization performance of large margin
classification methods.

1. Introduction. Since the invention ofensemble classification methods
(such as boosting), the convex hull co) of a given base function clas®
has become an important object of study in the machine learning literature. The
reason is that the ensemble algorithms typically output classifiers that are convex
combinations of simple classifiers selected by the algorithm from the baseft]ass
and, because of this, measuring the complexity of the whole convex hull as well
as of its subsets becomes very important in analysis of the generalization error
of ensemble classifiers. Another important feature of boosting and many other
ensemble methods is that they belong to the class of so-ckdtgd margin
methods, that is, they are based on optimization of the empirical risk with respect
to various loss functions that penalize not only for a misclassification (a negative
classification margin), but also for a correct classification with too small positive
margin. Thus, the very nature of these methods is to produce classifiers that tend to
have rather large positive classification margins on the training data. Finding such
classifiers becomes possible since the algorithms search for them in rather huge
function classes (such as convex hulls of typical VC-classes used in classification).

This paper continues the line of research started by Schapire, Freund, Bartlett
and Lee in [28] and further pursued in [2, 16, 19, 21, 26]. In these papers, the
authors were trying to develop bounds on the generalization error of combined
classifiers selected from the convex hull c6®) in terms of the empirical
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distributions of their margins, as well as certain measures of complexity of the
whole convex hull or its subsets to which the classifiers belong. Our main goal
here is to suggest new margin type bounds that are based to a greater extent on
complexity measures ohdividual classifiers from the convex hull. These bounds
are more adaptive and more flexible than the previously known bounds (but they
are also harder to prove). They take into account various properties of the convex
combinations that are related to their generalization performance as classifiers,
such as the sparsity of the weights and clustering properties of base functions.
The following notation and definitions will be used throughout the paper. Let
X be a measurable space (space of instances) aryfl4e{—1, +1} be the set
of labels. LetP be a probability measure dd x Y that describes the underlying
distribution of instances and their labels. We do not assume that theyabel
deterministic function ofc; in general, it can also be random, which means that
the conditional probability®(y = 1|x) may be different from 0 or 1Let # be
a class of measurable functiohs X — [—1, 1]. Denote byP (#) the set of all
discrete distributions oti¢ and let¥ be the convex hull of¢,

F =conuUH) := {fh(-)k(dh) NS .7’(]()}.

For f € ¥ we assume that sigii(x)) is used to classify € X [sign(f(x)) =0
meaning that no decision is made]. Functighs ¥ are sometimes calleabting
classifiers, since for a convex combinatiofi= X ;4 ; the weight (coefficient)
A j can be interpreted as the voting power of an individual clasdifigthey are
also calledensemble classifiers). The generalization error of any classifigre &
is defined as

(1.2) P(sign(f (x)) #y) =P(yf (x) <0).

Givenani.i.d. sampléX4, Y1), ..., (X,, Y,) from the distributiorP, let P, denote
its empirical distribution. For a measurable functignon X x Y, denote

n
IP’g=ffg’(x,y)dIF)(x,y), Pog=n"1Y g(Xi. Y.

i=1
Whenever it is needed, we use the same notatignP,,g¢ or P(A),P,(A) for
functionsg that depend only on and for setsA C X (the meaning of the notation
in this case is obvious). The probability measure on the main sample space (on
which all the random variables including the training examples are defined) will
be denoted byr (not to confuse it witiP).

In the paper we study the generalization error (1.1) of classifiers from the convex
hull of a class# which is typically assumed to be “small,” a condition that is
described precisely in terms of some complexity assumptiong‘dsee (2.2)].

A number of popular classification algorithms output classifiers of this type.
Below we briefly discuss two of themiiddaBoost, which is the most well-known
classification algorithm oboosting type, and alsdbagging. We provide some
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heuristic explanations of why these algorithms might have a tendency to output
convex combinations of classifiers from the base class with a certain degree of
sparsity of their weights and clustering of the base classifiers.

AdaBoost. The algorithm starts by assigning equal Weigh§§) = % to all the
training examplegX;, Y;). At iteration numberk, k =1,..., T, the algorithm
attempts to minimize the weighted training error with Weiginé@ over the base
class # of functionsh:S — {—1,1} (such thath € # implies —h € #). If
er denotes the weighted training error of the approximate solutiprof this
minimization problem, the algorithm computes the coefficient

1 1—e;

oy = Elog o

which is nonnegative sincg. < % and then updates the weights according to the
formula
(k) —Yjaphi(X;
(eppy,_ W) eI
w = ,

J VA
where Z is a normalizing constant that makes the weights add up #iftér 7
iterations, the algorithm outputs the classiffes Z,{ﬂ Arhy, where

Ak Xk

= T4.‘
j=1%j

Typically, the class# is relatively small so that it is easy to design an efficient
algorithm (often called a weak learner) of approximate minimization of the
weighted training error over the class. The result of this, however, is that at
many iterations the weak learner outputs classifigrérom the base? whose
weighted training error is just a little smaller thari2l If this is the case at

iterationk, the coefficientyy, is close to 0 and the Weightsy‘*l) do not differ

much from the weightsuﬁ.k). If the weak learner possesses some stability, this
means that the base classifigr.1 is close to the base classifieg. As a result,

when the algorithm proceeds one observes a slow drift of the clasdifiensthe
“hypotheses space#, and the coefficients of these classifiers in the convex
combination will be small until we reach a placedf where the stability of the
weak learner breaks down and it outputs a classifier with a weighted training error
significantly smaller than /2. Thus, one can expect a certain degree of sparsity
(many small coefficients) and of clustering (many base classifiers that are close to

one another) of the resulting convex combination.

Bagging [9]. The algorithm at each iteration produces a bootstrap sample
drawn from the training data and outputs a classifier that minimizes the corre-
sponding bootstrap training error over the base cl#ssAfter T iterations the
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algorithm averages the resultifigbase classifiers, creating a convex combination
with equal weightsy; := % Again, if the weak learner possesses some stability
and since each bootstrap sample is a “small perturbation” of the training data, one
can expect some degree of clustering of the base functions involved in the con-
vex combination. (In this case, it is impossible to talk about the sparsity of the
coefficients since all of them are equal.)

These explanations are of course rather heuristic in nature and somewhat vague.
The reality might be much more complicated since, for instance, weak learners are
not necessarily stable. Often, lack of stability of the weak learner is viewed as
an advantage since it allows the algorithm to create more “diverse” ensembles of
base classifiers and to produce a combined classifier with larger margins. However,
the bounds of this paper seem to suggest that the performance of combined
classifiers is related to a rather delicate trade-off between their complexity and
margin properties. So, stability of the weak learner is a good and a bad property at
the same time (one should rather talk about optimal stability). The phenomenon of
sparsity of the coefficients is much better understood in the case of support vector
machines (see [30] for recent results in this direction) and the development of these
ideas for ensemble methods remains an open problem that is beyond the scope
of our paper. However, regardless of how close this explanation is to the truth,
some degree of sparsity and clustering in convex combinations output by popular
learning algorithms can be observed in experiments (see some very preliminary
results in [20] and more results in [1]). Our intention here is not to study why this is
happening, but rather to understand what kind of influence sparsity and clustering
properties of convex combinations output AgaBoost and other classification
algorithms have on their generalization performance.

Another motivation to study the complexities based on sparsity and clustering
comes from learning theory, where it has become common to use global or
localized complexities based on sup-norm or continuity modulus of empirical or
Rademacher processes involved in the problem and indexed by theflass
order to bound the generalization error (see [5, 8, 17, 18, 23]). However, these
complexities do not necessarily measure the accuracy of modern classification
methods correctly. The reason is that they are based on deviations of the empirical
measure?, from the true distributior® uniformly over the whole clas$ or over
L2(P)-balls in the class, while the learning algorithms might have some intrinsic
ways to restrict complexities of the classifiers they output by searching for a
minimum of empirical risk in some parts of the clagswith restricted complexity
(although this part is typically data-dependent, cannot be specified in advance and
has to be determined in a rather complicated model selection process). Thus, there
is a need to develop new more adaptive bounds that take into account complexities
of individual classifiers in the class and can be applied to the classifiers output
by learning algorithms. A possible general approach to such complexities can be
described as follows. Suppogg} is a family of subclasses of the clagsand let
cn(4) be a complexity measure associated with the c§ags.g., it can be based
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on a localized Rademacher complexity@f. Suppose also it has been observed
that a learning algorithm tends to output classifiers from subclassath small
values of complexity, ($) (“sparse subclasses”). Then a natural question to ask
is whether the quantity of the typg (f) :=inf{c,($): 4 > f} (which is already

an individual complexity off) provides bounds on the generalization errorfof

In the case whergg} is a countable family of nested subclasses, such questions
are related to structural risk minimization and other model selection techniques.
However, in classification one often encounters more complicated situations, such
as the setting of Theorem 5 below, where a natural fafgilyis neither countable

nor nested and consists of distribution-dependent classes indexed by a functional
parameter (see the definition of the classépw before Lemma 2). The study

of complexity measures that occur in such more complicated model selection
frameworks is our main subject here. In the next section we will try to develop
several new approaches to measuring complexities of convex combinations and
use these complexities in new bounds on generalization error in classification.

