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ON THE CHERNOFF BOUND FOR EFFICIENCY OF QUANTUM
HYPOTHESIS TESTING

BY VLADISLAV KARGIN

Cornerstone Research

The paper estimates the Chernoff rate for the efficiency of quantum
hypothesis testing. For both joint and separate measurements, approximate
bounds for the rate are given if both states are mixed, and exact expressions
are derived if at least one of the states is pure. The efficiencies of tests with
separate and joint measurements are compared. The results are illustrated by
a test of quantum entanglement.

1. Introduction. In his preface to a book about integral geometry [Santaló
(1976)] Mark Kac wrote: “. . . Probability Theory is measure theory with a ‘soul’
which [in the case of integral geometry] is provided not by Physics or by games of
chance or by Economics but by the most ancient and noble of all mathematical
disciplines, namely Geometry.” In a sense, then, Quantum Statistics can be
called probability theory with a “subconscious.” The probability distributions, so
important for classical statistics, are no longer the deepest foundation layer but
only an outward manifestation of geometry in the Hilbert space of quantum states.
This foundational change begs for a new look at the classical statistics results,
and this paper contributes by reconsidering the Chernoff–Hoeffding results about
hypothesis testing.

Why quantum statistics? Today, quantum states can be manufactured. For
example, in one method [Cirac and Zoller (1995)] ions are placed in a trap created
by electrostatic potential and radio-frequency oscillations. The ions then are cooled
by laser emission and arranged on a line in the trap. After that, each individual
ion can be accessed by laser pulses and their joint quantum state can be altered
according to the researcher’s wishes. This ability to build and manipulate quantum
systems is changing our thinking about computation and information transmission.
Suddenly, certain classic problems—the factorization of large integers, the search
in an unstructured database, secure communication—are not as difficult as they
used to be.

This conceptual change also affects statistics.
For example, how can a quantum state manufacturer check if states have been

generated faithfully? We can anticipate the statistician’s answer: Select a sample
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of the states and perform a statistical test. But now, besides designing the test, the
statistician must play an additional role, the role of advisor on how to perform
measurements of a sample of quantum states. Since in quantum mechanics both
the measurement and the state determine the probability distribution of outcomes,
the choice of measurement affects the properties of the statistical test.

Not all measurements are readily available. Sometimes it is possible to measure
sample states jointly, as one large quantum state, and sometimes the states can
only be measured separately and simultaneously. Yet another possibility is that the
states must be measured separately and sequentially. Finally, sometimes the sample
states can only be measured partially, for example, when each state represents
several remote particles that cannot be measured jointly. Clearly, the efficiency of
the optimal test will depend on which measurements are available.

For a single state the problem of quantum hypothesis testing was solved by
Holevo (1976) and Helstrom (1976). Here I consider a different situation: when
the researcher has access to several copies of the same state but may not be able to
measure them jointly.

The problem of testing using a sample of states was considered in Helstrom
(1976), Ogawa and Nagaoka (2000), Parthasarathy (2001) and Ogawa and Hayashi
(2002). These authors considered only joint measurements and only the situation
when one of the errors may go to zero arbitrarily slowly. In contrast, I consider
a Bayesian version of the problem, in which the researcher aims to minimize
a weighted average of both errors, and I consider both joint and separate
measurements.

When joint measurements are available, the problem of testing using a sample
can be solved by applying the Holevo–Helstrom result to the case of tensor powers
of primary states. In this case, my main results provide useful bounds on both the
expected error when the sample is finite and the rate of decline in error as the
number of sample states grows. The bounds are given in terms of fidelity distance
between quantum hypotheses. In addition, when one of the hypotheses specifies
a pure state, I derive an explicit expression for the rate of error decline.

For the separate measurements, I concentrate mainly on the asymptotic
case. If at least one of the hypotheses is pure, then the optimal separate
measurement leads to the same exponential rate of error decline as the optimal
joint measurement. The error can, however, be twice as large as the error of the
optimal joint measurement. If both hypotheses are mixed, then there is a large
window of possibility that a joint measurement can lead to a better exponential
rate than the optimal separate measurement. The improvement in the exponential
rate, however, cannot be made greater than a factor of 2.

