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COMPLEXITIES OF CONVEX COMBINATIONS AND BOUNDING
THE GENERALIZATION ERROR IN CLASSIFICATION

BY VLADIMIR KOLTCHINSKII1 AND DMITRY PANCHENKO2

University of New Mexico and Massachusetts Institute of Technology

We introduce and study several measures of complexity of functions
from the convex hull of a given base class. These complexity measures
take into account the sparsity of the weights of a convex combination
as well as certain clustering properties of the base functions involved in
it. We prove new upper confidence bounds on the generalization error of
ensemble (voting) classification algorithms that utilize the new complexity
measures along with the empirical distributions of classification margins,
providing a better explanation of generalization performance of large margin
classification methods.

1. Introduction. Since the invention ofensemble classification methods
(such as boosting), the convex hull conv(H) of a given base function classH
has become an important object of study in the machine learning literature. The
reason is that the ensemble algorithms typically output classifiers that are convex
combinations of simple classifiers selected by the algorithm from the base classH ,
and, because of this, measuring the complexity of the whole convex hull as well
as of its subsets becomes very important in analysis of the generalization error
of ensemble classifiers. Another important feature of boosting and many other
ensemble methods is that they belong to the class of so-calledlarge margin
methods, that is, they are based on optimization of the empirical risk with respect
to various loss functions that penalize not only for a misclassification (a negative
classification margin), but also for a correct classification with too small positive
margin. Thus, the very nature of these methods is to produce classifiers that tend to
have rather large positive classification margins on the training data. Finding such
classifiers becomes possible since the algorithms search for them in rather huge
function classes (such as convex hulls of typical VC-classes used in classification).

This paper continues the line of research started by Schapire, Freund, Bartlett
and Lee in [28] and further pursued in [2, 16, 19, 21, 26]. In these papers, the
authors were trying to develop bounds on the generalization error of combined
classifiers selected from the convex hull conv(H) in terms of the empirical
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distributions of their margins, as well as certain measures of complexity of the
whole convex hull or its subsets to which the classifiers belong. Our main goal
here is to suggest new margin type bounds that are based to a greater extent on
complexity measures ofindividual classifiers from the convex hull. These bounds
are more adaptive and more flexible than the previously known bounds (but they
are also harder to prove). They take into account various properties of the convex
combinations that are related to their generalization performance as classifiers,
such as the sparsity of the weights and clustering properties of base functions.

The following notation and definitions will be used throughout the paper. Let
X be a measurable space (space of instances) and letY = {−1,+1} be the set
of labels. LetP be a probability measure onX × Y that describes the underlying
distribution of instances and their labels. We do not assume that the labely is a
deterministic function ofx; in general, it can also be random, which means that
the conditional probabilityP(y = 1|x) may be different from 0 or 1. Let H be
a class of measurable functionsh :X → [−1,1]. Denote byP (H) the set of all
discrete distributions onH and letF be the convex hull ofH ,

F = conv(H) :=
{∫

h(·)λ(dh) :λ ∈ P (H)

}
.

For f ∈ F we assume that sign(f (x)) is used to classifyx ∈ X [sign(f (x)) = 0
meaning that no decision is made]. Functionsf ∈ F are sometimes calledvoting
classifiers, since for a convex combinationf = ∑

λjhj the weight (coefficient)
λj can be interpreted as the voting power of an individual classifierhj (they are
also calledensemble classifiers). The generalization error of any classifierf ∈ F
is defined as

P
(
sign(f (x)) �= y

) = P
(
yf (x) ≤ 0

)
.(1.1)

Given an i.i.d. sample(X1, Y1), . . . , (Xn,Yn) from the distributionP, let Pn denote
its empirical distribution. For a measurable functiong onX × Y, denote

Pg =
∫

g(x, y) dP(x, y), Png = n−1
n∑

i=1

g(Xi, Yi).

Whenever it is needed, we use the same notationPg,Png or P(A),Pn(A) for
functionsg that depend only onx and for setsA ⊂ X (the meaning of the notation
in this case is obvious). The probability measure on the main sample space (on
which all the random variables including the training examples are defined) will
be denoted byPr (not to confuse it withP).

In the paper we study the generalization error (1.1) of classifiers from the convex
hull of a classH which is typically assumed to be “small,” a condition that is
described precisely in terms of some complexity assumptions onH [see (2.2)].
A number of popular classification algorithms output classifiers of this type.
Below we briefly discuss two of them:AdaBoost, which is the most well-known
classification algorithm ofboosting type, and alsobagging. We provide some
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heuristic explanations of why these algorithms might have a tendency to output
convex combinations of classifiers from the base class with a certain degree of
sparsity of their weights and clustering of the base classifiers.

AdaBoost. The algorithm starts by assigning equal weightsw
(1)
j = 1

n
to all the

training examples(Xj ,Yj ). At iteration numberk, k = 1, . . . , T , the algorithm

attempts to minimize the weighted training error with weightsw
(k)
j over the base

classH of functions h :S �→ {−1,1} (such thath ∈ H implies −h ∈ H). If
ek denotes the weighted training error of the approximate solutionhk of this
minimization problem, the algorithm computes the coefficient

αk := 1

2
log

1− ek

ek

,

which is nonnegative sinceek ≤ 1
2, and then updates the weights according to the

formula

w
(k+1)
j := w

(k)
j e−Yjαkhk(Xj )

Z
,

whereZ is a normalizing constant that makes the weights add up to 1. After T

iterations, the algorithm outputs the classifierf = ∑T
k=1 λkhk, where

λk := αk∑T
j=1 αj

.

Typically, the classH is relatively small so that it is easy to design an efficient
algorithm (often called a weak learner) of approximate minimization of the
weighted training error over the class. The result of this, however, is that at
many iterations the weak learner outputs classifiershk from the baseH whose
weighted training error is just a little smaller than 1/2. If this is the case at
iterationk, the coefficientαk is close to 0 and the weightsw(k+1)

j do not differ
much from the weightsw(k)

j . If the weak learner possesses some stability, this
means that the base classifierhk+1 is close to the base classifierhk. As a result,
when the algorithm proceeds one observes a slow drift of the classifiershk in the
“hypotheses space”H , and the coefficients of these classifiers in the convex
combination will be small until we reach a place inH where the stability of the
weak learner breaks down and it outputs a classifier with a weighted training error
significantly smaller than 1/2. Thus, one can expect a certain degree of sparsity
(many small coefficients) and of clustering (many base classifiers that are close to
one another) of the resulting convex combination.

Bagging [9]. The algorithm at each iteration produces a bootstrap sample
drawn from the training data and outputs a classifier that minimizes the corre-
sponding bootstrap training error over the base classH . After T iterations the
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algorithm averages the resultingT base classifiers, creating a convex combination
with equal weightsλk := 1

T
. Again, if the weak learner possesses some stability

and since each bootstrap sample is a “small perturbation” of the training data, one
can expect some degree of clustering of the base functions involved in the con-
vex combination. (In this case, it is impossible to talk about the sparsity of the
coefficients since all of them are equal.)

These explanations are of course rather heuristic in nature and somewhat vague.
The reality might be much more complicated since, for instance, weak learners are
not necessarily stable. Often, lack of stability of the weak learner is viewed as
an advantage since it allows the algorithm to create more “diverse” ensembles of
base classifiers and to produce a combined classifier with larger margins. However,
the bounds of this paper seem to suggest that the performance of combined
classifiers is related to a rather delicate trade-off between their complexity and
margin properties. So, stability of the weak learner is a good and a bad property at
the same time (one should rather talk about optimal stability). The phenomenon of
sparsity of the coefficients is much better understood in the case of support vector
machines (see [30] for recent results in this direction) and the development of these
ideas for ensemble methods remains an open problem that is beyond the scope
of our paper. However, regardless of how close this explanation is to the truth,
some degree of sparsity and clustering in convex combinations output by popular
learning algorithms can be observed in experiments (see some very preliminary
results in [20] and more results in [1]). Our intention here is not to study why this is
happening, but rather to understand what kind of influence sparsity and clustering
properties of convex combinations output byAdaBoost and other classification
algorithms have on their generalization performance.

Another motivation to study the complexities based on sparsity and clustering
comes from learning theory, where it has become common to use global or
localized complexities based on sup-norm or continuity modulus of empirical or
Rademacher processes involved in the problem and indexed by the classF in
order to bound the generalization error (see [5, 8, 17, 18, 23]). However, these
complexities do not necessarily measure the accuracy of modern classification
methods correctly. The reason is that they are based on deviations of the empirical
measurePn from the true distributionP uniformly over the whole classF or over
L2(P)-balls in the class, while the learning algorithms might have some intrinsic
ways to restrict complexities of the classifiers they output by searching for a
minimum of empirical risk in some parts of the classF with restricted complexity
(although this part is typically data-dependent, cannot be specified in advance and
has to be determined in a rather complicated model selection process). Thus, there
is a need to develop new more adaptive bounds that take into account complexities
of individual classifiers in the class and can be applied to the classifiers output
by learning algorithms. A possible general approach to such complexities can be
described as follows. Suppose{G} is a family of subclasses of the classF and let
cn(G) be a complexity measure associated with the classG (e.g., it can be based
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on a localized Rademacher complexity ofG). Suppose also it has been observed
that a learning algorithm tends to output classifiers from subclassesG with small
values of complexitycn(G) (“sparse subclasses”). Then a natural question to ask
is whether the quantity of the typecn(f ) := inf{cn(G) :G � f } (which is already
an individual complexity off ) provides bounds on the generalization error off.

In the case where{G} is a countable family of nested subclasses, such questions
are related to structural risk minimization and other model selection techniques.
However, in classification one often encounters more complicated situations, such
as the setting of Theorem 5 below, where a natural family{G} is neither countable
nor nested and consists of distribution-dependent classes indexed by a functional
parameter (see the definition of the classesF C

Q,p,N before Lemma 2). The study
of complexity measures that occur in such more complicated model selection
frameworks is our main subject here. In the next section we will try to develop
several new approaches to measuring complexities of convex combinations and
use these complexities in new bounds on generalization error in classification.

2. Main results. The first important result about the generalization error
of classifiers fromF = conv(H) was proved in [28], where the generalization
ability of voting classifiers is explained in terms of the empirical distribution
Pn(yf (x) ≤ δ) of the quantityyf (x) called margin. The authors prove that if
H = {2I (x ∈ C) − 1 :C ∈ C}, whereC is a Vapnik–Chervonenkis class of sets
with VC-dimensionV (for definitions see, e.g., [32] or [12]), then for allt > 0
with probability at least 1− e−t for all f ∈ F = conv(H) we have

P
(
yf (x) ≤ 0

)
(2.1)

≤ inf
δ∈(0,1]

(
Pn

(
yf (x) ≤ δ

) + K

((
V log2(n/δ)

nδ2

)1/2

+
(

t

n

)1/2))
,

whereK > 0 is an absolute constant. To understand this result, let us give one
interpretation of the marginyf (x). One can think ofyf (x) as the “confidence” of
prediction of the examplex, sincef classifiesx correctly if and only ifyf (x) > 0;
and iff (x) is large in absolute value it means that it makes its prediction with high
confidence. Iff classifies most of the training examples with high confidence,
then for someδ > 0 (which is not “too small”) the proportion of examples
Pn(yf (x) ≤ δ) classified below the confidenceδ will be small. The second term
of the bound is of the order(

√
nδ)−1, and will also be small for largen, which

makes the bound meaningful.
This result was extended by Schapire and Singer in [29] to classes of real-valued

functions, namely, to so-called VC-subgraph classes (for definition see [32]), and
was further extended in several directions in [19] and [21]. The main idea of this
follow-up work was to replace the second term of the bound proved by Schapire
et al. [28] by a functionεn(F ; δ; t) that has better dependence on the sample sizen
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and on the margin parameterδ. The bounds obtained in [19] are also more general:
they apply to arbitrary function classesF , not only to the convex hulls.

