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GENERAL EMPIRICAL BAYES WAVELET METHODS AND
EXACTLY ADAPTIVE MINIMAX ESTIMATION1

BY CUN-HUI ZHANG

Rutgers University

In many statistical problems, stochastic signals can be represented as
a sequence of noisy wavelet coefficients. In this paper, we develop general
empirical Bayes methods for the estimation of true signal. Our estimators
approximate certain oracle separable rules and achieve adaptation to ideal
risks and exact minimax risks in broad collections of classes of signals.
In particular, our estimators are uniformly adaptive to the minimum risk
of separable estimators and the exact minimax risks simultaneously in
Besov balls of all smoothness and shape indices, and they are uniformly
superefficient in convergence rates in all compact sets in Besov spaces with
a finite secondary shape parameter. Furthermore, in classes nested between
Besov balls of the same smoothness index, our estimators dominate threshold
and James–Stein estimators within an infinitesimal fraction of the minimax
risks. More general block empirical Bayes estimators are developed. Both
white noise with drift and nonparametric regression are considered.

1. Introduction. Suppose a sequencey ≡ {yjk} of infinite length is observed,
with

yjk ≡ βjk + εzjk, 1≤ k ≤ max(2j ,1), j = −1,0,1, . . . ,(1.1)

whereε > 0 andzjk are i.i.d.N(0,1). In many statistical problems, stochastic
signals can be represented in the form of (1.1) as noisy wavelet coefficients
with errors εzjk , or simply represented by a sequence of normal variables as
in (2.2) below. In this paper we consider estimation of the true wavelet coefficients
β ≡ {βjk}, that is, the normal means, with the�2 risk

R(ε)(β̂, β) ≡
∞∑

j=−1

2j∨1∑
k=1

E
(ε)
β (β̂jk − βjk)

2(1.2)

for estimatesβ̂ ≡ {β̂jk} based ony, whereE
(ε)
β is the expectation in model (1.1).

We develop general empirical Bayes (GEB) estimatorsβ̂(ε) ≡ β̂(ε)(y), defined
in Section 2, such that under certain mild conditions on the sequenceβ the risks
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of β̂(ε) satisfy

R(ε)(β̂(ε), β
)≈ R(ε,∗)(β) ≡ inf

β̂∈Ds
R(ε)(β̂, β),(1.3)

whereDs is the class of allseparable estimators of the formβ̂jk = hj (yjk) with
Borel hj . We provideoracle inequalities, that is, upper bounds for theregret
R(ε)(β̂(ε), β) − R(ε,∗)(β) for this adaptation to theideal risk R(ε,∗)(β). Our oracle
inequalities imply that the ideal adaptation (1.3) is uniform for large collectionsB
of classesB of the unknownβ, for example, Lipschitz, Sobolev and Besov ballsB

of all smoothness and shape indices and radii, in the sense that for allB ∈ B the
regret is uniformly of smaller order than the minimax risk

R(ε)(B) ≡ inf
β̂

sup
β∈B

R(ε)(β̂, β).(1.4)

This uniform ideal adaptation implies: (1) theexact minimax adaptation

sup
{
R(ε)(β̂(ε), β

)
:β ∈ B

}= (1+ o(1)
)
R(ε)(B)(1.5)

simultaneously for all Besov ballsB, (2) adaptation to spatial inhomogeneity of
the signal [Donoho and Johnstone (1994a)], (3) the superefficiency of the GEB
estimators in convergence rates in all compact sets ofβ in Besov spaces with a
finite secondary shape parameter and (4) dominance of GEB estimators over other
empirical Bayes (EB) or separable estimators in the limit in all classes ofβ nested
between Besov balls of the same smoothness index. We also describe more general
block EB methods and implementation of GEB estimators in nonparametric
regression models with possibly unknown variance.

