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A test of the null hypothesis that a hazard rate is monotone nondecreas-
ing, versus the alternative that it is not, is proposed. Both the test statistic
and the means of calibrating it are new. Unlike previous approaches, neither
is based on the assumption that the null distribution is exponential. Instead,
empirical information is used to effectively identify and eliminate from fur-
ther consideration parts of the line where the hazard rate is clearly increasing;
and to confine subsequent attention only to those parts that remain. This pro-
duces a test with greater apparent power, without the excessive conservatism
of exponential-based tests. Our approach to calibration borrows from ideas
used in certain tests for unimodality of a density, in that a bandwidth is in-
creased until a distribution with the desired properties is obtained. However,
the test statistic does not involve any smoothing, and is, in fact, based directly
on an assessment of convexity of the distribution function, using the conven-
tional empirical distribution. The test is shown to have optimal power prop-
erties in difficult cases, where it is called upon to detect a small departure, in
the form of a bump, from monotonicity. More general theoretical properties
of the test and its numerical performance are explored.

1. Introduction. Estimation of a hazard rate under the hypothesis that it
is nondecreasing, and testing the validity of this assumption, are motivated by
problems where failure rate of a machine part or a biological system can be
expected to increase with lifetime. If for some reason a machine part becomes
more reliable with time over at least part of its life cycle, then it can be particularly
important to know that fact. The knowledge may lead to changes in the way the
part is manufactured or finished, so as to remove the requirement for a running-in
period where failure is relatively likely to occur. In this paper we suggest a new test
statistic of the null hypothesis of monotone nondecreasing failure rate and a new
approach to calibrating the distribution of the statistic so as to determine a critical
point for the test.

Our methods confer two advantages relative to existing approaches. First, our
test statistic is focused on relatively “local” departures from the null hypothesis

Received September 2002; revised May 2004.

1supported in part by the contract “Projet d’Actions de Recherche Concertées” nr 98/03-217 and
by the IAP research network nr P5/24 of the Belgian state.

AMS 2000 subject classificatior82G09, 62G10, 62G20, 62N03.

Key words and phraseBandwidth, bootstrap, convex function, cumulative hazard rate, kernel
methods, local alternative, monotone function, power, survival analysis.

1109



1110 P. HALL AND I. VAN KEILEGOM

of nondecreasing hazard rate, and pays relatively little attention to those parts
of the sample space where the hazard rate is indeed monotone nondecreasing.
Nevertheless, the method is easily localized still further, since it focuses on
variation of the hazard rate over an interval which can be increased or decreased
at the investigator’s discretion, or, indeed, replaced by the union of two or more
intervals.

Second, our new method of calibration makes the test statistic much more
sensitive to relatively small departures from the null hypothesis. For a given
nominal probability of rejection, our calibration approach produces a test with
greater apparent power than do standard methods based on calibration by
comparison with the exponential distribution. The reason is that the exponential
case is particularly awkward to detect; the corresponding hazard rate is perfectly
flat, and, therefore, to avoid incorrectly rejecting the null hypothesis in this case,
the test statistic has to satisfy itself that there are no significant bumps on a
perfectly flat line. In consequence, the test tends to overlook small bumps, for
fear of committing a Type | error, and so has relatively low power against hazard
rates that are nondecreasing except for small bumps.

The test we propose has substantially greater apparent power in so-called
“difficult cases” (cf. [7]) than does, for example, Proschan and Pyke’s [19] test,
calibrated using the exponential distribution. Indeed, we shall prove that our
method has optimal power in this setting. That is, it is able to detect a very small
perturbation of the empirical distribution, placed at a point where it produces a
small nonmonotone bump in the hazard rate, and so small that even a likelihood
ratio test (requiring knowledge of the shape of the bump) is barely able to detect
the bump.

Our calibration method is related to the “increasing bandwidth” approach first
suggested by Silverman [20] in the case of density estimation, and used in a
range of other settings since; see [6] for an application in the setting of monotone
nonparametric regression. However, quite unlike those applications, we increase
the bandwidth only for the purpose of calibrating the test. Our test statistic does
not involve any smoothing at all and is based directly on the standard empirical
distribution function.

Contributions to the problem of testing foranstanthazard rate against a
monotone alternative include those of Bickel and Doksum [5], based, like the
method of Proschan and Pyke [19], on normalized spacings; Bickel [4], on
the existence of asymptotically most powerful tests; Barlow and Doksum [3], on
the more general problem of testing for convex orderings; and Ahmad [1], Gail
and Gastwirth [11, 12] and Klefsjo [16], who proposed tests of the hypothesis of
an exponential distribution. However, these approaches share the drawbacks noted
above for exponential-based methods. A related difficulty arises in the context of
testing for unimodality of a probability density by calibrating against the most
difficult case of a uniform density; see, for example, [15]. Hall, Huang, Gifford
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and Gijbels [14] have suggested methods for estimating a hazard rate under the
assumption of monotonicity and surveyed earlier work on the topic.

Although our focus is on testing the null hypothesis of a monotone nondecreas-
ing hazard rate, the case where the null asserts a monotone nonincreasing rate is
related. In the former case, the smoothed empirical hazard rate estimator is guaran-
teed to be monotone nondecreasing for all sufficiently large bandwidths, and this
property is not available in the latter setting. The property makes it particularly
easy to propose a bandwidth selection rule that ensures resampling from a distrib-
ution that satisfies the null; we may start with any conventional bandwidth selector,
for example, based on a plug-in rule, and steadily increase the bandwidth until the
smoothed empirical distribution has a monotone nondecreasing hazard rate in the
region where the test is to be conducted.

There is also a simple rule in the case whéfg stipulates that the hazard
rate is nonincreasing: starting with any conventional bandwidth selector, increase
the bandwidth until a monotone nonincreasing hazard rate is obtained; or, if that
does not occur no matter how large the bandwidth, reject the null hypothesis at
this point without passing to a further step. This rule is justified by the fact that,
if the hazard rate is nonincreasing, then the probability that there exists a finite
bandwidth (of larger order than the conventional/®), such that the smoothed
empirical hazard rate is nonincreasing, generally converges to 1 as sample size
increases. Nevertheless, in the remainder of the paper we shall address only the
more practically important case whelg asserts a nondecreasing hazard rate.

2. Methodology.

2.1. Test statistic. Suppose the random samgle= {X1,..., X,} is drawn
from a distribution with distribution functiorF. The standard empirical distri-
bution function isF (x) = n~1 Y [(X; <x), wherel (&) denotes the indicator
function of an even€. The null hypothesis thakf has monotone hazard rate on
an intervalJ is equivalent toH = —log(1 — F) being convex or¥, and, hence,
providedF is twice differentiable with a nonvanishing first derivativerio H”
being nonnegative dh The functionH is the cumulative hazard rate. Its derivative
is the hazard rate.

The empirical form ofH, H=— log(1l — F), is not differentiable, however.
Therefore, it makes little sense to test the null hypothesis by checking for
nonnegativity of the second derivative &f. We could investigate methods based
directly on smoothed forms off, but this would not necessarily lead to tests that
have good power properties; see Section 2.3. Instead we note that convesfity of
onJis equivalent to nonnegativity & (x + y) + H(x — y) — 2H (x) for all x andy
such that bothx 4+ y andx — y are elements df. It is not essential to také to
be an interval; it can be replaced by a disjoint union of intervals, for example. In
the latter case it is, however, necessary to integrafe[sefined in (2.2)] over the
pairs(x, y) belonging tdJ so thatx + y andx — y lie in the same interval as.
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Therefore, a test of the hypothesis of increasing hazard rate or, equivalently, of
(2.2) Ho: H is convex orf,
is to rejectHp in favor of its complement if the value of

22) T= /f max0, 2 A (x) — H(x + y) — H(x — )Y w(x, y)dxdy
X,y x+y,x—yel

is “too large.” The exponent is an arbitrary positive number and is a
nonnegative weight function. By taking the maximum in the argument of the
integral at (2.2), we have largely restricted attention to places where the sampled
distribution has a decreasing hazard rate. (Here and below we use the words
“increasing” and “decreasing” to mean “nondecreasing” and “nonincreasing,”
resp.) Further restriction will be made through our method for calibration, which
uses the data to determine where the hazard rate is more likely to be increasing or
decreasing.