2. Main results. The first important result about the generalization error
of classifiers from# = conv#) was proved in [28], where the generalization
ability of voting classifiers is explained in terms of the empirical distribution
P,(yf(x) < &) of the quantityyf(x) called margin. The authors prove that if
H ={2I(x € C) — 1:C € C}, whereC is a Vapnik—Chervonenkis class of sets
with VC-dimensionV (for definitions see, e.g., [32] or [12]), then for alk> 0
with probability at least - ¢~/ for all f € £ = conu#) we have

P(yf (x) < 0)
< inf <1P’n(yf(x) <8)+ K((M>l/2+ (5)1/2>),

~ 5e(0,1] ns? n

(2.1)

where K > 0 is an absolute constant. To understand this result, let us give one
interpretation of the marginf (x). One can think ofyf (x) as the “confidence” of
prediction of the example, sincef classifiesc correctly if and only ify f (x) > 0;

and if f (x) is large in absolute value it means that it makes its prediction with high
confidence. Iff classifies most of the training examples with high confidence,
then for somes > 0 (which is not “too small”) the proportion of examples
P,(yf(x) < &) classified below the confidendewill be small. The second term

of the bound is of the ordet,/n8) 2, and will also be small for large, which
makes the bound meaningful.

This result was extended by Schapire and Singer in [29] to classes of real-valued
functions, namely, to so-called VC-subgraph classes (for definition see [32]), and
was further extended in several directions in [19] and [21]. The main idea of this
follow-up work was to replace the second term of the bound proved by Schapire
et al. [28] by a functior, (F; §; r) that has better dependence on the samplessize
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and on the margin paramet®rThe bounds obtained in [19] are also more general:
they apply to arbitrary function class&s, not only to the convex hulls.
Given a probability distributio® on X and a classgi of measurable functions

on X, denote
1/2

do2(f,9):=(0(f —9%)""  fgek,

the L2(Q)-distance in#. Let the covering number Ny, ,(#, u) be the minimal
number ofdy »-balls of radius: > 0 with centers in¥# needed to cove#t. The
logarithm of this numbeHdQ.z(J(’, u) :=log Nay ,(F, u) is called thex-entropy
of #¢ with respect talg ». In what follows, we will also uset ,(Q)-distances and
the corresponding covering numbers and entropieg foff1, +oc].

Often, it makes sense to assume (and it will be assumed in what follows) that
the family of weak classifierg¢ satisfies the condition
(2.2) SUP Ny, (H,u)=0u"")

QeP(X)

for someV > 0, where P (X) is the set of all discrete distributions d4. For
example, if # is a VC-subgraph class with VC-dimensidf(#), then by the
well-known result that goes back to Dudley and Pollard (see [14] for the current
version), (2.2) holds witlv = 2V (#¢), namely,

2¢\ V()
(2.3) SUP N, ,(H,u) <e(V(H)+ 1)(—2) .
QeP(X) u
Under the condition (2.2), the bound (2.1) was slightly improved by Koltchin-
skii and Panchenko in [19], who proved that fora# O with probability at least
1—e'forall f € £ =conu#) we have

P(yf(x) <0) < _inf (Pn(yf(x) <8)+ K((n—gz)l/z + (5>1/2)),

8€(0,1] n

thus getting rid of the logarithmic factor 18@:/8) in the second term of (2.1).

By itself this improvement is insignificant, but the generality of the methods
developed in [19] allowed the authors to obtain this type of bound for general
classes¥ of classifiers (not necessarily the convex hulls of VC-classes) and to
make some significant improvements in other situations, for example, for neural
networks. (The first margin type bounds for general function classes, including
neural networks, were based dh,-entropies and shattering dimensions of the
class; see [4].) Moreover, it was shown in [19] that (2.1) can be further improved
in the so-called zero-error case, WHBN(yf (x) < 8) is small for§ — 0. Namely,

the following result holds. Assume thaf satisfies (2.2) and let =2V /(V + 2).
Then, for allz > 0 with probability at least - ¢~ for all f € ¥ we have (with
some numerical consta#t > 0)

IED(yf(x)S.O) e t
<K inf (]P’n(yf(x) <8)+ ((—) n=2@+2) 4 —))

5¢€(0,1] ) n
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This bound will be meaningful if
§* = sup(8: 6%/ O, (yf(x) < 8) <n =2/ @H)

is not “too small,” which means thaP,(yf(x) < §) should decrease “fast
enough” whers — 0. Actually, this bound holds not only for classes of functions
F = conu#) where# satisfies (2.2), but for any clags such that

(2.5) sup logNa, ,(F,u)=0O@u"*%), a € (0,2),
QeP(X)
or even when the uniform entropy in (2.5) is replaced by the entropy with respect
to empiricalLy-distancelp, ». Itis well known that the convex hulf = conv #)
of the class¥ satisfying (2.2) satisfies (2.5) with= 2V /(V + 2) (see, e.g., [32]),
which explains a particular choice afin (2.4). Under the condition (2.5) oft
the bound of (2.4) is optimal as shown in [19] by constructing a special class of
functions # in Banach spaceé,, of uniformly bounded sequences. Finally, note
that the constank involved in the bound can be redistributed between the two
terms: in front of the terni®, (yf (x) < §) one can put a constant arbitrarily close
to 1 at the price of making the constant in front of the second term large.
In [21] Koltchinskii, Panchenko and Lozano proved the bounds on generaliza-
tion error under more general assumption on the entropy of the £lass
X
(2.6) | HZFodu Dy, x>0
with some constanD > 0 and with a concave functio@r. They showed that in
this case the term

20/(2+
<}) “lt a)n—z/(a+2)
8

involved in the bound (2.4) should be replaced by the quaaﬁt(ﬁ) defined as
the largest solution of the equation

1
=5vn (6ve),

leading to so-calle@ -bounds on generalization error.

Margin-type bounds on generalization error can be also expressed in terms of
other entropies, in particulai, ., -entropy and in terms of shattering dimension of
the class, as in the papers of Bartlett [4] (that preceded [28]) and of Antos, Kégl,
Linder and Lugosi [2]. A typical bound in terms df,.-entropy is of the form

logENg, . (F;8/2) + t)
n

&

@7 PO =0 <K inf (Pn (vf (0) < 8) +

for all f € F with probability at least - e~'. The L,-entropy is always larger
than L2-entropy, but for special classes of functions the difference might be not
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very significant, and because of a different form i#fg-bound has sometimes an
advantage over th€,-bounds. However, the detailed comparison of these bounds
goes beyond the scope of this paper.

Numerous experiments withdaBoost and some other classification algorithms
showed that in practice the bounds of type (2.4) hold with smaller values of
than the theoretical considerations (based on the estimates of the entropy of the
whole convex hull) suggest. This means that ensemble classifiers often belong to a
subset of the convex hull of a smaller entropy than the entropy of the whole convex
hull. A natural question is whether it is possible to incorporate in the bound on
generalization error the information about thdividual complexity of the actual
classifier rather than usglobal complexity of the whole convex hull. In other
words, is it possible to replace the functignfrom condition (2.6) by a data-
dependent and classifier-dependent function that would make theunds on
generalization error more adaptive?

The fact that the margin type bounds hold in such generality means, at least on
the intuitive level, that the explicit structure of the convex hull is not used there.
On the contrary, in this paper we will heavily utilize the structure of the convex
hull and prove new bounds that reflect some measures of complexity of convex
combinations.

The idea of using a certain measure of complexityimdividual convex
combinations already appeared in [21], where the authors suggested a way to
use a rate of decay of weights; in the convex combinatiorf = ZJT:lAjhj
to improve the bound on the generalization error fofThis measure, called
approximatey -dimension, is defined as follows. Let us assume that the weights
are arranged in the decreasing orfler > |12| > ---. For a numbery € [0, 1],
the approximate y-dimension of f is defined as the smallest integer number
d > 0 such that there exigt > 1, functionsh; € #, j =1,..., T, and numbers
rj€R, j=1,....T, satisfying the conditiong’ = ¥-7_; 2;h;. >7_y14;1 <1
and ZJT:d+1|Aj| < y. Note that in [21] the authors dealt with the symmetric
convex hull, so the coefficients; are not necessarily positive. Thedimension
of f will be denoted byi(f; y).

Then, for allz > 0 with probability at least - ¢~’ we have for allf ¢ F =

conv(#) (again witha = 2¥5)
P(yf (x) <0)

@8 =k inf (P05 =)

: 20/(2
+ inf(d(f’ M iog” + (Z) o +a)n‘2/(“+2) + 5))
Y n 8 ) n

This is an improvement over (2.4), which can be seen by comparing the infimum
over y of the expression in the bound with the value of the expression for
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y = 1 and noting thatd(f;1) = 0. For example, if the weights decrease
polynomially [1;] ~ j=#, 8 > 1, or exponentially|x;| ~ e #/, 8 > 0, then
explicit minimization overy shows that in these cases (2.8) can be a substantial
improvement over (2.4) (see examples in [21]).

Our first result in this paper also deals with bounding the generalization
error of a classifierf = erzlkjhj € F = conuH) in terms of complexity
measures taking into account the sparsity of the weightsTheorem 1 below
is a new version of the results of [21] [specifically, of the bound (2.8)] that can
be interpreted as interpolation between zero-error and nonzero-error cases; as its
corollary we will give a new short proof of (2.8). Theorem 2 is another result in
this direction with a different dependence of the bound on the sample size and the
margin parametef.

Let ® = {ps:R — [0,1]:6 € A Cc R;} be a countable family of Lipschitz
functions such that the Lipschitz norm @f is bounded by 1, that is,

s (s1) — @5(s2)| <8 51 — 52,

and Y scA 8 < oo. In applications, such functions are frequently used as loss
functions in empirical risk minimization procedures of boosting type that output
large margin classifiers. One can use a specific choice f{27%:k > 1}. The
following theorem holds.

THEOREM1. If (2.2)holds, thenfor all ¢+ > 0 with probability at least 1 — ¢!
forall f e F =conUH) ands € A = {2 %:k > 1},

Pos (yf (x)) = Prps(yf (x))

(Pos (yf (x)))Y/?
_(dfsy)  n\Y2 iy N2 Pes(yf () THA 1\ Y2
ler))f(( n logE) +(§) nl/2 +<;) )’

wherea =2V /(V + 2).