Given a probability distributionQ onX and a classH of measurable functions
onX, denote

dQ,2(f, g) := (
Q(f − g)2)1/2

, f, g ∈ H ,

theL2(Q)-distance inH . Let thecovering number NdQ,2(H , u) be the minimal
number ofdQ,2-balls of radiusu > 0 with centers inH needed to coverH . The
logarithm of this numberHdQ,2(H , u) := logNdQ,2(H , u) is called theu-entropy
of H with respect todQ,2. In what follows, we will also useLp(Q)-distances and
the corresponding covering numbers and entropies forp ∈ [1,+∞].

Often, it makes sense to assume (and it will be assumed in what follows) that
the family of weak classifiersH satisfies the condition

sup
Q∈P (X)

NdQ,2(H , u) = O(u−V )(2.2)

for someV > 0, whereP (X) is the set of all discrete distributions onX. For
example, ifH is a VC-subgraph class with VC-dimensionV (H), then by the
well-known result that goes back to Dudley and Pollard (see [14] for the current
version), (2.2) holds withV = 2V (H), namely,

sup
Q∈P (X)

NdQ,2(H , u) ≤ e
(
V (H) + 1

)(2e

u2

)V (H)

.(2.3)

Under the condition (2.2), the bound (2.1) was slightly improved by Koltchin-
skii and Panchenko in [19], who proved that for allt > 0 with probability at least
1− e−t for all f ∈ F = conv(H) we have

P
(
yf (x) ≤ 0

) ≤ inf
δ∈(0,1]

(
Pn

(
yf (x) ≤ δ

) + K

((
V

nδ2

)1/2

+
(

t

n

)1/2))
,

thus getting rid of the logarithmic factor log2(n/δ) in the second term of (2.1).
By itself this improvement is insignificant, but the generality of the methods
developed in [19] allowed the authors to obtain this type of bound for general
classesF of classifiers (not necessarily the convex hulls of VC-classes) and to
make some significant improvements in other situations, for example, for neural
networks. (The first margin type bounds for general function classes, including
neural networks, were based onL∞-entropies and shattering dimensions of the
class; see [4].) Moreover, it was shown in [19] that (2.1) can be further improved
in the so-called zero-error case, whenPn(yf (x) ≤ δ) is small forδ → 0. Namely,
the following result holds. Assume thatH satisfies (2.2) and letα = 2V/(V + 2).

Then, for allt > 0 with probability at least 1− e−t for all f ∈ F we have (with
some numerical constantK > 0)

P
(
yf (x) ≤ 0

)
(2.4)

≤ K inf
δ∈(0,1]

(
Pn

(
yf (x) ≤ δ

) +
((

1

δ

)2α/(2+α)

n−2/(α+2) + t

n

))
.
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This bound will be meaningful if

δ∗ = sup
{
δ : δ2α/(2+α)

Pn

(
yf (x) ≤ δ

) ≤ n−2/(2+α)}
is not “too small,” which means thatPn(yf (x) ≤ δ) should decrease “fast
enough” whenδ → 0. Actually, this bound holds not only for classes of functions
F = conv(H) whereH satisfies (2.2), but for any classF such that

sup
Q∈P (X)

logNdQ,2(F , u) = O(u−α), α ∈ (0,2),(2.5)

or even when the uniform entropy in (2.5) is replaced by the entropy with respect
to empiricalL2-distancedPn,2. It is well known that the convex hullF = conv(H)

of the classH satisfying (2.2) satisfies (2.5) withα = 2V/(V +2) (see, e.g., [32]),
which explains a particular choice ofα in (2.4). Under the condition (2.5) onF
the bound of (2.4) is optimal as shown in [19] by constructing a special class of
functionsF in Banach spacel∞ of uniformly bounded sequences. Finally, note
that the constantK involved in the bound can be redistributed between the two
terms: in front of the termPn(yf (x) ≤ δ) one can put a constant arbitrarily close
to 1 at the price of making the constant in front of the second term large.

In [21] Koltchinskii, Panchenko and Lozano proved the bounds on generaliza-
tion error under more general assumption on the entropy of the classF :∫ x

0
H

1/2
dPn,2

(F ;u)du ≤ Dψ(x), x > 0,(2.6)

with some constantD > 0 and with a concave functionψ. They showed that in
this case the term (

1

δ

)2α/(2+α)

n−2/(α+2)

involved in the bound (2.4) should be replaced by the quantityε
ψ
n (δ) defined as

the largest solution of the equation

ε = 1

δ
√

n
ψ

(
δ
√

ε
)
,

leading to so-calledψ-bounds on generalization error.
Margin-type bounds on generalization error can be also expressed in terms of

other entropies, in particular,L∞-entropy and in terms of shattering dimension of
the class, as in the papers of Bartlett [4] (that preceded [28]) and of Antos, Kégl,
Linder and Lugosi [2]. A typical bound in terms ofL∞-entropy is of the form

P
(
yf (x) ≤ 0

) ≤ K inf
δ∈(0,1]

(
Pn

(
yf (x) ≤ δ

) + logENdPn,∞(F ; δ/2) + t

n

)
(2.7)

for all f ∈ F with probability at least 1− e−t . TheL∞-entropy is always larger
thanL2-entropy, but for special classes of functions the difference might be not
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very significant, and because of a different form theL∞-bound has sometimes an
advantage over theL2-bounds. However, the detailed comparison of these bounds
goes beyond the scope of this paper.

Numerous experiments withAdaBoost and some other classification algorithms
showed that in practice the bounds of type (2.4) hold with smaller values ofα

than the theoretical considerations (based on the estimates of the entropy of the
whole convex hull) suggest. This means that ensemble classifiers often belong to a
subset of the convex hull of a smaller entropy than the entropy of the whole convex
hull. A natural question is whether it is possible to incorporate in the bound on
generalization error the information about theindividual complexity of the actual
classifier rather than useglobal complexity of the whole convex hull. In other
words, is it possible to replace the functionψ from condition (2.6) by a data-
dependent and classifier-dependent function that would make theψ-bounds on
generalization error more adaptive?

The fact that the margin type bounds hold in such generality means, at least on
the intuitive level, that the explicit structure of the convex hull is not used there.
On the contrary, in this paper we will heavily utilize the structure of the convex
hull and prove new bounds that reflect some measures of complexity of convex
combinations.

The idea of using a certain measure of complexity ofindividual convex
combinations already appeared in [21], where the authors suggested a way to
use a rate of decay of weightsλj in the convex combinationf = ∑T

j=1 λjhj

to improve the bound on the generalization error off. This measure, called
approximateγ -dimension, is defined as follows. Let us assume that the weights
are arranged in the decreasing order|λ1| ≥ |λ2| ≥ · · · . For a numberγ ∈ [0,1],
the approximate γ -dimension of f is defined as the smallest integer number
d ≥ 0 such that there existT ≥ 1, functionshj ∈ H , j = 1, . . . , T , and numbers
λj ∈ R, j = 1, . . . , T , satisfying the conditionsf = ∑T

j=1 λjhj ,
∑T

j=1 |λj | ≤ 1

and
∑T

j=d+1 |λj | ≤ γ. Note that in [21] the authors dealt with the symmetric
convex hull, so the coefficientsλj are not necessarily positive. Theγ -dimension
of f will be denoted byd(f ;γ ).

Then, for allt > 0 with probability at least 1− e−t we have for allf ∈ F =
conv(H) (again withα = 2V

V +2)

P
(
yf (x) ≤ 0

)
≤ K inf

δ∈(0,1]

(
Pn

(
yf (x) ≤ δ

)
(2.8)

+ inf
γ

(
d(f ;γ )

n
log

n

δ
+

(
γ

δ

)2α/(2+α)

n−2/(α+2) + t

n

))
.

This is an improvement over (2.4), which can be seen by comparing the infimum
over γ of the expression in the bound with the value of the expression for
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γ = 1 and noting thatd(f ;1) = 0. For example, if the weights decrease
polynomially |λj | ∼ j−β,β > 1, or exponentially|λj | ∼ e−βj , β > 0, then
explicit minimization overγ shows that in these cases (2.8) can be a substantial
improvement over (2.4) (see examples in [21]).

Our first result in this paper also deals with bounding the generalization
error of a classifierf = ∑T

j=1 λjhj ∈ F = conv(H) in terms of complexity
measures taking into account the sparsity of the weightsλj . Theorem 1 below
is a new version of the results of [21] [specifically, of the bound (2.8)] that can
be interpreted as interpolation between zero-error and nonzero-error cases; as its
corollary we will give a new short proof of (2.8). Theorem 2 is another result in
this direction with a different dependence of the bound on the sample size and the
margin parameterδ.

Let � = {ϕδ :R → [0,1] : δ ∈ 
 ⊂ R+} be a countable family of Lipschitz
functions such that the Lipschitz norm ofϕδ is bounded byδ−1, that is,

|ϕδ(s1) − ϕδ(s2)| ≤ δ−1|s1 − s2|,
and

∑
δ∈
 δ < ∞. In applications, such functions are frequently used as loss

functions in empirical risk minimization procedures of boosting type that output
large margin classifiers. One can use a specific choice of
 = {2−k : k ≥ 1}. The
following theorem holds.

THEOREM 1. If (2.2)holds, then for all t > 0 with probability at least 1−e−t

for all f ∈ F = conv(H) and δ ∈ 
 = {2−k : k ≥ 1},
Pϕδ(yf (x)) − Pnϕδ(yf (x))

(Pϕδ(yf (x)))1/2

≤ K inf
γ

((
d(f ;γ )

n
log

n

δ

)1/2

+
(

γ

δ

)α/2 (Pϕδ(yf (x)))−α/4

n1/2 +
(

t

n

)1/2)
,

where α = 2V/(V + 2).

Let us take, for example,ϕδ such thatϕδ(s) = 1 for s ≤ 0, ϕδ = 0 for s ≥ δ and
ϕδ is linear for 0≤ s ≤ δ. For any probability measureQ (e.g.,Q = P or Pn), one
can write

Q
(
yf (x) ≤ 0

) ≤ Qϕδ(yf (x)) ≤ Q
(
yf (x) ≤ δ

)
.(2.9)

For this choice ofϕδ and for a fixedf let us denotea = Pϕδ(yf (x)) and
b = Pnϕδ(yf (x)). It is clear that after minimizing the expression involved in the
right-hand side overγ, the inequality of Theorem 1 can be written as

a ≤ b + ua1/2 + va1/2−α/4,

where u and v are constants depending on the parameters involved in the
inequality. Since the right-hand side of the last inequality is strictly concave with
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respect toa, this inequality can be uniquely solved fora or, in other words, it
can be equivalently written asa ≤ ρ(b) for unique positive functionρ, which is,
obviously, increasing inb. Combining this with (2.9) we get

P
(
yf (x) ≤ 0

) ≤ Pϕδ(yf (x)) ≤ ρ
(
Pnϕδ(yf (x))

) ≤ ρ
(
Pn

(
yf (x) ≤ δ

))
.

The analysis ofρ will readily imply the main result in [21].

COROLLARY 1. If (2.2) holds and α = 2V/(V + 2), then for any t > 0 with
probability at least 1− e−t (2.8)holds for all f ∈ F = conv(H).

Roughly speaking, Corollary 1 describes the zero-error case of Theorem 1.
Thus, Theorem 1 is a more general and flexible formulation of the main result
in [21], as it interpolates between zero- and nonzero-error cases.

Next we will present a new bound on the generalization error of voting clas-
sifiers that takes into account the sparsity of weights in the convex combina-
tion. Given λ ∈ P (H) and f (x) = ∫

h(x)λ(dh), we can also representf as
f = ∑T

k=1 λkhk with T ≤ ∞ (sinceλ is a discrete probability measure). Without
loss of generality let us assume thatλ1 ≥ λ2 ≥ · · · . We defineγd(f ) = ∑T

k=d+1 λk

and forδ > 0 we define theeffective dimension function by

en(f, δ) = min
0≤d≤T

(
d + 2γ 2

d (f )

δ2 logn

)
.(2.10)

This name is motivated by the fact that (as will become clear from the proof of
Theorem 2 below) it can be interpreted as a dimension of a subset of the convex
hull conv(H) that contains a “good” approximation off.