2.2. Calibration. Our approach to calibration will be based on bootstrap
sampling from the distribution determined by a kernel density estimator,

~ _ " X — Xl'
fuM)=om)1§jK<—7;—)
i=1
where K is a kernel and: a bandwidth. We shall choosg to be a smooth,
symmetric density function, its graph being of conventional bell shape. Let
F denote the distribution function corresponding to the dengitand letH =
—log(1— F) be the associated cumulative hazard function. Then

{1-F)}f'(x) + f(x)?
{1-F(x))2 '

We shall write H (x) as H”(x|h) when it is necessary to indicate dependence
on bandwidth, and, as at (2.3), we shall drop the notaiidrom quantities such

as f(-|h) when it is not necessary for our argument. An empirical approach to
bandwidth choice will be employed, as follows.

Let 4 denote a conventional empirical bandwidth, the asymptotic size of
which is n=1/5. We shall calli the “starting bandwidth.” Examples include
the bandwidths selected by the bootstrap, cross-validation or plug-in methods.
Steadily increase the bandwidth, starting fronand stopping on the first occasion
on which H” does not change sign dnDefine

(2.4)  heit =inf{h > h: the equatiorif”(-|h) = 0 has no solution off}.

(2.3) H"(x)=—(d/dx)*log{l— F(x)} =

We claim that if J is a compact interval, then for all sufficiently large
H”(-|lh) >0 onJ, and so the set at (2.4) is not empty. Therefdrgy is well
defined.
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To verify the claim, assumE has two continuous derivatives in a neighborhood
of the origin, K (0) > 0 andK’(0) = 0, and observe that ds— oo, f(x|h) =
h KO +o,(h~ Y andf'(x|h) =h 2 K" Q) n~t ¥;(x — X;) +0,(h~3), where
both relations hold uniformly ix € J. It follows that, for all sufficiently largé,
F(x)2 > | f'(x)| for all x € 7. The claim thatH”(-|x) > 0 on J now follows
from (2.3).

Having computedicit, we repeatedly create samples of sizé&y sampling
randomly, with replacement, from the distribution with densfty|/crit), and
thereby repeatedly compute bootstrap vald&ssay, of the statistid@. Arguing
thus, and given a nominal probability of rejectian,say, for the test, we may
compute a critical point(a) defined by

P{T* > é(a)| X} =a.
The test takes the form: reject the null hypothesig if ¢(«).

2.3. The road not takentests based ond”. In the test described in
Sections 2.2 and 2.3 we have used smoothing methods only for calibration, not
to construct the test statistic itself. An alternative approach would be to base a test
directly on the property that, whef is twice continuously differentiable, the null
hypothesis is satisfied if and only#f” > 0 onJ. In particular, we could construct a
smoothed versiond say, ofH with the property thaf{” is a consistent estimator
of H”, and rejectH if (e.g.) S = [;{max(0, —H")}?is “too large.”

This approach has drawbacks, however. First, it requires a bandwidth to be
chosen when constructing the test statisfica second bandwidth would be
needed when calibrating the test, if calibration were to involve sampling from
a smoothed distribution. Second, the power of the test will depend intimately
on choice of the first bandwidth. Indeed, the minimum distance from the null
hypothesis at which local alternative distributions can be detected by the test will
generally be proportional to~1/2h—¢, wherer is the bandwidth employed when
constructings, andc > 0 depends on the smoothing method used. Examples of
this behavior in more conventional testing problems may be found in the work of
Anderson, Hall and Titterington [2], Lavergne and Vuong [18] and Delecroix, Hall
and Roget [10].

3. Theoretical properties.

3.1. Summary of properties.Section 3.2 shows that, /f is in the class{y1 of
hazard rates for whicl/” is bounded above zero drjsee (3.1)], then the statistic
T is of sizen—! and asymptotically normally distributed. The bootstrap accurately
captures this distribution. As the convexity & becomes more marginal, the
stochastic fluctuations df increase. Thus, iff is in the classHp [see (3.6)]
of hazard rates for whicltf” vanishes at just a finite number of discrete points
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in J, then the size ofl' increases tOO(n_6/7), and its distribution becomes
nonnormal (see Section 3.3). The sizeTofncreases still further, tai)p(n—l/z),

if H” vanishes on an interval, and, in particularFifs an exponential distribution.
(See Section 3.7, and see the third paragraph of Section 1 for an intuitive account of
difficulties experienced calibrating against the exponential distribution.) Properties
of our calibration method, wheH is in Hyy, are treated in Section 3.4, where

it is shown that the asymptotic probability of rejection is bounded away from
zero. (Section 4 reports numerical properties in this case.) By way of contrast,
if calibration is made against the exponential distribution then, wtidésa in Hp;

or Hpy, the rejection probability converges to zero (Section 3.7), implying that
this approach gives ultra conservatism. Optimality of our approach for identifying
small, nonmonotone “wiggles” in the hazard rate is proved in Section 3.5. The
ability of our calibration method to identify a fixed departure from the null
hypothesis is shown in Section 3.6.

3.2. Strict monotonicity of hazard rate.Throughout Section 3 we shall define
the statisticT’ by takingr = 1 andw = 1 in the definition at (2.2). Lefp1 be the
following subset of the class of cumulative hazard functions for wikighdefined
at (2.1), holds:

(3.1) Hoy={H:H" has two continuous derivatives 6rand H” > 0 onJ}.
(We would mention that neithdilp1 nor Hpp, the latter introduced in Section 3.3,
is closed.) Pug = fY2/(1— F),

w= f dx / E[MIn(0, y2 H" (x) + g(x) 2y 2N }1dy > O,

o _/dx/ f j cov(min{0, ylH”(x)Jrg(X)W(yl)}

min[O, yzH”(x)
+ (X)W (y2+ y3) — W(y3)}]) dy1dy2dys,

where the random variablg has the standard normal distribution af¥ddenotes
a standard Brownian motion. It is clear thais finite; our proof of Theorem 3.1
will show thato 2 is also well defined and finite.

THEOREM 3.1. Assume the distribution functioR' has three continuous
derivatives on an open intervdl which contains the compact boundg&dand
that the densityf = F’ > 0onJ. If H € Ho1, thenT =n~1u +n="/%¢ N, where
N,, is asymptotically normally distributed with zero mean and unit variance

A version of the theorem continues to hold if the distribution functioa: F;, is
allowed to depend on. The main requirements in this case are that the regularity
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conditions hold in a contiguous way, a#y converge sufficiently fast to a proper
limiting distribution, G say. In particularF,, andG (the former for all sufficiently
large n) should satisfy the conditions of the theorem, and, fee 0, 1 and 2,
FY) — GY should converge to 0 at a faster rate tharn/®, uniformly on7'.
Under these assumptions, the limiting distribution7ofs that defined when, in
the definitions ofu ando, F is replaced byG. The proof requires only minor
modifications.

This result may be used to prove thatHfe Hpi, and under mild conditions on
h and K, the bootstrap estimator of the distribution®is strongly consistent for
the limiting distribution of7". Our next theorem will state this result. To formulate
it, put #H(£1, &) = [n 51, n=52], where

(3.2) %2<$2<$1<%.
Assume that

K is a symmetric, compactly supported probability

(33) density with a Holder-continuous derivative.