The white noise model (1.1) is a wavelet representation of its original form [cf.
Ibragimov and Khas’minskii (1981)], in which one observes

Y(t) ≡
∫ t

0
f (u)du + εW(t), 0≤ t ≤ 1,(1.6)

where f ∈ L2[0,1] is unknown andW(·) is a standard Brownian motion. In
this representation,yjk ≡ ∫ φjk(t) dY (t), βjk ≡ βjk(f ) ≡ ∫ f (t)φjk(t) dt , and
estimates

f̂ (t) ≡∑
j,k

β̂jkφjk(t), 0≤ t ≤ 1,(1.7)

are constructed based on estimatesβ̂jk of βjk , whereφjk are wavelets forming an

orthonormal basis inL2[0,1]. Let E
(ε)
f be the expectation in model (1.6). By the

Parseval identity,

R(ε)(β̂, β) = E
(ε)
β

∑
j,k

(β̂jk − βjk)
2 = E

(ε)
f

∫ 1

0
{f̂ (t) − f (t)}2 dt,(1.8)
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so that our problem is equivalent to the estimation off under the mean integrated
squared error (MISE). In general,φjk(t) are “periodic” or “boundary adjusted”
dilation and translation 2j/2φ(2j t −k) of a “mother wavelet”φ of compact support
for j ≥ j0 for certainj0 ≥ 0; see Donoho and Johnstone (1994a). Sinceφjk is
supported in an interval of sizeO(1/2j ) in the vicinity of k/2j , j and k are,
respectively, resolution and spatial indices, andyjk represent the information about
the behavior off at resolution levelj and locationk/2j . We refer to Chui (1992),
Daubechies (1992) and Härdle, Kerkyacharian, Picard and Tsybakov (1998) for
wavelet theory and its applications.

This paper is organized as follows. We develop block EB methods in Section 2
which naturally lead to GEB estimators. We state main properties of the
GEB estimators in Section 3. We implement GEB estimators in nonparametric
regression models in Section 4. We discuss related results and problems in
Section 5. We focus on compound estimation of normal means in Section 6. We
present our main theorems in their full strength in Section 7. We cover Bayes
models and more general classes of the unknownβ in Section 8. We study the
equivalence between the nonparametric regression and white noise models in
Section 9. Proofs are given in the Appendix unless otherwise stated or provided
immediately after the statements of results. The main theorems in Sections 3, 6
and 7 have been reported earlier in Zhang (2000) with more details in proofs. We
use the notation log+ x ≡ 1∨ logx andx(n) ≡ (x1, . . . , xn) throughout.

2. Block EB methods and GEB estimators. We begin with block EB
methodologies, which naturally lead to GEB estimators. Consider a sequence of
N ≤ ∞ decision problems with observationsXk ∼ p(x|θk) and parametersθk

under the compound risk
∑N

k=1 EL0(δk, θk) for a given lossL0(·, ·). Block EB
methods partition the sequence into blocks[j ] ≡ (kj−1, kj ], kj−1 < kj < ∞, and
apply EB procedures of the formδk = t̂[j ](Xk), k ∈ [j ], in individual blocks, where
t̂[j ](·) are estimates of theoracle rules

t∗[j ](·) ≡ arg min
t (·)∈D0

∑
k∈[j ]

Eθk
L0
(
t (Xk), θk

)
(2.1)

for a certain classD0 of decision rules. Block GEB (linear, threshold EB)
procedures approximate the oracle rules (2.1) corresponding to the classesD0 of
all Borel (linear, threshold) functions. It follows from compound decision theory
[Robbins (1951)] thatt∗[j ] are the Bayes rules when the priors are taken to be the
unknown empirical distributions of{θk, k ∈ [j ]}.

Consider the estimation of normal meansβk based on independent observations

y ≡ {yk, k ≤ N}, yk ∼ N(βk, ε
2)(2.2)

with known ε, under the squared loss as in (1.2). After standardization with
(Xk, θk) ≡ (yk, βk)/ε to the unit variance, block GEB estimators ofβk become

β̂
(ε)
k ≡ β̂

(ε)
k (y) ≡ εt̂[j ](yk/ε), k ∈ [j ],(2.3)
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wheret̂[j ] are estimates of (2.1) with squared-error lossL0(δ, θ) = (δ − θ)2. The
empirical distribution of{θk, k ∈ [j ]} is

G
(ε)
[j ](u) ≡ 1

nj

∑
k∈[j ]

