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Minimum aberration is an increasingly popular criterion for comparing
and assessing fractional factorial designs, and few would question its
importance and usefulness nowadays. In the past decade or so, a great deal
of work has been done on minimum aberration and its various extensions.
This paper develops a general theory of minimum aberration based on a
sound statistical principle. Our theory provides a unified framework for
minimum aberration and further extends the existing work in the area. More
importantly, the theory offers a systematic method that enables experimenters
to derive their own aberration criteria. Our general theory also brings together
two seemingly separate research areas: one on minimum aberration designs
and the other on designs with requirement sets. To facilitate the design
construction, we develop a complementary design theory for quite a general
class of aberration criteria. As an immediate application, we present some
construction results on a weak version of this class of criteria.

1. Introduction. The general problem considered in this paper is how to
select the “best” fractional factorial designs. In situations where we have little or
no knowledge about the effects that are potentially important, it is appropriate to
select designs using the minimum aberration criterion [Fries and Hunter (1980)].
Wu and Hamada (2000) contains tables of many known minimum aberration
designs. Minimum aberration designs enjoy some attractive robust properties
[Cheng, Steinberg and Sun (1999) and Tang and Deng (1999)]. Much work has
been done on the construction of minimum aberration designs. For details, we
refer to Franklin (1984), Chen and Wu (1991), Chen (1992), Chen and Hedayat
(1996), Tang and Wu (1996), Suen, Chen and Wu (1997) and many others.
Sitter, Chen and Feder (1997), Chen and Cheng (1999) and Cheng and Wu
(2002) developed aberration criteria for blocked fractional factorials. A projective
geometric approach to blocking fractional factorials is considered in Mukerjee and
Wu (1999), and blocked fractional factorials with maximum estimation capacity
are studied by Cheng and Mukerjee (2001). Wu and Zhu (2003) examined the use
of a minimum aberration criterion for design selection in robust parameter design.
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Developing a general theory of minimum aberration is motivated by the desire
to unify various versions of minimum aberration that have recently appeared in
the literature. Based on a sound statistical principle, this paper develops a general
theory of minimum aberration and discusses its various applications. In addition
to building a unified framework for many of the existing aberration criteria, the
theory provides a method for deriving other aberration criteria that may be more
appropriate for given design situations. A minimum aberration design can be called
a model robust design because of its robust properties. A design with a requirement
set [Greenfield (1976)] is a model specific design since such a design specifies a
set of effects to be estimated. Our general theory is capable of bringing together
these seemingly unrelated two classes of designs.

We will focus our discussion on two-level regular fractional factorial designs.
However, most of our arguments are quite general. Section 2 motivates, introduces
and studies a general criterion of minimum aberration and discusses its application
to blocked fractional factorials, and to fractional factorials when some 2-factor
interactions are important. Section 3 is devoted to developing a theory of
complementary designs for quite a general class of aberration criteria, and presents
some construction results on weak aberration.

In what follows, we introduce some notation and definitions to set the stage for
the later development. A regulaf2? design has: factors each at two levels and
n = 2""P runs, and is completely determined pyindependent defining words.

The two levels are denoted Byl and—1, so the design matriR of such a design

is ann x m matrix of £1. The defining relation of 8’27 design is the complete

set of defining words. Labels of factors are referred to as letters. A defining word
specifies a set of letters that has the property that the product of the corresponding
columns ofD is a column of all plus ones. Including the column of all ones, the
defining relation of a2~7 design has2defining words. Le#; (D) be the number

of defining words of length in the defining relation of desigh, where the length

of a word is the number of letters in the word. The resolution of des&iga the
integerR such thatd; (D) =0fori =1,..., R—1andAz(D) > 0. The minimum

aberration criterion selects designs that sequentially minidiz®), ..., A,, (D).
For designs of resolution at least Ill, we have = A> = 0, so the minimum
aberration criterion selects designs that sequentially minidgz®), ..., A, (D).