Note particularly that bandwidths of size /° are in #(£1, &) if (3.2) holds.
Indeed, conventional bandwidth selectors, for example, those based on bootstrap
methods, cross-validation or plug-in rules, satisfy

P(Cln_l/5 <h< an_l/s) -1
asn — 0o, forsome O< C1 < Cy < o0.

Let T* denote the version df, defined at (2.2), but with =1 andw =1, and
computed from a sample drawn by sampling randomly from the distribufion
conditional onX. Let u ando be as in Theorem 3.1, and wrid@for the standard
normal distribution function.

(3.4)

THEOREM 3.2. Assume that thd possibly random bandwidth /2 lies in
F (&1, &2), where&y and & satisfy(3.2), and thatK satisfies(3.3). Suppose too
that F has four bounded derivatives on an open inter{/alvhich contains the
compact interval, that f > 0 onJ and thatH € Hpi. Then uniformly inx and
with probability 1,

(3.5) Pn"®T* —n"tp) /o <x|X} > @ (x)

asn — o0.

Since the conclusion of Theorem 3.1 may be stated equivalently as
P(n"/S(T —n" ') /o < x} = @ (),

then (3.5) may be interpreted as implying that the bootstrap distributidh*of
converges to the limiting distribution df, providedH € Ho;.
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It should be mentioned too that if a starting bandwidtis chosen using
a standard method such as the bootstrap, cross-validation or plug-in, and if
the method suggested in Section 2.2 is employed to calculate the critical
bandwidthiit, then, under the conditions imposed Brand K in Theorem 3.2,
it is true with probability 1 that: = /it for all sufficiently largen. That is to
say, the iterative process used to defirg stops at the very first step. This is a
consequence of two properties: (i)Af € Ho1, then H” must, in fact, be bounded
above zero on the compact interdaland (i) if a bandwidth of conventional size
is used, thend” converges uniformly taH” on J with probability 1. Together
() and (ii) imply that with probability 1H" is bounded above zero for all
sufficiently largen, and, hence, that = A for all sufficiently largen.

Furthermore, with probability 1 € J# (&1, &) for all sufficiently largen.
Therefore, whenH € Hpi the calibration step in Section 2.2 degenerates in
asymptotic terms to simply using the standard bandwidth selector, in which case its
properties are covered by Theorem 3.2. In particular, using a standard bandwidth
selector leads to consistent estimation of the limiting distributioril" ofivhen
H € Hops.

3.3. Strict monotonicity at all but a finite number of pointd.et Hp, be the
following subset of the class of cumulative hazard functions satisffsg

Hoz = {H : H" has two continuous derivatives 6nandH” > 0 onJ,
(3.6) except for a finite number of distinct points, ..., x,, €7,
whereH” vanishes and/ ¥ > 0}.

We assume: > 1. Note that it is not possible f@i” to vanish at a point, for H®
to be strictly negative there, and at the same time for the hazard rate to be strictly
increasing on sufficiently small intervals containing

The case of strict monotonicity at all but a finite number of points may fairly
be interpreted as the boundary between cases wHeteHp1 and those where
the hazard rate has decreasing parts in the vicinities of peints., x,. The
assumption thafd”(x;) = 0 and H® (x;) > 0 implies that the hazard rate has
a “shoulder” atx; and is on the verge of decreasing there. Therefore, testing
in this context means attempting to identify alternative hypotheses in difficult
cases; compare [7]. It offers the opportunity to assess performance against local
alternative hypotheses, an opportunity we shall take up in Section 3.5. The
opportunity is virtually absent in the setting of Section 3.2.

Let Z4, ..., Z, be independent random variabl&g,having the distribution of

ST /_o; f_o; min{0, (3x% 32+ 5y H® (x;) + g(x) W (x + y)} dx dy,

where W denotes a standard Brownian motion. For simplicity, we shall assume
that

(3.8) no x; is an endpoint of.
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Theorem 3.3 has an analogue in the contrary case; it involves altering the
distribution of Z; whenx; is an endpoint.

THEOREM3.3. AssuméF has four continuous derivatives on an open interval
which contains the compact intenvland thatf = F’ > 0 onJ. Suppose too that
H € Hop for pointsxy, .. ., x;; in the definition of that function clasand that(3.8)
holds Then we may writd" =»n=%7%", _._ Z,;, where the joint distribution of
(Zn1, ..., Zum) converges to that ofZ4, ..., Z,).

Again, a version of the theorem holds whén= F,, varies withn. However,

a direct analogue of Theorem 3.2 does not exist in this setting. Essentially, this
is because a bandwidth that is sufficiently large to ensure convergengé*of

to H®, and so capture the role @f ? (x;) in the definition of the distribution

of Z;, istoo large to allow sufficiently fast convergence for capturing other features
of the limiting distribution. Thus, in the “boundary” case treated by Theorem 3.2,
there is not a direct way, based on the estimd@toand using a bandwidth that

is asymptotic to a nonrandom quantity, of calibrating the test so as to capture the
exact distribution off".

Details behind this claim will be given in Section 5.4. These difficulties persist
even if F is computed using a high-order kernel.

One way of overcoming these difficulties would be to locally model the behavior
of F in the neighborhood of points whereﬁj(x) was small, rather than leaving
estimation there up to the generic estimatoand to use the model directly to
estimate the distributions dfy, ..., Z,. This approach is rather cumbersome,
however, and so, for simplicity we shall not consider it further. Moreover, the
problems are largely overcome by the calibration method proposed in Section 2.2,
the theory of which we treat next.

3.4. Calibration based omiqii. The calibration method suggested in Sec-
tion 2.2 produces a test for which the rejection probability,loe Hpp, converges
to a number that lies strictly between 0 and 1, and so suffers less from the difficul-
ties noted above. First we describe limiting behavior of the critical bandwiggh,
in the casell € Hpy. For simplicity we assume there is only a single paint,at
which H” vanishes.

Definec =  / uK (u) du and

S(q.x,y) = (cq®+ 3x° + £y*) H® (x1)

(3.9) +q 2 (x1) /_ . K" (u)du

1
X /0 {(Wx+ty—qu)+Wx —ty —qu)}(1—1t)dt,

whereg = f1/2/(1— F) andW is a standard Brownian motion. L& > 0 denote
the infimum of valueg > 0 such thatS(q, x, y) > 0 for all realx, y.
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THEOREM 3.4. Assume the conditions of Theoreh8, but with m = 1.
Suppose too thak is a symmetriccompactly supported probability density with
two Hélder-continuous derivativesind that the starting bandwidth used to
initiate the algorithm that produceécm satisfies(3.4). Then n1/7fzcm — Qin
distribution asn — oc.

Next we describe the asymptotic rejection probability for the test when
H € Hopy. For O< a < 1, definez, to be thea-level quantile of the distribution
defined at (3.7) in the cage= 1. Noting (3.7), we see that we may writg as a
continuous function off ™ (x1) andg(x1), sayze = Fo{H @ (x1), g(x1)}. Put

S(x)=5(Q.x,0)

3.10 00
(320 = (cQ*+ 3x°)H™W (x1) + 0 %g(x1) /_ K")W (x — Qu)du.

It follows from the definition ofQ that, with probability 1, (af(x) > 0 for —oco <
x < oo, (b) there exists a unique (random) poinE A at which S(x) = 0, and
(c) S’(A) =0andS”(A) > 0. [To appreciate why, observe thats asymptotically
proportional toH” (x1 + n~Y7x), after taking the bandwidth to equat/7Q.
Note that the second derivative 8fis well defined and continuous as long Es
has three continuous derivatives.]

Let Z1 denote the random variable at (3.7) wher= 1, constructed using
the same Brownian motioi as at (3.10). ThereforeZ, and S”(A) are linked
through W. In interpreting the theorem below, note that the probability that
Z1 <To(H™ (x1), g(x1)} equalsa.

