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Minimum aberration is an increasingly popular criterion for comparing
and assessing fractional factorial designs, and few would question its
importance and usefulness nowadays. In the past decade or so, a great deal
of work has been done on minimum aberration and its various extensions.
This paper develops a general theory of minimum aberration based on a
sound statistical principle. Our theory provides a unified framework for
minimum aberration and further extends the existing work in the area. More
importantly, the theory offers a systematic method that enables experimenters
to derive their own aberration criteria. Our general theory also brings together
two seemingly separate research areas: one on minimum aberration designs
and the other on designs with requirement sets. To facilitate the design
construction, we develop a complementary design theory for quite a general
class of aberration criteria. As an immediate application, we present some
construction results on a weak version of this class of criteria.

1. Introduction. The general problem considered in this paper is how to
select the “best” fractional factorial designs. In situations where we have little or
no knowledge about the effects that are potentially important, it is appropriate to
select designs using the minimum aberration criterion [Fries and Hunter (1980)].
Wu and Hamada (2000) contains tables of many known minimum aberration
designs. Minimum aberration designs enjoy some attractive robust properties
[Cheng, Steinberg and Sun (1999) and Tang and Deng (1999)]. Much work has
been done on the construction of minimum aberration designs. For details, we
refer to Franklin (1984), Chen and Wu (1991), Chen (1992), Chen and Hedayat
(1996), Tang and Wu (1996), Suen, Chen and Wu (1997) and many others.
Sitter, Chen and Feder (1997), Chen and Cheng (1999) and Cheng and Wu
(2002) developed aberration criteria for blocked fractional factorials. A projective
geometric approach to blocking fractional factorials is considered in Mukerjee and
Wu (1999), and blocked fractional factorials with maximum estimation capacity
are studied by Cheng and Mukerjee (2001). Wu and Zhu (2003) examined the use
of a minimum aberration criterion for design selection in robust parameter design.
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Developing a general theory of minimum aberration is motivated by the desire
to unify various versions of minimum aberration that have recently appeared in
the literature. Based on a sound statistical principle, this paper develops a general
theory of minimum aberration and discusses its various applications. In addition
to building a unified framework for many of the existing aberration criteria, the
theory provides a method for deriving other aberration criteria that may be more
appropriate for given design situations. A minimum aberration design can be called
a model robust design because of its robust properties. A design with a requirement
set [Greenfield (1976)] is a model specific design since such a design specifies a
set of effects to be estimated. Our general theory is capable of bringing together
these seemingly unrelated two classes of designs.

We will focus our discussion on two-level regular fractional factorial designs.
However, most of our arguments are quite general. Section 2 motivates, introduces
and studies a general criterion of minimum aberration and discusses its application
to blocked fractional factorials, and to fractional factorials when some 2-factor
interactions are important. Section 3 is devoted to developing a theory of
complementary designs for quite a general class of aberration criteria, and presents
some construction results on weak aberration.

In what follows, we introduce some notation and definitions to set the stage for
the later development. A regular 2m−p design hasm factors each at two levels and
n = 2m−p runs, and is completely determined byp independent defining words.
The two levels are denoted by+1 and−1, so the design matrixD of such a design
is ann × m matrix of ±1. The defining relation of a 2m−p design is the complete
set of defining words. Labels of factors are referred to as letters. A defining word
specifies a set of letters that has the property that the product of the corresponding
columns ofD is a column of all plus ones. IncludingI , the column of all ones, the
defining relation of a 2m−p design has 2p defining words. LetAi(D) be the number
of defining words of lengthi in the defining relation of designD, where the length
of a word is the number of letters in the word. The resolution of designD is the
integerR such thatAi(D) = 0 for i = 1, . . . ,R−1 andAR(D) > 0. The minimum
aberration criterion selects designs that sequentially minimizeA1(D), . . . ,Am(D).
For designs of resolution at least III, we haveA1 = A2 = 0, so the minimum
aberration criterion selects designs that sequentially minimizeA3(D), . . . ,Am(D).