I {θk ≤ u}, θk ≡ βk

ε
,(2.4)

wherenj ≡ kj − kj−1 is the size of blockj . Let ϕ(x) ≡ e−x2/2/
√

2π and

ϕG(x) ≡ ϕ(x;G) ≡
∫

ϕ(x − u)dG(u), ϕ′(x;G) ≡ dϕG

dx
.(2.5)

The oracle rules (2.1) are explicit functionals of the mixture marginal distributions
ϕ(x;G(ε)

[j ]) of the observations{Xk ≡ yk/ε, k ∈ [j ]} [Robbins (1956), page 162,
and Stein (1981)], given by

t∗[j ](x) = x + ϕ′(x;G(ε)
[j ])

ϕ(x;G(ε)
[j ])

.(2.6)

This formula motivated the GEB estimators of Zhang (1997).
We construct GEB estimators in individual blocks using a hybrid version of the

GEB estimator of Zhang (1997). The hybrid GEB estimator utilizes an estimate of
the order ofκ(G

(ε)
[j ]),

κ(G) ≡
∫

(|u|2 ∧ 1) dG(u),(2.7)

and switches from the GEB estimator to a threshold estimator whenκ(G
(ε)
[j ])

is small. Specifically, for certainρ(n) > 0 andb(n) given in (2.11) below and
nj ≥ n∗ > 2, we define (2.3) by

t̂[j ](x) ≡
{

x + ϕ̂′[j ](x)/max
{
ρ(nj ), ϕ̂[j ](x)

}
, if κ̂[j ] > b(nj ),

sgn(x)
(|x| − √

2 lognj

)+
, if κ̂[j ] ≤ b(nj ),

(2.8)

whereϕ̂[j ](x), a kernel estimate ofϕ(x;G(ε)
[j ]) in (2.6), is given by

ϕ̂[j ](x) ≡ 1

nj

∑
k∈[j ]

√
2 lognjK

(√
2 lognj (x − Xk)

)
(2.9)

with K(x) ≡ sin(x)/(πx) andXk ≡ yk/ε, and κ̂[j ], an estimate of the order of

κ(G
(ε)
[j ]), is given by

κ̂[j ] ≡ 1−
√

2

nj

∑
k∈[j ]

exp(−X2
k/2).

Fornj < n∗, we choose the MLÊβ(ε)
k ≡ yk [i.e., t̂[j ](x) ≡ x orρ(n) = ∞ = −b(n)

for n < n∗] or the James and Stein (1961) estimator for the vectors{βk, k ∈ [j ]}.
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For denoising the wavelet coefficients, we identify the sequencey ≡ {y−1,1,

y0,1, y1,1, y1,2, . . . } in (1.1) with y ≡ {yk, k ≤ N} in (2.2) and partition them
into natural blocks[j ] = (2j ,2j+1], j = −1,0, . . . , with a single block for each
resolution levelj . This results in

β̂(ε) ≡ β̂(ε)(y) ≡ {β̂(ε)
jk

}
, β̂

(ε)
jk ≡

{
yjk, if j < j∗,

εt̂[j ](yjk/ε), if j ≥ j∗,
(2.10)

wherej∗ ≡ max{j : j ≤ (logn∗)/ log 2} andt̂[j ] is as in (2.8) withnj = 2j ,

ϕ̂[j ](x) ≡
√

2j log 2

2j

2j∑
k=1

K

(
x − yjk/ε

(2j log 2)−1/2

)
, K(x) ≡ sin(x)

πx
,

andκ̂[j ] ≡ 1− 2−j∑2j

k=1

√
2exp(−(yjk/ε)

2/2). For definiteness, we set

ρ ≡ ρ(n) = (1+ ηn)ρ0
√

2(logn)/n, b ≡ b(n) = b0(logn)/
√

n,(2.11)

with certain ηn → 0 and positive constantsρ0 and b0. We simply call (2.10)
GEB estimators since the blocks represent natural resolution levels in the wavelet
setting.

We discuss in detail in Section 6 the construction and properties of the GEB
estimators in individual blocks (resolution levels). Here we briefly describe the
rationale for our choices of the “tuning parameters” for (2.8) and (2.10). The
special kernel and bandwidth in (2.9) ensure thatϕ̂[j ](x) → ϕ(x;G(ε)

[j ]) at nearly

the optimal raten−1/2
j uniformly and in derivatives asnj → ∞ [Zhang (1997)].