Let us take, for exampleys such thatps(s) = 1 fors <0, ¢s =0 fors > § and
@s is linear for 0< s < §. For any probability measur@ (e.g.,Q =P orP,), one
can write

(2.9) Q(f(x) <0) < Qus(yf(x)) < O(yf(x) <6).

For this choice ofys and for a fixed f let us denotea = Pys(yf(x)) and
b="P,ps(yf(x)). Itis clear that after minimizing the expression involved in the
right-hand side ovey, the inequality of Theorem 1 can be written as

1/2 1/2—a/4

a<b+4ua’“+va

where u and v are constants depending on the parameters involved in the
inequality. Since the right-hand side of the last inequality is strictly concave with
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respect taa, this inequality can be uniquely solved faror, in other words, it
can be equivalently written as< p(b) for unique positive functiom, which is,
obviously, increasing ith. Combining this with (2.9) we get

P(yf (x) <0) < Pgs(yf (x)) < p(Pugs (vf (x))) < p(Pu(yf (x) <))
The analysis op will readily imply the main result in [21].

COROLLARY 1. If (2.2)holdsand & = 2V /(V + 2), then for any r > O with
probability at least 1 — ¢~ (2.8) holdsfor all f € F = conu#).

Roughly speaking, Corollary 1 describes the zero-error case of Theorem 1.
Thus, Theorem 1 is a more general and flexible formulation of the main result
in [21], as it interpolates between zero- and nonzero-error cases.

Next we will present a new bound on the generalization error of voting clas-
sifiers that takes into account the sparsity of weights in the convex combina-
tion. Givenx € 2 (#) and f(x) = [h(x)A(dh), we can also represent as
f= Zszl Ahy with T < oo (sincea is a discrete probability measure). Without
loss of generality let us assume that> 1o > ---. We definey, (f) = Z[:dﬂ Mk
and fors > 0 we define theffective dimension function by

L v2(f)
(2.10) en(f, 8)_0$|DT<d+ 52 logn )

This name is motivated by the fact that (as will become clear from the proof of
Theorem 2 below) it can be interpreted as a dimension of a subset of the convex
hull conv#) that contains a “good” approximation gf

THEOREM 2 (Sparsity bound). If (2.2) holds, then there exists an absolute
constant K > 0 such that for all r+ > 0 with probability at least 1 — ¢~ for all
P () and f(x) = [ h(x)1(dh),

IED(yf(X)SO)f(sgi(rgl](Ul/2 (B (3 () < 8) + U)Y2)2,

where

= (Ll en(f.8) 0g” +1).

n

It follows from the bound of the theorem that for alt- 0
i 1
P(yf(x) <0) < inf ((1+ P (yf (x) < 8) + <2+ _>U),
5€(0,1] <

which is a more explicit version of the result. Results of similar flavor can be, in
principle, also obtained as a consequence of entropy-based margin-type bounds,
in particular, using thel.,-entropy. However, we believe that the more direct
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probabilistic argument we use in our proof (that goes back to [28]) is very natural
in this problem. Moreover, the same argument is typically present in the derivation
of entropy bounds for the convex hull or its subsets needed in alternative proofs.
Taking this into account, the direct proof we give here is shorter and easier. This
becomes especially clear in Theorems 3 and 4, where the entropy bounds on
subsets of the convex hull with restrictions on the variance of convex combinations
(see the definitions below) are most likely unknown. It is also worth mentioning
that the same randomization idea combined with a couple of other techniques
can be used in some other situations where probabilistic interpretation is not
straightforward, for instance, for kernel machines and their hierarchies (see [1]).
The following result was proved in [11]. Let¢ be a finite class withV =
card #¢) and lets, be the minimal margin on the training examples, that is,

8 =8.(f) =minY; f (X;) = sups : P (yf (x) < ) =0}.

Then for anyr > 0 with probability at least - e~" we have, for allf € F =
conv(#) such that,(f) > (32/N)Y2,

logN ¢
(2.12) P(yf(x) <0) < K( ot ;)
We notice that
2v2(f)

. 2
en(f, 8)=OLn|QT(a'+ Iogn) < ﬁlogn,

d 52
where the last inequality follows by takingg= 0 in the expression under the
infimum. This shows that as a corollary of Theorem 2 one can extend the result
of Breiman [11] to much more general classes of functions [the role oNlog

in (2.11) being now played by logr]. Moreover, the bound of Theorem 2
interpolates between zero-error and nonzero-error cases without any assumptions
on the empirical distribution of the margi®, (yf (x) < §). To illustrate the role

of the effective dimensiom, (f, §) let us suppose that the weighits decrease
polynomially or exponentially fast:

EXAMPLE. (a) If A; ~ j~P for B > 1, then one can explicitly minimize the
expression in (2.10), which in the zero-error c&s€yf (x) < §,) = 0 gives

vV o n t
P(3/0 20 = K)oy 0§+ 1)

n

which can be a significant improvement for large valueg.of
(b) If ; ~ e/, then again one can explicitly minimize the expression in (2.10),
which in the zero-error cade, (yf (x) < 84) = 0 gives

P(yf(x) <0) < K(Klog22 + i).
n Sy n
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It is quite clear that one can come up with many alternative definitions of
sparsity measures of convex combinations that are based only on the sizes of
coefficients. For instance, one can measure the size of the “tail” of the convex
combination (after the largest coefficients have been removed) using a different
norm instead of thé1-norm we used above. However, our approach seems to be
reasonable since it is based on the idea of splitting the whole convex combination
into two parts, one of them beingrdimensional and another one belonging to a
rescaled convex hull of¢ (the whole convex hull times a small coefficient, which
is a natural “neighborhood” of 0 in the convex hull).

The major drawback of this type of bound, however, is that it takes into account
only the size of the coefficients of the convex combination, but not the “closeness”
of the base functions involved in it. Such a “closeness” (reflected, e.g., in the
fact that the base functions classify most of the examples the same way or, more
generally, can be divided into several groups with the functions within each group
classifying similarly) could possibly lead to further complexity reduction.

We suggest below two different approaches to this problem. The first approach
is based on interpreting the convex combination as a mean of a funktion
randomly drawn from the clas® with some probability distributioi. Then in
order to measure the complexity of the convex combination it becomes natural to
bring in probabilistic quantities such as the variance of the convex combination
introduced below. In the extreme case, when all classiieese equal f belongs
to a simple clasgt itself rather than to the possibly very large cl&ssin this case,
the variance is equal to 0 and this is reflected in our generalization analygis of
This approach is clearly related to the randomization proof of margin type bounds
in [28], but its real roots are in the well-known work of B. Maurey (see [27])
that provided a probabilistic argument often used in bounding the entropy of the
convex hull. The approach might be also of interest to practitioners since variance
can be easily incorporated in risk minimization techniques as a complexity penalty.
The generalization bounds based on the notion of variance are given in Theorems
3and4.

The second approach does not rely on the probabilistic interpretation, but rather
exploits the nonuniqueness of representing functions by convex combinations
and is based on covering numbers of the set of base functions in “optimal”
representations off. Thus, the metric structure of the base class replaces in
this approach the probabilistic structure. The generalization bound based on this
approach is given in Theorem 5.

Despite the fact that, possibly, there might be many other ways to define
complexities of this type, we believe that the approaches we are using have very
natural connections to important mathematical structures involved in the problem.

Givena € P (F#), consider

T
f(X)=/h(X)/\(dh)=Z)»khk(X)-
k=1
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We ask the following question: what if the functiols . . ., hr are, in some sense,
close to each other? For example; S7_; (h: (Xx) — hj(X))? is small for all
pairsi, j. In this case, the convex combination can be approximated “well” by only
one function from#¢. Or, more generally, one can imagine the situation when there
are several clusters of functions amang ..., 27y such that within each cluster
all functions are close to each other. This information should be reflected in the
generalization error of classifief, since it can be approximated by a classifier
from a small subset of . Below we prove two results in this direction. We will
start by describing the result where we considery..., hr as one (hopefully
“small”) cluster, and then we will naturally generalize it to any number of clusters.
We define a pointwise variance biwith respect to the distributiok by

2
(2.12) o2(x) = / (h(x)— / h(x)k(dh)) A(dh).
Clearly,o2(x) = 0 if and only if

h(x):fh(x)k(dh), r-a.e. onK,

or, equivalently (in the case of a discrete measuyeif h1(x) = ho(x) for all

h1, ho € 3¢ with A({h1}) > 0, A({h2}) > 0. The complexity characteristics of a
similar flavor are sometimes used in the current work on PAC Bayesian bounds
on generalization performance of aggregated estimates for least square regression;
see [3].

THEOREM 3. If (2.2) holds, then there exists an absolute constant K > 0
such that for all # > 0 with probability at least 1 — ¢~' for all A € £ (F#) and

f(x) = fr(x) = [h(x)A(dh),

P(yfi.(x) <0)

. Vy n ot
<K inf (P <8)+P,(c2(x) > ~— log® - —).
- 0<5|<y<l< n(3fa () 28) + Buloi() 2 y) + w2 09 5T,

REMARK. The following simple observation might be useful. Since

P,o?
P,,(U)?(x) = )/) = ny A )

one can plug this into the right-hand side of the bound of the theorem and then
optimize it with respect tgr. The optimal value of is

. (P2 /ns
=tk NN
Y A/ Vlog(n/é8) "
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(we are assuming heﬂ@nof > 0!), which immediately leads to the following
upper bound on generalization error:

\/—(Pa)l/zlo n/\ |O n 5)
NG g 9 0
This is to be compared with the bound (2.1) and it shows that the quantity

IP’,,UA2 might provide an interesting choice of complexity penalty in classification
problems of this type. More generally, fpr> 1 and (again, under the assumption

Pnafp > 0)

Kot (P(3£) <9) +2

(P 2P )Y/ (D 1/ (p+D) 52/ (p+D)

V1/(p+D) |ng/(17+1) (n/8)

we are getting the bound
K inf (B,(fi0) <9)
0<é<y

VP (D) (P, 6 2P) 1/ (p+D)

t e o D g2/ D

\% n t
log??/P+D 2\ Vo2 _>.
9 s nés? g 8+n

In the limit p — oo this yields the bound [provided that max <, crf(Xj) > 0]

Vmax<;<, U)?(Xj) |092 n + i)
8

K inf (Pn (vfrx) <8) + 152

0<d<maxi<;<, o2(X;)
[which should be compared with (2.11); note the presence of the variance in the
numerator].