THEOREM3.5. Assume the conditions of Theor8m,but with the additional
requirement thatk have three continuous derivativekakeh = herit. Then the
rejection probability for the bootstrap test convergesias- oo to the probability
that Z1 < T {S"(A), g(x1)}.

3.5. Power against local alternatives and optimality_et F denote a four-
times continuously-differentiable distribution function for which the correspond-
ing hazard rate is irHp>. Assume for simplicity that there is only one point at
which, for thisF, H” vanishes or. Let this point bex; = 0, and take it to be an
interior point ofJ. SinceH € Hop, thenH® (0) = 0 andH ¥ (0) > 0.

We shall add a “wiggle” toF in the vicinity of the origin, such that the
perturbed distribution violates the null hypothesis. The perturbation will be chosen
so that it is only barely detectable using an optimal parametric method, that is, the
likelihood-ratio test. We shall then explore the performance of our nonparametric
test, based on the statisic and show that it too is able to detect the wiggle.

The perturbationaze? W (x/¢), is based on a four-times continuously-differ-
entiable functionl supported ofi—1, 1]. The constant > 0 represents the height
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of the wiggle, and = ¢(n) — 0 indicates the extent of the perturbation away from
its center, at the origin. We shall chooseso small that the perturbation is only
barely detectable by the likelihood-ratio test. Our construction of the perturbation
ensures that, like the distributiofi to which it is added, it has four bounded
derivatives near the origin.

The perturbed distribution is

(3.11) Fy(x) = F(x) + ag®W(x/e).

(It is possible, for smalk, that F,, will be decreasing in some region, but for the
choicee = n~17 that we shall make, and under the other regularity conditions
of Theorem 3.6 F, will be nondecreasing ofi for all sufficiently largen.) Let
H, denote the cumulative hazard rate corresponding,tolf we choose¥ so
that W (x) = —x* in a neighborhood of the origin, then, for eagh- 0 and all
sufficiently largen, H, is strictly monotone decreasing in a neighborhood of 0.
[This neighborhood is of widthO(¢).] Therefore, F,, fails to satisfy the null
hypothesis of an increasing hazard rate.

The densityf, = F/ satisfiesf, (x) = f (x) +ae3y (x/e), wherey = W', Since
f» must be a density, thefiyy = 0. Now,

ag3y (x/¢) B a?e8y (x /)2
) 2f (x)?

Therefore, putting(a) = 3af(0)~1 [ 2, f = f, and f_ = f, we have, taking
the & signs, respectively,

(3.12) / o) 10g1f (00)/F (00} dx = £b(@)e + o(e7).

It follows from (3.12) that the expected log-likelihood ratio, for a sample of
sizen, is of sizene’. Choosing: such that this quantity is bounded away from zero
and infinity, in particulars = n=1/7, makes the perturbation only barely detectable.
In that case, a likelihood-ratio test for discriminating betwgeand f;, does not
have asymptotically perfect accuracy.

Our test is able to detect local alternatives suchFasprovided the function
1oy (a) for our test satisfies

(3.13) lim_ 72 (a) = 1.

logf fn(x)/f (x)} = +0(Y).

If (3.13) holds, then our test shares the optimal performance of the likelihood-ratio

tes‘lt'b establish (3.13), note first that, fp=0, ..., 4,

a84_jlll(j)(x/e)
1-F(x)

uniformly in x. In particular, the second derivative &, — H is of sizen—2/",

and the fourth derivative is asymptotic &l /) (x/¢)/{1 — F(x)}. Using these

HY = gD 4 +0{e> I (|x| < 8)),
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properties, and the arguments leading to Theorem 3.5, the following result may
be proved. It verifies (3.13) in the case where the test in question is the bootstrap-
calibrated one proposed in Section 2.

THEOREM 3.6. Assume the hazard rate of the four-times continuously-
differentiable distributionF lies in Hpp, with m = 1 and x; = 0; and that
F, is given by(3.11), where the four-times continuously-differentiable function
W is supported orf—1, 1] and satisfiest (x) = —x* in a neighborhood of the
origin. Suppose too that in (3.11)is n=Y/7, that i = hcit, and that the starting
bandwidthh satisfieg3.4).Let p, (a, n) denote the probability that the bootstrap-
calibrated test of the null hypothesis of monotone hazard rate rejects the null
hypothesis when applied to data frafp. Then(a) py (a, n) converges to a limjt
oy (@) Say asn — oo, and (b) o, (a) satisfieq3.13)asa — oo.

3.6. Rejection probability under the null hypothesisd power against fixed
alternatives. The result below shows that the bootstrap-calibrated form of our
test is asymptotically consistent in rejecting the null hypothesis whenever it is
violated by a fixed alternative.

THEOREM 3.7. AssumeF has two continuous derivatives on an open
interval I which contains the compact interval that f > 0 on J, but that the
hazard rate forF is strictly decreasing in a subinterval 6f Suppose too thak
satisfie(3.3), that K (0) + 0, that E|X| < oo and that the starting bandwidth
for the algorithm leading tohcrir defined in Sectior2.2 satisfies(3.4). Then
P{T > ¢(a)} — 1,asn — oo, for eachO < a < 1, wherec(«) is the bootstrap
critical point introduced in Sectio.2.

3.7. Calibration against the exponential distributionPut A(x) = B{F(x)}/
{1— F(x)}, whereB is a standard Brownian bridge, and define

To = // max(0, A(x + y) + A(x — y) — 24(x)} dx dy.
x,y:ix+y,x—yed

In this notation, and using standard Gaussian approximations to the empirical
distribution F (see, e.g., [17]), it can be proved thafifis taken to be exponential
over J, thenn/2T — Ty in distribution. This result follows from the fact that,
in the exponential case, the cumulative hazard rate is linear. In particular, in that
settingH is in neitherHp1 nor Ho».

Therefore, if we calibratd” by reference to an exponential distribution, then
the critical points for the test will be distant'/2 from the origin. However, it
is in either Hpy or Hpp, this is much further from zero than the actual critical
points of the distribution off'. Indeed, we know from Theorems 3.1 and 3.3
that those points are distant onfy(n~1) from zero whenH € Hoz, and only
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distant O (n=%7) when H € Hopp. (The same is true of the bootstrap critical-
point estimator suggested in Section 2.2.) It follows that, for each value of the
nominal rejection probability of an exponentially calibrated test, the exact rejection
probability (for H in either Hp1 or Hp2) will converge to 0 ag — oo.

Put another way, the exponentially calibrated test will become ultra-conservative
as sample size increases. In particular, it will fail, asymptotically, to detect the
perturbation-type null hypothesis discussed in Section 3.5. In order for detection to
be even barely possible in that setting, the perturbatfdn(x /¢) (with ¢ = n=/7)
would have to be increased by the factéf4.

4. Simulations. Simulations are carried out for two models. First, consider a
variableX with hazard rate

(4.1) H'(x) =a{(x — b)3+ b3} + ¢ + dx?,

wherex,a,b,c > 0 andd is chosen such thatl’(x) > 0 for all x > 0. The

distribution function corresponding to this hazard function is given by
F(x)=1-— exd—a{é—l1 (x—b)*+ b3x} —cx — %dxg].

It is readily verified thatd € Hpy whend > 0, H € Hpp whend =0 andH is in

neither Hpy nor Hp> whend < 0. Figure 1 shows the graph & (x) for certain
values of the parameters.