The sample sizen∗ (and thus the initial resolution levelj∗) should be determined
so thatϕ̂[j ](x) ≈ ϕ(x;G(ε)

[j ]) with sufficient accuracy fornj ≥ n∗. Although the
ρ(nj ) andb(nj ) in (2.8) could be determined/optimized by data-driven methods,
for example, Stein’s (1981) estimator of mean squared error, bootstrap and cross
validation, properties of the resulting estimators are not clear. The choice in (2.11)
provides the sharpest bounds in our main theorems. Our risk bounds depend onj∗,
ρ0 andb0 only through scaling constants in terms of smaller order than minimax
risks. Finally, we remark that (block) GEB estimators (2.3) and (2.10) are scale
equivariant:

β̂(ε)(y) = Cβ̂(ε/C)(y/C) ∀C > 0,(2.12)

since t̂[j ](x) in (2.8) depend ony and ε only throughy/ε. Thus, for the risks
in (1.3) and allC > 0

R(ε)(β̂(ε)(y), β
)= C2R(ε/C)(β̂(ε/C)(y/C),β/C

)
,

(2.13)
R(ε,∗)(β) = C2R(ε/C,∗)(β/C).
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3. Oracle inequalities and their consequences. In this section we describe
main properties of our (block) GEB estimators (2.3), (2.8) and (2.10) and
the concepts of uniform ideal adaptivity, exactly adaptive minimaxity, spatial
adaptivity and superefficiency. Sections 5, 7 and 8 contain further discussion about
these properties and concepts.

3.1. Oracle inequalities. Consider the estimation of normal means with
observations (2.2). Anoracle expert with the knowledge oft∗[j ] in (2.6) could use
the ideal separable ruleεt∗[j ](yk/ε) for βk to achieve the ideal risk

R(ε,∗)(β) ≡ min
β̂∈Ds

R(ε)(β̂, β) =∑
j

min
t (·)

∑
k∈[j ]

E
(ε)
β {εt (yk/ε) − βk}2,(3.1)

as in (1.3), whereDs is the collection of all separable estimates of the form
β̂k = hj (yk), ∀ k ∈ [j ]. Althoughεt∗[j ](yjk/ε) are not statistics, the ideal risk (3.1)
provides a benchmark for our problem.

THEOREM 3.1. Let β̂(ε) ≡ {β̂(ε)
k } be as in (2.3) and (2.8) based on (2.2).Let

R(ε)(β̂, β) ≡∑N
k=1 E

(ε)
β (β̂k −βk)

2. Then there exists a universal constant M < ∞
such that

R(ε)(β̂(ε), β
)− R(ε,∗)(β)

(3.2)

≤ Mε2
∑
j

{
nj rp∧2

(
nj ,

(
∑

k∈[j ] |βk|p)1/p

εn
1/p
j

)
+ 1

(lognj + 1)3/2

}
,

where R(ε,∗)(β) is the ideal risk in (3.1),nj ≡ kj − kj−1 are block sizes and

rp(n,C) ≡ min
(

1,
Cp

(logn)p/2−1 ,max
[
(logn)2

√
n

,

{
C(logn)3/2

√
n

}p/(p+1)])
.(3.3)

COROLLARY 3.1. If β = 0, then R(ε,∗)(β) = 0 and R(ε)(β̂(ε), β) = O(ε2).

Theorem 3.1, proved in Section 7.1, provides a crucial oracle inequality in the
derivation of our main results. It allows us to bound the regret of our estimators in
terms of the moments ofβ[j ]. Consider block sizesnj such that, for allp > 0 and
η > 0 and asx → ∞,

∑
nj≥x

xp

n
p
j

= o(xη),
∑

nj≤x

n
p
j

xp
= o(xη),

∑
j

(1+ lognj )
−3/2 < ∞.(3.4)

Condition (3.4) holds if lognj ∼ jγ for certain 2/3< γ ≤ 1.
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THEOREM 3.2. Let β̂(ε) be as in Theorem 3.1 and ‖β‖ ≡ supj ns
j ×

(
∑

k∈[j ] |βk|p/nj )
1/p. Suppose (3.4) holds and α0 ≡ min{s,2s − 1/2 − 1/(p ∧

2)} > 0. Then, for all η > 0

sup
{
R(ε)(β̂(ε), β

)− R(ε,∗)(β) :‖β‖ ≤ C
}≤ o

(
ε2α0/(α0+1/2)−η) as ε → 0+.