The result of Theorem 3 is, probably, of limited interest since there is no reason
to expect that the “global variances” of convex combinations output by popular
learning algorithms are necessarily small. It is much more likely that it would be
possible to split a convex combination into several clusters, each having a small
variance. This is reflected in the following definition.

Givenm > 1 andA € L (), define a set

m
C" ()= (@1, A A AR € P(H), =0, Y adF = A
k=1

For an element € €™ (1), we define a weighted variance over clusters by

(2.13) o?(c;x) = Zafafk (x),

k=1
whereafk (x) are defined in (2.12). If indeed there aresmall clusters among
functionshy, ..., hr, then one should be able to choose an elemen™ (1) so
thato2(c; x) will be small on the majority of data poinfgy, ..., X,,.
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THEOREM 4. If (2.2) holds, then there exists an absolute constant K > 0
such that for all + > 0 with probability at least 1 — ¢~ for all » € £ (#) and
f@x) = fi(x) = [h(x)A(dh),

P(yfo.(x) <0)

<K inf inf inf P <
- leCG@m(MOdSysl( n(Vfi(x) <98)

Vimy n t
2/, 2
—I—Pn(o (c,x)>y)+ 52 log —8—1——”).

If we define the number dfy, §)-clusters of. as the smallest: for which there
existsc € @, such that

\%
Py(0?(cix) > y) < % |ng%
and denote this number bw, (n, y,§), then the bound implies that for all
e P(H)

Vi (n,y,8)y  _on f)
— = T logc—+ — ).
ns? g 1) +n

The choice ofy = § gives an upper bound with the error term (added to the
empirical margin distribution) of the order

P(yfa(x) <0) <K . inf (Pn (yfr(x) <8) +
<é<y

m;.(n, 8, 8) lo on

né 5’

which significantly improves earlier bounds provided that we are lucky to have a
small number of cluster&; (n, 8, §) in the convex combination.

We now turn to a different approach to measuring complexity of convex
combinations. It is based on empirical covering humbers of the set of functions
involved in a particular convex combination. L&t be a class of measurable
functions (classifiers) fromX into {—1, 1}, such that# satisfies (2.2). It is
interesting to note that in this case the condition (2.2) is equivalent to the condition
that the class of set® := {{h = +1}:h € F#} is Vapnik—Chervonenkis (see,
e.g., [13]).

As before, ¢ will play the role of a base class. L&t := scon(#), that is,

F is the symmetric convex hull oft,

N N
SCONV(H) := 1> Aihihi € H. 0 €R,D A <1 N >1¢.
i=1 i=1
For f € ¥, a probability measur® on X andp € [1, +oc], define

Nag ,(f, &) :=Inf{Na, (H',e):H C H, f esconH")}].
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Let us call a subsett’ C # a base of f € scon(#) iff f € scon#’). Then
N, ,(f; €) is the minimale-covering number of bases ¢f Let

) s
Baf:8)i= [ \Na, o(F. 0 log(/e) de.

As earlier in this section (see also [21]), for a concave nondecreasing funiction
on [0, +o00) with v (0) =0, we defin&,‘f (&) as the largest solution of the equation

1
=i (8/)

&

with respect te. Let now
En(f,8) :=eln(/)(s).

The functiony,, (£, -) can be viewed as a data- and classifier-dependent estimate
of the entropy integral in the condition (2.6), and the bound of Theorem 5 below
is an adaptive version af-bounds developed in [21].

THEOREM 5. If a class of measurable functions # = {h: X — {—1, +1}}
satisfies (2.2), then for all 1 > Clog?n, with probability at least 1 — ¢~* the
following bound holds for all f € #:

_ . t
Pf() 0V <K inf [Bal3f (6) 8]+ 6(£.8) + -1 |
where K, C > 0 are absolute constants.

REMARK 1. Clearly, for alle > 0

Ndpnvz(fv 8) = Ndpniyoo(fv 8)»
and since the functions g take their values if—1, 1}, Nap, .. ([, €) does not
depend ore for all ¢ < 2. Therefore, in this range af we will use the notation
Nay, . (f) for it. This quantity is always bounded by 2nd it shows how many
classifiersh ; € # that differ on the sample are involved in the “most economical”
representation off € sconyJ¢) (so it can be viewed as a dimension 6f. The
following bound is trivial:

o 1
Y (f 3)52,/Ndpn,oo(f)8,llogg, s<e

and it shows, in particular, tha}n(f, 8) is well defined. It also shows that the
function &, (f, §) involved in the bound of the theorem can be replaced by the
following upper bound that has a much simpler meaning:

N,
dp, o0 (f) log n

n SNay, . (f)
[althoughé,, (£, §) can be much smaller than this upper bound].
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REMARK 2. Infact, the bound of the theorem can be improved by introducing
N 1
Hy(f.8) := Nag, ,(f.£)log= n e 2/(V+2
n- 8

and defining the function

8
&n(fataa):z\/‘o ﬁ,}/2<f,8\/\/§>d8

Then one can defing, (f, ¢, 8) asa,’f’ (&) with ¥ (+) := @n(f, t,-). It follows from
the proofs below that for all > Clog®n, with probability at least - ¢~ the
following bound holds for allf € #:

. t
POFW =0 <K inf [BL0f ) =) 46t )+ -]
with some constant&’, C > 0. The terme=2"/(V+2 in the definition ofH, (£, ¢)
is (up to a constant) a well-known upper bound on the entropy of the convex hull
of a VC-type class. The definition df,,(f, ¢) is based on an upper bound (see
Lemma 2 below) on the entropy of thestricted convex hull of # defined (given
a probability measur® andp > 1) as

{f esconH):Ve: Na, ,(f &) < N(e)},

where N is a given nonincreasing function. In fact, any other upper bound on
the entropy of such sets can be used insteal,@ff, ¢). Apparently, more subtle
bounds than the result of Lemma 2 (that interpolate better between the case of
finite-dimensional convex combinations and the case of the whole convex hull)
should exist and allow one to improve the bound of Theorem 5, but at the moment
we do not know how to prove a better bound. Theorem 5 can be extended to
classes# of functions taking values if—1, 1] (not necessarily binary functions),

but its formulation becomes more complicated since it involves i, )- and
L1(P,)-entropies in this case.

3. Proofs. Theorem 6 will be the main technical tool in the proofs of
Theorems 1-4. This theorem extends the inequality of Vapnik and Chervonenkis
for VC-classes of sets and VC-major classes of functions to classes of functions
F ={f:X — [-1, 1]} satisfying the uniform entropy condition

o0
(3.1) f log2 N (F , u) du < oo,
0

where

N(F,u)= sup Ng,,(F,u).
QeP(X) ’

For instance, it obviously holds under (2.2) f6r= conuJ¢), as it follows from
the well-known bounds on the entropy of the convex hull.
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THEOREMG6. IfF ={f:X — [0, 1]} isaclassof [0, 1]-valued functions that
satisfies (3.1),then there exists an absolute constant K > 0 such that for any ¢ > 0
with probability at least 1 — ¢~ for all f € £

1

®f)Y2 1/2
(3.2) Pf—P,f < K(nl/z/o logY? N (¥, u) du + (?) >

and with probability at least 1 — e~ for all f € F

(Pu f)Y/? P 1/2
(3.3) ]P’nf—IP’ffK(n_l/Z/ Iogl/ZN(?,u)du+( ”f> )
0 n

PROOF Equation (3.2) is Corollary 1 in [25]. Equation (3.3) is not formulated
in [25] explicitly but it is proved similarly to (3.2). Equations (3.2) and (3.3) also
follow easily from Corollary 3 in [26]. O

There are two features of this result that make it particularly useful. First of all,
it is well known (see [13]) that if, givem > 0, we look at the layer of functions
F, ={f € F:Pf < p}, then the typical value of the deviatidhf — PP, f on
this layer or, in other words, the expectatiBsugPf — P, f: f € ¥,}, can be
estimated by the entropy integral

JP
n_l/Z/ IOgl/ZN(fF,u)du,
0

where the upper limi{/p measures the size &f,. This simply reflects the fact
that functions with smaller mea#fif will have smaller fluctuations. Theorem 6
says that this happens on all layers at the same time, which gives us an adaptive
control over the whole clas$. The second important feature of this result is
that the deviation from a typical value is controlled for each function individually
by the term(tP f/n)Y/2. This is convenient from the point of view of structural
risk minimization since one only has to estimate the typical value on each class to
which a functionf may belong, but the deviation term is left unchanged. For other
results in this direction we refer the reader to [26].
Given an integet > 1, denote
d d
Fa=cony(H) =1 "Aihi:Y ki <121 >0h;eHt.

i=1 i=1
Again, let® = {ps:R — [0, 1]:6 € A C R} be a countable family of Lipschitz
functions such that Lipschitz norm gf; is equal tos—! and Y sea 8 < 00. One
can use a specific choice of= {27%: k > 1}. Fora > 0, b > 0 we define

N2
o, by= 4=

and fora = 0 we let¢ (a, b) = ¢ (0, b) = 0. The following theorem holds.

I(a =Db),
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THEOREM 7. If (2.2) holds, then there exists K > 0 such that for all ¢t > 0
with probability at least 1 — e~ wehavefor alld > 1, f € F,and § € A,

dv
(34) B(Pos(rf (). Bags o ) <K (“Clog 4 1),

PROOF The proof is a straightforward application of Theorem 6. We will
proceed in several steps.