This paper contributes only to the theory of quantum hypothesis testing. I do
not touch on another rapidly growing area of research: quantum state estimation.
One of the most surprising discoveries in this area is that for mixed states there
is a large gap between the rate of convergence of estimates based on the best
separate and joint measurements: see Gill and Massar (2000), Gill (2001) and
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Ballester (2004). This discovery is in agreement with the possibility of better
hypothesis testing by joint measurements suggested by the results of this paper.
For additional information about recent progress in the area of quantum estimation
see the excellent review article by Barndorff-Nielsen, Gill and Jupp (2003).

The rest of the paper is organized as follows. Section 2 gives some basic
information about quantum states and measurements and formulates the problem
of quantum hypothesis testing. Section 3 gives a short summary of the Chernoff–
Hoeffding results about hypothesis testing. Sections 4 and 5 discuss joint and
separate measurements, respectively. Section 6 presents an illustration, and
Section 7 concludes.

2. Quantum hypothesis testing. States of quantum-mechanical objects—
electrons, photons, atoms, molecules, and so on—are described by density
matrices. A density matrix is a self-adjoint, nonnegative operator of a complex
Hilbert space with a trace of 1. In this paper we will be concerned only with
finite-dimensional Hilbert spaces, so the operator is indeed represented by a finite
Hermitian matrix. A particular case is projectors on one-dimensional subspaces.
They represent states that are called pure.

States are not directly observable: they can be measured but the outcome
of a measurement is a random variable. In the case of a countable number of
outcomes, every measurement can be represented by a set of nonnegative operators
which are required to add up to the identity operator. Each operator in the set
corresponds to a particular outcome of the measurement, and if the state isρ and
outcomei is represented by operatorMi , then the probability of the outcome
is tr{Miρ}. An important subclass is formed by projective measurements, in
which the outcomes are represented by orthogonal projectors:MiMj = δijMi ,
whereδij is the Kronecker delta function. [For a more complete review of the
mathematical apparatus of modern quantum mechanics see papers by Gill (2001)
and Barndorff-Nielsen, Gill and Jupp (2003), or the book by Peres (1995).]

We consider the following problem: a researcher is given a sample ofN

identical quantum states, which are eitherρ0 or ρ1 with the prior probability 1/2.
He aims to minimize the average probability of making an incorrect decision about
the state by devising a system of measurements and a decision rule. Can we safely
assume that all measurements are available to the researcher? No.

While in some situations the researcher can make a joint measurement of the
state that represents the total sample, in other situations he can do only separate
measurements of each state in the sample. If the separate measurements are
done independently of each other, then we will call them separate independent
measurements. If the measurements can be done sequentially and the researcher
adjusts the current measurement according to the results obtained in the previous
measurements, then they are separate adaptive measurements. Sometimes the
researcher can return to the states that he has already measured and measure
them again using the information that he has already obtained. The class of these
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measurements is often called separable measurements. See, for example, Bennett
et al. (1999). Sometimes, the researcher is even more restricted. This happens, for
example, if a sample quantum state consists of two spatially remote parts and the
researcher can only measure them separately. This restriction may further decrease
the efficiency of statistical inference.

This paper concentrates on two cases that are in a certain sense extreme. In one
of them the researcher can make any joint measurement he wishes; in the other
he can do only separate independent measurements. We are interested in knowing
how this restriction affects the efficiency of hypothesis testing.

3. Classical Chernoff–Hoeffding bounds. This section reviews results by
Chernoff (1952), Sanov (1957) and Hoeffding (1965) about asymptotic error rates
in hypothesis testing. For details the reader can also consult the book by Cover and
Thomas (1991).

Consider two multinomial distributions,P1 andP2, on a finite spaceX = {xi},
i = 1, . . . , n. Suppose a sampleXN of size N is drawn from one of these
distributions and provided to a researcher, whose task is to guess the distribution.
A nonrandomized decision rule is characterized by a pair of complementary
subsets of the outcome space,AN and Ac

N . If the sample belongs toAN ,
hypothesisP1 is accepted; otherwise,P2 is accepted. The Bayesian probability
of making an error is

RN = πP1 Pr{XN ∈ Ac
N |P1} + πP2 Pr{XN ∈ AN |P2},(3.1)

whereπP1 andπP2 are prior probabilities of the distributions.
The Chernoff–Hoeffding theorem claims that the probability of errorRN in the

optimal test declines exponentially and the best achievable rate of decline is

1

N
logRN ∼ D(Pλ∗ ||P1),(3.2)

where

Pλ(xi) = P λ
1 (xi)P

1−λ
2 (xi)∑n

i=1 P λ
1 (xi)P

1−λ
2 (xi)