2. General theory of minimum aberration and its applications.

2.1. A general criterion of minimum aberration. Besides the grand meanγ0,
there are in all 2m − 1 factorial effects in a 2m−p design. Suppose that out of the
2m − 1 effects, we are interested in estimating a set of effectsγ1. Then the fitted
model is given by

Y = γ0I + W1γ1 + ε,(1)
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where Y denotes the vector ofn observations,γ1 the vector of the effects to
be estimated,W1 the model matrix corresponding toγ1 and ε the vector of
uncorrelated random errors, assumed to have a zero mean and a constant variance.
Because the remaining effects may not be negligible, we should choose a design
that minimizes their contamination on the estimation ofγ1, from among all designs
allowing estimation of the model in (1). Suppose that prior knowledge enables
us to divide these remaining effects intoJ − 1 groups, denoted byγ2, . . . , γJ ,
in such a way that the effects inγj are more important than those inγj+1, for
j = 2, . . . , J − 1. Then the true model can be written as

Y = γ0I + W1γ1 + W2γ2 + · · · + WJ γJ + ε,(2)

whereWj is the model matrix corresponding toγj for j = 1, . . . , J . The least-
squares solution̂γ1 = (WT

1 W1)
−1WT

1 Y = n−1WT
1 Y from the fitted model in (1)

has expectation, taken under the true model in (2),E(γ̂1) = γ1 + C2γ2 + · · · +
CJ γJ , whereCj = n−1WT

1 Wj for j ≥ 2. So the bias of̂γ1 in estimatingγ1 is
C2γ2 + · · · + CJ γJ . Note thatCjγj represents the contribution ofγj to the bias.
As γj is unknown, we will have to work withCj . One size measure for a matrix

C = (cij ) is given by‖C‖2 def= trace(CT C) = ∑
i,j c2

ij . Since the effects inγj are
more important than those inγj+1, to minimize the bias of̂γ1, heuristically we can
sequentially minimize‖C2‖2, . . . ,‖CJ ‖2. For regular designs, the entries ofCj

are either 0 or 1, and thereforeNj = ‖Cj‖2 is simply the number of effects inγj

that are aliased with those inγ1, for j = 2, . . . , J . Two effects are aliased (or
confounded) with each other if their corresponding columns in the model matrix
are identical.

DEFINITION 1. The general criterion of aberration is defined as the one that
selects designs by sequentially minimizingN2, . . . ,NJ , whereNj is the number
of effects inγj that are aliased with those inγ1, for j = 2, . . . , J .

For convenience, the vector(N2, . . . ,NJ ) is called the word length pattern with
respect to(γ1, γ2, . . . , γJ ). An immediate application is to the situation where
γ1 are the main effects andγj are thej -factor interactions. In this case, we have

Nj = (j + 1)Aj+1 + (m − j + 1)Aj−1(3)

for 2≤ j ≤ m − 1, andNm = Am−1, whereAj is the number of defining words of
lengthj as introduced in Section 1. The relationship in (3) leads to the conclusion
that sequentially minimizingN2,N3, . . . is equivalent to sequentially minimizing
A3,A4, . . . .

LEMMA 1. If γ1 are the main effects and γj are the j -factor interactions, then
the general criterion of aberration, given in Definition 1, is equivalent to the usual
criterion of aberration.
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The essential result in Lemma 1 was first given by Tang and Deng (1999),
who in fact presented their result under a more general framework, where both
regular and nonregular designs are considered. Superficially, Lemma 1 provides a
statistical justification for the usual criterion of aberration, which was originally
defined from the combinatorial point of view. A message running a bit deeper here
is that the usual minimum aberration criterion of combinatorial nature can in fact
bederived from a general theory based on a sound statistical principle.

A more general result than Lemma 1 can easily be obtained. Letγ1 be the main
effects and all the interactions involving up toq factors. For the model in (1) to be
estimable, a design of resolution 2q + 1 must exist, which implies thatAi = 0 for
i = 1, . . . ,2q. Now letγj be the(q − 1+ j)-factor interactions forj ≥ 2. We can
easily show that

Nj =
q∑

i=1

(
q − 1+ j + i

i

)
Aq−1+j+i

+
q∑

i=1

(
q − 3+ j + i

i − 1

)(
m − (q − 3+ j + i)

1

)
Aq−3+j+i(4)

+
q∑

i=2

(
q − 5+ j + i

i − 2

)(
m − (q − 5+ j + i)

2

)
Aq−5+j+i + · · · .

SinceAi = 0 for i = 1, . . . ,2q, we have

N2 =
(

2q + 1
q

)
A2q+1, N3 =

(
2q + 2

q

)
A2q+2 +

(
2q + 1
q − 1

)
A2q+1,

and so on. Noting that the leading term forNj in (4) is given by
(2q−1+j

q

)
A2q−1+j ,

we conclude that sequentially minimizingN2,N3, . . . is equivalent to sequentially
minimizingA2q+1,A2q+2, . . . . This establishes the following result.