Sep 1 (Estimating covering numbers). First of all, if given a class of
measurable functions o, ¥ = {f: X — [0, 1]}, we introduce a new class of
measurable functions

Fl={gt, ) =yf(x): X xY—>[-11]: feF}
defined onX x Y, then
N(F¥% u)=N(F,u)

since for any(x1, y1), ..., (xu, y») and anyfi, f> € ¥ we have
1z 12
= Y0 faa) = i fali)? = = 3 (fale) = fa)
i=1 i=1
Therefore, condition (2.2) or¥¢ is equivalent to the corresponding condition
on #H¥.
The following bound for the uniform entropy cﬁdy in terms of N(#¥, u) is
well known (see [21], Lemma 2):
2¢2N (HY, u)(d? + 16u=2)\¢

)

In combination with (2.2) it implies that for son¥€ > 0

N(F/ u) < <

Y 1
logN (%, ,u) < KdVlog—.
u
For a fixed s € ® the uniform covering numbers of the clags o 7t =
{ps(g):g € f‘”dy} can be bounded as

N(gso F,) u) < N(F), su),

since for any probability measur@ on X x Y the Lipschitz condition orps
implies that

(Qps(3f () — s (g CN)D)2 < 57X (f — 992,
and, therefore,

1
log N (¢s o j”dy,u) < Kdvlog(s—.
u
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Sep 2 (Nonadaptive bound). Theorem 6 appliedgioo ?‘dy guarantees that
for anyt > O with probability at least + ¢~ for all f € Fy,

Pes (vf (x)) = Pugs (vf (x))
3 K((d_v>1/2/<P¢8<Yf(X>>>”Z |ogl/2idu N <ﬂP’<p5(yf(x))>1/2>.
0 du

n n
To estimate the first term on the right-hand side one can easily check that

s 1 1/2 1 1/2
(3.5) f (Iog —> du < 2s<log —) fors € [0, e 1.
0 u s

This inequality is well known and, moreover, the value 2 of the constant is
irrelevant here. Hence,

(Pys (yf ()2 1
f log¥?2 — du
o du
8(Pos (yf (x)))Y/? 1
_ —1/ log¥/? = ds
0 R)
1/2 1/2 1
= 2(Pys (of ()" max 1, log™™ i )

Without loss of generality we can assume tBak(yf (x)) > n~L; otherwise, the
bound of the theorem becomes trivial. Therefore,

1 n
max( 1, log'/? )<|0 121
X( 3 S Posfmny2) =9

which finally yields

(Bos (vf ()2 1 1/2 n
A 10672 = du = 2(Pgs (3£ (x))) Y log? %

We have proved that

Pos (yf (1)) — Py (vf (1)) ((dv n>1/2 <z>1/2>
K((“logZ ,

Pz —~\\5799) F
which implies that

n

av
6 (Pos (5f (), Py (f (x))) < K(7 og " + 2)

Sep 3 (Union bound, adaptivity). The statement of the theorem now follows
by applying the union bound and increasikigIndeed, let us introduce the event

dv !
Aas(t') = {Vf € Fa: ¢ (Pes (6 (), Pags (f (X)) = K(7 log’s -+ )}

n
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which holds with probability - ¢=*". For a fixed: and for a fixed/ ands, define
t" according to the equality™" = (8¢~")/(d?K), whereK is chosen so that the
condition} ;e 7, sea 8d—2/K < 1 holds. With this choice of the eventd, 5(r)
can be rewritten

Ags = {Vf € Fu 16 (s (vf (1)), Pags (f (1))

av 1. Kd®> t
<K<—Iog + - IogT—i- )}

and its probability is greater than

Se~!
d?K’
It implies that the probability of the intersection

Pr(ﬂAd5)>1 Zdz —e !
This means that with probability at least-1e¢~" all the eventsA; s hold

simultaneously. But, obviously, the second term in the definitiod 9§ can be
bounded by

Pr(Agzs) >1—

1, Kd?
Iog—<K Iog—

and, thusA; 4 is a subset of the event

dV
Ads CAY = {Vf € F41 ¢ (Pos(vf (1)), Pags (f (1)) < K/<7 log’s + %)}

for someK’ > K, which proves the statement of the theorem, since

Pr(ﬂA/dﬁ) > Pr(ﬂAd,(g) >1—e¢ ",

d,s d,s O

PROOF OF THEOREM 1. For a fixedd, y consider a classfy, = {f €
F.d(f;y) <d}. One can estimate the uniform entropy#®f ,, as (see [21])

1 y\*
logN (Fa,y,u) < K(dlog; + (;) )

For a fixed s € ® the uniform covering numbers of the clags o ff‘dyy =

{ps(yf(x)): f € F4,} can be bounded as

N(goaofdyvu)<N(‘7jd)/v )7
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since, for any probability measu@ on X x Y, the Lipschitz condition orps
implies that

(Q(ps (f () — @5 (g )22 <5710 (vf — y9)) M2 =571 0(f — 922,
and, therefore,

log N (¢s o F V,u) < K(dlog— (%) )

Using this estimate on the covering numbers, Theorem 6 now implies (in exactly
the same way we used it in the proof of Theorem 7; only integration here is easier)
that for anyr > 0 with probability at least - ¢~ for all f € %,

Pos(vf (x)) = Pros(yf (x))
(Pos (yf (x))Y/?

d. n\Y2 N\ Pes(yf ()Y re\Y?
SK((;"’%) *(5) nir2 +(;) )-

It remains to show that, possibly increasiig this inequality holds for all
d,é and y. To do this we will use the above inequality withreplaced by
'+ Iog’g—jfz and, hence¢™ replaced bye™" = (e~'8y)/(Kd?), wheres,y €
{27%:k > 1}. Then the union bound should be applied in the whole range of

d,$ andy. Without loss of generality we assume that for Ale F ands € A
we havePys(yf(x)) > n~1, andy can be restricted to the set of values satisfying

(%)a/Z (Pos (yf (x))) ™4 . <£>1/2’

ni/2

or, equivalently,
y = 8(Pos (yf (x))) 211/ > sn= Y2 M

Under these assumptions

Kd? n
log—— < Kdlog—,
sy 1)

which allows us to complete the proof by using the union bound and choosing the
value of K large enough. O

PROOF OFCOROLLARY 1. To see that Theorem 1 implies Corollary 1 one
should first notice that iP,¢s (yf (x)) = 0, then the inequality of Theorem 1 can
be solved foiPys (v f (x)) to give

2a/(2+a)
Pwa(yf(x))fl(f)zKigf< (: o 95 +<’;> n—2/<a+2)+£)
n
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(we prove it below). Moreover, i?,¢s (vf (x)) is of the same order of magnitude
asI(f), then we will show thatPes(yf(x)) will also be of the same order of
magnitude ad (f). Finally, if P,¢s(yf (x)) is larger than a constant timésg ),
thenPgs(yvf (x)) is dominated by a constant timBsq;s(yf (x)). After all this is
proved, it remains to notice that, for a specific choice of functiphsuch that
ps(s) =1fors <0, ¢s(s) =0 fors > § and linear or{0, §], we have

P(yf(x) <0) <Pgs(yf (x)) and Paps(yf(x)) <Pu(yf(x) <9).

We will now explain how to solve the inequality of Theorem 1. We observe that it
is of the form

(3.6) y §x+ay1/2+by5,

wherey = Pys, x =P,0s, 0 < 8 < 1,a,b > 0. In our case als@ = 1/2 — «/4.
Definey1 andy» as the solutions of the equations

12
V1= ayl/ , V2= by§

and notice that
y > ay*/? fory > yi; y = byP for y = ya.

Assume that < y1+ y2. Then (3.6) implies that < K (y1+ y2) for some absolute
constantk > 0. Indeed, if we plugk (y1 + y2) into the right-hand side of (3.6) we
get

x+a(Ky1+y2) 2+ b(K 1+ y2)”
< (1 +y2) + KY%a(y1 4+ y2) Y2+ KPb(y1 + y2)*
< (y1+y2) + KY2(y1+ y2) + KP (y1 + y2)”
(sincey1 + y2 > y1 andy1 + y2 > y2)
<A+ K2+ KP)(y1+y2) < K1+ y2),

if K is large enough. This shows that (3.6) fails for K(y1 + y2), and hence
the solution of (3.6) is smaller thaki (y1 + y2). Assuming thate > y1 + y» and
settingC := %, we get from (3.6)

Cx <x+ CY?%axY? + CPbxP < x + CY%x + CPx = 1+ CY? + CP)x,

which implies C < 1+ Y2 + ¢# and hencey < Kx for a large enough
constantK. Thus, always with large enougki we havey < K (x + y1 + y2),
implying the result. [

PROOF OFTHEOREM 2. Let us make a specific choice of functiopns For
eachs € A we setyp; to begs(s) =1 fors <6, ¢s(s) =0 fors > 26 and linear on
[8, 25].
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Letusfix f = Z,f_lkkhk € ¥, and for a fixed O< d < T represenitf as

f= Z)»khk+3/d(f) Z Aphi,

k=d+1

wherey(f) = Y{_ g1 andiy = ae/va(f).
Given N > 1, we generate an i.i.d. sequence of functiéns. ., &y according
to the distributionPs (§; = hx) = A, for k =d +1,...,T and independent of

{(Xk, Yr)}. Clearly,E¢&; (x) = Z,{_dﬂ A hi(x). Consider a function

gx) = Zkkhk(X) + Vd(f)— Zék(x)

k=1

which plays the role of a random approxmaﬂonpfn the following sense. We
can write