2. General theory of minimum aberration and its applications.

2.1. A general criterion of minimum aberration. Besides the grand meag,
there are in all 2 — 1 factorial effects in a’2~” design. Suppose that out of the
2" — 1 effects, we are interested in estimating a set of effect3hen the fitted
model is given by

(1) Y =yl + Wiy +e¢,
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whereY denotes the vector af observationsy; the vector of the effects to

be estimatedW; the model matrix corresponding tg and ¢ the vector of
uncorrelated random errors, assumed to have a zero mean and a constant variance.
Because the remaining effects may not be negligible, we should choose a design
that minimizes their contamination on the estimatioprgffrom among all designs
allowing estimation of the model in (1). Suppose that prior knowledge enables
us to divide these remaining effects info— 1 groups, denoted by, ..., yy,

in such a way that the effects i, are more important than those )1, for
Jj=2,...,J — 1. Then the true model can be written as

2 Y=yl +Wiyr+Woya+---+ Wyys +e,

where W; is the model matrix corresponding {9 for j =1,...,J. The least-
squares solutiofpy = (W W) “tw!y = n=twl'y from the fitted model in (1)
has expectation, taken under the true model in )1) = y1 + Coy2 + -+ +
Cyys, whereC; = n—1W1TWj for j > 2. So the bias oy in estimatingy is
Coy2+---+ Cyys. Note thatC;y; represents the contribution ¢f to the bias.

As y; is unknown, we will have to work witlT;. One size measure for a matrix

C = (cij) is given by||C||? & traceCTC) = Y.;,j ¢&. Since the effects ify; are

more important than those jr}.1, to minimize the bias of1, heuristically we can
sequentially minimize|C2||%, ..., [|Cs|%. For regular designs, the entries @f

are either O or 1, and therefof\é =C; |2 is simply the number of effects i in;

that are aliased with those i, for j =2,...,J. Two effects are aliased (or
confounded) with each other if their corresponding columns in the model matrix
are identical.

DerFINITION 1. The general criterion of aberration is defined as the one that
selects designs by sequentially minimizing, ..., Ny, whereN; is the number
of effects iny; that are aliased with those jn, for j =2,..., J.

For convenience, the vectON», ..., Ny) is called the word length pattern with
respect to(y1, y2, ..., ys). An immediate application is to the situation where
y1 are the main effects ang are thej-factor interactions. In this case, we have

(3) Ni=(+DAjt1+m—j+DA; 4

for2<j<m—1,andN,, = A,_1, whereA  is the number of defining words of
lengthj as introduced in Section 1. The relationship in (3) leads to the conclusion
that sequentially minimizingvo, N3, ... is equivalent to sequentially minimizing
Az, Aag,....

LEMMA 1. If y; arethe main effectsand y; arethe j-factor interactions, then
the general criterion of aberration, given in Definition 1, is equivalent to the usual
criterion of aberration.
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The essential result in Lemma 1 was first given by Tang and Deng (1999),
who in fact presented their result under a more general framework, where both
regular and nonregular designs are considered. Superficially, Lemma 1 provides a
statistical justification for the usual criterion of aberration, which was originally
defined from the combinatorial point of view. A message running a bit deeper here
is that the usual minimum aberration criterion of combinatorial nature can in fact
bederived from a general theory based on a sound statistical principle.

A more general result than Lemma 1 can easily be obtainedsLla¢ the main
effects and all the interactions involving upgdactors. For the model in (1) to be
estimable, a design of resolutiop 2- 1 must exist, which implies that; = 0 for
i=1,...,2g. Now lety; be the(g — 1+ j)-factor interactions foj > 2. We can
easily show that

q . .
—1+j+i
Nj=Z<q i / )Aq—l+j+i

i=1

4 +i(q_?j—:{+i>(m_(q_f+j+i)>Aq—3+j+i

q . .
—54+j+i\(m—(—5+j+i
BT hs
i=2
SinceA; =0fori=1,...,2q, we have

2 1 2 1
No = ( q;_ )A2q+1, N3 = <2qq+ >A24+2—|- <2qq_+1 >A2(1+1,

and so on. Noting that the leading term féf in (4) is given by(zq’q”f)Azq_lﬂ-,

we conclude that sequentially minimiziig, N3, ... is equivalent to sequentially
minimizing A, 41, A2g42, . ... This establishes the following result.

THEOREM 1. |If y; are the main effects and all the interactions involving up
to ¢ factors, and y; are the (¢ — 1+ j)-factor interactions for j > 2, then the
general criterion of aberration gives rise to the usual criterion of aberration that
sequentially minimizes Az, 41, A2g42, ... among all designs of resolution 24 + 1.

2.2. Application to blocked fractional factorials. In addition tom treatment
factors, a blocked fractional factorial containg blocking factors. The main
effects of blocking factors are block effects. So are the interactions of blocking
factors. Therefore, the total number of block effects produced:pyblocking
factorsis 2’1 — 1.

To avoid confusion, the terms “factor” and “effect” are carefully used in this
paper. We stick to the meanings of the terms as in the following: a factor has a
main effect, two factors have a 2-factor interaction (effect), three factors have a
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3-factor interaction (effect) and so on. We therefore speakjoblocking factors
and 2't — 1 block effects.