™~ T T T T T T T T T T T T T T

Fic. 1. Graph of H'(x) for model (4.1) when a« = 25b = 0.75¢ = 05 and
d = —1,-0.75,-0.50 and —0.25 (dashed curvgs d = 0 (full curve) and d = 0.5,1 and
1.5 (dotted curver
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The simulations are based on 2000 samples of size 50 and, for each
simulated sample, 2000 resamples are generated. The infeoralwhich the
test statisticT is based is given by0, F~1(0.95)]. The starting bandwidtth
is determined from the normal reference rule for plug-in estimation, that is,
h =1.06n"156 , wheres is the estimated standard error)of The kernel function
used is the normal kernel. The results foe 2.5, b = 0.75, ¢ = 0.50, for several
values ofd and fore = 0.10 are presented in Figure 2. The power curve starts
at —1.14, which is the smallest possible valuedofor this choice of parameters.
The results for other choices of the parameters andxfer 0.05 are similar.
For most choices slightly conservative rejection probabilities are observed. As a
comparison we also implemented the global sign test of Proschan and Pyke [19]
and the local sign test of Gijbels and Heckman [13]. From Figure 2 it is clear that
the power curves of both tests are considerably below the curve of the new test. The
power of the global test is even identical to zero for all valueg.dfhis confirms
what was explained in Sections 1 and 3.7 about the lack of power of tests based on
calibration with respect to the exponential distribution.

1.0

Rejection probability
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 0.1

FiG. 2. Rejection probability for moddl.1), whena = 2.5,b = 0.75, c = 0.5, and for a range
of values ford. The full curve is obtained with the new tefte dotted curve with the local test of
Gijbels and Heckma[i3], while the dashed curve represents the nominal level0.10. The global
test of Proschan and Pyk#9] has everywhere zero power
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Next, we consider hazard rates which contain a small “bump” and we study how
well the three tests are able to detect this little perturbation fifynThe hazard
rate considered is

(4.2)  H'(x) =expylogx + f(2ro?) Y2 expl—(x — n)?/(20)}],

wherex, o, u > 0 andy and g are real numbers. This model is also considered
in [13]. Graphs of this hazard rate for different values of the parameters are
presented in Figure 3. It is clear that, fgrsufficiently large, the hazard rate
contains a “bump” atr = p. The simulation results are obtained from 1000
samples of size = 50 and for the bootstrap procedure 1000 resamples are used.
The results are shown in Table 1. Clearly, the hypoth&gis only satisfied when

y =0,0.50 or 1 and8 = 0. In comparison with the local sign test of Gijbels and
Heckman [13] and the global sign test of Proschan and Pyke [19], the new testing
procedure is now leading to rejection probabilities that are most of the time higher,
but not always. Also note that the new test tends to be anticonservative, while the
global and local test are, on the contrary, quite conservative. This has to be taken
into account when comparing the powers of the three curves.

Fic. 3. Graph of H'(x) for model(4.2) whenu = 1 and 8 = 0 (dashed curvg g = 0.3 and
o =0.1 (full curve) and 8 = 0.3 ando = 0.2 (dotted curvg For the figure on the lefy = —0.5, for
the one on the righy = 0.5.
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TABLE 1
Rejection probability for moddK.2) and fore = 0.10. The numbers in
italic are rejection probabilities under the null hypothesis

4
Parameter Test -0.50 -0.25 0 0.50 1
p=0 New 0.833 0.643 0.437 0.189 0.121

Global 1.00 0.800 0.100 0.000 0.000
Local 0.983 0.416 0.100 0.034 0.027

p=03 New 0.675 0.753 0.772 0.656 0.508
o=01 Global 0.997 0.458 0.019 0.000 0.000
nw=1 Local 0.962 0.291 0.178 0.176 0.154
=03 New 0.715 0.714 0.663  0.443 0.277
0=02 Global 0.999 0.588 0.035 0.000 0.000
nw=1 Local 0.968 0.301 0.114 0.065 0.054

5. Technical arguments.
5.1. Proof of Theoren8.1 DefineAgr = F — F, and observe that

(51) H=H+ ——— - F + 0,07, Aor=n"Y?B(F)+ 0,(n"tlogn),

where the first result holds uniformly di) the second uniformly on the real line
and B denotes a Brownian bridge, the construction of which depends on the data.
The first identity at (5.1) follows by simple Taylor expansion, while the second
uses results of Komlds, Major and Tusnady [17]. Together the identities imply that

12 B(F)

5.2 H=H
(5.2) +n

+ 0 (n_llogn)
uniformly onJ.

AssumeH < Hpi, and, given a functiony (x) defined forx € J, puty (x, y) =
Yx+y)+ v —y) — 2y (x) wheneverx + y,x —y €J. Now H(x,y) =
y2H"(x +6y), where—1 <6 =6(x, y) < 1. Hence, forH € Ho1,

inf y“2H(x,y) > 0.
x,y:x+y,x—yeJ
We may therefore deduce from (5.2) that, for some constant 0, —H (x, y) > 0
only if

53 1n2y2 < max{|B{F (x + y)} — B{F (x)}|, |B{F (x — y)} — B{F (x)}|}
' +n"Y?(logn)A,,

where the random variablé, does not depend an or y and equalsO,(1) as
n — oQ.
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For eachx, let Y (x) denote the supremum of valugsuch thatt +y,x —y €]
and (5.3) holds. Then for eaah Y (x) = 0,,(n~1/3). Since

(5.4) |B(t +u) — B(t)| = O, (|lulogu|*?)
uniformly inz, u such that O< 7,7 +u < 1, then
(5.5) supY (x) = 0,{(n"tlogn)/3}.

J

Defining A1 = B(F) and A>r = B(F)/(1 — F), we deduce first by Taylor
expansion and then application of (5.4) that

_ B{F(x + ) yf(x

B2r ) == (“ 1- F(x))
B{F(x — y)} Vv (x) B{F(x)) )
(5.6) 1 Foo (1— 1—F(x)) _21—F(x) +0P{Y(x) }

_ A1r(x,y)
1-F(x)
uniformly in x € J and|y| < Y (x). Therefore,

+ 0,{Y (x)*2(logn)*/?},

Y (x) .
T :/dx/ max0, —H (x, y)}dy
J

=Y (x)

Y (x)
(5.7) /dx/ min{0, H (x, y) + n~Y2Azr (x, y)} dy
Y(x)

+ 0,{(n"tlogn)*3)

Y(x
—/dx/ “ min{O,H(x,y) +n_l/zw}dy
(5.8) —-Y(x) 1-F(x)
+ 0,{(n"tlogn)*3},
where the second identity follows from (5.2) and (5.5), and the third comes from
(5.5) and (5.6).

Let W denote the standard Brownian motion through whiBhmay be
expressed a®(r) = W) —tW(1) for 0 <t < 1. PutAszr = W(F). Observe
that A1p(x,y) — Asp(x,y) = Op{Y(x)Z} uniformly in x € J and |y| < Y(x).
Therefore, (5.5) and (5.8) imply that

rw Asp(x.
T=— /dx/ mm{o,H(x,y)Jrn—l/ZM}dy
Y (x) 1-F(x)

+ 0,{(n"tlogn)*3).

SinceH" is bounded, thedl (x, y) = y2 H” (x) + O(|y|3) asy — 0, uniformly
in x € J. From this result, (5.5) and (5.9), we deduce that

(5.10) T =Ti1+ 0,{(n *logn)¥3),

(5.9)
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where
Y(x) A
—T1=/dx/ min{O, yzH”(x)+n1/2M}
J —Y(x) 1-F(x)
(11) Azp(x,n~13z)
_ -1 ; 2 g/ 1/6 23F X,
cot [ [ o, 2o oS 1% )
" /J‘ * n(x) ¢ (X) +n 1— F(X)

andJ, (x) denotes the set of such that bothr + n~1/3y andx —n=1/3y liein J.
Put

Wy () = nYO[W{F (x) +n 3y f(x)} — W{F))/f ()Y,

which, like W, is a standard Brownian motion. It may be proved from (5.11) that

—nE(Ty)
=/jdx f_OOE{min(O, 22H" (x)
1/2
+ I
< [wfet 5n 282w p 2]
+ Wx{—z + %n_l/szzf/(x)f(x)_l}D} dz
+o(n~Y).