,(3.3)

D(Pλ||P1) is the Kullback–Leibler distance fromP1 to Pλ,

D(Pλ||P1) =
n∑

i=1

Pλ(xi) ln
P1(xi)

Pλ(xi)
,(3.4)

andλ∗ is chosen in such a way that

D(Pλ∗ ||P2) = D(Pλ∗ ||P1).(3.5)

This rate is sometimes called the Chernoff information distance between distribu-
tionsP1 andP2. We denote it asDc(P1,P2).
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It is also possible [see Cover and Thomas (1991)] to derive another expression
for the asymptotic probability of error, which is easier to calculate:

1

N
lnRN ∼ min

0≤λ≤1
log

n∑
i=1

P λ
1 (xi)P

1−λ
2 (xi).(3.6)

In quantum statistics the researcher has the ability to vary distributions over
outcomes by choosing the measurement of the given sample of quantum states.
In addition, his task is to test hypotheses not about the distributions over outcomes
but about the states themselves. How does this affect the classical results?

4. Joint measurements.

4.1. Generalities. Joint measurement of all sample states is by definition
a measurement of the tensor product of the sample states. Here is an example
of a joint measurement [from Keyl and Werner (2001)] that cannot be reduced to
separate measurements.

EXAMPLE 1. Let H denote the Hilbert space where the quantum state lives,
let d be the dimension of this space, and letN be the size of the sample. Then
the groupSU(d) acts onH⊗N by acting naturally on each term in the tensor
power. Consequently,H⊗N can be decomposed as a direct sum of the subspacesYi

invariant under this action, and projectors on these subspaces,PYi
, can be taken

as elements of a joint measurement. Keyl and Werner use this measurement for
estimating the individual state spectrum.

If joint measurements are allowed, then in effect we have the problem of testing
two alternative hypotheses about a single—although huge—quantum state, the
problem that was solved by Holevo and Helstrom [see, e.g., Holevo (2001)]. In our
situation we only need to determine what additional implications follow from the
special structure of the state.

Suppose the hypotheses about the quantum state are given by matricesρ0 andρ1
with prior probability of 1/2, and the task is to find a measurement and
a decision procedure that result in the lowest possible expected probability of error.
Then according to the Holevo–Helstrom result, the optimal measurement can be
represented by projectors on the eigenvectors of the operatorρ0 − ρ1. The optimal
decision is given by the following rule: If the measurement outcome corresponds
to an eigenvector with a positive eigenvalue, thenρ0 is chosen; otherwise,ρ1 is
chosen. The expected error probability for the optimal measurement and decision
rule is

R = 1
2

(
1− 1

2‖ρ0 − ρ1‖1
)
,(4.1)

where‖ · ‖1 denotes the sum of the absolute values of eigenvalues.
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In our case the hypothetical states are tensor powers of the individual states,
ρ⊗N

0 andρ⊗N
1 , where

ρ⊗N
i ≡ ρi ⊗ ρi ⊗ · · · ⊗ ρi︸ ︷︷ ︸

N

.(4.2)

The corresponding minimal expected error is

R = 1
2

(
1− 1

2‖ρ⊗N
0 − ρ⊗N

1 ‖1
)
.(4.3)

How does the error decline asN grows to infinity? Can we answer this question by
explicitly calculating the distribution of eigenvalues ofρ⊗N

0 − ρ⊗N
1 ? This matrix

has very large dimensionality so directly finding its eigenvectors and eigenvalues
is a hard computational problem. One way to circumvent this difficulty is by
calculating moments of the eigenvalue distribution.

Initial moments are indeed easy to calculate. Let us introduce notation for the
moments:

µn =:
∫ 1

0
tn dF (t) = 1

dN
tr(ρ⊗N

0 − ρ⊗N
1 )n,(4.4)

where F(t) is the discrete probability distribution that puts equal probability
weight on each eigenvalue. Then the following proposition holds.

PROPOSITION1.

µn = 1

dN

∑
{k1,...,kn}

(−1)
∑

ki
(
tr

(
ρk1 · · ·ρkn

))N
,(4.5)

where {k1, . . . , kn} run over the set of all n-sequences of 0 and 1.