THEOREM 1. If γ1 are the main effects and all the interactions involving up
to q factors, and γj are the (q − 1 + j)-factor interactions for j ≥ 2, then the
general criterion of aberration gives rise to the usual criterion of aberration that
sequentially minimizes A2q+1,A2q+2, . . . among all designs of resolution 2q + 1.

2.2. Application to blocked fractional factorials. In addition tom treatment
factors, a blocked fractional factorial containsm1 blocking factors. The main
effects of blocking factors are block effects. So are the interactions of blocking
factors. Therefore, the total number of block effects produced bym1 blocking
factors is 2m1 − 1.

To avoid confusion, the terms “factor” and “effect” are carefully used in this
paper. We stick to the meanings of the terms as in the following: a factor has a
main effect, two factors have a 2-factor interaction (effect), three factors have a
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3-factor interaction (effect) and so on. We therefore speak ofm1 blocking factors
and 2m1 − 1 block effects.

A basic requirement for blocked fractional factorials is that all the 2m1 − 1
block effects should be included in the fitted model. In addition, interactions
between treatment and blocking factors are assumed to be nonexistent, which is
necessary for the effectiveness of blocking. Now consider all the treatment effects.
To apply the general theory, we need to specify a set of treatment effects we want
to estimate. Then the fitted model contains these treatment effects in addition to all
the block effects. In what follows, we look at two important special cases.

The first case is that the main effects of them treatment factors are in the fitted
model. Thenγ1 in model (1) consists of the main effects of all them treatment
factors and all the 2m1 − 1 block effects. For the remaining treatment effects, we
assume as usual that the hierarchical ordering principle applies [Wu and Hamada
(2000)], and thereforeγj in model (2) represents the vector of all thej -factor
interactions of treatment factors, wherej = 2, . . . ,m.

A defining word in a blocked fractional factorial is a subset ofm + m1

letters among whichm letters represent treatment factors andm1 letters represent
blocking factors. LetAj be the number of defining words of lengthj that contain
no blocking factors, and letBj be the number of defining words that contain
j treatment factors and at least one blocking factor. Note that we must have
A1 = A2 = B0 = B1 = 0 for the fitted model to be estimable.

PROPOSITION 1. Let γ1 denote all main effects of treatment factors and
all block effects, and let γj denote all the j -factor interactions of treatment
factors. Then the word length pattern (N2, . . . ,Nm) is given by N2 = 3A3 + B2,
N3 = 4A4 + B3, and in general

Nj = (j + 1)Aj+1 + (m − j + 1)Aj−1 + Bj ,(5)

where Aj and Bj are defined in the preceding paragraph.

The proof is straightforward. Our general criterion of aberration for blocked
fractional factorials therefore selects designs by sequentially minimizingN2 =
3A3 + B2, N3 = 4A4 + B3 and so on. Chen and Cheng (1999) proposed a
criterion of aberration, and using our notation, their word length pattern is given
by (3A3 + B2,A4,10A5 + B3,A6, . . .). We see that the leading component in
their criterion is identical to the leading componentN2 in our general criterion of
aberration. Sitter, Chen and Feder (1997) also proposed a criterion that sequentially
minimizesA3,B2,A4,B3,A5,B4, and so on. If the magnitude ofAj+1 is about
the same as or larger than that ofBj , the criterion of Sitter, Chen and Feder (1997)
provides a reasonably good approximation to our general criterion. We give an
illustration using a simple example.
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EXAMPLE 1. Suppose that we want to study nine factors in 16 runs, which are
to be arranged in two blocks. We use 1, . . . ,9 to denote the nine factors, andb to
denote the single blocking factor. Consider the following two designs. DesignD1
is given by 5= 123, 6= 124, 7= 134, 8= 234, 9= 12, andb = 13, and designD2
given by 5= 123, 6= 124, 7= 134, 8= 13, 9= 12, andb = 234. One can easily
verify that A3(D1) = 4 andB2(D1) = 4, andA3(D2) = 6 andB2(D2) = 2. The
criterion of Sitter, Chen and Feder (1997) selectsD1 as a better design becauseD1
has a smaller value ofA3. Now applying our criterion, we see thatN2(D1) = 16
andN2(D2) = 20, and againD1 is better. Note that designD1 in fact has a larger
value ofB2 but its smaller value ofA3 plays a dominant role here.