A basic requirement for blocked fractional factorials is that all the 2 1
block effects should be included in the fitted model. In addition, interactions
between treatment and blocking factors are assumed to be nonexistent, which is
necessary for the effectiveness of blocking. Now consider all the treatment effects.
To apply the general theory, we need to specify a set of treatment effects we want
to estimate. Then the fitted model contains these treatment effects in addition to all
the block effects. In what follows, we look at two important special cases.

The first case is that the main effects of th@reatment factors are in the fitted
model. Theny; in model (1) consists of the main effects of all thetreatment
factors and all the” — 1 block effects. For the remaining treatment effects, we
assume as usual that the hierarchical ordering principle applies [Wu and Hamada
(2000)], and thereforgr; in model (2) represents the vector of all thiefactor
interactions of treatment factors, where=-2, ..., m.

A defining word in a blocked fractional factorial is a subsetmf+ m1
letters among whicln letters represent treatment factors andletters represent
blocking factors. Let ; be the number of defining words of lengtfthat contain
no blocking factors, and leB; be the number of defining words that contain
j treatment factors and at least one blocking factor. Note that we must have
A1 = Ay = Bg = By = 0 for the fitted model to be estimable.

ProOPOSITION 1. Let y; denote all main effects of treatment factors and
all block effects, and let y; denote all the j-factor interactions of treatment
factors. Then the word length pattern (N», ..., N,,) isgiven by No = 3A3 + Bo,
N3 =4A4+ B3, and in general

(%) Ni=(G+DAj 1+ m—j+DA; 1+ Bj,

where A ; and B; are defined in the preceding paragraph.

The proof is straightforward. Our general criterion of aberration for blocked
fractional factorials therefore selects designs by sequentially minimixing:
3A3 + Bz, N3 = 4A4 + B3 and so on. Chen and Cheng (1999) proposed a
criterion of aberration, and using our notation, their word length pattern is given
by (3A3 + B2, A4,10A5 + B3, Ag,...). We see that the leading component in
their criterion is identical to the leading componevit in our general criterion of
aberration. Sitter, Chen and Feder (1997) also proposed a criterion that sequentially
minimizes Az, By, As, B3, As, B4, and so on. If the magnitude of;; is about
the same as or larger than that®f, the criterion of Sitter, Chen and Feder (1997)
provides a reasonably good approximation to our general criterion. We give an
illustration using a simple example.
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EXAMPLE 1. Suppose that we want to study nine factors in 16 runs, which are
to be arranged in two blocks. We usg 1, 9 to denote the nine factors, ahdo
denote the single blocking factor. Consider the following two designs. De3ign
isgiven by 5=123, 6= 124, 7= 134, 8= 234, 9= 12, anth = 13, and desigiD,
given by 5=123, 6= 124, 7= 134, 8= 13, 9= 12, andb = 234. One can easily
verify that A3(D1) =4 and B2(D1) = 4, andA3(D2) = 6 andB2(D2) = 2. The
criterion of Sitter, Chen and Feder (1997) seldgisas a better design becaube
has a smaller value od3. Now applying our criterion, we see thab(D1) = 16
and N2(D2) = 20, and agairD; is better. Note that desigh; in fact has a larger
value of B, but its smaller value ofA3 plays a dominant role here.

The other important special case is that we are interested in estimating all main
effects and all 2-factor interactions of treatment factorsygoonsists of all the
main effects and all the 2-factor interactions of treatment factors, as well as all the
block effects. Forj > 2, y; is the vector of all the(j + 1)-factor interactions
of the treatment factors. For the fitted model to be estimable, we must have
A1=Ap=A3= As= Bo= By = B> =0. Applying our general theory, we obtain
the following.

PROPOSITION2. Supposethat y; consists of all main effects and all 2-factor
interactions of treatment factors, aswell asall block effects. Let y; be the vector of
all the (j + 1)-factor interactions of the treatment factorsfor j > 2. Then the word
length pattern (No, Ns3, ...) isgiven by No = 1045+ B3, N3 = 1546 + 5As5 + Ba,
and in general

. i + 3
Nj=<1+2>Aj+z+(J§ )A,-+3+Bj+z
(6) |
. . . — 1
+(m—J)Aj+(m—J—1)(J+1)Aj+1+<m ;7 )Aj_l,

where A ; and B; are defined as before.