PROOF. The proposition follows from the noncommutative binomial expan-
sion of(ρ⊗N

0 − ρ⊗N
1 )n and the fact that tr(ρ⊗N

k1
· · ·ρ⊗N

kn
) = (tr(ρk1 · · ·ρkn))

N . �

The advantage of this formula is that for a fixedn, the calculation is as easy for
large as for small values of the sample sizeN . The difficulty is that the number
of terms in this formula grows exponentially with moment sizen. Therefore the
standard map from the set of moment sequences to the set of distributions is
impractical.

In the next sections we will pursue other approaches to estimating‖ρ⊗N
0 −

ρ⊗N
1 ‖1 based on consideration of important special cases and on construction of

measurements that approximate the optimal measurement.
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4.2. Special cases. To get more insight about the behavior of‖ρ⊗N
0 −ρ⊗N

1 ‖1,
it is useful to consider two special cases: 1. When both states are pure. 2. When the
density operators commute. In the first case letρ0 = |ψ0〉〈ψ0| andρ1 = |ψ1〉〈ψ1|.
(For convenience, we use the Dirac ket-bra notation: the elements of the Hilbert
space are denoted as|ψ〉, and the linear functionals on the Hilbert space are
denoted as〈ψ |. In particular,|ψ〉〈ψ | is the orthogonal projector on|ψ〉.) Then
we have the following result:

THEOREM 1. If both states are pure, then the expected error probability is

R = 1
2

(
1−

√
1− ∣∣〈ψ0|ψ1〉

∣∣2N )
.(4.6)

Asymptotically,

1

N
logR ∼ 2 log

∣∣〈ψ0|ψ1〉
∣∣ as N → ∞.(4.7)

PROOF. Because of (4.1), we need only to prove that for pure states

‖ρ⊗N
0 − ρ⊗N

1 ‖1 = 2
√

1− ∣∣〈ψ0|ψ1〉
∣∣2N

.(4.8)

We can write

‖ρ⊗N
0 − ρ⊗N

1 ‖1 = ∥∥|ψ⊗N
0 〉〈ψ⊗N

0 | − |ψ⊗N
1 〉〈ψ⊗N

1 |∥∥1.(4.9)

The operator|ψ⊗N
0 〉〈ψ⊗N

0 | − |ψ⊗N
1 〉〈ψ⊗N

1 | acts nontrivially only in a two-
dimensional space spanned byψ⊗N

0 and ψ⊗N
1 , and it is easy to compute the

operator eigenvalues in this space. They are

±
√

1− ∣∣〈ψ⊗N
0 |ψ⊗N

1 〉∣∣2 = ±
√

1− ∣∣〈ψ0|ψ1〉
∣∣2N

.(4.10)

From this and the fact that all other eigenvalues are zero, the first equality of the
theorem follows. The asymptotic expression follows from the Taylor series for the
square root. �

Now consider the other simple case, that of commutingρ0 andρ1, and let the
distributions of eigenvalues beP for ρ0 and Q for ρ1. This is essentially the
classical case, so the error rate is obviously classical. For completeness we state it
as a theorem:

THEOREM 2. If states commute, then asymptotically

1

N
logR ∼ −Dc(P,Q).(4.11)

PROOF. The conclusion follows by diagonalizing simultaneouslyρ0 andρ1
and applying (4.1) and definitions.�
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4.3. Bounds. Let us now derive some simple bounds on the error probability
that follow from known inequalities. These bounds are useful because they
are rather narrow and easy to compute. The first set of bounds follows from
inequalities between quantum fidelity and probability of error.

Recall thatfidelity between two states is defined as

F(ρ0, ρ1) = tr
√√

ρ0ρ1
√

ρ0,(4.12)

where
√

X is the unique nonnegative definite, Hermitian matrixY such that
Y 2 = X.

THEOREM 3. Probability of error for the optimal test with joint measurement
satisfies the bounds

1
2

(
1−

√
1− [F(ρ0, ρ1)]2N

) ≤ R ≤ 1
2[F(ρ0, ρ1)]N.(4.13)

Asymptotically,

2 logF(ρ0, ρ1) � 1

N
logR � logF(ρ0, ρ1) as N → ∞.(4.14)

If ρ0 is pure, ρ0 = |ψ0〉〈ψ0|, the probability of error satisfies a tighter upper bound,

R ≤ 1
2[F(ρ0, ρ1)]2N = 1

2〈ψ0|ρ1|ψ0〉N.(4.15)

Asymptotically,

1

N
logR ∼ log〈ψ0|ρ1|ψ0〉 as N → ∞.(4.16)

PROOF. The first result follows from inequalities (44) in Fuchs and van de
Graaf (1999) applied to the case of the sample ofN independent states, and from
the fact thatF(ρ⊗N

0 , ρ⊗N
1 ) = [F(ρ0, ρ1)]N . The result about the case whereρ0 is

pure follows from Exercise 9.21 in Nielsen and Chuang (2000). For the reader’s
convenience, I include below short proofs of these results.