P(yf(x) <0) =E:P(yf(x) <0, yg(x) <8) + E:P(yf (x) <0, yg(x) > )
3.7
(3.7) < EePgs(yg(x)) + EPg (yg(x) > 8, Ecyg(x) <0).
In the last term for a fixedx, y) € X x Y we have
Pe(yg(x) > 8, Eeyg(x) < 0) < Pg(yg(x) — Eeyg(x) > 6)

N
=P (Z(y&' (x) — yEe&i (x)) > N5/)/d(f))

i=1
< exp(—N3%/2y7 (/).

where in the last step we used Hoeffding’s inequality. Hence,
(3.8) P(yf (x) < 0) — e V1280 < B Pys(yg (x)).
Similarly, one can write

EePyos(yg(x)) < EePy(yg(x) < 28) < Pu(yf (x) < 35)
(3.9) +EePy (yg(x) < 28, yf (x) > 3)

<P, (yf (x) <38) + e NO/205(D),

Clearly, for any random realization of the sequergge..., &y, the random
function g belongs to the clas§,. . Convexity of the functiong (a, b) and
Theorem 7 imply that for any > 0 with probability at least - ¢~/ for all § € A

andallf e F

?(EePos(vg(x)), EePrgs(vg(x))) < Eep(Pes(yg(x)), Prps(yg(x)))

(V(a’+N) g_+ )
n )
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The fact thaip (a, b) is decreasing ib and increasing i combined with (3.8)
and (3.9) implies that

S(P(yf (x) < 0) — e N2 B, (v (x) < 38) + e~ N/21i (D)
n S n
SettingN = 2(y2(f)/5?)logn, we get
w |Og E + 5)’
n S n

where e,(f,8,d) = d + 2(y2(f)/8? logn. Solving the last inequality for
P(yf(x) < 0) and changing the variable§ 3 § gives the bound (that holds with
probability at least - ¢7)

(3.10) P(yf(x) <0) < (WY2 4+ (P, (yf(x) <8) + W)
where

$(P(rf () <0) — 1/n, P (yf (x) < 38) +1/n) < K(

1/2)2

W=W(f,n,d,8,t):=[(<wmgﬁ t)

s Ta)
It remains to make the bound uniform ovéandé, which is done using standard

union bound techniques. More specifically, replacen the above bound by
1'(d,8) =1t +2log(1/8) + 2logd + ¢, wheres € {27%:k > 1} and

c:=2 Iog( i k‘2>.

k=1

Then the union bound can be used to show that (3.10) [wigplaced by’ (d, §)]
holds for alld and all§ € {27%:k > 1} simultaneously with probability at least
1— p, where

2
o o
p< e 1—¢ Z e—2logk—2logd :e—t—c<zk—2) :e—t’
k=1,d=1 k=1

and, hence, we also have with probability at leaste ™’

P <0)< inf inf(WY2(f,n,d, 8,1, s
(yf(x) < )_86{2_k:k21}d( (fin X))

+ (Ba(yf () <8) + W(f.n,d,8,1'(d. )5,

Taking into account the monotonicity of the functief( f, 8, d) with respect ta
(and increasing the value of the constéft it is now easy to extend the infimum
overé to all § € (0, 1]. Increasing the value & further allows one to rewrite the
bound as

P/ () 0) = inf (UYZ4 (By(yf (1) =8) +U) ")’
€,
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with U defined in the formulation of the theorem, which completes the prdaf.

Theorem 3 is a special case of Theorem 4; thus we will proceed by proving
Theorem 4.

PrOOF OFTHEOREM4. We will proceed to prove Theorem 4 in several steps.

Sep 1 (Random approximation). Consider functiopsthe same as in the
proof of Theorem 2. Let € P (#) and f (x) = [ h(x)A(dh). Consider an element
c e C"(), thatis,c = (a1, ..., am, AL, ..., ™), such thath = Y7 a;A/ and
A e P(H). We interpreted as a decomposition of into m clusters, or in other
words, the decomposition of the g&t} into m clusters. This time we will generate
functions from each cluster independently from each other (and, as before,
independently of the data) and take their weighted sum to approxifiate
GivenN > 1, let us generate independent random funct'&;ﬁw), k<N,j<m,

where for eachj < m, the&/'s have the distribution
P =h) =2 (i) =2, i<T.

Consider a function

1 m
g(x) = N Zaj
j=1 k=

N 1N
gl (x) = N > gk(x),
1 k=1

whereg; (x) = ZT:]_Oljélg (x). For a fixedx € X andk < N, the variance of
with respect to the distributioBy = Pg1 x - -+ x Pgm is

Varg (gr(x) = > a2 Varg (& (x) = Y @202, (x) = 02(c; x).
j=1 j=1

The main difference from the proof of Theorem 2 is that in (3.7) we also introduce

the condition on the varianeg?(c; x). Namely, one can write
P(yf (x) < 0) < EePys(yg(x)) + P(o%(c. x) = )

(3.11)

+EP: (yg(x) = 8, yf (x) <0,0%(cix) < y).

Similarly to (3.9) one can also write
EePn@s(yg(x)) < EeP,(yg(x) < 29)
(3.12) <P, (yf (x) < 38) + Py(0(c; x) > )
+PuPe (yg(x) <25, yf (x) = 38, 0%(c; x) < 7).
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Sep 2 (Bernstein's inequality). To bound the last terms on the right-hand sides
of (3.11) and (3.12) we note that we explicitly introduced the condition on the
variance of theg,’s, since for a fixedr € X we have Vag(gi(x)) = a?(c; x).
Therefore, instead of using Hoeffding’s inequality as we did in the proof of
Theorem 2, it is advantageous to use Bernstein’s inequality, since it takes into
account the information about the variance. We have

P (yg(x) > 8, yf(x) <0,0%(c; x) < y)

N
=P ( > (ver(x) — yEegi(x)) = N§| Varg (g1(x)) < )/)
k=1

1 . /N&? 1 N§?
< exp(—— mln(—, N(S)) = exp(———),
4 14 4 vy

since we assume that> §. Taking N = 4(y /8%) logn we get

(3.13) P(yf (x) < 0) < EePps(yg(x)) + P(0%(c; x) > y) +n 1.
Similarly, applying Bernstein’s inequality to the last term of (3.12) yields
(3.14)  EePugs(yg(x) <Pu(yf (x) <38) + Py(0?(c;x) = y) +n~ L

Step 3 [RelatingEe Py; (yg(x)) to E¢P,ps(vg(x))].  Our next goal is to relate
EePes(yg(x)) from the right-hand side of (3.13) 1P, ¢s (yg(x)) from the left-
hand side of (3.14).

For any realization of random variable,g, the functiong(x) will belong to
the class#,,y. Convexity of the functiong(a,b) and Theorem 7 imply that
for any r > 0 with probability at least - ¢! for all § € A, A € P(#) and
f(x) = [h(x)dxr, and anyc € C™ (1),

O (EePys(yg(x)), EcPros(yg(x))) < Eedp(Pps(yg(x)), Pugs(yg(x)))

VmN n t
§K< Iog—+—>.
n § n

The fact that¢(a, b) is decreasing inb and increasing ira combined with
(3.13) and (3.14) [recall that = 4(y /5%) logn] implies that

¢(P(yf(x) <0) — ]P’(az(c; x)>y)— n1,
Py (yf(x) =< 35) + P, (02(0; x) > )/) + n_l)
Vmy on t>
K log? = + — ).
Solving the last inequality foP(y/f (x) < 0) one can get that with probability at
least 1— ¢~ forall § € A, anyy > §, foranyi € P(#) and f (x) = [ h(x)dA,
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and anyc € " (1),

P(yf(x) <0) < K(Pn (3f (x) < 38) + Po(02(c: x) = 7)

(3.15)
\% t
+ IP’(oz(c; x)>y)+ ;4;)/ IOQZg + ;)

Sep 4 [BoundingP(o2(c; x) > y)]. It remains to estimat®(c2(c; x) > y).
This is done very similarly to steps 1-3 above. Let us generate two independent
sequences,j’l andé,j’2 as above and consider

2._1Nm,j,1 j,zz_lN
UN(C’X)_EIZ; Jz::lal(sk =& —Nl;&(x),
where
m ) ) 2
(319 e = (L6
j=1

Let us make a specific choice of functiops. For eachy € A we setg, to be
¢y (s) =0fors <2y, ¢, (s) =1fors > 3y and linear orf2y, 3y]. One can write

P(oz(c; x)>4y) = Eg[[”(az(c; x) >4y, o]%(c; x) > 3y)
+E:P(0%(c; x) = 4y, 0§ (c: x) <3y)
347 < E¢Py, (0 (c; X))
+EPg (0 (5 x) < 3y, 0%(c; x) = 4y).
Similarly, one can write
EsPugy (0§ (ci x)) < EePy (0 (c; x) > 2y)
(3.18) <P, (02(0; x)>y)
+ P, P (aﬁ(c; x)>2y,0%(c;x) < Y)-

Next we will show that there exists a large enough absolute conktan0 such
that

N
(3.19) Pe (o5 (ci x) > 2y, 0%(c;x) <y) < exp(—%)
and

(3.20) Pe (of (c; x) <3y, 0%(c; x) > 4y) < exp(—%),
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First of all, let us notice that2(c;x) = N1 | & (x), where & are i.i.d.
random variables defined in (3.16) afit}&;(x) = o2(c; x). Moreover, since
g El% e g, we havelg/ (x) — £%(x)| < 2 and |& (x)| < 2. Finally, the
variance

Varg (¢1) < Ee&f < 2Beé1 = 202(c; x).
Hence, Bernstein's inequality implies that

Ny
20, 20 2(p- _ __
P (ox(c; x) —0%(c; x) <2y/0?(c; x)y/K +8y/(8K)) > 1 exp( e )

and

Pe (oz(c; x) — a]%(c; x) <2/0%(c;x)y/K +8y/(8K)) > 1— exp(—%).