The other important special case is that we are interested in estimating all main
effects and all 2-factor interactions of treatment factors. Soγ1 consists of all the
main effects and all the 2-factor interactions of treatment factors, as well as all the
block effects. Forj ≥ 2, γj is the vector of all the(j + 1)-factor interactions
of the treatment factors. For the fitted model to be estimable, we must have
A1 = A2 = A3 = A4 = B0 = B1 = B2 = 0. Applying our general theory, we obtain
the following.

PROPOSITION2. Suppose that γ1 consists of all main effects and all 2-factor
interactions of treatment factors, as well as all block effects. Let γj be the vector of
all the (j +1)-factor interactions of the treatment factors for j ≥ 2. Then the word
length pattern (N2,N3, . . .) is given by N2 = 10A5 +B3, N3 = 15A6 + 5A5 +B4,
and in general

Nj = (j + 2)Aj+2 +
(

j + 3
2

)
Aj+3 + Bj+2

(6)
+ (m − j)Aj + (m − j − 1)(j + 1)Aj+1 +

(
m − j + 1

2

)
Aj−1,

where Aj and Bj are defined as before.

Proposition 2 is easily established by a simple combinatorial argument.
Comparing our criterion with that of Chen and Cheng (1999), we find that the
leading component in their criterion becomes 10A5+B3, which is precisely theN2
given by our general theory. In fact, we have verified that the leading component
in the word length pattern of Chen and Cheng (1999) is also correct if in addition
to all block effects, the true model consists of all main effects and all interactions
involving up toq factors withq ≥ 3. One can therefore appropriately regard the
aberration criterion of Chen and Cheng (1999) as a robust version of our general
aberration criterion when applied to blocked fractional factorials.

Before moving on, we remark that like other work in the area, block effects
are treated as fixed effects in this paper. Our discussion in this section focuses
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on the situation where we are interested in estimating these block effects. If the
block effects are not of interest, the contamination on their estimation due to
nonnegligible treatment effects will not be a concern. Our general criterion can
easily be modified to accommodate this situation. In the meantime, many new
issues arise and they will be looked into in the future.

2.3. Fractional factorials when some 2-factor interactions are important.
Suppose that a set of 2-factor interactions (2fi’s) is postulated to be important,
and in addition to the main effects, we are also interested in estimating these
important 2fi’s. In this situation the fitted model in (1) consists of all main effects
and these important 2fi’s. For the remaining effects, we assume as usual that
the hierarchical ordering principle applies. Using the notation in Section 2.1, we
have thatγ1 represents the main effects and the important 2fi’s,γ2 represents the
remaining 2fi’s andγj represents thej -factor interactions forj ≥ 3.

A 2fi of a fractional factorialD can be represented by an unordered pair
(c, d), wherec and d are two columns ofD. Let (c1, d1), . . . , (cS, dS) denote
the important 2fi’s. For each 2fi(cs, ds) where s = 1, . . . , S, let Aj(cs, ds) be
the number of length-j words containing both letterscs and ds , let Aj(cs, d̄s)

be the number of length-j words containingcs but not ds , let Aj(c̄s, ds) be
the number of length-j words containingds but not cs , and letAj(c̄s, d̄s) be
the number of length-j words containing neithercs nor ds . Obviously, Aj =
Aj(cs, ds) + Aj(cs, d̄s) + Aj(c̄s, ds) + Aj(c̄s, d̄s). Let

A
(2)
j =

S∑
s=1

Aj(cs, ds), A
(1)
j =

S∑
s=1

[Aj(cs, d̄s) + Aj(c̄s, ds)],
(7)

A
(0)
j =

S∑
s=1

Aj(c̄s, d̄s).

If a defining word of lengthj contains more than one pair of letters in the
list of the important 2fi’s(c1, d1), . . . , (cS, dS), it is counted more than once in

calculatingA(2)
j . SoA

(2)
j in fact represents the total number of times that a defining

word of lengthj contains an important 2fi(cs, ds). Interpretation ofA(1)
j andA

(0)
j

is similar.

PROPOSITION 3. When some 2fi’s are important, the word length pattern
(N2,N3, . . . ,Nm) is given by N2 = 3A3 + A

(2)
4 , N3 = 4A4 + A

(2)
5 + A

(1)
3 and in

general

Nj = (j + 1)Aj+1 + (m − j + 1)Aj−1 + A
(2)
j+2 + A

(1)
j + A

(0)
j−2,(8)

where A
(2)
j+2, A

(1)
j and A

(0)
j−2 are defined in (7).
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The above version of the word length pattern is given in terms of the defining
words of the original design matrixD. We now present another version in terms
of the defining words of the augmented design given by the model matrixW1 =
(D,D2), whereW1 is as in model (1) andD2 corresponds to the important 2fi’s
in the fitted model. This latter version is convenient for developing a general
complementary design theory in Section 3.