The Fuchs–Graaf result states that for every pair of quantum states,ρ0 andρ1,
it is true that

1− F(ρ0, ρ1) ≤ 1
2‖ρ0 − ρ1‖1 ≤

√
1− F(ρ0, ρ1)2.(4.17)

These inequalities hold because of the following results:

1. F(ρ0, ρ1) = minP,Q F(P,Q), where distributionsP andQ arise from a mea-
surement of statesρ0 andρ1, and whereF(P,Q) =: ∑

i

√
piqi .

2. ‖ρ0 − ρ1‖1 = maxP,Q ‖P − Q‖1, whereP andQ come from a measurement,
and where‖P − Q‖1 =: ∑

i |pi − qi |.
3. The corresponding inequality holds for probability distributions

1− F(P,Q) ≤ 1
2‖P − Q‖1 ≤

√
1− F(P,Q)2.(4.18)
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Indeed, given results 1–3, the left-hand side inequality in (4.17) follows because

1− F(ρ0, ρ1) =
(1)

1− F(P,Q) (for certainP andQ)(4.19)

≤
(3)

1
2‖P − Q‖1 ≤

(2)

1
2‖ρ0 − ρ1‖1.(4.20)

The right-hand side inequality follows similarly.
Result 1 is from Fuchs and Caves (1995). Result 2 is a restatement of the

Holevo–Helstrom result (4.1). The left-hand side inequality in result 3 holds
because ∑

i

|pi − qi | ≥
∑
i

(√
pi − √

qi

)2 ≥ 2

(
1− ∑

i

√
piqi

)
.(4.21)

The right-hand side inequality in result 3 holds because∑
i

|pi − qi | = ∑
i

∣∣√pi − √
qi

∣∣∣∣√pi + √
qi

∣∣(4.22)

≤
√∑

i

|√pi − √
qi |2

∑
i

|√pi + √
qi |2(4.23)

= 2

√√√√√1−
(∑

i

√
piqi

)2

.(4.24)

To prove the second part of the theorem, we need to prove that ifρ0 = |ψ0〉〈ψ0|,
then there are such a measurement and a decision rule such that

R ≤ 1
2〈ψ0|ρ1|ψ0〉.(4.25)

Take measurement{Pψ0, I − Pψ0}, wherePψ0 is the projector on vectorψ0. Then
the probabilities of the first and second outcomes are, respectively, 1 and 0 if
the state isψ0, and〈ψ0|ρ1|ψ0〉 and 1− 〈ψ0|ρ1|ψ0〉 if the state isρ1. Define the
decision rule as follows: stateψ0 is accepted if and only if the first outcome occurs.
The expected error of this rule is12〈ψ0|ρ1|ψ0〉.

In the case of tensor powers (4.25) becomes

R ≤ 1
2〈ψ0|ρ1|ψ0〉N.(4.26) �

REMARK. The lower bound of inequality (4.13) binds for pure states, because
for pure statesF(ρ0, ρ1) = |〈ψ0|ψ1〉|. The upper bound of inequality (4.13) binds
for certain commuting operators.

Another pair of bounds follows from results by Ogawa and Nagaoka (2000) and
Ogawa and Hayashi (2002). Define quantum relative entropy:

D(ρ0||ρ1) = − tr[ρ0(logρ0 − logρ1)].(4.27)
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Let also

�(ρ0||ρ1) = min
0≤s≤1

log tr[ρ0ρ
s/2
1 ρ−s

0 ρ
s/2
1 ].(4.28)

THEOREM 4.

max{D(ρ0||ρ1),D(ρ1||ρ0)} � 1

N
logR � min{�(ρ0||ρ1),�(ρ1||ρ0)}.(4.29)

PROOF. The lower bound is proved as follows. The errorR is the average of
error probabilities of two types,R = 1