REMARK. If a higher threshold level
√

2(1+ A0) lognj with A0 > 0 is used
in (2.8) for κ̂[j ] ≤ b(nj ), Theorems 3.1 and 3.2 hold with(1+ lognj )

−3/2 replaced

by n
−A0
j (1+ lognj )

−3/2 in (3.2) and (3.4). See the remark below Theorem 6.4.

In the rest of Section 3, we focus on the wavelet model (1.1), that is, the case
of nj = 2j . Our methodology is clearly applicable to more general block sizesnj

satisfying (3.4).

3.2. Uniform ideal adaptation. Let R(ε)(β̂, β) be the�2 risk in (1.2). Sta-
tistical estimatorsβ̂(ε) are uniformly adaptive to the ideal riskR(ε,∗)(β) in
(1.3) and (3.1), with respect to a collectionB of classesB of the unknown se-
quenceβ, if

sup
β∈B

{
R(ε)(β̂(ε), β

)− R(ε,∗)(β)
}= o(1)R(ε)(B) asε → 0+ ∀B ∈ B,(3.5)

and β̂(ε) depends on(y, ε) only, not onB, whereR(ε)(B) is the minimax risk
in (1.4). In other words, uniform ideal adaptation demands that, for allB ∈ B and
in the minimax sense, theregret

r(ε)(β̂(ε), β
)≡ R(ε)(β̂(ε), β

)− R(ε,∗)(β)(3.6)

be uniformly of smaller order than the typical convergence rates inB. As an
immediate consequence of uniform ideal adaptation, maximum risks are bounded
by the maximum ideal risks,

sup
β∈B

R(ε)(β̂(ε), β
)≤ (1+ o(1)

)
sup
β∈B

R(ε,∗)(β) ∀B ∈ B.(3.7)

Our GEB estimators possess this uniform ideal adaptivity property with respect
to

BBesov≡
{
Bα

p,q(C) : 0< α < ∞,

(3.8)
1

α + 1/2
< p ≤ ∞,0< q ≤ ∞,0< C < ∞

}
,

whereBα
p,q ≡ Bα

p,q(C) are the Besov balls defined by

Bα
p,q ≡ {β :‖β‖α

p,q ≤ C},
(3.9)

‖β‖α
p,q ≡

[
|β−1,0|q +

∞∑
j=0

(
2j (α+1/2−1/p)

∥∥β[j ]
∥∥
p,2j

)q]1/q

,
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with ‖β[j ]‖p,2j ≡ (
∑2j

k=1 |βjk|p)1/p, and with the usual modifications forp ∨ q =
∞. Forp ∧ q < 1, ‖ · ‖α

p,q is not a norm, but(‖β ′ +β ′′‖α
p,q)

p∧q ≤ (‖β ′‖α
p,q)

p∧q +
(‖β ′′‖α

p,q)
p∧q is sufficient here.

THEOREM 3.3. Let β̂(ε) ≡ {β̂(ε)
jk } be as in (2.10)based on y ≡ {yjk} in (1.1),

with ρ(n) and b(n) in (2.11).Then (3.5)holds for B = BBesov.

By Donoho and Johnstone [(1998), Theorem 1] and Theorem 7.3 below, the
minimax convergence rates in Besov balls are given by

0< inf
0<ε≤C

R(ε)(Bα
p,q(C))

ε2α/(α+1/2)C1/(α+1/2)
≤ sup

0<ε≤C

R(ε)(Bα
p,q(C))

ε2α/(α+1/2)C1/(α+1/2)
< ∞.(3.10)

Based on (3.10), Theorem 3.3 is an immediate consequence of Theorems
3.2 and 7.2 in Section 7, which provide upper bounds for the convergence rates
of theo(1) in (3.5). Note thatα0 > α ≡ s − 1/2 in Theorem 3.2 fors > 1/p. We
show in Section 8 that (3.5) and (1.5) hold for much larger collections thanBBesov.