Proposition 2 is easily established by a simple combinatorial argument.
Comparing our criterion with that of Chen and Cheng (1999), we find that the
leading component in their criterion becomesi$@- Bz, which is precisely thév,
given by our general theory. In fact, we have verified that the leading component
in the word length pattern of Chen and Cheng (1999) is also correct if in addition
to all block effects, the true model consists of all main effects and all interactions
involving up tog factors withg > 3. One can therefore appropriately regard the
aberration criterion of Chen and Cheng (1999) as a robust version of our general
aberration criterion when applied to blocked fractional factorials.

Before moving on, we remark that like other work in the area, block effects
are treated as fixed effects in this paper. Our discussion in this section focuses
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on the situation where we are interested in estimating these block effects. If the
block effects are not of interest, the contamination on their estimation due to
nonnegligible treatment effects will not be a concern. Our general criterion can
easily be modified to accommodate this situation. In the meantime, many new
issues arise and they will be looked into in the future.

2.3. Fractional factorials when some 2-factor interactions are important.
Suppose that a set of 2-factor interactions (2fi's) is postulated to be important,
and in addition to the main effects, we are also interested in estimating these
important 2fi's. In this situation the fitted model in (1) consists of all main effects
and these important 2fi's. For the remaining effects, we assume as usual that
the hierarchical ordering principle applies. Using the notation in Section 2.1, we
have thaty; represents the main effects and the important 2fpsepresents the
remaining 2fi's and/; represents thg-factor interactions foj > 3.

A 2fi of a fractional factorialD can be represented by an unordered pair
(c,d), wherec andd are two columns ofD. Let (¢1,d1), ..., (cs,ds) denote
the important 2fi's. For each 2ficy, d;) wheres =1,..., S, let Aj(cy, dy) _be
the number of length- words containing both letters; andd;, let A;(cy, ds)
be the number of lengtli-words containingc, but notd;, let A;(cs,ds) be
the number of length- words containingd; but notc,, and letA;(cy, d;s) be
the number of length- words containing neithet; nor d;. Obviously, A; =
Aj(CSv dy) + Aj(cSa dy) + Aj(Es’ dy) + Aj(ESa dy). Let

S N
AP =3 Ajend), AT = 3TIA (e, d) + A, ),
s=1 s=1

(7) .
AY =" A5G dy).
s=1

If a defining word of lengthj contains more than one pair of letters in the
list of the important 2fi's(c1, d1), ..., (cs, ds), it is counted more than once in

calculatingAi.z). SoA(/.Z) in fact represents the total number of times that a defining

word of lengthj contains an important 2ft,, d;). Interpretation omj.” andAEO)
is similar.

ProOPOSITION3. When some 2fi's are important, the word length pattern
(N2, N3, ..., Ny) isgiven by No = 3A3 + Af), N3 =4A4+ Aff’ + Aél) and in
general

. . 2 1 0
8  Ni=(+DApa+m—j+DAj 1+ A%, +4P +aQ,

where 4@

1 0 N
it2 AE. ) and A; )2 are defined in (7).
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The above version of the word length pattern is given in terms of the defining
words of the original design matri®. We now present another version in terms
of the defining words of the augmented design given by the model nmidtrix
(D, D2), whereWy is as in model (1) and, corresponds to the important 2fi's
in the fitted model. This latter version is convenient for developing a general
complementary design theory in Section 3.

Consider the words in the defining relation of the augmented déedige-

(D, Dy). Let A; be the number of lengthi-words having all theiy letters fromD,
and letB; be the number of lengthy 4 1) words having; letters fromD and one
letter from D»>.

PrRoOPOSITION4. When some 2fi's are important, the word length pattern
(N2, N3, ..., Ny) isgivenby N =3A3+ B> — S, and

%) Ni=(G+DAj 1+ m—j+DAj_1+ B
for j > 3.

In Proposition 4, dependence &f on the important 2fi's is expressed through
B, which depends on matri®,, given by the columns of the important 2fi’s.

The expression faN2 in Proposition 4 needs a bit of explanation. (e, dy) be
an important 2fi, fos =1, ..., S. Then the three columns, d; andcd;, where
columnscg andd; are fromD and columncgd; is from D, form a word of length 3
that contributes t®, but not toN,. This explains why we hav¥, = 3A3+ B> — S
instead ofNy = 3A3 + Bo.

Ke and Tang (2003) examined practical issues in design selection using the
general criterion of aberration when some 2fi's are important, and presented
a collection of designs of 16 and 32 runs for models containing up to four
important 2fi's.