2R1 + 1
2R2. For the optimal testR1 andR2

must have the same rate of decline. Therefore, we have two possibilities. If both
(1/N) logR1 and(1/N) logR2 satisfy the inequality, then(1/N) logR also does.
If both violate the inequality, then results of Ogawa and Nagaoka imply that one
of the error probabilities must approach 1 as the sample size grows. Therefore,
(1/N) logR approaches 0 and the inequality must hold. The upper bound is
a consequence of the results in Theorem 1 of Ogawa and Hayashi (2002).�

EXAMPLE 2. Figures 1–4 illustrate the bounds. The states here are linear
combinations of the Pauli matrices

ρ0 = 1
2(I + aσ1),(4.30)

ρ1 = 1
2

(
I + (b cosθ)σ1 + (b sinθ)σ2

)
,(4.31)

where

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 i

−i 0

)
.(4.32)

Figures 1 and 2 are for a small sample. Figure 1 shows that the test with fidelity-
optimal measurements may underperform the optimal test in small samples.
However, Figure 2 shows that the performance of the fidelity-optimal measurement
in small samples is very close to that of the optimal measurement except for the
situations when the states are close to being pure states.

Figures 3 and 4 are for a large sample. They show that the lower bounds in
Theorems 3 and 4 are not achieved by the fidelity-optimal measurement, and that
the lower bound from Theorem 4 (based on quantum relative entropy) is not as
good an estimate of the error as the lower bound from Theorem 3 (based on
fidelity). They also suggest that the upper bound from Theorem 4 is very close
to the upper bound from Theorem 3.

Let us briefly summarize our findings for the case of mixed states. We found
several inequalities on the optimal asymptotic rate and a good measurement
that guarantees that we can realize the upper bounds. However, we can neither
determine if the lower bounds in the inequalities are achievable for a given pair
of states, nor check easily if a given measurement has an asymptotically best rate.
These problems remain open.
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FIG. 1. Expected test errors in a small sample. The number of sample states N = 3.The hypotheses
are ρ0 = 1

2(I + 8
9σ1) and ρ1 = 1

2(I + (7
8 cosθ)σ1 + (7

8 sinθ)σ2). The horizontal axis shows θ .

FIG. 2. Expected test errors in a small sample. The number of sample states N = 3.The hypotheses
are ρ0 = 1

2(I + aσ1) and ρ1 = 1
2(I + 63

64aσ2). The horizontal axis shows a.
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FIG. 3. Expected test errors in a large sample. The number of sample states N = 40. The
hypotheses about states are ρ0 = 1

2(I + 1
2σ1) and ρ1 = 1

2(I + (1
8 cosθ)σ1 + (1

8 sinθ)σ2).
The horizontal axis shows θ .

FIG. 4. Expected test errors in a large sample. The number of sample states N = 40. The

hypotheses are ρ0 = 1
2(I + aσ1) and ρ1 = 1

2(I + 1
8aσ1 +

√
3

8 aσ2). The horizontal axis shows a.
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5. Separate measurements. In the previous section we have seen that it
is difficult to compute the optimal joint measurement because of the high
dimensionality of the problem involved. Besides, even if the optimal joint
measurement is found, it can be hard to realize it in the laboratory. For example,
proposed designs of the quantum computer typically use circuits built from
standard quantum states (called qubits) and small quantum gates. In this situation,
it appears desirable to avoid joint measurements of a large number of qubits. In this
section we turn our attention to separate independent measurements. The goal is
to compare the efficiency of optimal separate and joint measurements.

It is not difficult to find examples where joint measurements offer a performance
advantage over separate measurements. The main question is how this advantage
behaves when the sample size grows. Is it washed out? Does it grow? Does it stay
relatively constant? Figure 5 gives some numerical evidence that the advantage
grows. But before we address this question in detail, let us look more closely at the
optimal separate measurements.

What is the structure of the optimal separate measurements? This is a difficult
question but we can easily demonstrate the existence of measurements with
a simple structure and the optimal exponential error rate.

FIG. 5. Ratio of expected errors in tests with joint and separate measurements. The hypotheses are

ρ0 = 1
2(I + 5

6σ1) and ρ1 = 1
2(I + 3

√
3

8 σ1 + 3
8σ2). The horizontal axis shows the number of states in

the sample. The vertical axis shows the ratio of the expected errors in the optimal separate and joint
tests.
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THEOREM 5. There is a separate measurement that is represented by
operators proportional to one-dimensional projectors and that has the same
asymptotic rate of error as the optimal separate measurement.