THEOREM 2 (Sparsity bound). If (2.2) holds, then there exists an absolute
constant K > 0 such that for all t > 0 with probability at least 1 − e−t for all
λ ∈ P (H) and f (x) = ∫

h(x)λ(dh),

P
(
yf (x) ≤ 0

) ≤ inf
δ∈(0,1]

(
U1/2 + (

Pn

(
yf (x) ≤ δ

) + U
)1/2)2

,

where

U = K

(
V en(f, δ)

n
log

n

δ
+ t

n

)
.

It follows from the bound of the theorem that for allε > 0

P
(
yf (x) ≤ 0

) ≤ inf
δ∈(0,1]

(
(1+ ε)Pn

(
yf (x) ≤ δ

) +
(

2+ 1

ε

)
U

)
,

which is a more explicit version of the result. Results of similar flavor can be, in
principle, also obtained as a consequence of entropy-based margin-type bounds,
in particular, using theL∞-entropy. However, we believe that the more direct
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probabilistic argument we use in our proof (that goes back to [28]) is very natural
in this problem. Moreover, the same argument is typically present in the derivation
of entropy bounds for the convex hull or its subsets needed in alternative proofs.
Taking this into account, the direct proof we give here is shorter and easier. This
becomes especially clear in Theorems 3 and 4, where the entropy bounds on
subsets of the convex hull with restrictions on the variance of convex combinations
(see the definitions below) are most likely unknown. It is also worth mentioning
that the same randomization idea combined with a couple of other techniques
can be used in some other situations where probabilistic interpretation is not
straightforward, for instance, for kernel machines and their hierarchies (see [1]).

The following result was proved in [11]. LetH be a finite class withN =
card(H) and letδ∗ be the minimal margin on the training examples, that is,

δ∗ = δ∗(f ) = min
i≤n

Yif (Xi) = sup
{
δ :Pn

(
yf (x) ≤ δ

) = 0
}
.

Then for anyt > 0 with probability at least 1− e−t we have, for allf ∈ F =
conv(H) such thatδ∗(f ) ≥ (32/N)1/2,

P
(
yf (x) ≤ 0

) ≤ K

(
logN

nδ2∗
+ t

n

)
.(2.11)

We notice that

en(f, δ) = min
0≤d≤T

(
d + 2γ 2

d (f )

δ2 logn

)
≤ 2

δ2 logn,

where the last inequality follows by takingd = 0 in the expression under the
infimum. This shows that as a corollary of Theorem 2 one can extend the result
of Breiman [11] to much more general classes of functions [the role of logN

in (2.11) being now played byV logn]. Moreover, the bound of Theorem 2
interpolates between zero-error and nonzero-error cases without any assumptions
on the empirical distribution of the marginPn(yf (x) ≤ δ). To illustrate the role
of the effective dimensionen(f, δ) let us suppose that the weightsλj decrease
polynomially or exponentially fast:

EXAMPLE. (a) If λj ∼ j−β for β > 1, then one can explicitly minimize the
expression in (2.10), which in the zero-error casePn(yf (x) ≤ δ∗) = 0 gives

P
(
yf (x) ≤ 0

) ≤ K(β)

(
V

nδ
2/(2β−1)∗

log2 n

δ∗
+ t

n

)
,

which can be a significant improvement for large values ofβ.

(b) If λj ∼ e−j , then again one can explicitly minimize the expression in (2.10),
which in the zero-error casePn(yf (x) ≤ δ∗) = 0 gives

P
(
yf (x) ≤ 0

) ≤ K

(
V

n
log2 n

δ∗
+ t

n

)
.



1466 V. KOLTCHINSKII AND D. PANCHENKO

It is quite clear that one can come up with many alternative definitions of
sparsity measures of convex combinations that are based only on the sizes of
coefficients. For instance, one can measure the size of the “tail” of the convex
combination (after thed largest coefficients have been removed) using a different
norm instead of the�1-norm we used above. However, our approach seems to be
reasonable since it is based on the idea of splitting the whole convex combination
into two parts, one of them beingd-dimensional and another one belonging to a
rescaled convex hull ofH (the whole convex hull times a small coefficient, which
is a natural “neighborhood” of 0 in the convex hull).

The major drawback of this type of bound, however, is that it takes into account
only the size of the coefficients of the convex combination, but not the “closeness”
of the base functions involved in it. Such a “closeness” (reflected, e.g., in the
fact that the base functions classify most of the examples the same way or, more
generally, can be divided into several groups with the functions within each group
classifying similarly) could possibly lead to further complexity reduction.

We suggest below two different approaches to this problem. The first approach
is based on interpreting the convex combination as a mean of a functionh

randomly drawn from the classH with some probability distributionλ. Then in
order to measure the complexity of the convex combination it becomes natural to
bring in probabilistic quantities such as the variance of the convex combination
introduced below. In the extreme case, when all classifiershj are equal,f belongs
to a simple classH itself rather than to the possibly very large classF ; in this case,
the variance is equal to 0 and this is reflected in our generalization analysis off .
This approach is clearly related to the randomization proof of margin type bounds
in [28], but its real roots are in the well-known work of B. Maurey (see [27])
that provided a probabilistic argument often used in bounding the entropy of the
convex hull. The approach might be also of interest to practitioners since variance
can be easily incorporated in risk minimization techniques as a complexity penalty.
The generalization bounds based on the notion of variance are given in Theorems
3 and 4.

The second approach does not rely on the probabilistic interpretation, but rather
exploits the nonuniqueness of representing functions by convex combinations
and is based on covering numbers of the set of base functions in “optimal”
representations off. Thus, the metric structure of the base class replaces in
this approach the probabilistic structure. The generalization bound based on this
approach is given in Theorem 5.

Despite the fact that, possibly, there might be many other ways to define
complexities of this type, we believe that the approaches we are using have very
natural connections to important mathematical structures involved in the problem.

Givenλ ∈ P (H), consider

f (x) =
∫

h(x)λ(dh) =
T∑

k=1

λkhk(x).



COMPLEXITY AND GENERALIZATION BOUND 1467

We ask the following question: what if the functionsh1, . . . , hT are, in some sense,
close to each other? For example,n−1 ∑n

k=1(hi(Xk) − hj (Xk))
2 is small for all

pairsi, j. In this case, the convex combination can be approximated “well” by only
one function fromH . Or, more generally, one can imagine the situation when there
are several clusters of functions amongh1, . . . , hT such that within each cluster
all functions are close to each other. This information should be reflected in the
generalization error of classifierf, since it can be approximated by a classifier
from a small subset ofF . Below we prove two results in this direction. We will
start by describing the result where we considerh1, . . . , hT as one (hopefully
“small”) cluster, and then we will naturally generalize it to any number of clusters.

We define a pointwise variance ofh with respect to the distributionλ by

σ 2
λ (x) =

∫ (
h(x) −

∫
h(x)λ(dh)

)2

λ(dh).(2.12)

Clearly,σ 2
λ (x) = 0 if and only if

h(x) =
∫

h(x)λ(dh), λ-a.e. onH ,

or, equivalently (in the case of a discrete measureλ), if h1(x) = h2(x) for all
h1, h2 ∈ H with λ({h1}) > 0, λ({h2}) > 0. The complexity characteristics of a
similar flavor are sometimes used in the current work on PAC Bayesian bounds
on generalization performance of aggregated estimates for least square regression;
see [3].

THEOREM 3. If (2.2) holds, then there exists an absolute constant K > 0
such that for all t > 0 with probability at least 1 − e−t for all λ ∈ P (H) and
f (x) = fλ(x) = ∫

h(x)λ(dh),

P
(
yfλ(x) ≤ 0

)
≤ K inf

0<δ≤γ≤1

(
Pn

(
yfλ(x) ≤ δ

) + Pn

(
σ 2

λ (x) ≥ γ
) + V γ

nδ2 log2 n

δ
+ t

n

)
.

REMARK. The following simple observation might be useful. Since

Pn

(
σ 2

λ (x) ≥ γ
) ≤ Pnσ

2
λ

γ
,

one can plug this into the right-hand side of the bound of the theorem and then
optimize it with respect toγ. The optimal value ofγ is

γ̂ := (Pnσ
2
λ )1/2√nδ√

V log(n/δ)
∧ 1
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(we are assuming herePnσ
2
λ > 0!), which immediately leads to the following

upper bound on generalization error:

K inf
0<δ≤γ̂

(
Pn

(
yfλ(x) ≤ δ

) + 2

√
V (Pnσ

2
λ )1/2

√
nδ

log
n

δ
∧ V

nδ2 log2 n

δ
+ t

n

)
.

This is to be compared with the bound (2.1) and it shows that the quantity
Pnσ

2
λ might provide an interesting choice of complexity penalty in classification

problems of this type. More generally, forp ≥ 1 and (again, under the assumption
Pnσ

2p
λ > 0)

γ̂ := (Pnσ
2p
λ )1/(p+1)n1/(p+1)δ2/(p+1)

V 1/(p+1) log2/(p+1) (n/δ)
∧ 1,

we are getting the bound

K inf
0<δ≤γ̂

(
Pn

(
yfλ(x) ≤ δ

)

+ 2
V p/(p+1)(Pnσ

2p
λ )1/(p+1)

np/(p+1)δ2p/(p+1)
log2p/(p+1) n

δ
∧ V

nδ2 log2 n

δ
+ t

n

)
.

In the limit p → ∞ this yields the bound [provided that max1≤j≤n σ 2
λ (Xj ) > 0]

K inf
0<δ≤max1≤j≤n σ2

λ (Xj )

(
Pn

(
yfλ(x) ≤ δ

) + V max1≤j≤n σ 2
λ (Xj )

nδ2 log2 n

δ
+ t

n

)

[which should be compared with (2.11); note the presence of the variance in the
numerator].

The result of Theorem 3 is, probably, of limited interest since there is no reason
to expect that the “global variances” of convex combinations output by popular
learning algorithms are necessarily small. It is much more likely that it would be
possible to split a convex combination into several clusters, each having a small
variance. This is reflected in the following definition.

Givenm ≥ 1 andλ ∈ P (H), define a set

Cm(λ) =
{
(α1, . . . , αm,λ1, . . . , λm) :λk ∈ P (H), αk ≥ 0,

m∑
k=1

αkλ
k = λ

}
.

For an elementc ∈ Cm(λ), we define a weighted variance over clusters by

σ 2(c;x) =
m∑

k=1

α2
kσ

2
λk (x),(2.13)

whereσ 2
λk (x) are defined in (2.12). If indeed there arem small clusters among

functionsh1, . . . , hT , then one should be able to choose an elementc ∈ Cm(λ) so
thatσ 2(c;x) will be small on the majority of data pointsX1, . . . ,Xn.



COMPLEXITY AND GENERALIZATION BOUND 1469

THEOREM 4. If (2.2) holds, then there exists an absolute constant K > 0
such that for all t > 0 with probability at least 1 − e−t for all λ ∈ P (H) and
f (x) = fλ(x) = ∫

h(x)λ(dh),

P
(
yfλ(x) ≤ 0

)
≤ K inf

m≥1
inf

c∈Cm(λ)
inf

0<δ≤γ≤1

(
Pn

(
yfλ(x) ≤ δ

)

+ Pn

(
σ 2(c;x) ≥ γ

) + V mγ

nδ2 log2 n

δ
+ t

n

)
.

If we define the number of(γ, δ)-clusters ofλ as the smallestm for which there
existsc ∈ Cλ such that

Pn

(
σ 2(c;x) ≥ γ

) ≤ V mγ

nδ2 log2 n

δ

and denote this number bŷmλ(n, γ, δ), then the bound implies that for all
λ ∈ P (H)

P
(
yfλ(x) ≤ 0

) ≤ K inf
0<δ≤γ

(
Pn

(
yfλ(x) ≤ δ

) + V m̂λ(n, γ, δ)γ

nδ2 log2 n

δ
+ t

n

)
.