2.4. Other applications. In robust parameter design, there are two sets of
factors, control factors and noise factors. The goal of the experiment is to choose
the settings of control factors so that the response variable is insensitive to noise
factors. Suitable designs should therefore allow analysis of both location and
dispersion effects. Wu and Zhu (2003) examined the use of an aberration criterion
for robust parameter design which is mainly motivated by the analysis of location
effects. It would be interesting to see how our general theory can be modified to
take into account the analysis of dispersion effects. One possibility is to select
designs using our criterion from among those designs allowing suitable analysis
of dispersion effects as can be found in Hedayat and Stufken (1999). Our general
theory is potentially useful in fractional factorial split plot designs. Huang, Chen
and Voelkel (1998) and Bingham and Sitter (1999) considered aberration criteria
for split plot designs. Since split plot designs have more than one error structure,
some sort of modification seems necessary for our theory to be applicable to such
problems. In our future research, both areas of application will be considered.
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3. Theory of complementary designs. In this section, we will develop a
complementary design theory for a class of aberration criteria. This class of
criteria, to be introduced below, is quite broad, and in particular includes as special
cases the aberration criteria for blocked fractional factorials and for designs when
some 2fi's are important as discussed in Sections 2.2 and 2.3, respectively.

3.1. Aclass of aberration criteria. Suppose that besides the main effeets
of m factors, we are also interested in estimating additighaffects y;’. For
convenience, these factors are called major factors. In addition to thanajor
factors, we may haveni1 minor factors, whereni, > 0. Whenm, = 0, the
additionalS effectsy; are a set of interactions only involving major factors. When
m1 > 1, the effects inyl” are a subset of effects from the collection of all the
following effects: the interactions only involving major factors, the main effects
of minor factors, the interactions only involving minor factors and the interactions
involving both major and minor factors. The in the fitted model (1) is therefore
given by y1 = (y1,¥;). Let y; denote thej-factor interactions only involving
the major factors that are not included ;i/{f, for j =2,...,m. We assume as
earlier that the effects iy; are more important than those jn1, for j > 2.
With y1, ..., v, defined above, the true model is now given in (2). A remark
on the true model is in order when there is at least one minor factor, that is,
m1 > 1. An implicit assumption made here is that all other effects involving at
least one minor factor besides thoseyifi are assumed to be nonexistent. The
above formulation is fairly general, and includes as special cases all the situations
discussed in Sections 2.1-2.3. For example, for blocked fractional factorials, we
take the treatment factors as the major factors and the blocking factors as the
minor factors. Choices for major and minor factors are also natural for fractional
factorials in the row-column setting [Cheng and Mukerjee (2003)].

We now derive the word length pattern for the above situation.bebe the
design matrix corresponding to the main effeg{sof the m major factors and
let D> be the matrix corresponding to the additiosakffectsy;’. Note thatD;
hasm columns andD2 hasS columns. The word length pattern will be given
in terms of the model matri¥ = (D1, D2), specified by its two components
D1 andD;. Let A;(D1) be the number of lengtli-defining words in desigb;.
Define B; (D1, D) to be the number of lengtty + 1) defining words in design
W = (D1, D), which havej letters fromD; and one letter fronD». Then it is
easily established that the word length pattg¥h, ..., N,,) is given by

Nj(D1,D2)=(j +DA;11(D1) +(m — j+1DA;j_1(D1) + B;(D1, D2) — §;
for j > 2, whereS; is the number of the interactions gf major factors that
are included iny;’. (For an explanation of why; is necessary, see the end of
Section 2.3.) Note thaf; is a constant for the purpose of choosibg and D».
For simplicity, ignoringsS;, we redefine the word length patte(Ny, ..., N,,) as
(10) N;j(D1,D2)=(+DAj11(D1)+ (m — j+1A;_1(D1) + Bj(D1, D).
The goal here is to chood®, and D, by sequentially minimizingvs, Ns, .. ..
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3.2. A complementary design theory. Let H; = (D1, Do, D3), where H;
denotes a saturated design mof= 2¢ runs andn — 1 factors. Obviously, it is
impossible to completely characterize design gdk, Do) through D3 alone.

Our complementary design theory to be developed below characterizes design pair
(D1, D) through design paifD», D3). This approach is most effective when the
number of columns i3 is smaller than that iD;.

We need a result from Tang and Wu (1996) and Suen, Chen and Wu (1997),
who developed a complementary design theory for the usual minimum aberration
criterion. The explicit coefficients in Lemma 2 are due to Suen, Chen and Wu
(1997).

LEMMA 2. Let Hy = (D, D), where D has m factors. Then we have
j -
i=0

. . . . j — i—7 —_— k_l . .
wh;ere en(L, j) =en(2, j)=0,cni, j) = (1)) L=D/ART2 ) for 3<i < j,
an

m — 2k71

(/2]

where Pj(x; m) = fzo(—l)" (Js‘)(”;:f) is a Krawtchouk polynomial.

en(0, ) = (~1)i /2 ( ) +27KP (0 m) — P2 L m)],

Note thatV; (D1, D7) in (10) depends on design p&iPy, D»). The main result
of our complementary design theory is contained in the following theorem, which
expressedV; (D1, D7) in terms of design paifD2, D3).