PROOF. If an optimal measurement includes an outcome represented by
a matrix,M0, which is not proportional to a one-dimensional projector, then this
matrix can be represented as a sum of one-dimensional projectors with nonnegative
coefficients,

M0 =
n∑

i=1

αiMi.(5.1)

Therefore

p0 =
n∑

i=1

αipi and q0 =
n∑

i=1

αiqi,(5.2)

wherepi = tr(Miρ0) andqi = tr(Miρ1). Since the functionxλy1−λ is concave and
homogeneous, we have the inequality

pλ
0q1−λ

0 ≥
n∑

i=1

(αipi)
λ(αiqi)

1−λ.(5.3)

Because of (3.6), this inequality implies that using the set of outcomes represented
by matrices{αiMi} instead of the outcome represented byM0 cannot increase
the asymptotic rate of error. Consequently, by continuing in this fashion we can
refine the optimal measurement to a measurement with components proportional
to projectors and having the same asymptotic rate of error.�

If one of the states is pure,ρ0 = |ψ0〉〈ψ0|, then we can explicitly write down a
test that has the same exponential error rate as the optimal separate measurement:

THEOREM 6. When one of the states is pure, there is a separate test with the
expected error probability that satisfies the bound

R � 1
2〈ψ0|ρ1|ψ0〉N as N → ∞.(5.4)

PROOF. Take measurement{Pψ0, I − Pψ0}, wherePψ0 is the projector on
vectorψ0. Then the probabilities of the first and second outcomes are, respectively,
1 and 0 if the state isρ0, and〈ψ0|ρ1|ψ0〉 and 1− 〈ψ0|ρ1|ψ0〉 if the state isρ1.
Define the decision rule as follows: stateρ0 is accepted if and only if the second
outcome never occurs. This rule leads to an error if and only if the true state isρ1
and the second outcome never occurs. Thus the average probability of error for
this decision rule is

R = 1
2〈ψ0|ρ1|ψ0〉N.(5.5) �
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Noticing that the optimal separate test cannot have a better exponential rate than
the optimal joint test, and comparing the rate in (5.4) with the rate of the optimal
joint test in (4.16), we conclude that the test devised in Theorem 6 has the same
exponential error rate as both the optimal separate and optimal joint tests.

What should be emphasized, however, is that while the exponential rates for
optimal separate and joint tests are the same, the expected error may still be
significantly larger for the separate test. The next example shows that the ratio
of expected errors in optimal separate and joint tests can be as large as 2 to 1.

EXAMPLE 3. Let the dimension of the Hilbert space bed = 2, and let both
states,ψ0 andψ1, be pure. Then by a simple optimization, we can find that the
optimal separate projective measurement has two components that project, on one
of the states and on its orthogonal complement. The expected error of this test is

Rsep= 1
2

∣∣〈ψ0|ψ1〉
∣∣2N

.(5.6)

At the same time, we know from Theorem 1 that the expected error of the optimal
joint test is

Rjoint = 1
2

(
1−

√
1− ∣∣〈ψ0|ψ1〉

∣∣2N ) ∼ 1
4

∣∣〈ψ0|ψ1〉
∣∣2N

.(5.7)

Consequently,

Rsep

Rjoint
→ 2 asN → ∞.(5.8)

If both states are mixed, little is known about the optimal separate test and its
asymptotic rate. As an approximation, we can use a measurement that maximizes
fidelity (also known as Hellinger) distance between distributions of outcomes.
In other words, the measurement is chosen in such a way that it minimizes

F(P,Q) = ∑√
piqi.(5.9)

We will call this measurement fidelity-optimal. The advantage of this method
is that the fidelity-optimal measurement is easy to compute. It is simply
a measurement with outcomes that are orthogonal projectors on the eigenvectors
of the operator

M = ρ
−1/2
1

√
ρ

1/2
1 ρ0ρ

1/2
1 ρ

−1/2
1 .(5.10)

[See Fuchs and Caves (1995) for an explanation why thisM is fidelity-optimal.]

THEOREM 7. The expected error of the test based on the fidelity-optimal
measurement satisfies the asymptotic bound

1

N
logR � logF(ρ0, ρ1).(5.11)
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PROOF.