It is now easy to check that for large enoukh=> 0, giveno?(c; x) < y, the first
inequality will imply of,(c; x) < 2y [with probability at least 1- exp(—%)],
thus proving (3.19) and, giveq%(c; x) < 3y, the second inequality will similarly
imply o2(c; x) < 4y, thus proving (3.20).

If in (3.19) and (3.20) we seV = Ky ~tlogn, then with this choice oV one
can rewrite (3.17) and (3.18) as

(3.21) P(02(c; x) > 4y) < EePg, (62 (c; x)) + 12
and
(3.22) EcPugy (0f (c; X)) <Pu(0?(cix) > y) +n L

For any realization ofkj’l, g,{"z, the functiona,%,(c; x) belongs to the class

1L (& i1 2 ? i1 2 -z
yN,m:i_Z(Zaj(hi’ _h]j(’ )) :]’llj(’ ,hlj(’ e]f,ajzo,Zajzl .
k=1\j=1 j=1

Since the clasg? satisfies condition (2.2), it is easy to show (see, e.g., [21] for a
similar computation) that the uniform covering numbersFaf,,, can be bounded

by
2
logN (Fn.m,u) < KVNmlog—, O<u<l
u

The rest of the argument is similar to the above. Convexity of the fungtiand)
and Theorem 7 imply that for any> 0 with probability at least - ¢~ for all
y eA, LeP(H)and anyc € C" (1),

¢ (EsPpy (02(c; x)), EePugy (02 (c; )
<Ec¢(Ppy (0f (c: X)), Pagy (0 (c: X))

VmN n t
51(( Iog—+—).
§ n

n
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The fact that¢ (a, b) is decreasing inb and increasing it combined with
(3.21) and (3.22) (recall tha&f = K logn/y) implies that
$(B(o?(c;x) = 4y) —n L By(02(cix) = y) +n7Y) < K(V—m log? - + 5).
ny n
Solving the last inequality foP(c%(c; x) > 4y) we get that with probability at
least 1— ¢~ for anyy € A, for anyx € £ (#) and anyc € €™ (1),

P(o?(c;x) = 4y) < K(Pn(az(c; 0= 7)+ g + 5),
ny 5 n

Finally, we combine this with (3.15) and notice that since we assumerthat,
%

n_ Vmy on

—log® — < —~log” —.

§— 82 g b

Thus, with probability at least & ¢! for any§ € A, any§ < y € A for any
A€ P (FH) and anyc € C" (1),

P(yf(x) <0)
(3.23)

< K(Pn(yf(x) <38) + Py (02(cix) = y/4) + V;’;_” Iogzg + %)
Using the union bound one can show that with a larger congfathis inequality
holds for allm > 1, also with probability at least + ¢~!. Finally, to obtain
the statement of Theorem 4, we need to make the change of variadbless3
y/4— y, and, in order to preserve the conditipr> §, we notice that from the
very beginning we could have assumed that 125 and then deal with the case
of y € [§, 125] by increasing the value df. [

We turn now to the proof of Theorem 5. It will be based on several facts.

First of all, we need a slight modification of Theorem 2 in [8].

Let # be a class of functiong from X into [0, 1]. We define the Rademacher
processk,(f), f € ¥, as

Ro(f):=n"1Y & f(Xi),

i=1
where {¢;} is a Rademacher sequencBr(s; = 1) = Pr(g; = —1) = 1/2]
independent of X;}. Denote also

Ry (F) := sup|R,(f)I.
feF
THEOREMS8. Supposethat for all + > 0 with probability at least 1 — e~

E;  sup  |[Ru(f)| < C(@u(+/r)+68,(1))  wherer >0,
feF . Pyf<r



COMPLEXITY AND GENERALIZATION BOUND 1485

¢, is a nondecreasing concave possibly data-dependent function with ¢, (0) = 0,
8 (1) > % and C > O isa constant. Let 7, be the largest solution of the equation
¢n(/r) =r. Then, there exists K > 0 such that with probability at least 1 — ¢!
forall feF

t+ Ioglogn)>

n

Pf < K(Pnf-i—fn +5n<
Next we need the following bound on the expected sup-norm of the Rademacher

process. Let

Dp, 2(F) := sup dp, 2(f, g)
f,.geF

denote thel,(P,)-diameter ofF .

LEMMA 1. Let F bea class of measurable functions from X into [0, 1] such
that 0 € F. Then there exists a constant K > O suchthatforalln >1and¢ >0

K| [t 12 ( f) /Dﬂ"ﬂ(“ 1/2
ER(F)<—|,|—H F; - F,u)yd
£ n( )_ ﬁ[\/; dp, .1 n + i d[P’ 2( M) u

PROOF Forgivenr > 0 andn > 1, there existsa map =, ; : ¥ +— ¥ such

that
caro[njf)szPnz(?, /L) and dp, 2(f, 7f) < /L.
’ n n

This implies that
Ee Ry (F) < Ee sUp|Ry ()] +E, SUPIR (f =7l
feF

feF

By a standard entropy bound, we have
K Dp, 2(F) 1/2
Be SUpIRy ()| < - [ Hilk e wau

with some constank > 0. Let now ¥’ be a(z/n)-net for # with respect to the
metricdp, 1. Note that, since the functions frof take their values ifi0, 1],

de,a(f f) = = @ o(ff) =t

= dp,2(f,7f) <dp,2(f. [) +dp,2(f.7f) < 2/;



1486 V. KOLTCHINSKII AND D. PANCHENKO

Therefore, we get

Ee sup|R,(f — 7 f)l
feF

t
<E, Sul)ian(f’ —o:f eFlgenF dp,of,7f) <2 /- }
n

t
cardF' x 7 F) = Ngp, 1( )Ndﬂ,,n (“ \/;)

we get, using standard bounds for the expectation of a finite maximum of a
Rademacher process,

12
t t
B SUpIRA(f — )1 = K [ I<Hdpn L)+ 2(? ,/;)) vl

with somekK > 0, which in view of the trivial bound

t t
H”’“””(?’ \ﬁ ) <t ()

implies the statement of the lemma_]

Since

Let Q € (X). For a setE of positive numbers and a functiowi: E — R, let

F5on={f€F:¥e€E Ny, (f.Ce) < N(e)}.
LEMMA 2. ForaleeE
1
Hig ,(F§ pn- 2+ C)e) < KN(e)log >

with some constant K > 0.

PROOF First note thatf e f‘”gp y implies that
Vee EIH C H:f escon(H')
and
Ny, ,(H',Ce) < N(e).

Let f =Y Ajhj, hj € # andY |A;| < 1. Then there exists¢’ C #’ such that
card #H') < N(e) and forallh € #' there existg € H’ such thatiQ p(h, g) <Ce.
Hence, one can deflr{é/ } € #’ such that maxdg ,(hj, h ') < Ce. Let now #;
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denote a minimat-net for # with respect taly . Definei; € . in such a way
thatfor all j, dg, (hj, h';) <&, which, of course, implies

maxdg, p(hj, hj) < (C + De.
J

Clearly, we can also assume that
cardh;} < cardh’;} < card#H') < N(e).

We can conclude that
dQ,p(Z)‘jhj’ Z'\j’_h') <Y Ixjldg p(hj, hj)
J J J

<D 1Al mjaXdQ,p(hj’ hj)
j
<(C+De.

The above argument shows thét € E
FG.pv C [SCOMW () (F)] (111
where[-], denotes the-neighborhood w.r.t. the metrity , and
d d
scony;(§) := {Z,\jhj DY Al <1V jhj e g}
j=1 j=1
Using Lemma 3 in [21], we obtain th&ts € E

e?card H, ) (N (g) + de =)\ NV ®
N2(e) ) ’

Nig ) (FE 2+ C)e) < (
which immediately implies the bound ]

LEMMA 3. Supposethat # satisfies (2.2). Then there exist constants K > 0,
C > O such that for all > KV (#¢)logn, with probability at least 1 — ¢~ for all

feFandalle> [t
Nd]pmz(fv C(;‘) = Nd]pyz(fa 8)

and
Nd]pqz(f’ CS) = Nd]pnqz(fa 8)-

PROOF Let

J:={(h1 — h2)?: h1, ho € H).
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Since—1 < h <1 for h € #¢ one can write
((h1 — h2)? — (hy — hp)?)? < 32((hy — hy)? + (ha — h)?).
Hence the uniform covering numbers.&f can be estimated as

SUP Nyg,(H,e) < sup N7, (Ht, /8 =0(s*)
Qe (X) QeP(x)

using (2.3). Now, applying Theorem 7 and (3.5), we get that with probability at
least 1— 2¢~7, forall h € #

(]P’h)VIogn)l/2+ ((Ph)t)l/z)

n n

Ph — P,h < K((

and

CuViogn )2 (i)

IF’,J;—IP’hSK((
n n

For: > KV logn these inequalities imply
t t
]P’th(IP’,,th—) and Pnh§K<Ph+—).
n n

This yields that with probability - 2¢~* for all i1, ho € H

t
dp, 2(h1, h2) < C[dlp,z(hl, h2) v \/;]

t
dp2(h1,h2) <C |:dPn,2(hl, h2) v \/;}

Now, by the definition of Ny, ,(f,¢), there exists#' C F# such thatf e
scon\(#') and Ny, ,(H', &) = Na,,(f, €). Hence, with probability at least &

e_v 8_ )
2¢7, foranye > /L, we have

and

Nd]pn,z(fa CE) =< Nd]pn,z('}f/’ CS) =< Nd]p,z('}f/v 8) = Nd]pvz(f’ 8)7
and similarly

Nd]pyg(f» C8) = Nd]pnyg(f’ 8),

which immediately implies the bound of the lemma (after a minor rescaling and
changing the constants)d

Let us define a sequence

Pt
Ej ::2]\/; for j > 0.
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Denotem, (t) :=min{;j :e; > 1}. Let N be a nonnegative nonincreasing function
onR, taking constant values on the intervéllse1), [, €+1), j > 1. Define

Fo, N ={f €F:Na ,(fre)) <N(ej), j=0,....mu(t)},
Fonvi={f €F:Nu,(f,Cej) <N(gj), j=0,...,mu(t)},

Fp,.N ={f €F Nay, ,(f.C%;) <N(ej), j=0,....,mu(1)}.
Then it follows from Lemma 3 that:

LEMMA 4.