Consider the words in the defining relation of the augmented designW1 =
(D,D2). LetAj be the number of length-j words having all theirj letters fromD,
and letBj be the number of length-(j + 1) words havingj letters fromD and one
letter fromD2.

PROPOSITION 4. When some 2fi’s are important, the word length pattern
(N2,N3, . . . ,Nm) is given by N2 = 3A3 + B2 − S, and

Nj = (j + 1)Aj+1 + (m − j + 1)Aj−1 + Bj(9)

for j ≥ 3.

In Proposition 4, dependence ofNj on the important 2fi’s is expressed through
Bj , which depends on matrixD2, given by the columns of the important 2fi’s.

The expression forN2 in Proposition 4 needs a bit of explanation. Let(cs, ds) be
an important 2fi, fors = 1, . . . , S. Then the three columnscs , ds andcsds , where
columnscs andds are fromD and columncsds is fromD2, form a word of length 3
that contributes toB2 but not toN2. This explains why we haveN2 = 3A3+B2−S

instead ofN2 = 3A3 + B2.
Ke and Tang (2003) examined practical issues in design selection using the

general criterion of aberration when some 2fi’s are important, and presented
a collection of designs of 16 and 32 runs for models containing up to four
important 2fi’s.

2.4. Other applications. In robust parameter design, there are two sets of
factors, control factors and noise factors. The goal of the experiment is to choose
the settings of control factors so that the response variable is insensitive to noise
factors. Suitable designs should therefore allow analysis of both location and
dispersion effects. Wu and Zhu (2003) examined the use of an aberration criterion
for robust parameter design which is mainly motivated by the analysis of location
effects. It would be interesting to see how our general theory can be modified to
take into account the analysis of dispersion effects. One possibility is to select
designs using our criterion from among those designs allowing suitable analysis
of dispersion effects as can be found in Hedayat and Stufken (1999). Our general
theory is potentially useful in fractional factorial split plot designs. Huang, Chen
and Voelkel (1998) and Bingham and Sitter (1999) considered aberration criteria
for split plot designs. Since split plot designs have more than one error structure,
some sort of modification seems necessary for our theory to be applicable to such
problems. In our future research, both areas of application will be considered.
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3. Theory of complementary designs. In this section, we will develop a
complementary design theory for a class of aberration criteria. This class of
criteria, to be introduced below, is quite broad, and in particular includes as special
cases the aberration criteria for blocked fractional factorials and for designs when
some 2fi’s are important as discussed in Sections 2.2 and 2.3, respectively.

3.1. A class of aberration criteria. Suppose that besides the main effectsγ ′
1

of m factors, we are also interested in estimating additionalS effectsγ ′′
1 . For

convenience, thesem factors are called major factors. In addition to them major
factors, we may havem1 minor factors, wherem1 ≥ 0. When m1 = 0, the
additionalS effectsγ ′′

1 are a set of interactions only involving major factors. When
m1 ≥ 1, the effects inγ ′′

1 are a subset of effects from the collection of all the
following effects: the interactions only involving major factors, the main effects
of minor factors, the interactions only involving minor factors and the interactions
involving both major and minor factors. Theγ1 in the fitted model (1) is therefore
given by γ1 = (γ ′

1, γ
′′
1 ). Let γj denote thej -factor interactions only involving

the major factors that are not included inγ ′′
1 , for j = 2, . . . ,m. We assume as

earlier that the effects inγj are more important than those inγj+1, for j ≥ 2.
With γ1, . . . , γm defined above, the true model is now given in (2). A remark
on the true model is in order when there is at least one minor factor, that is,
m1 ≥ 1. An implicit assumption made here is that all other effects involving at
least one minor factor besides those inγ ′′

1 are assumed to be nonexistent. The
above formulation is fairly general, and includes as special cases all the situations
discussed in Sections 2.1–2.3. For example, for blocked fractional factorials, we
take the treatment factors as the major factors and the blocking factors as the
minor factors. Choices for major and minor factors are also natural for fractional
factorials in the row-column setting [Cheng and Mukerjee (2003)].