THEOREM 2. The word length pattern in (10) for the class of criteria
discussed in Section 3.1 depends on design pair (D2, D3) through

j+1
Nj(D1,D2) =) _[(j +1—=Scm(, j+ 1) + Semga(i, j + DIA;(D2U D3)
i=0
j+1
— Y cmiali, j + DEi(D2, D3)
i=0
j—1
+m—j+1) cm, j—1DA;(D2U D3),
i=0

where E; (D5, D3) = fD:lpEi(p)(Dz, D) with E”(Dy, D3) denoting the num-
ber of length-i defining wordsin D, U D3 that have exactly p letters from Do.
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PrROOE Applying Lemma 2 to desigi1, we have

J
(11) Aj(D1) =) cm(i, )Ai(D2U D3).
i=0

For anyd € D,, applying Lemma 2 to desigh1 U {d}, we obtain

J
(12) Aj(D1U{d}) =) cmya(i, DA ((D2\ {d}) U D3).
i=0
Let B;_1(d, D1) be the number of lengtli-defining words in desigriiDs, D7)
that contain letter/ and j — 1 letters fromD;. Clearly, we haveA ; (D1 U {d}) =
Aj(Dy)+ Bj_1(d, D1). Let

J
(13) Tj(d, D2, D3) =) cmy1(i, ))Ai((D2\ {d}) U D3).
i=0

Then (12) can be rewritten as
(14) Aj(D1) + Bj_1(d, D1) =Tj(d, D2, D3).

Taking summation over afl in D, on both sides of (14) gives

> (Aj(D)+ Bj_1(d, D))= > T;(d, D2, D3).

deD» deD»
Noting thatD; hasS columns and thaB;_1(D1, D) defined in Section 3.1 is
equalto)_;cp, Bj-1(d, D1), we obtainSA ;(D1) + Bj—1(D1, D2) = T; (D2, D3),
where

(15) Tj(D2,D3)= Y _ Tj(d, D2, D3).

de D>
Therefore,B; (D1, D2) = Tj+1(D2, D3) — SA;11(D1). Substituting this expres-
sion of B; (D1, D) into (10), we obtain

N;(D1, D2)
(16) . .
= +1-95A;11(D1) +Tjy1(D2, D3) + (m — j+1)A;_1(D1).
Now let us calculatel’; 1(D2, D3) in (15). Let E;(d, D2, D3) be the number of
lengthi defining words in(D», D3) that contain letted. We haveA; (D2 \ {d}) U
D3) = A;(D2U D3) — E;(d, D2, D3). Then (13) becomes
j+1
Tj+1(d, D2, D3) =Y cmy1(i, j + D[A;(D2U D3) — Ei(d, D2, D3)].
i=0
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Summing both sides over allin D>, we obtain

j+1
Tj41(D2,D3) =8 ) cmya(i, j +1)Ai(D2U D3)
i=0
(17) j+1
— Y cmya(i, j + DEi(D2, D3),
i=0
whereE; (D2, D3) =3 _4ep, Ei(d, D2, D3). Note thatE; (d, D2, D3) is the num-
ber of lengthi words containing letted in design D2 U D3. Thus E; (D2, D3)
represents the total number of times lengtherds in designD, U D3 contain a
letter in D». Therefore

(18) Ei(D2.D3)= Y pE{" (D2, D),
p=1

whereEl.(”) denotes the number of lengthwords in D2 U D3 having exactlyp
letters fromD». Combining (11) and (16)—(18), we obtain the result in Theorem 2.
O

Chen and Cheng (1999) developed a complementary design theory for blocked
fractional factorials. Our complementary design theory given in Theorem 2 is
applicable to a broad class of aberration criteria including all the cases discussed
in Sections 2.1-2.3. We want to mention that our theory does not include their
theory as a special case, because our word length pattern when applied to blocked
factorials is not exactly the same as theirs. On the other hand, one can adopt
our approach to derive their complementary design theory. Our approach appears
considerably simpler than theirs.

Zhu (2003) found a relationship between;o and Aoy, where A;jo is the
number of lengthG + j) words having letters fromD1 and j letters fromD»,
and Aqy; is the number of lengtlik + /) words havingk letters fromD, and!
letters fromD3. In principle, Theorem 2 is derivable from his result. On the other
hand, it is not obvious how one can obtain the result in Theorem 2, which clearly
shows howN> depends oD, and D3, from Zhu's rather involved formula that
connectsAi.,-o to Agy.