The choice ofγ = δ gives an upper bound with the error term (added to the
empirical margin distribution) of the order

m̂λ(n, δ, δ)

nδ
log2 n

δ
,

which significantly improves earlier bounds provided that we are lucky to have a
small number of clusterŝmλ(n, δ, δ) in the convex combination.

We now turn to a different approach to measuring complexity of convex
combinations. It is based on empirical covering numbers of the set of functions
involved in a particular convex combination. LetH be a class of measurable
functions (classifiers) fromX into {−1,1}, such thatH satisfies (2.2). It is
interesting to note that in this case the condition (2.2) is equivalent to the condition
that the class of setsC := {{h = +1} :h ∈ H} is Vapnik–Chervonenkis (see,
e.g., [13]).

As before,H will play the role of a base class. LetF := sconv(H), that is,
F is the symmetric convex hull ofH ,

sconv(H) :=
{

N∑
i=1

λihi, hi ∈ H , λi ∈ R,

N∑
i=1

|λi | ≤ 1,N ≥ 1

}
.

Forf ∈ F , a probability measureQ onX andp ∈ [1,+∞], define

NdQ,p
(f, ε) := inf

{
NdQ,p

(H ′, ε) :H ′ ⊂ H , f ∈ sconv(H ′)
}
.
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Let us call a subsetH ′ ⊂ H a base of f ∈ sconv(H) iff f ∈ sconv(H ′). Then
NdQ,p

(f ; ε) is the minimalε-covering number of bases off. Let

ψ̂n(f ; δ) :=
∫ δ

0

√
NdPn,2(f, ε) log(1/ε) dε.

As earlier in this section (see also [21]), for a concave nondecreasing functionψ

on [0,+∞) with ψ(0) = 0, we defineεψ
n (δ) as the largest solution of the equation

ε = 1

δ
√

n
ψ

(
δ
√

ε
)

with respect toε. Let now

ε̂n(f, δ) := εψ̂n(f,·)
n (δ).

The functionψ̂n(f, ·) can be viewed as a data- and classifier-dependent estimate
of the entropy integral in the condition (2.6), and the bound of Theorem 5 below
is an adaptive version ofψ-bounds developed in [21].

THEOREM 5. If a class of measurable functions H = {h :X → {−1,+1}}
satisfies (2.2), then for all t ≥ C log2 n, with probability at least 1 − e−t the
following bound holds for all f ∈ F :

P{yf (x) ≤ 0} ≤ K inf
δ∈(0,1]

[
Pn{yf (x) ≤ δ} + ε̂n(f, δ) + t

nδ2

]
,

where K,C > 0 are absolute constants.

REMARK 1. Clearly, for allε > 0

NdPn,2(f, ε) ≤ NdPn,∞(f, ε),

and since the functions inH take their values in{−1,1}, NdPn,∞(f, ε) does not
depend onε for all ε < 2. Therefore, in this range ofε we will use the notation
NdPn,∞(f ) for it. This quantity is always bounded by 2n and it shows how many
classifiershj ∈ H that differ on the sample are involved in the “most economical”
representation off ∈ sconv(H) (so it can be viewed as a dimension off ). The
following bound is trivial:

ψ̂n(f ; δ) ≤ 2
√

NdPn,∞(f )δ

√
log

1

δ
, δ < e−1,

and it shows, in particular, that̂ψn(f, δ) is well defined. It also shows that the
function ε̂n(f, δ) involved in the bound of the theorem can be replaced by the
following upper bound that has a much simpler meaning:

NdPn,∞(f )

n
log

n

δNdPn,∞(f )

[althoughε̂n(f, δ) can be much smaller than this upper bound].
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REMARK 2. In fact, the bound of the theorem can be improved by introducing

Ĥn(f, ε) := NdPn,2(f, ε) log
1

ε
∧ ε−2V/(V +2)

and defining the function

ψ̂n(f, t, δ) :=
∫ δ

0
Ĥ 1/2

n

(
f, ε ∨

√
t

n

)
dε.

Then one can definêεn(f, t, δ) asε
ψ
n (δ) with ψ(·) := ψ̂n(f, t, ·). It follows from

the proofs below that for allt ≥ C log2 n, with probability at least 1− e−t the
following bound holds for allf ∈ F :

P{yf (x) ≤ 0} ≤ K inf
δ∈(0,1]

[
Pn{yf (x) ≤ δ} + ε̂n(f, t, δ) + t

nδ2

]

with some constantsK,C > 0. The termε−2V/(V +2) in the definition ofĤn(f, ε)

is (up to a constant) a well-known upper bound on the entropy of the convex hull
of a VC-type class. The definition of̂Hn(f, ε) is based on an upper bound (see
Lemma 2 below) on the entropy of therestricted convex hull of H defined (given
a probability measureQ andp ≥ 1) as{

f ∈ sconv(H) :∀ ε : NdQ,p
(f, ε) ≤ N(ε)

}
,

whereN is a given nonincreasing function. In fact, any other upper bound on
the entropy of such sets can be used instead ofĤn(f, ε). Apparently, more subtle
bounds than the result of Lemma 2 (that interpolate better between the case of
finite-dimensional convex combinations and the case of the whole convex hull)
should exist and allow one to improve the bound of Theorem 5, but at the moment
we do not know how to prove a better bound. Theorem 5 can be extended to
classesH of functions taking values in[−1,1] (not necessarily binary functions),
but its formulation becomes more complicated since it involves bothL2(Pn)- and
L1(Pn)-entropies in this case.

3. Proofs. Theorem 6 will be the main technical tool in the proofs of
Theorems 1–4. This theorem extends the inequality of Vapnik and Chervonenkis
for VC-classes of sets and VC-major classes of functions to classes of functions
F = {f :X → [−1,1]} satisfying the uniform entropy condition∫ ∞

0
log1/2 N(F , u) du < ∞,(3.1)

where

N(F , u) = sup
Q∈P (X)

NdQ,2(F , u).

For instance, it obviously holds under (2.2) forF = conv(H), as it follows from
the well-known bounds on the entropy of the convex hull.
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THEOREM6. If F = {f :X → [0,1]} is a class of [0,1]-valued functions that
satisfies (3.1),then there exists an absolute constant K > 0 such that for any t > 0
with probability at least 1− e−t for all f ∈ F

Pf − Pnf ≤ K

(
n−1/2

∫ (Pf )1/2

0
log1/2 N(F , u) du +

(
tPf

n

)1/2)
,(3.2)

and with probability at least 1− e−t for all f ∈ F

Pnf − Pf ≤ K

(
n−1/2

∫ (Pnf )1/2

0
log1/2 N(F , u) du +

(
tPnf

n

)1/2)
.(3.3)

PROOF. Equation (3.2) is Corollary 1 in [25]. Equation (3.3) is not formulated
in [25] explicitly but it is proved similarly to (3.2). Equations (3.2) and (3.3) also
follow easily from Corollary 3 in [26]. �

There are two features of this result that make it particularly useful. First of all,
it is well known (see [13]) that if, givenp > 0, we look at the layer of functions
Fp = {f ∈ F :Pf ≤ p}, then the typical value of the deviationPf − Pnf on
this layer or, in other words, the expectationEsup{Pf − Pnf :f ∈ Fp}, can be
estimated by the entropy integral

n−1/2
∫ √

p

0
log1/2 N(F , u) du,

where the upper limit
√

p measures the size ofFp. This simply reflects the fact
that functions with smaller meanPf will have smaller fluctuations. Theorem 6
says that this happens on all layers at the same time, which gives us an adaptive
control over the whole classF . The second important feature of this result is
that the deviation from a typical value is controlled for each function individually
by the term(tPf/n)1/2. This is convenient from the point of view of structural
risk minimization since one only has to estimate the typical value on each class to
which a functionf may belong, but the deviation term is left unchanged. For other
results in this direction we refer the reader to [26].

Given an integerd ≥ 1, denote

Fd = convd(H) =
{

d∑
i=1

λihi :
d∑

i=1

λi ≤ 1, λi ≥ 0, hi ∈ H

}
.

Again, let� = {ϕδ :R → [0,1] : δ ∈ 
 ⊂ R+} be a countable family of Lipschitz
functions such that Lipschitz norm ofϕδ is equal toδ−1 and

∑
δ∈
 δ < ∞. One

can use a specific choice of
 = {2−k : k ≥ 1}. Fora > 0, b ≥ 0 we define

φ(a, b) = (a − b)2

a
I (a ≥ b),

and fora = 0 we letφ(a, b) = φ(0, b) = 0. The following theorem holds.
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THEOREM 7. If (2.2) holds, then there exists K > 0 such that for all t > 0
with probability at least 1− e−t we have for all d ≥ 1, f ∈ Fd and δ ∈ 
,

φ
(
Pϕδ(yf (x)),Pnϕδ(yf (x))

) ≤ K

(
dV

n
log

n

δ
+ t

n

)
.(3.4)

PROOF. The proof is a straightforward application of Theorem 6. We will
proceed in several steps.

Step 1 (Estimating covering numbers). First of all, if given a class of
measurable functions onX, F = {f :X → [0,1]}, we introduce a new class of
measurable functions

F Y = {g(x, y) = yf (x) :X × Y → [−1,1] :f ∈ F }
defined onX × Y, then

N(F Y, u) = N(F , u)

since for any(x1, y1), . . . , (xn, yn) and anyf1, f2 ∈ F we have

1

n

n∑
i=1

(
yif1(xi) − yif2(xi)

)2 = 1

n

n∑
i=1

(
f1(xi) − f2(xi)

)2
.

Therefore, condition (2.2) onH is equivalent to the corresponding condition
onHY.

The following bound for the uniform entropy ofF Y
d in terms ofN(HY, u) is

well known (see [21], Lemma 2):

N(F
Y
d , u) ≤

(
2e2N(HY, u)(d2 + 16u−2)

d2

)d

.

In combination with (2.2) it implies that for someK > 0

logN(F
Y
d , u) ≤ KdV log

1

u
.

For a fixed ϕδ ∈ � the uniform covering numbers of the classϕδ ◦ F
Y
d =

{ϕδ(g) :g ∈ F
Y
d } can be bounded as

N(ϕδ ◦ F
Y
d , u) ≤ N(F

Y
d , δu),

since for any probability measureQ on X × Y the Lipschitz condition onϕδ

implies that(
Q

(
ϕδ(yf (x)) − ϕδ(yg(x))

)2)1/2 ≤ δ−1(Q(f − g)2)1/2
,

and, therefore,

logN(ϕδ ◦ F
Y
d , u) ≤ KdV log

1

δu
.
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Step 2 (Nonadaptive bound). Theorem 6 applied toϕδ ◦ F
Y
d guarantees that

for any t > 0 with probability at least 1− e−t for all f ∈ Fd ,

Pϕδ(yf (x)) − Pnϕδ(yf (x))

≤ K

((
dV

n

)1/2 ∫ (Pϕδ(yf (x)))1/2

0
log1/2 1

δu
du +

(
tPϕδ(yf (x))

n

)1/2)
.

To estimate the first term on the right-hand side one can easily check that∫ s

0

(
log

1

u

)1/2

du ≤ 2s

(
log

1

s

)1/2

for s ∈ [0, e−1].(3.5)

This inequality is well known and, moreover, the value 2 of the constant is
irrelevant here. Hence,∫ (Pϕδ(yf (x)))1/2

0
log1/2 1

δu
du

= δ−1
∫ δ(Pϕδ(yf (x)))1/2

0
log1/2 1

s
ds

≤ 2
(
Pϕδ(yf (x))

)1/2 max
(

1, log1/2 1

δ(Pϕδ(yf (x)))1/2

)
.