3.3. Adaptive minimaxity. A main consequence of the uniform ideal adaptiv-
ity in Theorem 3.3 is the universal exactly adaptive minimaxity over all Besov
balls.

THEOREM 3.4. Let β̂(ε) ≡ {β̂(ε)
jk } be as in (2.10) and (2.11) with positive

constants (j∗, ρ0, b0). Then (1.5) holds for the Besov balls Bα
p,q(C) in (3.9) for

all (α,p, q,C) in (3.8).

This result can be viewed as an extension of the work of Efromovich and
Pinsker (1984, 1986), Efromovich (1985) and Golubev (1992) from Sobolev
versions ofBα,2,2 to Besov balls with general(α,p, q). Theorem 3.4 follows from
Theorem 7.4 in Section 7, which provides upper bounds for the order of theo(1)

in (1.5).
For a general collectionB, exact adaptive minimaxity (1.5) is a consequence

of (3.5) and

sup
β∈B

R(ε,∗)(β) = (1+ o(1)
)
R(ε)(B),(3.11)

since (3.5) implies (3.7). For Besov ballsB = Bα
p,q , (3.11) is proved in Donoho

and Johnstone (1998) forq ≥ p and in Theorem 7.3 for general(p, q).

3.4. Spatial adaptation. Another main consequence of the uniform ideal
adaptivity in Theorem 3.3 is spatial adaptivity of (1.7) whenβ ≡ β(f ) represents
wavelet coefficients of a spatially inhomogeneous signal functionf (·). For β ∈
Bα

p,q , thesmoothness index α indicates the typical rate of decay of|βjk| asj → ∞.
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Donoho and Johnstone (1994a) and Donoho, Johnstone, Kerkyacharian and Picard
(1995) pointed out that spatial inhomogeneity of a functionf is often reflected
in the sparsity of its wavelet coefficientsβjk ≡ βjk(f ) at individual resolution
levels, not necessarily in the smoothness indexα. In such cases, a handful of|βjk|
could be much larger than the overall order of magnitude ofβ[j ] at individual
resolution levels, so thatβ ∈ Bα

p,q only for smallp < 2. Thus, spatial adaptation
can be achieved via (exactly,rate or nearly) adaptive minimaxity in Besov balls
with small shape parameterp. Our GEB estimators are spatially adaptive to the
full extent in the sense that they are exactly adaptive minimax in Besov balls for
all (α,p, q), under the minimum conditionp > 1/(α +1/2), even allowingp < 1.

EXAMPLE 3.1. Let Fd,m(C) be the collection of all piecewise polynomi-
als f of degreed in [0,1], with at mostm pieces and‖f ‖∞ ≤ C. Let φ be a
mother wavelet with

∫
xjφ(x) dx = 0, j = 0, . . . , d, andφ(x) = 0 outside an in-

tervalI0 of length|I0|. Forf ∈ Fd,m(C), the wavelet coefficientsβjk ≡ βjk(f ) ≡
2j/2 ∫ 1

0 f (x)φ(2j x − k) dx = 0 if f is a single piece of polynomial in(I0 + k)/2j

and|βjk| ≤ 2−j/2C
∫ |φ|dx otherwise. Thus,‖β[j ]‖p,2j ≤ 2−j/2m1/pCM0 for all

j andp, whereM0 ≡ (|I0| + 2)1/p
∫ |φ|dx. By (3.9), ‖β‖α

p,q < ∞ if α < 1/p

for q < ∞ or α = 1/p for q = ∞. Theorem 3.4, (3.10) and (1.8) imply that
E

(ε)
f

∫ 1
0 (f̂ − f )2 dx = R(ε)(β̂(ε), β(f )) = O(ε2α/(α+1/2)) for all α < ∞. More-

over, Theorem 8.1 in Section 8 implies that form(ε) = o(1)(logε)−2ε−1/(α+1/2),

lim sup
ε→0+

ε−2α/(α+1/2) sup
{
R(ε)(β̂(ε), β(f )

)
:f ∈ Fd,m(ε)(ε

−M)
}= 0 ∀M < ∞,

with the radiiC = 0 in (8.4).