Pr{#p, Ny CFen CFp, N} =1—e".

n»

Let us introduce the function

X 1
Y@) = Py ) = /0 [N @log= de.

LEMMA 5. There exists K > 0 such that with probability at least 1 — e~ for
al fefpn

t +log Iogn}

i ¥
Plyf(x) <0} < Kaeug)fl][wn{yf<x> <o) +el )+

PROOF  We apply Lemma 1 with replaced by2 + C?)?%¢/82 to the class

§:={po f:feFpntU{O}

whereg is the function equal to 1 for < 0, equal to O foru > § and linear in
between andy o f)(x, y) := ¢(yf (x)). This gives the bound

Ee  sup  [R.(g)l

g€§.Pyg=<r
K [24+C? |t 1 2+ C??% @)'? 1/2
<— \/de]P{ 1<9—2> +/ Hy/? (§.u)du
N2 R nd @+c?)syifn P
2+ C%%
né

Since the Lipschitz norm af is ES—L we have

1
dp,2(po f,pog) < ngP’,l,z(f, g)

and

1
dp,1(po f,pog) < SdIP,,,l(f, g).
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Therefore, we can upper bound the expression in the brackets by

2+C% (11 172 2+ CH%
—|H FpN, ———— 1
3 (e BT 4]
L (g
8 Jarcr i\ 2
[adding 1 to the square root of the entropy is due to the definition of the glass
which includes the function 0; we alsp use here the inequalyg(N + 1) <
JIogN + 1]. On the event{Fp y C Fp, v}, Which according to Lemma 4
occurs with probability at least + ¢/, we can upper bound the&(P,)-
and £1(P,)-entropies involved in the last expression by the entropies of the
class#p, n, Which can be bounded using Lemma 2. Namely, we have, for all

feFp,n,

(Fp.N.u) + l> du

Ny, ,(f. C%j) < N(g)), J=0,...,my1),
which according to Lemma 2 implies that
Hyy o(Fp, v, 2+ C?ej) < KN(ej)log(1/e ).

Therefore, denoting; := (2 + Cz)sj and using monotonicity of the entropy, we
get

8(2r)Y/?

1/2

~/(2+C2)\// dﬂ]{ (fPN’u)du
t n,

- - 1/2 =~ -
< ) @ra—ENHy ,(Fp,N.E))
jiEj=<8(2r)1/?

<K 3 2+ C?)(ej1— £))\/N(ej) log(1/e)
j1(24+C2)e;<8(2r)1/2

Zfsf
< Kf JN Gl logul du.
Naien)

Note also that since the clagsé consists of functions taking values{n1, 1}, for
any probability measur@® we havedé’z(hl, ho) = 2d g 1(h1, ho), which implies

that Ny, ,(f. v/2¢) = Na, ,(f. €). Thus,
VfeFe,N  Nas,,(f. C%0) < N(eo)
— YfeFpN  Na,(f.C%§/2) < N(eo).

Sincegg =,/ L, this, in view of Lemma 2, yields the bound
n

Hd]Pn,l(‘{f;}Pn,N’ (2+C4/2)\/§> < KN(\/%) |Og\/¥,
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Collecting the above bounds gives on the evéfit y C Fp, v}

2+ C? |1 ( 172 ( (2+cz>2r> )
H FpPN, ——— 1
|: ) n( dp, 1\ 7N né +

1 8(2")1/2

12
= Frn,u)+1
5 <2+c2)¢z/—n( g2 (P 10) +1)d }

<%[@Jw<&>

which, using the fact that the function— [y +/N(u)[logu|du is concave, can
be bounded b ¢, (\/r ), where

8 r
(V1) = ns(Vr): 5/ N@)|logu|du.

Thus, with probability at least & ¢/,

2fsf
log /

Vi/(@2n)

N )| logu| du:|

E. sup |Rn<g)|sK(¢n(f)+L)

2€%,Prg<r 82
and Theorem 8 implies that also with probability at leastd ™" for all g € §

t+ Ioglogn)
né2 ’
wherer, is the largest solution of the equatign(/r ) = r, which in our case is

equal to;;,, (8). Therefore, for a fixed € (0, 1] with probability at least - ¢~
forall f e Fp N

]P’gSK(]P’ng+fn+

Plyf(x) <0} <P(po f) sK(Pn«post:{’ &+
t +loglogn
ns2 )

It remains to make the bound uniform dne (0, 1] by applying it withs =46; =
2=/ andt replaced byr + 2log(j + 1), using the union bound along with the
monotonicity of the expressions involved with respect,tand properly adjusting
the value of the consta. [

t+log Iogn)

< K<Pn{yf(x) <8} +el(5) +

PROOF OFTHEOREM 5. We will prove, in fact, an improved version of the
result (see the remark after the statement). To simplify the notation, we remove
the terme—2V/@+V) from the definition ofH, ( f, ¢) and the follow-up definition
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of ¥, (£, t,8); this omission, however, does not change anything in the proof. By
the condition on the clas#,

SUp Nay,(H,e)=0(""), &>0.
QeP(X)

Clearly, we have

NdPn,Z(f’ 8) = Sup Ndeg(J{s 8), e>0.
QeP(S)

As before,e; = 21\/,’[j and letJ :={j > 0:¢; < 2}. Denote by the set of
nonincreasing step functions @, with jumps only at the points;, j > 0, and
such that

N(ej) < Kg;V, jel.

Assume also that, faV € N ande < gg, N(¢) = N(gg). Then

Pr{EIfe?EISe(O,l]:

t +log Iogn]}
né2

P(yf (x) <0} > K[Pn{yﬂx) <)+ En(fi0.8) +

<E ) I(Na, ,(f.€))=N(&)), jel)
NeN

x I(Elf € Fp, v 38 €(0,1]:

P{yf (x) <0} > K[Pn{yﬂx) <5)

t+|og|ognD _.B

+e/V () + —

where we used the facts that, on the e, ,(f.¢;) = N(gj), j € J},
feF¥F = fe f’]p,N
and also we have on the same evém(f, t,u) < y¥y), u=>0, which yields
En(fo1,8) <elN(8).

According to Lemma 4, for alN € &, Fp, v C Fp_y With probability at least
1—e7". Also, by simple combinatorics,

cardA) < [ K(i)v.

jeJ €j



COMPLEXITY AND GENERALIZATION BOUND 1493

Therefore, we can use Lemma 5 and further boBrigy

Z EI(NdPn,z(fv €j)=N(gj), j€ J)
NeN

X I(Efey%pn,,v 35 € (0,1]:

Pyf (1) <0) = K| Bal3f () <8) + 0 ) + MD

né?
1 \%4
<J] K(—) [suppr{afe}'w 35 €(0,1]:
jeJ Sj NeN
P{yf(x) <0}

> K[Pn{yﬂx) <5)

log|
eI (6) + ”:%“ —|—e_t]

1
§2exp=—t+Z<VIog—+logK)}
o

jed J
< 2exp{—t + Clog? ; + Iogz},
which implies the bound of the theorem (subject to adjusting the constahis).

4. Concluding remarks. We have developed several new complexity mea-
sures of functions from the convex hull of a given base class and proved adaptive
margin type bounds on the generalization error of ensemble classifiers in terms
of these complexities. The complexities are based on measuring sparsity of the
weights of a convex combination and clustering of the base functions involved in
it. Hopefully, they can provide some insights to the developers of classification al-
gorithms about the relative importance of various parameters influencing the per-
formance of classifiers. It might be possible to combine several types of bounds
discussed in the paper into a bound that takes into account different complexity
characteristics, but our goal here is not to develop “the Mother of All Bounds,” but
rather to explore several possible approaches to the problem.

The results of the paper suggest that it might be of interest to study
experimentally the statistical properties of base classifiers in ensembles output by
classification algorithms (in particular, their clustering properties) in connection
with generalization ability of the algorithms. (Some preliminary results in this
direction forAdaBoost and other classification algorithms with real and simulated
data can be found in [20] and more results are in [1].) Another interesting line
of research might be related to proving that boosting type algorithms do output
combined classifiers with a certain degree of clustering of base classifiers in the
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ensemble and a certain degree of sparsity of their weights. (The results of [30]
show that the sparsity of the coefficients indeed takes place in the case of support
vector machines.)

Our main goal has been to develop margin-type bounds on generalization error
in terms of sparsity and clustering, but the complexities we introduced might be
of interest in some other problems, for instance, in studying convergence rates
of classification algorithms to the Bayes risk. Recent results on consistency [15,
22, 33, 34] and convergence rates [6, 7] of boosting-type algorithms suggest that
some regularization of the algorithms (either by early stopping, or by penalization)
might be needed in order to achieve reasonable convergence rates. However, the
precise form of this regularization is still an open question and it depends crucially
on which complexity measures are used to take into account the sparsity and the
clustering properties of the algorithms. Some of the complexities discussed in the
paper might be used as penalties, especially, the complexities based on the notion
of variance of a convex combination (this is also computationally attractive).
Another area where these complexities might be very useful is the problem of
optimal aggregation of estimators in regression or classification (see [3, 31]).

It should be emphasized that the complexities of convex combinations we have
introduced are by no means the only possible, but they are on the other hand
very typical, representing some features of functions in the convex hull that are
of importance in classification.
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