From this result and the fact that, forO|u| < |z|, Wy (z +u) + W, (—z + u) has
the normal NO, 2|z|) distribution, we deduce that

(5.12) nE(T) = p+o(n=°),

wherep is as defined in Section 3.

To derive a central limit theorem faofy, we first approximatel; by a sum
of 3-dependent random variables, as follows. Defipe= logn andé = §(n) =
A (n~tlogn)Y/3. Put

_1/2A3F(x» y)}d ’

)
—To=|[d min{ 0, y2H"
2 /Jx,/—a { YHO T T

2 A3F (X, Y) } d .
1-F(x) ’
compare these definitions with the first identity at (5.11). Thes ), 7>(i). Note

that, since Brownian motion has independent incremdig) is stochastically
independent of»(j) for |i — j| > 3.

)
—T(i) =/ dx/ min{o, y2H" (x) +n"Y
IN(@S, (i+1)3) -8
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In view of (5.5), the probability that maxY (x)| < § converges to 1 as
n — oo. Note too that maxs|Y(x)| < § implies Ty = T»>. Hence, if we
prove that the following three results are true: (a) Bar varTy ~ o2n="/3,

(b) (I» — ET»)/(varT>)¥2 has an asymptotic standard normal distribution, and
(c) n’/8(ETy — ET») — 0; then it will follow that n”/6(Ty — ET1)/o has an
asymptotic standard normal distribution. Theorem 3.1 is a consequence of this
property and (5.12).

Result (c) may be proved using the argument leading to (5.12), and the first
asymptotic relation in (a) may be derived using the method giving the second.
Therefore, it suffices to show that (b) holds and that (d)fyar o%n~"/3.

To prove (b), letC > 0 and defineTz(i) = n"/8Y2T5(i), Ta(i) = T3(i) x
I{|T3()| < C}, Ts(i) = T3(i) — Ta(i) and T; = ¥, T;(i) for j = 4,5. For
all sufficiently largeC, the variance off;, and the number of nondegenerate
summandsTy(i), are both asymptotic to constant multiples &f!; and the
summands are uniformly bounded. Therefore, using a central limit theorem for
uniformly boundedm-dependent random variables (see, e.g., Theorem 7.3.1,
page 214 of [9]), we may prove th&ly — ETy)/(varTs)/? has an asymptotic
standard normal distribution; call this result (e). The argument that we shall
use to prove (d) may be employed to show thatCas> co, (f) lim;,_ 8 x
varTy — o2 and (g) lim,—o 8 var7s — 0. Combining (e)—(g), we deduce that
(T3 — ET3)/(varT3)Y/2 has an asymptotic normal distribution. This is equivalent
to (b).

It remains to derive (d). Recall that= f1/2/(1 — F), and define

U (y) =n™O[W{F (x + n~3y)} = W{F )N/ ()2,
Vi(y) =Ux(y) + Ux(=y),
W1(x1, y1) = min{0, yPH" (x1) + g (x1) Vi, (1)}
Wa(xy, x, y2) =min{0, yH" (x1+n"3x) + g(xa +n"30) V1173, (72))

and g, (x1) = {x :x1 +n~Y3x € J}. In this notation,
nzvarlefdxlf dxz/ dy1
J J Jn(x1)
; 211
X /J( )cov[mln{o, YiTH (x1) + g(x1) Vi, (01},
n{X2

min{0, y5H" (x2) + g(x2) Vi, (y2)}] dy1 dy2

:n_l/gf dx1/ dx/ dy1
J In(x1) Jn(x1)

X / coviWi(x1, y1), Wa(x1, x, y2)} dy2,
I, (x14+n~1/3x)
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whereJ, (x) is as defined below (5.11). In view of the independent increments
of Brownian motion, the random variableg,, (y1) and V, ,,-y3,(y2) are
independent ify;| + |y2| < |x|. In this case, the covariance in the second identity
above vanishes. Therefore,

n'BvarTy
:fdxl/ dx
(513) J n(x1)
X // cov{Wi(x1, y1), Wa(x1, x, y2)} dy1dy>,

y1.y2: [yal+ly2[>[x[; C(x1,x)

whereC(x1, x) denotes the constraint that € 7, (x1) andy, € J,, (x1 +n~3x).

The random variabledV1(x1, y1)| and|Wa(x1, x, y2)| are respectively bounded
by C1|N1lI(|N1] > C2y?) and C1|N2|I(|N2| > C2y2), where N1 and N, are
standard normal random variables, afig and C> are positive constants not
depending onx1, x, y1 Or y», although the correlation betwee¥d; and N2
does depend on these quantities. We may therefore deduce that, for constants
C3,C4 >0,

|cov{W1(x1, y1), Wa(x1, x, y2)}|
(5.14) < C1E{IN1PI(IN1] > C2y?)}Y2E{IN2|*1 (|N2| > C2y3)}?
< C3exp(—Ca(y + yD).

Therefore| cov{W1(x1, y1), Wa(x1, x, y2)}| is bounded above by a function which
does not depend om and whose integral overoo < x < co and over all real
y1, y2 that satisfyly1| + |y2| > |x]| is bounded uniformly in1 € J.

Furthermore, ifV is a standard Brownian motion, then

cov{Wi(x1, y1), Wa(x1, x, y2)}
— cov(min{0, y2H" (x1) + g(x1)V (y1)},
min[0, y§H" (x1) + g(x){V (x + y2) — V(0)}).

uniformly in x1 € J andx, y1 andy, in any compact set. We may therefore deduce
from (5.13) and the dominated convergence theorem th&tvars2:~7/3, which
is the desired result (d). Note that (5.14) also implies the finitenes$.of

5.2. Proof of Theoren8.2 Putvg=0 andv; =2j — 1 for j > 1. Observe
that, forj =0, 1, 2 and eachy > 0,
(5.15) FD(x) = FO(x) = 0,{(nh"))1= 32 4 p?),

uniformly in & € (&1, £&2) andx € 7. (The assumption that has four bounded
derivatives is needed to derive tlnbp(hz) remainder term in (5.15) whep= 2.
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The other part of the remainder at (5.15), which applies to the error of the left-hand
side about its mean, may be obtained by applying the stochastic approximation of
Komlés, Major and Tusnady [17].) It follows from this property and (2.3) that, with
probability 1,H” converges tad” uniformly in h € # (&1, £2) andx € 7. We may
choose) ande > 0 such thatH” > ¢ onJ'. In this case, and with probability 1,

H' > %s onJ for all sufficiently largen. In particular, for all sufficiently large,

the hazard rate correspondingAdies in Hoj.

The argument leading to Theorem 3.1 may now be used to prove that (3.5) holds
when F, rather thanF, is the sampled distribution, providedando at (3.5) are
replaced by the analogous functionalsfof Let these bei andé, respectively,
and denote by (R) the corresponding version of (3.5). By (5.15),

(5.16) 1 —ul+16 —ol = 0,{(nh*"= Y2 £ h?} =0, (V")

the second identity holding uniformly il € # (&1, &2) and following from (3.2).
Property (3.5) follows from (5.16) and (R).

We should mention that the assumption in Theorem 3.1 fhdtave three
derivatives is imposed for simplicity, and is a little more stringent than necessary.
At (5.10) we need only two derivatives and a Holder condition of or%iaf e
on F”, in which case theD, term at (5.10) become® ,{(n~logn)3+e/3} =
op(n‘7/6) (as required), the identity holding provided- 0. An empirical version
of this argument can be developed provided # (&1, £2) andé, & satisfy (3.2).