3.5. Superefficiency. An interesting phenomenon with our GEB estimators is
their universalsuperefficiency in convergence rates in compact sets in Besov spaces
with q < ∞.

THEOREM 3.5. Let β̂(ε) ≡ {β̂(ε)
jk } be as in (2.10) and (2.11) with positive

constants (j∗, ρ0, b0). Let 0 < α < ∞, 1/(α + 1/2) < p ≤ ∞ and 0 < q < ∞.
Then limε→0+ ε−2α/(α+1/2)R(ε)(β̂(ε), β) = 0 for ‖β‖α

p,q < ∞, and for ‖ · ‖α
p,q -

compact sets B

lim
ε→0+ ε−2α/(α+1/2) sup

{
R(ε)(β̂(ε), β

)
:β ∈ B

}= 0.(3.12)

Theorem 3.5 is proved at the end of Section 7. It indicates that the minimax
risksR(ε)(Bα

p,q) ∼ ε2α/(α+1/2) are quite conservative as measurements of the risk

of our GEB estimators. As a function ofβ, the ideal riskR(ε,∗)(β) provides more
accurate information about the actual risk; see Theorems 3.2 and 7.2. Brown,
Low and Zhao (1997) constructed universal pointwise superefficient estimators
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for Sobolev spaces (i.e.,p = 2). Their method also provides the superefficiency
of the estimators of Efromovich and Pinsker (1984, 1986). The classical kernel
and many other smoothing methods do not possess the superefficiency property.
In parametric models superefficiency could possibly happen only in a very small
part of the parameter space, while the superefficiency of the GEB estimators is
universal in all Besov balls.

3.6. Dominance of GEB methods. Consider classesB of the unknownβ

satisfying

B ⊆ Bα
p,q(C), lim inf

ε→0+ ε−2α/(α+1/2)R(ε)(B) > 0,(3.13)

for certain (α,p, q,C) in (3.8), whereR(ε)(B) is the minimax risk (1.4). It
follows from Theorem 3.4 that our GEB estimators achieve the minimax rate of
convergence inB, but they may not achieve the minimax constant forB in the
limit. We show here that the GEB estimators dominate restricted EB estimators
within o(1)ε2α/(α+1/2) in risk in all classesB satisfying (3.13).

Let R̃(ε,∗)(β) be certain “ideal risk” withR̃(ε,∗)(β) ≥ R(ε,∗)(β) and consider
β̃(ε) satisfying

sup
β∈B

{
R̃(ε,∗)(β) − R(ε)(β̃(ε), β

)}≤ o(1)ε2α/(α+1/2).(3.14)

THEOREM 3.6. Let β̂(ε) ≡ {β̂(ε)
jk } be as in (2.10) and (2.11) with positive

constants (j∗, ρ0, b0). Let R(ε)(B) be the minimax risk in (1.4). Suppose
(3.13)and (3.14)hold. Then

lim
ε→0+

sup{R(ε)(β̂(ε), β) − R(ε)(β̃(ε), β) :β ∈ B}
R(ε)(B)

≤ 0.(3.15)

Consequently, limε→0+{supβ∈B R(ε)(β̂(ε), β)}/{supβ∈B R(ε)(β̃(ε), β)} ≤ 1.

Theorem 3.6 is an immediate consequence of Theorem 3.3. Condition (3.13)
holds if B = {β :‖β‖ ≤ C} are balls for a certain norm‖ · ‖ nested between two
Besov norms withM−1‖β‖α

p′,q ′ ≤ ‖β‖ ≤ M‖β‖α
p,q for a certain 0< M < ∞, for

example, Lipschitz and Sobolev classes. Examples ofβ̃(ε) satisfying (3.14) include
the Johnstone and Silverman (1998, 2005) parametric EB, block threshold (e.g.,
VISUAL- and SURESHRINK) and linear (e.g., James–Stein) estimators with

R̃(ε,∗)(β) ≡∑
j

inf
t∈D0

∑
k

E
(ε)
β

(
t (yjk) − βjk

)2(3.16)

for restricted classesD0 (e.g., threshold, linear) of functionst (·).
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4. Nonparametric regression. In this section we describe implementation of
our GEB estimators in the nonparametric regression model

Yi ≡ f (ti) + ei, ei ∼ N(0, σ 2), i ≤ N.(4.1)

We report some simulation results forti = i/N and unknown varianceσ 2, and
present the exact adaptive minimaxity and superefficiency of GEB estimators for
i.i.d. uniform ti and knownσ 2.