3.3. Some results on weak aberration. The general criterion of aberration
sequentially minimizesN2(D1, D), N3(D1, D2),.... A weak version of the
criterion is given by minimizingN2(D1, D2) = 3A3(D1) + B2(D1, D2) alone.
Using Theorem 2, we find that

No(D1, Dp) = constant- 3A3(D2 U D3) + E3(D2, D3),
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where theconstant does not depend ob» and D3. Noting that
E3(D2, D3) = E5’ (D2, D3) + 2EY” (D2, D3) + 3ES (D2, D),
A3(D2U D3) = A3(D3) + Eél)(Dz, D3) + Eéz)(Dz, D3) + Eés)(Dz, D3),
we have that
N2(D1, D2) = constant- 3A3(Dg) — 2ES" (D2, D3) — ES (D2, D3).
So minimizingN»(D1, D2) is equivalent to maximizing
(19) g(D2, D3) = 3A3(D3) + 2E" (D2, D3) + EY (D2, D).
The following lemma gives an upper bound gfD>, D3).
LEMMA 3. Letmo=S andms=2K—1—m — S bethe numbers of columns
in D2 and D3, respectively. We have that:

(i) 3A3(D3) + ES (D2, D) < ("),
(i) ES’ (D2, D3)+ EY (Da, D3) < moms/2,and
(iii) g(D2, D3) <m3(mz+m3—1)/2.

The upper bound in (iii) isreached if and only if the boundsin (i) and (ii) are both
reached.

PROOF For any two columng andd in D3, the producttd must belong to
one of D1, D7 or D3. Consider all thg";?) pairs of columns inD3. The number

of the pairs whose products arefry U D3 is given by ESY (D2, D3) + 343(D3).
Therefore

2

which proves part (i) of Lemma 3. Similarly, by considering all the produats
such thatd € D, U D3 wherec € D, andd € D3, we obtain

(20) E® Dy, D3) + 343(Dg) < (’”3) ,

(21) 2E{N (D2, D3) + 2E? (D2, D3) < moms,
from which Lemma 3(ii) follows. Combining (20) and (21), we obtain

g(D2, D3) < (mzs) +mom3/2=m3z(ma+m3—1)/2.

This is Lemma 3(iii). The last statement in Lemma 3 is obvious.

From the proof of Lemma 3, we see that the bound in (20) is reached if
cd € Do U D3 for any two columnse,d € D3, and that the bound in (21) is
reached ifcd € D, U D3 for any ¢ € D, and anyd € D3. One structure for
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D, and D3 to have these properties is given as follows. &gtao, . .., a; be a set
of k independent columns that generates the saturated d&sigf n = 2¢ runs
andn — 1 factors. Now choos®, U D3 to be H, = H(aq, ..., a,), the saturated
design generated by independent columns. ., a, wherer =1, ...,k —1. Note
that Do can be anyn = S columns fromH,..

THEOREM 3. Let H, be the saturated design generated by r independent
columns as, ...,a,. Then so long as D> U D3 = H,, any design pair (D2, D3)
maximizes g(D>, D3) in (19). Therefore design pair (D1, D2) has minimum weak
aberration, where D1 isgiven by H \ H,.

Recall that in introducing the class of aberration criteria in Section 3.1,
design Dy corresponds to the main effects @f major factors and desigi,
representsn, = S additional effects we are interested in estimating, which may
involve some minor factors. In order for design pdyr1, D2) given in Theorem 3
to be a legitimate design, we need to spedify in such a way that it indeed
represents the additional effects. We now look at two situations. The first is
that D1 represents the main effects af treatment factors, and, are all the
2"t —1 block effects given by, blocking factors. Then choosing, = H,,,, the
saturated design generateddy ..., a,, wheremq <r in Theorem 3, satisfies
the requirement. This characterization for blocked designs was given in Chen and
Cheng (1999). We see that it is now derived from Theorem 3. The second situation
we will look at is thatD; are the main effects ok factors, andD, are some
2-factor interactions of the: factors. We illustrate how to choog# through an
example.