5.3. Proof of Theoren3.3. The assumption that the hazard rate is nondecreas-
ing and thatH” (x;) = 0 implies thatH"’(x;) = 0 for 1 <i < m. To appreciate
why, observe that

H(x,y)=y?H"(x) + 5y*H? (x +0y),

where—1 <0 =0(x,y) < 1. Takingx = x; + u, where|u| is small, and Taylor-
expanding, we deduce that

H(xi +u,y) = y2uH" (x;) + (3u®y? + Sy H® {x +60'(ul + D)},

where—1 <0’ < 1. If H”(x;) # 0, then, takingu| = |y|*? and choosing the
sign of u such thatuH""(x;) < 0, we find that asy — 0, H(x; + u,y) =
—|y|"21H"” (x;)| + o(]y|"/?). This implies thatH is nonconvex neak;, and so
contradicts the assumption that the hazard rate is nondecreasing.

Result (5.2) continues to hold in the setting of Theorem 3.3, and so by (5.7),

(5.17) T =T2+ 0,{(n"tlogn)®¥"},

where

Y(x)
= [l [ min(0.52H" )+ iy H O +y) 407 200r(x, ) dy
Y(x
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and we redefin® (x) to equal the supremum of valugsuch thatc + y, x —y € J
and

Y2H" (x) + Sy H® (x +0y) + 072057 (x, y) + nXlogn) A, <0,

where the random variablel, = O,(1) does not depend om or y. In
deriving (5.17), we have used the fact that, by employing arguments leading
to (5.5), it may be proved that

supY (x) = 0,{(n"tlogn)¥’}.

x€d

More analogously to (5.5), it may be shown thatit- 0 and4 = g(n) is the

subset of] all of whose points are distant at leasfrom eachy;, then, using the
new definition ofY (x),

supY (x) = 0,{(n"tlogn)/3}.
xeg

Using this result and the arguments leading to (5.9) and (5.10), we may show that,
if T>(¢) denotes the contribution tf, from the integral over € g, rather than
x €7, thenTx(g) = T5(¢) + 0,(n~ 1), where

Y(x)
I3(§) = — / dx/ min{O, yZH//(x)Jrn—l/zM}dy

Y (x) 1-F(x)
The methods leading to (5.12) give tha§75(%)} = O (n~1). Therefore,
(5.18) T2(§) = Op(nh).

Let n > 0 be less than half the minimum ef,; — x; over 0<i < m, where
xo denotes the lower limit df andx,,+1 is the upper limit. Writel»(x;, n) for the
contribution to7> from the integral over; — n <x < x; + . Then

Y (xj+u) 5 2
To(xi,n) = — / du/ min[0 lu ye+ 12y )
Y (xj+u)

x HO{x; +6;(Jul + [yD} +n~Y2A2r (xi, y)] dy,
where—1 < ¢; < 1. Changing variables frortu, y) to (v, z), whereu = n=7y
andy =n~1/7z, we deduce that

o e [ Rl 1.2.2 @,
To(x;,n) =—n dv min{0, (5v°z° + 12z HHD (x))
—00 —00

(5.19) +gxi) Wi(v+2)}dz

+0,(n~%7),

whereW; is a standard Brownian motion. The procesBés1 <i < m, may be
taken to be independent without violating (5.19). Theorem 3.3 now follows on
combining (5.18) and (5.19).
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5.4. Reasons for failure of bootstrap version of Theo®f In order for 4
to consistently estimatél 4, it is necessary that the bandwidthised to construct
F be of larger order than~1/7. For simplicity, we shall assume below thais at
least of size:* ~(/" for somet > 0, although our argument may by pursued to an
unaltered conclusion when the increasé:aivern=/7 is by only a logarithmic
factor.

Putc = 3 [u?K (u)du. Observe that, for each> 0, F” = F" + ch?F® +
0,{(nh3)1=/2} 1 o(h?), uniformly in x € 7'. [Here we have used the fact that
h > nf~3D ] It follows that H” = D2?A(F + ch?F") 4+ 0,{(nh31~1/2} 4
o(h?), uniformly in x € 7, whereA(x) = —log(1 — «) and D is the differential
operator. Now,D2A(F + ch?F") = D?A(F) + ch?D?{F"A'(F)} + o(h?), and
D%(F"A'(F)} = D?{D?A(F) — (F')2A”(F)} = D*{H" — (H")?}. Therefore,
D2(F'A'(F)})=H®™ —2{H'H" + (H")?}. Hence,

FI// — H// + chZ[H(4) _ 2{H/H/// + (H//)Z}]

5.20
( ) + Op{(nh3)r;f(1/2)} +0(h2)’

uniformly inx € 7'.

The term of ordernh3)"~1/2 on the right-hand side of (5.20) is, of course,
the result of stochastic error, and performance would only improve if it could be
dropped. Let us assume this can be done. Then we can esfiffiate with error
equal to

(5.21) ch?[H® (x) — 2{H' (x)H" (x) + H" (x)?}] + 0(h?).

Now, the limiting distribution of7T’, when H € Hpp, is determined by properties
of H in arbitrarily small neighborhoods of the points, and so it is there
that we are most interested in propertiesif. If x is in a decreasingly small
neighborhood ok;, the expansion at (5.21) equals

ch?[H® (x;) — 2{H'(x)) H" (x;) + H" (x))?}] + 0(h?) = ch>H® (x;) + o(h?),

the second identity holding sindé” (x;) = H"’(x;) = 0. Therefore, if we ignore
stochastic fluctuations (which are asymptotically equally likely to increase or
decrease the value @), H” (x) is distant at least ordér? strictly above zero
whenx is in the neighborhood of;. Since# is at least of orden~/7 then the
distance off” above zero, in the neighborhood.of is [with probability at least
% +o(1)] no less than a certain fixed constant multipleof/’; call this result (R).
Let H* denote the bootstrap version @f, and recall from the proof of
Theorem 3.2 that that limit result derives entirely from fluctuationsdafk, y)
below zero when is close tax; andy is near zero. IfH € Hpy, these fluctuations
occur with a probability that is bounded away from zeronascreases. The
perturbations off * — H are of order only:~%/2, and, in particular, are of strictly
smaller order tham=%/7. This property and result (R) imply that the probability
that the empirical fluctuations off* nearx, ...,x;, ever protrude below zero
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converges to zero as — oo. In consequence, the limit results described by
Theorem 3.2 do not apply in the bootstrap setting.
5.5. Proof of Theoren3.4. Observe that

I-Nl(x—i-y)—i-ﬁ(x—y)—Zﬁ(x)

(5.22) N -~
—y /o (A" (x +1y) + B"(x — ty)}(1— 1) dt.

Let Hg denote the version dff that arises ifF is replaced by a distributio@, and
note that, by (2.3) and approximations based, for example, on the Komlés, Major

and Tusnady [17] embedding,
(5.23) H'= Hy g+ (1 - F)X(f — Ef') + 0,{(nh)y"~ 12},

uniformly in x € ' and inh € #, for eachny > 0. The argument in Section 5.4 [see
particularly (5.20)] shows that

H//

fipy = H"+ch?[H —2(H'H" + (H")!)] + o(h?)

uniformly onJ” and inh € #. Therefore,

1
/0 {Hg(ﬁ)(x +ty) + Hg(f)(x —ty)} A —1)dt

1
&2 B /0 {(H"(x +1y) + H'(x —ty)}(L — 1) dt + ch®H™ (x1) + o(h?)