We now derive the word length pattern for the above situation. LetD1 be the
design matrix corresponding to the main effectsγ ′

1 of the m major factors and
let D2 be the matrix corresponding to the additionalS effectsγ ′′

1 . Note thatD1
hasm columns andD2 hasS columns. The word length pattern will be given
in terms of the model matrixW = (D1,D2), specified by its two components
D1 andD2. Let Aj(D1) be the number of length-j defining words in designD1.
DefineBj(D1,D2) to be the number of length-(j + 1) defining words in design
W = (D1,D2), which havej letters fromD1 and one letter fromD2. Then it is
easily established that the word length pattern(N2, . . . ,Nm) is given by

Nj(D1,D2) = (j + 1)Aj+1(D1) + (m − j + 1)Aj−1(D1) + Bj(D1,D2) − Sj

for j ≥ 2, whereSj is the number of the interactions ofj major factors that
are included inγ ′′

1 . (For an explanation of whySj is necessary, see the end of
Section 2.3.) Note thatSj is a constant for the purpose of choosingD1 andD2.
For simplicity, ignoringSj , we redefine the word length pattern(N2, . . . ,Nm) as

Nj(D1,D2) = (j + 1)Aj+1(D1) + (m − j + 1)Aj−1(D1) + Bj(D1,D2).(10)

The goal here is to chooseD1 andD2 by sequentially minimizingN2,N3, . . . .
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3.2. A complementary design theory. Let Hk = (D1,D2,D3), where Hk

denotes a saturated design ofn = 2k runs andn − 1 factors. Obviously, it is
impossible to completely characterize design pair(D1,D2) throughD3 alone.
Our complementary design theory to be developed below characterizes design pair
(D1,D2) through design pair(D2,D3). This approach is most effective when the
number of columns inD3 is smaller than that inD1.

We need a result from Tang and Wu (1996) and Suen, Chen and Wu (1997),
who developed a complementary design theory for the usual minimum aberration
criterion. The explicit coefficients in Lemma 2 are due to Suen, Chen and Wu
(1997).

LEMMA 2. Let Hk = (D, D̄), where D has m factors. Then we have

Aj(D) =
j∑

i=0

cm(i, j)Ai(D̄),

where cm(1, j) = cm(2, j) = 0, cm(i, j) = (−1)j−[(j−i)/2]( m−2k−1

[(j−i)/2]
)

for 3≤ i ≤ j ,
and

cm(0, j) = (−1)j−[j/2]
(

m − 2k−1

[j/2]
)

+ 2−k[Pj (0;m) − Pj (2
k−1;m)],

where Pj (x;m) = ∑j
s=0(−1)s

(x
s

)(m−x
j−s

)
is a Krawtchouk polynomial.

Note thatNj(D1,D2) in (10) depends on design pair(D1,D2). The main result
of our complementary design theory is contained in the following theorem, which
expressesNj(D1,D2) in terms of design pair(D2,D3).

THEOREM 2. The word length pattern in (10) for the class of criteria
discussed in Section 3.1depends on design pair (D2,D3) through

Nj(D1,D2) =
j+1∑
i=0

[(j + 1− S)cm(i, j + 1) + Scm+1(i, j + 1)]Ai(D2 ∪ D3)

−
j+1∑
i=0

cm+1(i, j + 1)Ei(D2,D3)

+ (m − j + 1)

j−1∑
i=0

cm(i, j − 1)Ai(D2 ∪ D3),

where Ei(D2,D3) = ∑i
p=1 pE

(p)
i (D2,D3) with E

(p)
i (D2,D3) denoting the num-

ber of length-i defining words in D2 ∪ D3 that have exactly p letters from D2.
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PROOF. Applying Lemma 2 to designD1, we have

Aj(D1) =
j∑

i=0

cm(i, j)Ai(D2 ∪ D3).(11)

For anyd ∈ D2, applying Lemma 2 to designD1 ∪ {d}, we obtain

Aj(D1 ∪ {d}) =
j∑

i=0

cm+1(i, j)Ai

(
(D2 \ {d}) ∪ D3

)
.(12)

Let Bj−1(d,D1) be the number of length-j defining words in design(D1,D2)

that contain letterd andj − 1 letters fromD1. Clearly, we haveAj(D1 ∪ {d}) =
Aj(D1) + Bj−1(d,D1). Let

Tj (d,D2,D3) =
j∑

i=0

cm+1(i, j)Ai

(
(D2 \ {d}) ∪ D3

)
.(13)

Then (12) can be rewritten as

Aj(D1) + Bj−1(d,D1) = Tj (d,D2,D3).(14)

Taking summation over alld in D2 on both sides of (14) gives
∑

d∈D2

(
Aj(D1) + Bj−1(d,D1)

) = ∑
d∈D2

Tj (d,D2,D3).