1

N
lnR = min

0≤λ≤1
log

N∑
i=1

pλ
i q1−λ

i ≤ log
N∑

i=1

√
piqi ≤ logF(ρ0, ρ1).(5.12)

The equality holds because of (3.6), and the second inequality is inequality (44) in
Fuchs and van de Graaf (1999).�

This is the same upper bound that we derived for joint asymptotic measurement
in Theorem 3. Comparing (5.11) with (4.14) shows, however, that there is a pos-
sible difference between exponential rates of separate and joint measurements,
although the maximal size of the ratio of the rates cannot be greater than 2 to 1.

6. Illustration. This section illustrates the concepts developed above with
an example of testing for the presence of entanglement. Entanglement is one
of the properties of quantum systems that clearly separates them from classical
systems. It is a co-dependence of two remote parts of a quantum system that cannot
be created (though it can easily be destroyed) by local operations on the parts.
Entanglement has recently been recognized as an important part of many quantum
technologies including quantum teleportation and quantum cryptography.

There are several methods to produce entanglement. One of them involves
a random decay of a laser-pumped atom. The entanglement is then shared
between two photons issued by the atom. Another method, proposed by Turchette
et al. (1998), creates entanglement by placing two interacting ions in a trap and
illuminating them equally by a laser beam. In this illustration we are interested in
tests of whether or not the entanglement has been produced in a given sample.

An example of an entangled quantum state is a pure state of the system of two
particles that corresponds to the projector on the vector

ψ0 = 1√
2
(|00〉 + |11〉),(6.1)

where |00〉 and |11〉 denote|0〉 ⊗ |0〉 and |1〉 ⊗ |1〉, and |0〉 and |1〉 form an
orthonormal basis in the Hilbert space corresponding to one of the particles.

The density matrix for this system is

ρ0 = |ψ0〉〈ψ0| =


1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2

 .(6.2)

The alternative hypothesis is that the state is a mix of two nonentangled states
given by projectors on vectors|00〉 and|11〉, respectively. The density matrix for
this hypothesis is

ρ1 =


1
2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2

 .(6.3)
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This state can be easily produced by local operations but it is useless for
technologies that require entanglement.

In application we can expect thatρ0 andρ1 are contaminated by noise. A simple
model of noisy hypotheses is represented by the mixed density matrices

ρ̃i = αρi + (1− α)1
4I,(6.4)

where 0≤ α ≤ 1, and I is the unit density matrix that represents noise. The
parameterα measures the degree of contamination by the noise.

It is easy to calculate fidelity:

F(ρ̃0, ρ̃1) = 1
2

(
1− α + 1

2

√
1− α2 + 1

2

√
1+ 4α + 3α2

)
.(6.5)

Applying Theorem 3, we have

1
2

(
1−

√
1− [F(ρ̃0, ρ̃1)]2N

) ≤ R ≤ 1
2[F(ρ̃0, ρ̃1)]N.(6.6)

Consider, for example, the case with a relatively high level of noise:α = 20%.
Then fidelity isF = 0.9913, and for a sample with 100 quantum states the lower
and upper bounds on the expected error are 0.046 and 0.21, respectively. For 300
states the upper bound is 0.037 and we can be sure that the expected error of the
test is below 5% threshold.

7. Conclusion. We have bounded the Chernoff efficiency, from above and
below, for cases of joint and separate measurements and also calculated it exactly
if at least one of the states is pure. In the latter case, the optimal separate
measurement results in the same asymptotic error rate as the optimal joint
measurement. We have shown by example, however, that the ratio of the error
of optimal separate measurement to that of optimal joint measurement can be as
large as a factor of 2.

If both states are mixed, there is a distinct possibility that the optimal test with
joint measurements can have a better exponential rate than the optimal test with
separate measurements. Still, the bounds that we have obtained show that this
improvement in the rate cannot be greater than a factor of 2.

Several questions remain open. Most notably, it is not known whether
joint measurement can ever have a better exponential error rate than optimal
separate measurement. Second, the characteristic properties of optimal separate
measurement are not known. In particular, it is not known whether optimal separate
measurement of an individual state consists of orthogonal projectors.

Another open direction for research is the small deviations approach to quantum
hypothesis testing. In this approach hypotheses about quantum states approach
each other when the sample size grows. Asymptotics in this case are likely to be
related to the quantum information matrix introduced in the context of quantum
estimation theory.
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