Without loss of generality we can assume thatPϕδ(yf (x)) ≥ n−1; otherwise, the
bound of the theorem becomes trivial. Therefore,

max
(

1, log1/2 1

δ(Pϕδ(yf (x)))1/2

)
≤ log1/2 n

δ
,

which finally yields∫ (Pϕδ(yf (x)))1/2

0
log1/2 1

δu
du ≤ 2

(
Pϕδ(yf (x))

)1/2 log1/2 n

δ
.

We have proved that

Pϕδ(yf (x)) − Pnϕδ(yf (x))

(Pϕδ(yf (x)))1/2 ≤ K

((
dV

n
log

n

δ

)1/2

+
(

t

n

)1/2)
,

which implies that

φ
(
Pϕδ(yf (x)),Pnϕδ(yf (x))

) ≤ K

(
dV

n
log

n

δ
+ t

n

)
.

Step 3 (Union bound, adaptivity). The statement of the theorem now follows
by applying the union bound and increasingK. Indeed, let us introduce the event

Ad,δ(t
′) =

{
∀f ∈ Fd :φ

(
Pϕδ(yf (x)),Pnϕδ(yf (x))

) ≤ K

(
dV

n
log

n

δ
+ t ′

n

)}
,
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which holds with probability 1− e−t ′ . For a fixedt and for a fixedd andδ, define
t ′ according to the equalitye−t ′ = (δe−t )/(d2K), whereK is chosen so that the
condition

∑
d∈Z+,δ∈
 δd−2/K ≤ 1 holds. With this choice oft ′ the eventAd,δ(t

′)
can be rewritten

Ad,δ =
{
∀f ∈ Fd :φ

(
Pϕδ(yf (x)),Pnϕδ(yf (x))

)

≤ K

(
dV

n
log

n

δ
+ 1

n
log

Kd2

δ
+ t

n

)}
,

and its probability is greater than

Pr(Ad,δ) ≥ 1− δe−t

d2K
.

It implies that the probability of the intersection

Pr

(⋂
d,δ

Ad,δ

)
≥ 1− ∑

δ,d

δe−t

d2K
≥ 1− e−t .

This means that with probability at least 1− e−t all the eventsAd,δ hold
simultaneously. But, obviously, the second term in the definition ofAd,δ can be
bounded by

1

n
log

Kd2

δ
≤ K

d

n
log

n

δ

and, thus,Aδ,d is a subset of the event

Ad,δ ⊆ A′
d,δ =

{
∀f ∈ Fd :φ

(
Pϕδ(yf (x)),Pnϕδ(yf (x))

) ≤ K ′
(

dV

n
log

n

δ
+ t

n

)}

for someK ′ > K, which proves the statement of the theorem, since

Pr

(⋂
d,δ

A′
d,δ

)
≥ Pr

(⋂
d,δ

Ad,δ

)
≥ 1− e−t .

�

PROOF OF THEOREM 1. For a fixedd, γ consider a classFd,γ = {f ∈
F :d(f ;γ ) ≤ d}. One can estimate the uniform entropy ofFd,γ as (see [21])

logN(Fd,γ , u) ≤ K

(
d log

1

u
+

(
γ

u

)α)
.

For a fixed ϕδ ∈ � the uniform covering numbers of the classϕδ ◦ F
Y
d,γ =

{ϕδ(yf (x)) :f ∈ Fd,γ } can be bounded as

N(ϕδ ◦ F
Y
d,γ , u) ≤ N(Fd,γ , δu),
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since, for any probability measureQ on X × Y, the Lipschitz condition onϕδ

implies that(
Q

(
ϕδ(yf (x)) − ϕδ(yg(x))

)2)1/2 ≤ δ−1(Q(yf − yg)2)1/2 = δ−1(Q(f − g)2)1/2
,

and, therefore,

logN(ϕδ ◦ F
Y
d,γ , u) ≤ K

(
d log

1

δu
+

(
γ

δu

)α)
.

Using this estimate on the covering numbers, Theorem 6 now implies (in exactly
the same way we used it in the proof of Theorem 7; only integration here is easier)
that for anyt > 0 with probability at least 1− e−t for all f ∈ Fd,γ

Pϕδ(yf (x)) − Pnϕδ(yf (x))

(Pϕδ(yf (x)))1/2

≤ K

((
d

n
log

n

δ

)1/2

+
(

γ

δ

)α/2 (Pϕδ(yf (x)))−α/4

n1/2 +
(

t

n

)1/2)
.

It remains to show that, possibly increasingK, this inequality holds for all
d, δ and γ. To do this we will use the above inequality witht replaced by

t ′ + log Kd2

δγ
and, hence,e−t replaced bye−t ′ = (e−t δγ )/(Kd2), whereδ, γ ∈

{2−k : k ≥ 1}. Then the union bound should be applied in the whole range of
d, δ andγ. Without loss of generality we assume that for allf ∈ F andδ ∈ 


we havePϕδ(yf (x)) ≥ n−1, andγ can be restricted to the set of values satisfying(
γ

δ

)α/2 (Pϕδ(yf (x)))−α/4

n1/2 ≥
(

t

n

)1/2

,

or, equivalently,

γ ≥ δ
(
Pϕδ(yf (x))

)1/2
t1/α ≥ δn−1/2t1/α.

Under these assumptions

log
Kd2

δγ
≤ Kd log

n

δ
,

which allows us to complete the proof by using the union bound and choosing the
value ofK large enough. �

PROOF OFCOROLLARY 1. To see that Theorem 1 implies Corollary 1 one
should first notice that ifPnϕδ(yf (x)) = 0, then the inequality of Theorem 1 can
be solved forPϕδ(yf (x)) to give

Pϕδ(yf (x)) ≤ I (f ) = K inf
γ

(
d(f ;γ )

n
log

n

δ
+

(
γ

δ

)2α/(2+α)

n−2/(α+2) + t

n

)
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(we prove it below). Moreover, ifPnϕδ(yf (x)) is of the same order of magnitude
as I (f ), then we will show thatPϕδ(yf (x)) will also be of the same order of
magnitude asI (f ). Finally, if Pnϕδ(yf (x)) is larger than a constant timesI (f ),

thenPϕδ(yf (x)) is dominated by a constant timesPnϕδ(yf (x)). After all this is
proved, it remains to notice that, for a specific choice of functionsϕδ such that
ϕδ(s) = 1 for s ≤ 0, ϕδ(s) = 0 for s ≥ δ and linear on[0, δ], we have

P
(
yf (x) ≤ 0

) ≤ Pϕδ(yf (x)) and Pnϕδ(yf (x)) ≤ Pn

(
yf (x) ≤ δ

)
.

We will now explain how to solve the inequality of Theorem 1. We observe that it
is of the form

y ≤ x + ay1/2 + byβ,(3.6)

wherey = Pϕδ, x = Pnϕδ, 0 < β < 1, a, b > 0. In our case alsoβ = 1/2 − α/4.

Definey1 andy2 as the solutions of the equations

y1 = ay
1/2
1 , y2 = by

β
2

and notice that

y ≥ ay1/2 for y ≥ y1; y ≥ byβ for y ≥ y2.

Assume thatx ≤ y1+y2. Then (3.6) implies thaty ≤ K(y1+y2) for some absolute
constantK > 0. Indeed, if we plugK(y1 + y2) into the right-hand side of (3.6) we
get

x + a
(
K(y1 + y2)

)1/2 + b
(
K(y1 + y2)

)β
≤ (y1 + y2) + K1/2a(y1 + y2)

1/2 + Kβb(y1 + y2)
β

≤ (y1 + y2) + K1/2(y1 + y2) + Kβ(y1 + y2)
β

(sincey1 + y2 ≥ y1 andy1 + y2 ≥ y2)

≤ (1+ K1/2 + Kβ)(y1 + y2) ≤ K(y1 + y2),

if K is large enough. This shows that (3.6) fails fory ≥ K(y1 + y2), and hence
the solution of (3.6) is smaller thanK(y1 + y2). Assuming thatx ≥ y1 + y2 and
settingC := y

x
, we get from (3.6)

Cx ≤ x + C1/2ax1/2 + Cβbxβ ≤ x + C1/2x + Cβx = (1+ C1/2 + Cβ)x,

which implies C ≤ 1 + C1/2 + Cβ and hencey ≤ Kx for a large enough
constantK. Thus, always with large enoughK we havey ≤ K(x + y1 + y2),

implying the result. �

PROOF OFTHEOREM 2. Let us make a specific choice of functionsϕδ. For
eachδ ∈ 
 we setϕδ to beϕδ(s) = 1 for s ≤ δ, ϕδ(s) = 0 for s ≥ 2δ and linear on
[δ,2δ].
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Let us fixf = ∑T
k=1 λkhk ∈ F , and for a fixed 0≤ d ≤ T representf as

f =
d∑

k=1

λkhk + γd(f )

T∑
k=d+1

λ′
khk,

whereγd(f ) = ∑T
k=d+1 λk andλ′

k = λk/γd(f ).

GivenN ≥ 1, we generate an i.i.d. sequence of functionsξ1, . . . , ξN according
to the distributionPξ (ξi = hk) = λ′

k for k = d + 1, . . . , T and independent of
{(Xk,Yk)}. Clearly,Eξ ξi(x) = ∑T

k=d+1 λ′
khk(x). Consider a function

g(x) =
d∑

k=1

λkhk(x) + γd(f )
1

N

N∑
k=1

ξk(x),

which plays the role of a random approximation off in the following sense. We
can write

P
(
yf (x) ≤ 0

) = EξP
(
yf (x) ≤ 0, yg(x) ≤ δ

) + EξP
(
yf (x) ≤ 0, yg(x) ≥ δ

)
(3.7) ≤ EξPϕδ(yg(x)) + EPξ

(
yg(x) ≥ δ,Eξ yg(x) ≤ 0

)
.

In the last term for a fixed(x, y) ∈ X × Y we have

Pξ

(
yg(x) ≥ δ,Eξ yg(x) ≤ 0

) ≤ Pξ

(
yg(x) − Eξ yg(x) ≥ δ

)

= Pξ

(
N∑

i=1

(
yξi(x) − yEξ ξi(x)

) ≥ Nδ/γd(f )

)

≤ exp
(−Nδ2/2γ 2

d (f )
)
,

where in the last step we used Hoeffding’s inequality. Hence,

P
(
yf (x) ≤ 0

) − e−Nδ2/2γ 2
d (f ) ≤ EξPϕδ(yg(x)).(3.8)

Similarly, one can write

EξPnϕδ(yg(x)) ≤ EξPn

(
yg(x) ≤ 2δ

) ≤ Pn

(
yf (x) ≤ 3δ

)
+ EξPn

(
yg(x) ≤ 2δ, yf (x) ≥ 3δ

)
(3.9)

≤ Pn

(
yf (x) ≤ 3δ

) + e−Nδ2/2γ 2
d (f ).

Clearly, for any random realization of the sequenceξ1, . . . , ξN , the random
function g belongs to the classFd+N. Convexity of the functionφ(a, b) and
Theorem 7 imply that for anyt > 0 with probability at least 1− e−t for all δ ∈ 


and allf ∈ F

φ
(
EξPϕδ(yg(x)),EξPnϕδ(yg(x))

) ≤ Eξφ
(
Pϕδ(yg(x)),Pnϕδ(yg(x))

)
≤ K

(
V (d + N)

n
log

n

δ
+ t

n

)
.
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The fact thatφ(a, b) is decreasing inb and increasing ina combined with (3.8)
and (3.9) implies that

φ
(
P

(
yf (x) ≤ 0

) − e−Nδ2/2γ 2
d (f ),Pn

(
yf (x) ≤ 3δ

) + e−Nδ2/2γ 2
d (f ))

≤ K

(
V (d + N)

n
log

n

δ
+ t

n

)
.