Noting thatD2 hasS columns and thatBj−1(D1,D2) defined in Section 3.1 is
equal to

∑
d∈D2

Bj−1(d,D1), we obtainSAj (D1)+Bj−1(D1,D2) = Tj (D2,D3),
where

Tj (D2,D3) = ∑
d∈D2

Tj (d,D2,D3).(15)

Therefore,Bj(D1,D2) = Tj+1(D2,D3) − SAj+1(D1). Substituting this expres-
sion ofBj(D1,D2) into (10), we obtain

Nj(D1,D2)

(16) = (j + 1− S)Aj+1(D1) + Tj+1(D2,D3) + (m − j + 1)Aj−1(D1).

Now let us calculateTj+1(D2,D3) in (15). LetEi(d,D2,D3) be the number of
length-i defining words in(D2,D3) that contain letterd. We haveAi((D2 \ {d})∪
D3) = Ai(D2 ∪ D3) − Ei(d,D2,D3). Then (13) becomes

Tj+1(d,D2,D3) =
j+1∑
i=0

cm+1(i, j + 1)[Ai(D2 ∪ D3) − Ei(d,D2,D3)].
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Summing both sides over alld in D2, we obtain

Tj+1(D2,D3) = S

j+1∑
i=0

cm+1(i, j + 1)Ai(D2 ∪ D3)

(17)

−
j+1∑
i=0

cm+1(i, j + 1)Ei(D2,D3),

whereEi(D2,D3) = ∑
d∈D2

Ei(d,D2,D3). Note thatEi(d,D2,D3) is the num-
ber of length-i words containing letterd in designD2 ∪ D3. ThusEi(D2,D3)

represents the total number of times length-i words in designD2 ∪ D3 contain a
letter inD2. Therefore

Ei(D2,D3) =
i∑

p=1

pE
(p)
i (D2,D3),(18)

whereE
(p)
i denotes the number of length-i words inD2 ∪ D3 having exactlyp

letters fromD2. Combining (11) and (16)–(18), we obtain the result in Theorem 2.
�

Chen and Cheng (1999) developed a complementary design theory for blocked
fractional factorials. Our complementary design theory given in Theorem 2 is
applicable to a broad class of aberration criteria including all the cases discussed
in Sections 2.1–2.3. We want to mention that our theory does not include their
theory as a special case, because our word length pattern when applied to blocked
factorials is not exactly the same as theirs. On the other hand, one can adopt
our approach to derive their complementary design theory. Our approach appears
considerably simpler than theirs.

Zhu (2003) found a relationship betweenAij0 and A0kl , whereAij0 is the
number of length-(i + j) words havingi letters fromD1 andj letters fromD2,
andA0kl is the number of length-(k + l) words havingk letters fromD2 and l

letters fromD3. In principle, Theorem 2 is derivable from his result. On the other
hand, it is not obvious how one can obtain the result in Theorem 2, which clearly
shows howN2 depends onD2 andD3, from Zhu’s rather involved formula that
connectsAij0 to A0kl .

3.3. Some results on weak aberration. The general criterion of aberration
sequentially minimizesN2(D1,D2),N3(D1,D2), . . . . A weak version of the
criterion is given by minimizingN2(D1,D2) = 3A3(D1) + B2(D1,D2) alone.
Using Theorem 2, we find that

N2(D1,D2) = constant− 3A3(D2 ∪ D3) + E3(D2,D3),
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where theconstant does not depend onD2 andD3. Noting that

E3(D2,D3) = E
(1)
3 (D2,D3) + 2E

(2)
3 (D2,D3) + 3E

(3)
3 (D2,D3),

A3(D2 ∪ D3) = A3(D3) + E
(1)
3 (D2,D3) + E

(2)
3 (D2,D3) + E

(3)
3 (D2,D3),

we have that

N2(D1,D2) = constant− 3A3(D3) − 2E
(1)
3 (D2,D3) − E

(2)
3 (D2,D3).

So minimizingN2(D1,D2) is equivalent to maximizing

g(D2,D3) = 3A3(D3) + 2E
(1)
3 (D2,D3) + E

(2)
3 (D2,D3).(19)

The following lemma gives an upper bound ong(D2,D3).