EXAMPLE 2. Suppose that we want a 16-run design that allows esti-
mation of the main effects,2,3,4,5,6,7 and 8 of eight factors and the
following 2-factor interactions: 123 24 and 35. Letasi, a», a3, as be four
independent columns. Theorem 3 says that we should chépse D3 =
{a1, a2, a1a2, az, azai, azaz, azaiaz}. That is, the eight factors are assigned to the
columns inD1 = {ay, asa1, asars, asaraz, asasz, asazai, a4azaz, asazaiaz}. Now
assign factor 1 tag4, factor 2 toasa1, factor 3 toasaz, factor 4 toasaz and factor 5
to agqazay. Factors 67 and 8 can be arbitrarily assigned to the remaining three
columns inD;. We have that 12 a1, 13= ay, 24= ajasz and 35= ajazaz. SO
D3 = {a1, a2, a1as, ajazaz}.

Acknowledgments. The authors thank an Associate Editor and two referees
for constructive comments.

REFERENCES

BINGHAM, D. and STTER, R. R. (1999). Minimum aberration two-level fractional factorial split-plot
designsTechnometrics 41 62—70.



958 C.-S. CHENG AND B. TANG

CHEN, H. and GHENG, C.-S. (1999). Theory of optimal blocking of 2" designsAnn. Satist. 27
1948-1973.

CHEN, H. and HEDAYAT, A. S. (1996). 2~ designs with weak minimum aberratiofnn. Satist.
24 2536-2548.

CHEN, J. (1992). Some results or*2 fractional factorial designs and search for minimum
aberration designg\nn. Satist. 20 2124-2141.

CHEN, J. and W, C. F. J. (1991). Some results of* fractional factorial designs with minimum
aberration or optimal momentann. Satist. 19 1028-1041.

CHENG, C.-S. and MIKERJEE R. (2001). Blocked regular fractional factorial designs with
maximum estimation capacithnn. Satist. 29 530-548.

CHENG, C.-S. and MUKERJEE R. (2003). On regular-fractional factorial experiments in row-column
designsJ. Satist. Plann. Inference 114 3—20.

CHENG, C.-S., SEINBERG, D. M. and SN, D. X. (1999). Minimum aberration and model
robustness for two-level fractional factorial desighdR. Sat. Soc. Ser. B Stat. Methodol .
61 85-93.

CHENG, S.-W. and W, C. F. J. (2002). Choice of optimal blocking schemes in two-level and three-
level designsTechnometrics 44 269-277.

FRANKLIN, M. F. (1984). Constructing tables of minimum aberratidin " designsTechnometrics

26 225-232.

FRIES, A. and HUNTER, W. G. (1980). Minimum aberration*2? designs.Technometrics 22
601-608.

GREENFIELD, A. A. (1976). Selection of defining contrasts in two-level experimefytpl. Satist.
25 64-67.

HEDAYAT, A. S. and SUFKEN, J. (1999). Compound orthogonal arrayachnometrics 41 57—61.

HUANG, P., CHEN, D. and \WOELKEL, J. O. (1998). Minimum-aberration two-level split-plot designs.
Technometrics 40 314—326.

KE, W. and TANG, B. (2003). Selecting~? designs using a minimum aberration criterion when
some two-factor interactions are importafdchnometrics 45 352—360.

MUKERJEE R. and WU, C. F. J. (1999). Blocking in regular fractional factorials: A projective
geometric approachnn. Statist. 27 1256-1271.

SITTER, R. R., (HEN, J. and EDER, M. (1997). Fractional resolution and minimum aberration in
blocked 2—* designsTechnometrics 39 382—390.

SUEN, C.-Y., CHEN, H. and WU, C. F. J. (1997). Some identities gfi—™ designs with application
to minimum aberration designdnn. Statist. 251176-1188.

TANG, B. and DENG, L.-Y. (1999). Minimum G»-aberration for nonregular fractional factorial
designsAnn. Statist. 27 1914—-1926.

TANG, B. and WU, C. F. J. (1996). Characterization of minimum aberrati®n*2designs in terms
of their complementary designann. Satist. 24 2549-2559.

Wu, C. F. J. and KAMADA, M. (2000). Experiments: Planning, Analysis, and Parameter Design
Optimization. Wiley, New York.

Wu, C.F.J.and Bu, Y. (2003). Optimal selection of single arrays for parameter design experiments.
Satist. Snica 131179-1199.

ZHu, Y. (2003). Structure function for aliasing patterns f#T’2 designs with multiple groups of
factors.Ann. Satist. 31 995-1011.

DEPARTMENT OF STATISTICS DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA, BERKELEY AND ACTUARIAL SCIENCE
BERKELEY, CALIFORNIA 94720-3860 SIMON FRASERUNIVERSITY
USA BURNABY, BRITISH COLUMBIA
E-MAIL : cheng@stat.berkeley.edu CANADA V5A 1S6

E-MAIL : boxint@cs.sfu.ca