= H"(x) + (&% + ch®) H® (x1) + o(h® + y?)

uniformly inh € #, |x — x1| <8(n) and|y| < 8(n) for any sequencé) | 0.
Furthermore,

) —Ef(x)= h_Z/ K" ){F (x — hu) — F(x — hu)} du
= h_zn_l/z/ K" (uW)[W{F(x —hu)} — W{F (x)}]du

+ 0, thtn~Y2(logn) "2},

uniformly in h € #¢ andx € J’, whereW is a standard Brownian motion. Plt=
n g, x =x14+n"Ys 4ty andy =n"Y"z, and recall thag = f1/2/(1 - F).
Then there exists a standard Brownian motibsuch that

h=2n Y2 (1 — FOOY HW{F (x — hu)} — W{F(x)}]
= n_2/7q_2g(x1){V(s +tz—qu) — V(s +12)}
+ 0,{n~>ogm)Y?(Iq| + Is| + Iz},
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uniformly in 0<¢ < 1, [u| < C for any C > 0 andg, s, z such that.=Y/7g € 7,
Is| <n/78(n) and|z| < nY78(n). Therefore, definingf = (1— F)"Y(f' — E f"),
we have

1
/(; {M(x +ty)+ M(x —ty)}(1—1)dt

_ =27 _-2 "
625 = n~27q 2 g(xy) / K" (u) du

1
X /o {(Vis+tz—qu)+V(s—tz—qu)}(1—1)dt

+ 0, {n > (logm) 2 (g + 1917 + Is] + 1z])},

uniformly inn=Y7g € 3¢, |s| <n¥’8(n) and|z| < n¥/7s(n).
Combining (5.22)—(5.25), and taking= x1 + n~Y7s and y = n=Y7z, we
deduce that

nY"{H(x +y) + Hx —y) — 2H (x)}
=2%(cq® + 35° + £2°) H (x)

+2% %) [ K@) d
(5.26) .
X /o {(Vis+tz—qu)+V(s—tz—qu)}(1—1)dt

+ 0,(n Y ogn)Y222(1q| + 1g1 7t + Is| + 1z}
+ op{zz(q2 +52+ ZZ)},

uniformly inn=Y7g € 7, |s| < n¥/78(n) and|z| < n¥78(n). The theorem follows
from (5.26).

5.6. Proof of TheorenB.5. Dividing both sides of (5.26) by? and letting
z — 0, we deduce that, whel = hgit, n2/TH" (x1 +n~Y7s) = S(s) + 0,(1),
uniformly in|s| < nY78(n), whereS(s) is defined as at (3.10). Thus, the bootstrap
calibration step involves sampling from a distribution whose cumulative hazard
rate H is convex onJ and satisfiesd”(x) > 0 for all x € J, excepting a single
point x which may be expressed as= x1 + n~Y’A + 0,(n~Y7"), where A is
uniquely defined byS(A) = 0. At this point H” vanishes. Reworking the proof
of Theorem 3.3, we deduce that the critical pditt) of 7*, defined conditional
on the dataX, equals: =% 7T, {S"(A), g(x1)} +0,(n~%"). [Here, T* denotes the
value of T computed from am-sample drawn from the distributioﬁ(-mcrit).]

The distribution of T may be represented, in asymptotic form, as before,
and in terms of the same Brownian motidh that was used to construct the
representation fof at (5.26). In particular, the Brownian motid#, appearing
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at (5.19) (wheri = 1) may be taken identical to the procasst (5.26). LettingV
denote the common process, we see that the inequalty’(«) may equivalently
be written as

(6.27)  n=%7Z140,(n™%") =n=¥TTo{S"(A), g(x1)} + 0, (0=,
whereZ; is defined by (3.7) withi = 1. Theorem 3.5 follows from (5.27).

5.7. Proof of Theorem3.7. If the hazard rateH’ is not increasing orJ,
then, for somes > 0, there exists a nondegenerate rectar@lesuch that for
al (x,y) e R, bothx +y andx — y lie in J and H(x, y) < —e. Under the
hypotheses of the theorerf, (x, y) = H(x,y) 4+ 0p,(1) uniformly in (x, y) € R,
and sol’ > ¢ |R|+40,(1), where|R| denotes the area &t Therefore, the theorem
will follow if we prove that, for eachx € (0, 1), the pointé(«) derived using the
bootstrap argument in Section 2.2 satisfies

(5.28) P{¢c(a) >n}—>0 for eachn > 0.

As h — oo, E{f(x|h)} = h 1K (0) + o(h~ 1) and E| f'(x|h)| = h—3K"(0) x
E|x — X| + o(h~3), uniformly in x € J. Hence, there existsy > 0 such that
(E f(x]ho)}2 = 2 E| f'(x|ho)| for all x € J. It may be proved from this property
that, with probability converging to 1f(x|ho)? > |f'(x|ho)| for all x € J.
Therefore, by (2.3), the probability that” (x|/g) > O for all x € J converges to 1
asn — oo, and so

(5.29) P(flcrit <ho)— 1

Standard calculations of the expected value of a kernel distribution estimator
show that, under the conditions of the theorem, for eagch- 0, there exists
e(h1) > 0 such that, for all sufficiently large,

1- E{ﬁ(x|h)} >e(h1) forall x € Jand allk € (0, h1].

By employing a stochastic approximation based on the results of Komlos, Major
and Tusnady [17], it may be proved that, for eagh> 0,

|F(x|h) — E{F (x|h)}| =0,(1)  uniformly inx € Jandh € (0, h1].
Therefore,
P{1— F(x|h) > 3e(hy) forallx e Jand allh € (0, h1]} — 1.
This result and (5.29) imply that
(5.30) P{1— F(x|hcrit) > 3e(ho) forall x e I} — 1.

If ﬁ;‘ denotes the bootstrap version Bf computed from am-sample drawn
from the distributionF (-|#) rather than fromF', then for allx > 0,

sup sup E{|F(x)—FxIm|*} =0n"?
x€J he(0,hq]
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for all » > 0. (The method of proof involves only direct calculation of moments,
first conditional on the data and then unconditionally.) Thereforg; iindA- are
subsets of and[Cn~1/?, hq], respectively, each of which contains no more than
0 (n?) elements, then for each> 0 and by Holder’s inequality,

E{ sup sup|F(x) — I?(XIh)|}
xehy heAr

1/x
< [ > 2 E{!F*z‘(x)—ﬁ(xih)m}

xeAL heA
_ {O(rlzz)f(x/z))}l/k
— O(n(ZD/A)f(l/Z))_

Since D/A can be made arbitrarily small by choosingsufficiently large, then
we have proved that, for each> 0, and each choice af; and A2 with only
polynomially many elements,

E{ sup sup|Fj(x) — ﬁ(x|h)|} =0(n"~Y?),
xeh her

Using this property, and the fact th&tis Holder continuous, it may be shown by
a “continuity argument” (see, e.g., [8]) that

E{sup sup |ﬁ;(x)—ﬁ(x|h)y}=o(1)
x€J he[Cn=1/5,hq]

foranyC > 0. It follows that if7 is a random element of the intervialn /5, h1],
(5.31) E{suqﬁg(x) - f(xui)}} =o(1).
xed

Write simply F* for I?]i“ ~,and putd* = —log(1— F*) andH = —log(1— F).
crit

Taking k1 = ho andh = fzcm, which in view of (5.29) and the assumptions in
the theorem satisfie® (Cn™~ Y5 < heit < ho) — 1 for someC > 0, we deduce
from (5.31) that|F* — F( |hcm)| = 0,(1) uniformly on J. From this result
and (5.30), we see that

(5.32) sugH*(x) — H (x|herit)| = RE,

xeld
where, here and beIO\b‘r,;f denotes arandom variable that is defined through Monte
Carlo simulation conditional ot and satisfiesP(|Rj| > n) — 0 for eachn > 0,
where the probability is defined in the unconditional sense.
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If T* denotes the bootstrap version®fthen

"= // max0, 2H*(x) — H*(x +y) — H*(x — y)}dxdy
X,y x+y,x—yel

- / / max(0, 28 (xlheri) — H(x + ylhert)
X,y x+y,x—yel

— H(x — ylheri)} dx dy + R}
= R},

where the second identity follows from (5.32) and the third from the fact that, by

the definition officrit, H (-|hcit) is convex onJ. Therefore,P(T* > n) — 0 for
eachn > 0. Hence, sincé(«) is defined byP{T* > ¢(«)|X} = «, then (5.28)
must hold.
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