SettingN = 2(γ 2
d (f )/δ2) logn, we get

φ
(
P

(
yf (x) ≤ 0

) − 1/n,Pn

(
yf (x) ≤ 3δ

) + 1/n
) ≤ K

(
V en(f, δ, d)

n
log

n

δ
+ t

n

)
,

where en(f, δ, d) = d + 2(γ 2
d (f )/δ2) logn. Solving the last inequality for

P(yf (x) ≤ 0) and changing the variable 3δ → δ gives the bound (that holds with
probability at least 1− e−t )

P
(
yf (x) ≤ 0

) ≤ (
W1/2 + (

Pn

(
yf (x) ≤ δ

) + W
)1/2)2

,(3.10)

where

W = W(f,n, d, δ, t) := K

(
V en(f, δ, d)

n
log

n

δ
+ t

n

)
.

It remains to make the bound uniform overd andδ, which is done using standard
union bound techniques. More specifically, replacet in the above bound by
t ′(d, δ) = t + 2 log(1/δ) + 2 logd + c, whereδ ∈ {2−k : k ≥ 1} and

c := 2 log

( ∞∑
k=1

k−2

)
.

Then the union bound can be used to show that (3.10) [witht replaced byt ′(d, δ)]
holds for alld and all δ ∈ {2−k : k ≥ 1} simultaneously with probability at least
1− p, where

p ≤ e−t−c
∞∑

k=1,d=1

e−2 logk−2 logd = e−t−c

( ∞∑
k=1

k−2

)2

= e−t ,

and, hence, we also have with probability at least 1− e−t

P
(
yf (x) ≤ 0

) ≤ inf
δ∈{2−k : k≥1}

inf
d

(
W1/2(f,n, d, δ, t ′(d, δ)

)

+ (
Pn

(
yf (x) ≤ δ

) + W
(
f,n, d, δ, t ′(d, δ)

))1/2)2
.

Taking into account the monotonicity of the functionen(f, δ, d) with respect toδ
(and increasing the value of the constantK), it is now easy to extend the infimum
overδ to all δ ∈ (0,1]. Increasing the value ofK further allows one to rewrite the
bound as

P
(
yf (x) ≤ 0

) ≤ inf
δ∈(0,1]

(
U1/2 + (

Pn

(
yf (x) ≤ δ

) + U
)1/2)2
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with U defined in the formulation of the theorem, which completes the proof.�

Theorem 3 is a special case of Theorem 4; thus we will proceed by proving
Theorem 4.

PROOF OFTHEOREM4. We will proceed to prove Theorem 4 in several steps.

Step 1 (Random approximation). Consider functionsϕδ the same as in the
proof of Theorem 2. Letλ ∈ P (H) andf (x) = ∫

h(x)λ(dh). Consider an element
c ∈ Cm(λ), that is,c = (α1, . . . , αm,λ1, . . . , λm), such thatλ = ∑m

i=1 αjλ
j and

λj ∈ P (H). We interpretedc as a decomposition ofλ into m clusters, or in other
words, the decomposition of the set{hi} into m clusters. This time we will generate
functions from each cluster independently from each other (and, as before,
independently of the data) and take their weighted sum to approximatef (x).

GivenN ≥ 1, let us generate independent random functionsξ
j
k (x), k ≤ N,j ≤ m,

where for eachj ≤ m, theξ
j
k ’s have the distribution

Pξj (ξ
j
k = hi) = λj ({hi}) = λ

j
i , i ≤ T .

Consider a function

g(x) = 1

N

m∑
j=1

αj

N∑
k=1

ξ
j
k (x) = 1

N

N∑
k=1

gk(x),

wheregk(x) = ∑m
j=1 αjξ

j
k (x). For a fixedx ∈ X andk ≤ N , the variance ofgk

with respect to the distributionPξ = Pξ1 × · · · × Pξm is

Varξ (gk(x)) =
m∑

j=1

α2
j Varξ (ξ

j
1 (x)) =

m∑
j=1

α2
j σ

2
λj (x) = σ 2(c;x).

The main difference from the proof of Theorem 2 is that in (3.7) we also introduce
the condition on the varianceσ 2(c;x). Namely, one can write

P
(
yf (x) ≤ 0

) ≤ EξPϕδ(yg(x)) + P
(
σ 2(c, x) ≥ γ

)
(3.11) + EPξ

(
yg(x) ≥ δ, yf (x) ≤ 0, σ 2(c;x) ≤ γ

)
.

Similarly to (3.9) one can also write

EξPnϕδ(yg(x)) ≤ EξPn

(
yg(x) ≤ 2δ

)
≤ Pn

(
yf (x) ≤ 3δ

) + Pn

(
σ 2(c;x) ≥ γ

)
(3.12)

+ PnPξ

(
yg(x) ≤ 2δ, yf (x) ≥ 3δ, σ 2(c;x) ≤ γ

)
.
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Step 2 (Bernstein’s inequality). To bound the last terms on the right-hand sides
of (3.11) and (3.12) we note that we explicitly introduced the condition on the
variance of thegk ’s, since for a fixedx ∈ X we have Varξ (gk(x)) = σ 2(c;x).

Therefore, instead of using Hoeffding’s inequality as we did in the proof of
Theorem 2, it is advantageous to use Bernstein’s inequality, since it takes into
account the information about the variance. We have

Pξ

(
yg(x) ≥ δ, yf (x) ≤ 0, σ 2(c;x) ≤ γ

)

≤ Pξ

(
N∑

k=1

(
ygk(x) − yEξ gk(x)

) ≥ Nδ|Varξ (g1(x)) ≤ γ

)

≤ exp
(
−1

4
min

(
Nδ2

γ
,Nδ

))
= exp

(
−1

4

Nδ2

γ

)
,

since we assume thatγ ≥ δ. TakingN = 4(γ /δ2) logn we get

P
(
yf (x) ≤ 0

) ≤ EξPϕδ(yg(x)) + P
(
σ 2(c;x) ≥ γ

) + n−1.(3.13)

Similarly, applying Bernstein’s inequality to the last term of (3.12) yields

EξPnϕδ(yg(x)) ≤ Pn

(
yf (x) ≤ 3δ

) + Pn

(
σ 2(c;x) ≥ γ

) + n−1.(3.14)

Step 3 [RelatingEξPϕδ(yg(x)) to EξPnϕδ(yg(x))]. Our next goal is to relate
EξPϕδ(yg(x)) from the right-hand side of (3.13) toEξPnϕδ(yg(x)) from the left-
hand side of (3.14).

For any realization of random variablesξ i
k, the functiong(x) will belong to

the classFmN. Convexity of the functionφ(a, b) and Theorem 7 imply that
for any t > 0 with probability at least 1− e−t for all δ ∈ 
, λ ∈ P (H) and
f (x) = ∫

h(x) dλ, and anyc ∈ Cm(λ),

φ
(
EξPϕδ(yg(x)),EξPnϕδ(yg(x))

) ≤ Eξφ
(
Pϕδ(yg(x)),Pnϕδ(yg(x))

)
≤ K

(
V mN

n
log

n

δ
+ t

n

)
.

The fact thatφ(a, b) is decreasing inb and increasing ina combined with
(3.13) and (3.14) [recall thatN = 4(γ /δ2) logn] implies that

φ
(
P

(
yf (x) ≤ 0

) − P
(
σ 2(c;x) ≥ γ

) − n−1,

Pn

(
yf (x) ≤ 3δ

) + Pn

(
σ 2(c;x) ≥ γ

) + n−1)
≤ K

(
V mγ

nδ2 log2 n

δ
+ t

n

)
.

Solving the last inequality forP(yf (x) ≤ 0) one can get that with probability at
least 1− e−t for all δ ∈ 
, anyγ ≥ δ, for anyλ ∈ P (H) andf (x) = ∫

h(x) dλ,
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and anyc ∈ Cm(λ),

P
(
yf (x) ≤ 0

) ≤ K

(
Pn

(
yf (x) ≤ 3δ

) + Pn

(
σ 2(c;x) ≥ γ

)
(3.15)

+ P
(
σ 2(c;x) ≥ γ

) + V mγ

δ2 log2 n

δ
+ t

n

)
.

Step 4 [BoundingP(σ 2(c;x) ≥ γ )]. It remains to estimateP(σ 2(c;x) ≥ γ ).

This is done very similarly to steps 1–3 above. Let us generate two independent
sequencesξj,1

k andξ
j,2
k as above and consider

σ 2
N(c;x) = 1

2N

N∑
k=1

(
m∑

j=1

αj (ξ
j,1
k − ξ

j,2
k )

)2

= 1

N

N∑
k=1

ξk(x),

where

ξk(x) = 1
2

(
m∑

j=1

αj (ξ
j,1
k − ξ

j,2
k )

)2

.(3.16)

Let us make a specific choice of functionsϕγ . For eachγ ∈ 
 we setϕγ to be
ϕγ (s) = 0 for s ≤ 2γ, ϕγ (s) = 1 for s ≥ 3γ and linear on[2γ,3γ ]. One can write

P
(
σ 2(c;x) ≥ 4γ

) = EξP
(
σ 2(c;x) ≥ 4γ,σ 2

N(c;x) ≥ 3γ
)

+ EξP
(
σ 2(c;x) ≥ 4γ,σ 2

N(c;x) ≤ 3γ
)

(3.17) ≤ EξPϕγ

(
σ 2

N(c;x)
)

+ EPξ

(
σ 2

N(c;x) ≤ 3γ,σ 2(c;x) ≥ 4γ
)
.

Similarly, one can write

EξPnϕγ

(
σ 2

N(c;x)
) ≤ EξPn

(
σ 2

N(c;x) ≥ 2γ
)

≤ Pn

(
σ 2(c;x) ≥ γ

)
(3.18)

+ PnPξ

(
σ 2

N(c;x) ≥ 2γ,σ 2(c;x) ≤ γ
)
.

Next we will show that there exists a large enough absolute constantK > 0 such
that

Pξ

(
σ 2

N(c;x) ≥ 2γ,σ 2(c;x) ≤ γ
) ≤ exp

(
−Nγ

K

)
(3.19)

and

Pξ

(
σ 2

N(c;x) ≤ 3γ,σ 2(c;x) ≥ 4γ
) ≤ exp

(
−Nγ

K

)
.(3.20)



COMPLEXITY AND GENERALIZATION BOUND 1483

First of all, let us notice thatσ 2
N(c;x) = N−1 ∑N

i=1 ξk(x), where ξk are i.i.d.
random variables defined in (3.16) andEξ ξk(x) = σ 2(c;x). Moreover, since

ξ
j,1
k , ξ

j,2
k ∈ H , we have|ξj,1

k (x) − ξ
j,2
k (x)| ≤ 2 and |ξk(x)| ≤ 2. Finally, the

variance

Varξ (ξ1) ≤ Eξ ξ
2
1 ≤ 2Eξ ξ1 = 2σ 2(c;x).

Hence, Bernstein’s inequality implies that

Pξ

(
σ 2

N(c;x) − σ 2(c;x) ≤ 2
√

σ 2(c;x)γ /K + 8γ /(3K)
) ≥ 1− exp

(
−Nγ

K

)
and

Pξ

(
σ 2(c;x) − σ 2

N(c;x) ≤ 2
√

σ 2(c;x)γ /K + 8γ /(3K)
) ≥ 1− exp

(
−Nγ

K

)
.

It is now easy to check that for large enoughK > 0, givenσ 2(c;x) ≤ γ, the first
inequality will imply σ 2

N(c;x) ≤ 2γ [with probability at least 1− exp(−Nγ
K

)],
thus proving (3.19) and, givenσ 2

N(c;x) ≤ 3γ, the second inequality will similarly
imply σ 2(c;x) ≤ 4γ, thus proving (3.20).

If in (3.19) and (3.20) we setN = Kγ −1 logn, then with this choice ofN one
can rewrite (3.17) and (3.18) as

P
(
σ 2(c;x) ≥ 4γ

) ≤ EξPϕγ

(
σ 2

N(c;x)
) + n−1(3.21)

and

EξPnϕγ

(
σ 2

N(c;x)
) ≤ Pn

(
σ 2(c;x) ≥ γ

) + n−1.(3.22)

For any realization ofξj,1
k , ξ

j,2
k , the functionσ 2

N(c;x) belongs to the class

FN,m =
{

1

N

N∑
k=1

(
m∑

j=1

αj (h
j,1
k − h

j,2
k )

)2

:hj,1
k , h

j,2
k ∈ H , αj ≥ 0,

m∑
j=1

αj = 1

}
.