LEMMA 3. Let m2 = S and m3 = 2k − 1− m − S be the numbers of columns
in D2 and D3, respectively. We have that:

(i) 3A3(D3) + E
(1)
3 (D2,D3) ≤ (m3

2

)
,

(ii) E
(1)
3 (D2,D3) + E

(2)
3 (D2,D3) ≤ m2m3/2, and

(iii) g(D2,D3) ≤ m3(m2 + m3 − 1)/2.

The upper bound in (iii) is reached if and only if the bounds in (i) and (ii) are both
reached.

PROOF. For any two columnsc andd in D3, the productcd must belong to
one ofD1, D2 or D3. Consider all the

(m3
2

)
pairs of columns inD3. The number

of the pairs whose products are inD2 ∪ D3 is given byE
(1)
3 (D2,D3) + 3A3(D3).

Therefore

E
(1)
3 (D2,D3) + 3A3(D3) ≤

(
m3
2

)
,(20)

which proves part (i) of Lemma 3. Similarly, by considering all the productscd

such thatcd ∈ D2 ∪ D3 wherec ∈ D2 andd ∈ D3, we obtain

2E
(1)
3 (D2,D3) + 2E

(2)
3 (D2,D3) ≤ m2m3,(21)

from which Lemma 3(ii) follows. Combining (20) and (21), we obtain

g(D2,D3) ≤
(

m3
2

)
+ m2m3/2 = m3(m2 + m3 − 1)/2.

This is Lemma 3(iii). The last statement in Lemma 3 is obvious.�

From the proof of Lemma 3, we see that the bound in (20) is reached if
cd ∈ D2 ∪ D3 for any two columnsc, d ∈ D3, and that the bound in (21) is
reached ifcd ∈ D2 ∪ D3 for any c ∈ D2 and anyd ∈ D3. One structure for
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D2 andD3 to have these properties is given as follows. Leta1, a2, . . . , ak be a set
of k independent columns that generates the saturated designHk of n = 2k runs
andn − 1 factors. Now chooseD2 ∪ D3 to beHr = H(a1, . . . , ar), the saturated
design generated by independent columnsa1, . . . , ar wherer = 1, . . . , k − 1. Note
thatD2 can be anym2 = S columns fromHr .

THEOREM 3. Let Hr be the saturated design generated by r independent
columns a1, . . . , ar . Then so long as D2 ∪ D3 = Hr , any design pair (D2,D3)

maximizes g(D2,D3) in (19).Therefore design pair (D1,D2) has minimum weak
aberration, where D1 is given by Hk \ Hr .

Recall that in introducing the class of aberration criteria in Section 3.1,
designD1 corresponds to the main effects ofm major factors and designD2
representsm2 = S additional effects we are interested in estimating, which may
involve some minor factors. In order for design pair(D1,D2) given in Theorem 3
to be a legitimate design, we need to specifyD2 in such a way that it indeed
represents theS additional effects. We now look at two situations. The first is
that D1 represents the main effects ofm treatment factors, andD2 are all the
2m1 − 1 block effects given bym1 blocking factors. Then choosingD2 = Hm1, the
saturated design generated bya1, . . . , am1 wherem1 ≤ r in Theorem 3, satisfies
the requirement. This characterization for blocked designs was given in Chen and
Cheng (1999). We see that it is now derived from Theorem 3. The second situation
we will look at is thatD1 are the main effects ofm factors, andD2 are some
2-factor interactions of them factors. We illustrate how to chooseD2 through an
example.

EXAMPLE 2. Suppose that we want a 16-run design that allows esti-
mation of the main effects 1,2,3,4,5,6,7 and 8 of eight factors and the
following 2-factor interactions: 12,13,24 and 35. Leta1, a2, a3, a4 be four
independent columns. Theorem 3 says that we should chooseD2 ∪ D3 =
{a1, a2, a1a2, a3, a3a1, a3a2, a3a1a2}. That is, the eight factors are assigned to the
columns inD1 = {a4, a4a1, a4a2, a4a1a2, a4a3, a4a3a1, a4a3a2, a4a3a1a2}. Now
assign factor 1 toa4, factor 2 toa4a1, factor 3 toa4a2, factor 4 toa4a3 and factor 5
to a4a3a1. Factors 6,7 and 8 can be arbitrarily assigned to the remaining three
columns inD1. We have that 12= a1, 13= a2, 24= a1a3 and 35= a1a2a3. So
D2 = {a1, a2, a1a3, a1a2a3}.
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