Since the classH satisfies condition (2.2), it is easy to show (see, e.g., [21] for a
similar computation) that the uniform covering numbers ofFN,m can be bounded
by

logN(FN,m,u) ≤ KV Nm log
2

u
, 0< u ≤ 1.

The rest of the argument is similar to the above. Convexity of the functionφ(a, b)

and Theorem 7 imply that for anyt > 0 with probability at least 1− e−t for all
γ ∈ 
, λ ∈ P (H) and anyc ∈ Cm(λ),

φ
(
EξPϕγ

(
σ 2

N(c;x)
)
,EξPnϕγ

(
σ 2

N(c;x)
))

≤ Eξφ
(
Pϕγ

(
σ 2

N(c;x)
)
,Pnϕγ

(
σ 2

N(c;x)
))

≤ K

(
V mN

n
log

n

δ
+ t

n

)
.
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The fact thatφ(a, b) is decreasing inb and increasing ina combined with
(3.21) and (3.22) (recall thatN = K logn/γ ) implies that

φ
(
P

(
σ 2(c;x) ≥ 4γ

) − n−1,Pn

(
σ 2(c;x) ≥ γ

) + n−1) ≤ K

(
V m

nγ
log2 n

δ
+ t

n

)
.

Solving the last inequality forP(σ 2(c;x) ≥ 4γ ) we get that with probability at
least 1− e−t for anyγ ∈ 
, for anyλ ∈ P (H) and anyc ∈ Cm(λ),

P
(
σ 2(c;x) ≥ 4γ

) ≤ K

(
Pn

(
σ 2(c;x) ≥ γ

) + V m

nγ
log2 n

δ
+ t

n

)
.

Finally, we combine this with (3.15) and notice that since we assume thatγ ≥ δ,

V m

γ
log2 n

δ
≤ V mγ

δ2 log2 n

δ
.

Thus, with probability at least 1− e−t for any δ ∈ 
, any δ ≤ γ ∈ 
 for any
λ ∈ P (H) and anyc ∈ Cm(λ),

P
(
yf (x) ≤ 0

)
(3.23)

≤ K

(
Pn

(
yf (x) ≤ 3δ

) + Pn

(
σ 2(c;x) ≥ γ /4

) + V mγ

δ2 log2 n

δ
+ t

n

)
.

Using the union bound one can show that with a larger constantK this inequality
holds for all m ≥ 1, also with probability at least 1− e−t . Finally, to obtain
the statement of Theorem 4, we need to make the change of variables 3δ → δ,

γ /4 → γ, and, in order to preserve the conditionγ ≥ δ, we notice that from the
very beginning we could have assumed thatγ ≥ 12δ and then deal with the case
of γ ∈ [δ,12δ] by increasing the value ofK. �

We turn now to the proof of Theorem 5. It will be based on several facts.
First of all, we need a slight modification of Theorem 2 in [8].
Let F be a class of functionsf from X into [0,1]. We define the Rademacher

processRn(f ), f ∈ F , as

Rn(f ) := n−1
n∑

i=1

εif (Xi),

where {εi} is a Rademacher sequence [Pr(εi = 1) = Pr(εi = −1) = 1/2]
independent of{Xi}. Denote also

Rn(F ) := sup
f ∈F

|Rn(f )|.

THEOREM 8. Suppose that for all t > 0 with probability at least 1− e−t

Eε sup
f ∈F ,Pnf ≤r

|Rn(f )| ≤ C
(
φn

(√
r

) + δn(t)
)

where r > 0,
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φn is a nondecreasing concave possibly data-dependent function with φn(0) = 0,

δn(t) ≥ t
n

and C > 0 is a constant. Let r̂n be the largest solution of the equation
φn(

√
r ) = r. Then, there exists K > 0 such that with probability at least 1 − e−t

for all f ∈ F

Pf ≤ K

(
Pnf + r̂n + δn

(
t + log logn

n

))
.

Next we need the following bound on the expected sup-norm of the Rademacher
process. Let

DPn,2(F ) := sup
f,g∈F

dPn,2(f, g)

denote theL2(Pn)-diameter ofF .

LEMMA 1. Let F be a class of measurable functions from X into [0,1] such
that 0∈ F . Then there exists a constant K > 0 such that for all n ≥ 1 and t > 0

EεRn(F ) ≤ K√
n

[√
t

n
H

1/2
dPn,1

(
F ; t

n

)
+

∫ DPn,2(F )

√
t/n

H
1/2
dPn,2

(F , u) du

]
+ t

n
.

PROOF. For givent > 0 andn ≥ 1, there exists a mapπ = πn,t :F �→ F such
that

card(πF ) = NdPn,2

(
F ,

√
t

n

)
and dPn,2(f,πf ) ≤

√
t

n
.

This implies that

EεRn(F ) ≤ Eε sup
f ∈F

|Rn(πf )| + Eε sup
f ∈F

|Rn(f − πf )|.

By a standard entropy bound, we have

Eε sup
f ∈F

|Rn(πf )| ≤ K√
n

∫ DPn,2(F )

√
t/n

H
1/2
dPn,2

(F , u) du

with some constantK > 0. Let nowF ′ be a(t/n)-net forF with respect to the
metricdPn,1. Note that, since the functions fromF take their values in[0,1],

dPn,1(f, f ′) ≤ t

n
�⇒ d2

Pn,2(f, f ′) ≤ t

n

�⇒ dPn,2(f
′, πf ) ≤ dPn,2(f, f ′) + dPn,2(f,πf ) ≤ 2

√
t

n
.
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Therefore, we get

Eε sup
f ∈F

|Rn(f − πf )|

≤ Eε sup

{
|Rn(f

′ − g)| :f ′ ∈ F ′, g ∈ πF , dPn,2(f
′, πf ) ≤ 2

√
t

n

}
.

Since

card(F ′ × πF ) = NdPn,1

(
F ,

t

n

)
NdPn,2

(
F ,

√
t

n

)
,

we get, using standard bounds for the expectation of a finite maximum of a
Rademacher process,

Eε sup
f ∈F

|Rn(f − πf )| ≤ K

√
t

n

1√
n

(
HdPn,1

(
F ,

t

n

)
+ HdPn,2

(
F ,

√
t

n

))1/2

+ t

n

with someK > 0, which in view of the trivial bound

HdPn,2

(
F ,

√
t

n

)
≤ HdPn,1

(
F ,

t

n

)

implies the statement of the lemma.�

Let Q ∈ P (X). For a setE of positive numbers and a functionN :E �→ R+ let

F C
Q,p,N := {

f ∈ F :∀ ε ∈ E NdQ,p
(f,Cε) ≤ N(ε)

}
.

LEMMA 2. For all ε ∈ E

HdQ,p

(
F C

Q,p,N , (2+ C)ε
) ≤ KN(ε) log

1

ε

with some constant K > 0.

PROOF. First note thatf ∈ F C
Q,p,N implies that

∀ ε ∈ E ∃H ′ ⊂ H :f ∈ sconv(H ′)

and

NdQ,p
(H ′,Cε) ≤ N(ε).

Let f = ∑
λjhj , hj ∈ H ′ and

∑ |λj | ≤ 1. Then there existsH̄ ′ ⊂ H ′ such that
card(H̄ ′) ≤ N(ε) and for allh ∈ H ′ there existsg ∈ H̄ ′ such thatdQ,p(h, g) ≤ Cε.

Hence, one can define{h̄′
j } ⊂ H̄ ′ such that maxj dQ,p(hj , h̄

′
j ) ≤ Cε. Let nowHε



COMPLEXITY AND GENERALIZATION BOUND 1487

denote a minimalε-net forH with respect todQ,p. Defineh̄j ∈ Hε in such a way
that for allj , dQ,p(h̄j , h̄

′
j ) ≤ ε, which, of course, implies

max
j

dQ,p(hj , h̄j ) ≤ (C + 1)ε.

Clearly, we can also assume that

card{h̄j } ≤ card{h̄′
j } ≤ card(H̄ ′) ≤ N(ε).

We can conclude that

dQ,p

(∑
j

λjhj ,
∑
j

λj h̄j

)
≤ ∑

j

|λj |dQ,p(hj , h̄j )

≤ ∑
j

|λj |max
j

dQ,p(hj , h̄j )

≤ (C + 1)ε.

The above argument shows that∀ ε ∈ E

F C
Q,p,N ⊂ [

sconvN(ε)(Hε)
]
(C+1)ε,

where[·]ε denotes theε-neighborhood w.r.t. the metricdQ,p and

sconvd(G) :=
{

d∑
j=1

λjhj :
d∑

j=1

|λj | ≤ 1 ∀ jhj ∈ G

}
.

Using Lemma 3 in [21], we obtain that∀ ε ∈ E

NdQ,p

(
F C

Q,p,N , (2+ C)ε
) ≤

(
e2 card(Hε)(N(ε) + 4ε−2)

N2(ε)

)N(ε)

,

which immediately implies the bound.�

LEMMA 3. Suppose that H satisfies (2.2).Then there exist constants K > 0,
C > 0 such that for all t > KV (H) logn, with probability at least 1− e−t for all

f ∈ F and all ε ≥
√

t
n

NdPn,2(f,Cε) ≤ NdP,2(f, ε)

and

NdP,2(f,Cε) ≤ NdPn,2(f, ε).

PROOF. Let

H̃ := {(h1 − h2)
2 :h1, h2 ∈ H}.
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Since−1≤ h ≤ 1 for h ∈ H one can write(
(h1 − h2)

2 − (h′
1 − h′

2)
2)2 ≤ 32

(
(h1 − h′

1)
2 + (h2 − h′

2)
2).

Hence the uniform covering numbers ofH̃ can be estimated as

sup
Q∈P (X)

NdQ,2(H̃ , ε) ≤ sup
Q∈P (X)

N2
dQ,2

(H , ε/8) = O
(
ε−4V (H))

using (2.3). Now, applying Theorem 7 and (3.5), we get that with probability at
least 1− 2e−t , for all h ∈ H̃

Ph − Pnh ≤ K

((
(Ph)V logn

n

)1/2

+
(

(Ph)t

n

)1/2)

and

Pnh − Ph ≤ K

((
(Pnh)V logn

n

)1/2

+
(

(Pnh)t

n

)1/2)
.

For t ≥ KV logn these inequalities imply

Ph ≤ K

(
Pnh + t

n

)
and Pnh ≤ K

(
Ph + t

n

)
.

This yields that with probability 1− 2e−t for all h1, h2 ∈ H

dPn,2(h1, h2) ≤ C

[
dP,2(h1, h2) ∨

√
t

n

]

and

dP,2(h1, h2) ≤ C

[
dPn,2(h1, h2) ∨

√
t

n

]
.

Now, by the definition ofNdP,2(f, ε), there existsH ′ ⊂ H such thatf ∈
sconv(H ′) andNdP,2(H

′, ε) = NdP,2(f, ε). Hence, with probability at least 1−
2e−t , for anyε ≥

√
t
n
, we have

NdPn,2(f,Cε) ≤ NdPn,2(H
′,Cε) ≤ NdP,2(H

′, ε) = NdP,2(f, ε),

and similarly

NdP,2(f,Cε) ≤ NdPn,2(f, ε),

which immediately implies the bound of the lemma (after a minor rescaling and
changing the constants).�

Let us define a sequence

εj := 2j

√
t

n
for j ≥ 0.
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Denotemn(t) := min{j : εj ≥ 1}. Let N be a nonnegative nonincreasing function
on R+ taking constant values on the intervals(0, ε1), [εj , εj+1), j ≥ 1. Define

F̂Pn,N := {
f ∈ F :NdPn,2(f, εj ) ≤ N(εj ), j = 0, . . . ,mn(t)

}
,

FP,N := {
f ∈ F :NdP,2(f,Cεj ) ≤ N(εj ), j = 0, . . . ,mn(t)

}
,

F̃Pn,N := {
f ∈ F :NdPn,2(f,C2εj ) ≤ N(εj ), j = 0, . . . ,mn(t)

}
.

Then it follows from Lemma 3 that:

LEMMA 4.

Pr
{
F̂Pn,N ⊂ FP,N ⊂ F̃Pn,N

} ≥ 1− e−t .

Let us introduce the function

ψ(x) := ψN(x) :=
∫ x

0

√
N(ε) log

1

ε
dε.

LEMMA 5. There exists K > 0 such that with probability at least 1− e−t for
all f ∈ FP,N

P{yf (x) ≤ 0} ≤ K inf
δ∈(0,1]

[
Pn{yf (x) ≤ δ} + εψ

n (δ) + t + log logn

nδ2

]
.

PROOF. We apply Lemma 1 witht replaced by(2+ C2)2t/δ2 to the class

G := {ϕ ◦ f :f ∈ FP,N } ∪ {0},
whereϕ is the function equal to 1 foru ≤ 0, equal to 0 foru > δ and linear in
between and(ϕ ◦ f )(x, y) := ϕ(yf (x)). This gives the bound

Eε sup
g∈G,Png≤r

|Rn(g)|

≤ K√
n

[
2+ C2

δ

√
t

n
H

1/2
dPn,1

(
G,

(2+ C2)2t

nδ2

)
+

∫ (2r)1/2

(2+C2)/δ
√

t/n
H

1/2
dPn,2

(G, u) du

]

+ (2+ C2)2t

nδ2 .

Since the Lipschitz norm ofϕ is 1
δ
, we have

dPn,2(ϕ ◦ f,ϕ ◦ g) ≤ 1

δ
dPn,2(f, g)

and

dPn,1(ϕ ◦ f,ϕ ◦ g) ≤ 1

δ
dPn,1(f, g).



1490 V. KOLTCHINSKII AND D. PANCHENKO

Therefore, we can upper bound the expression in the brackets by

2+ C2

δ

√
t

n

[
H

1/2
dPn,1

(
FP,N ,

(2+ C2)2t

nδ

)
+ 1

]

+ 1

δ

∫ δ(2r)1/2

(2+C2)
√

t/n

(
H

1/2
dPn,2

(FP,N , u) + 1
)

du

[adding 1 to the square root of the entropy is due to the definition of the classG
which includes the function 0; we also use here the inequality

√
log(N + 1) ≤√

logN + 1]. On the event{FP,N ⊂ F̃Pn,N }, which according to Lemma 4
occurs with probability at least 1− e−t , we can upper bound theL2(Pn)-
and L1(Pn)-entropies involved in the last expression by the entropies of the
classF̃Pn,N , which can be bounded using Lemma 2. Namely, we have, for all
f ∈ F̃Pn,N ,

NdPn,2(f,C2εj ) ≤ N(εj ), j = 0, . . . ,mn(t),

which according to Lemma 2 implies that

HdPn,2

(
F̃Pn,N , (2+ C2)εj

) ≤ KN(εj ) log(1/εj ).

Therefore, denotinḡεj := (2 + C2)εj and using monotonicity of the entropy, we
get ∫ δ(2r)1/2

(2+C2)
√

t/n
H

1/2
dPn,2

(F̃P,N , u) du

≤ ∑
j : ε̄j≤δ(2r)1/2

(ε̄j+1 − ε̄j )H
1/2
dPn,2

(
F̃Pn,N , ε̄j

)

≤ K
∑

j : (2+C2)εj≤δ(2r)1/2

(2+ C2)(εj+1 − εj )
√

N(εj ) log(1/εj )

≤ K

∫ 2
√

2δ
√

r

√
t/(2n)

√
N(u)| logu|du.

Note also that since the classH consists of functions taking values in{−1,1}, for
any probability measureQ we haved2

Q,2(h1, h2) = 2dQ,1(h1, h2), which implies

thatNdQ,2(f,
√

2ε ) = NdQ,1(f, ε). Thus,

∀f ∈ F̃Pn,N NdPn,2(f,C2ε0) ≤ N(ε0)

�⇒ ∀f ∈ F̃Pn,N NdPn,1(f,C4ε2
0/2) ≤ N(ε0).

Sinceε0 =
√

t
n
, this, in view of Lemma 2, yields the bound

HdPn,1

(
F̃Pn,N , (2+ C4/2)

√
t

n

)
≤ KN

(√
t

n

)
log

√
n

t
.
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Collecting the above bounds gives on the event{FP,N ⊂ F̃Pn,N }[
2+ C2

δ

√
t

n

(
H

1/2
dPn,1

(
FP,N ,

(2+ C2)2t

nδ

)
+ 1

)

+ 1

δ

∫ δ(2r)1/2

(2+C2)
√

t/n

(
H

1/2
dPn,2

(FP,N ,u) + 1
)
du

]

≤ K

δ

[√
t

2n

√√√√N

(√
t

2n

)∣∣∣∣∣log

√
t

2n

∣∣∣∣∣ +
∫ 2

√
2δ

√
r

√
t/(2n)

√
N(u)| logu|du

]

+ 2
√

2
√

r,

which, using the fact that the functionx �→ ∫ x
0

√
N(u)| logu|du is concave, can

be bounded byKφn(
√

r ), where

φn

(√
r

) := φn,δ

(√
r

) := 1

δ

∫ δ
√

r

0

√
N(u)| logu|du.

Thus, with probability at least 1− e−t ,

Eε sup
g∈G,Png≤r

|Rn(g)| ≤ K

(
φn

(√
r

) + t

nδ2

)

and Theorem 8 implies that also with probability at least 1− e−t for all g ∈ G

Pg ≤ K

(
Png + r̂n + t + log logn

nδ2

)
,

wherer̂n is the largest solution of the equationφn(
√

r ) = r, which in our case is
equal toε

ψ
n (δ). Therefore, for a fixedδ ∈ (0,1] with probability at least 1− e−t

for all f ∈ FP,N

P{yf (x) ≤ 0} ≤ P(ϕ ◦ f ) ≤ K

(
Pn(ϕ ◦ f ) + εψ

n (δ) + t + log logn

nδ2

)

≤ K

(
Pn{yf (x) ≤ δ} + εψ

n (δ) + t + log logn

nδ2

)
.

It remains to make the bound uniform inδ ∈ (0,1] by applying it withδ = δj =
2−j and t replaced byt + 2 log(j + 1), using the union bound along with the
monotonicity of the expressions involved with respect toδ, and properly adjusting
the value of the constantK. �

PROOF OFTHEOREM 5. We will prove, in fact, an improved version of the
result (see the remark after the statement). To simplify the notation, we remove
the termε−2V/(2+V ) from the definition ofĤn(f, ε) and the follow-up definition
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of ψ̂n(f, t, δ); this omission, however, does not change anything in the proof. By
the condition on the classH ,

sup
Q∈P (X)

NdQ,2(H , ε) = O(ε−V ), ε > 0.

Clearly, we have

NdPn,2(f, ε) ≤ sup
Q∈P (S)

NdQ,2(H , ε), ε > 0.

As before,εj = 2j
√

t
n

and letJ := {j ≥ 0 :εj < 2}. Denote byN the set of
nonincreasing step functions onR+ with jumps only at the pointsεj , j ≥ 0, and
such that

N(εj ) ≤ Kε−V
j , j ∈ J.

Assume also that, forN ∈ N andε ≤ ε0, N(ε) = N(ε0). Then

Pr
{
∃f ∈ F ∃ δ ∈ (0,1] :

P{yf (x) ≤ 0} ≥ K

[
Pn{yf (x) ≤ δ} + ε̂n(f, t, δ) + t + log logn

nδ2

]}
≤ E

∑
N∈N

I
(
NdPn,2(f, εj ) = N(εj ), j ∈ J

)

× I

(
∃f ∈ F̂Pn,N ∃ δ ∈ (0,1] :

P{yf (x) ≤ 0} ≥ K

[
Pn{yf (x) ≤ δ}

+ εψN
n (δ) + t + log logn

nδ2

])
=: B,

where we used the facts that, on the event{NdPn,2(f, εj ) = N(εj ), j ∈ J },
f ∈ F �⇒ f ∈ F̂P,N

and also we have on the same eventψ̂n(f, t, u) ≤ ψN(u), u ≥ 0, which yields

ε̂n(f, t, δ) ≤ εψN
n (δ).

According to Lemma 4, for allN ∈ N , F̂Pn,N ⊂ FP,N with probability at least
1− e−t . Also, by simple combinatorics,

card(N ) ≤ ∏
j∈J

K

(
1

εj

)V

.
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Therefore, we can use Lemma 5 and further boundB by∑
N∈N

EI
(
NdPn,2(f, εj ) = N(εj ), j ∈ J

)

× I

(
∃f ∈ F̂Pn,N ∃ δ ∈ (0,1] :

P{yf (x) ≤ 0} ≥ K

[
Pn{yf (x) ≤ δ} + εψN

n (δ) + t + log logn

nδ2

])

≤ ∏
j∈J

K

(
1

εj

)V [
sup
N∈N

Pr
{
∃f ∈ FP,N ∃ δ ∈ (0,1] :

P{yf (x) ≤ 0}
≥ K

[
Pn{yf (x) ≤ δ}

+ εψN
n (δ) + t + log logn

nδ2

]}
+ e−t

]

≤ 2exp

{
−t + ∑

j∈J

(
V log

1

εj

+ logK

)}

≤ 2exp
{
−t + C log2 n

t
+ log2

}
,

which implies the bound of the theorem (subject to adjusting the constants).�

4. Concluding remarks. We have developed several new complexity mea-
sures of functions from the convex hull of a given base class and proved adaptive
margin type bounds on the generalization error of ensemble classifiers in terms
of these complexities. The complexities are based on measuring sparsity of the
weights of a convex combination and clustering of the base functions involved in
it. Hopefully, they can provide some insights to the developers of classification al-
gorithms about the relative importance of various parameters influencing the per-
formance of classifiers. It might be possible to combine several types of bounds
discussed in the paper into a bound that takes into account different complexity
characteristics, but our goal here is not to develop “the Mother of All Bounds,” but
rather to explore several possible approaches to the problem.

The results of the paper suggest that it might be of interest to study
experimentally the statistical properties of base classifiers in ensembles output by
classification algorithms (in particular, their clustering properties) in connection
with generalization ability of the algorithms. (Some preliminary results in this
direction forAdaBoost and other classification algorithms with real and simulated
data can be found in [20] and more results are in [1].) Another interesting line
of research might be related to proving that boosting type algorithms do output
combined classifiers with a certain degree of clustering of base classifiers in the
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ensemble and a certain degree of sparsity of their weights. (The results of [30]
show that the sparsity of the coefficients indeed takes place in the case of support
vector machines.)

Our main goal has been to develop margin-type bounds on generalization error
in terms of sparsity and clustering, but the complexities we introduced might be
of interest in some other problems, for instance, in studying convergence rates
of classification algorithms to the Bayes risk. Recent results on consistency [15,
22, 33, 34] and convergence rates [6, 7] of boosting-type algorithms suggest that
some regularization of the algorithms (either by early stopping, or by penalization)
might be needed in order to achieve reasonable convergence rates. However, the
precise form of this regularization is still an open question and it depends crucially
on which complexity measures are used to take into account the sparsity and the
clustering properties of the algorithms. Some of the complexities discussed in the
paper might be used as penalties, especially, the complexities based on the notion
of variance of a convex combination (this is also computationally attractive).
Another area where these complexities might be very useful is the problem of
optimal aggregation of estimators in regression or classification (see [3, 31]).

It should be emphasized that the complexities of convex combinations we have
introduced are by no means the only possible, but they are on the other hand
very typical, representing some features of functions in the convex hull that are
of importance in classification.

Acknowledgment. We would like to thank the anonymous referees for doing
a great job that led to the improvement of this paper.
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