4.1. Deterministic design and simulation results. The white noise model (1.1)
is directly connected to the nonparametric regression model via discrete wavelet
reconstruction. Supposeti = i/N and N = 2J+1 in (4.1). A discrete wavelet
reconstruction can be expressed by invertible linear mappings

(yjk, k ≤ 2j∨0, j ≤ J ) = N−1/2WN×N(Yi, i ≤ N),

(4.2)

Yi = √
N

J∑
j=−1

2j∨1∑
k=1

yjkWjk(i),

whereWN×N , called the finite wavelet transformation matrix, is a real orthonormal
matrix, Wjk(i) specify the inverse ofWN×N , and

√
NWjk(i) ≈ φjk(ti) with

waveletsφjk . It follows that yjk are independent normal variables withEyjk ≈∫
f φjk and Var(yjk) = ε2 ≡ σ 2/N . See Donoho and Johnstone (1994a, 1995) for

details.
Although the varianceε2 can be fully identified, that is, estimated without

error, based on data in (1.1) or (1.6) for square summableβ, that is,
∫ 1
0 f 2 < ∞,

implementation of GEB estimators in the nonparametric regression model (4.1)
requires an estimation of the varianceσ 2. Among other methods, estimates ofσ 2

can be constructed from observations at the highest resolution level, for example,

σ̂ ≡ MAD
(√

Ny[J ]
)≡ median(

√
N |yJk| : 1≤ k ≤ 2J )

median(|N(0,1)|) ,(4.3)

which converges toσ at the rateN−αp/(p+1) + N−1/2 in Besov balls. The
regression functionf is then estimated by

f̂ (i/N) ≡ √
N

J∑
j=−1

2j∨1∑
k=1

Wjk(i) β̂
(ε)
jk |ε=σ̂ /

√
N(4.4)

via (4.2), whereβ̂(ε)
jk are as in (2.10) and (2.11).

Now we report some simulation results to illustrate the performance of our
GEB estimators. Figure 1 plots four examples of regression functions in Donoho
and Johnstone (1994a). Normal errors are added to these functions, with signal-
to-noise ratio 7, and the resulting response variablesYi , as in (4.1), are plotted
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FIG. 1. Signals; clockwise from top left, Blocks, Bumps, HeaviSine, Doppler.

againstti = i/N in Figure 2, with sample sizeN = 2048. Figure 3 reports the GEB
estimates (4.4) based on the data in Figure 2, withj∗ = 6, ρ0 = 0.4, ηn = 0 and

FIG. 2. Signals + noise with N = 2048;signal-to-noise ratio is 7.
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FIG. 3. GEB estimate of signals using S8 wavelets; j∗ = 6, ρ0 = 0.4, η[j ] = 0, b0 = 2.

b0 = 2 in (2.10) and (2.11). Figure 4 reports the reconstructions of these regression
functions using SURESHRINK in S-plus [Donoho and Johnstone (1995)], also

FIG. 4. SURESHRINK reconstruction using S8 wavelets.
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based on the data in Figure 2. The GEB and SURESHRINK estimates look similar
in these examples.

4.2. Random design. Now consider (4.1) with i.i.d. uniformti in [0,1]. We
implement GEB methods with Haar basis and provide their optimality properties.

Let 1j,k(x) ≡ I {(k − 1)/2j < x ≤ k/2j }. The Haar wavelets areφj,k =√
2j (1j+1,2k−1 − 1j+1,2k), j ≥ 0, andφ−1,1 = 1, and the corresponding wavelet

coefficients are

βj,k ≡ βj,k(f ) ≡
∫ 1

0
f φj,k =

{
(f̄j+1,2k−1 − f̄j+1,2k)/2j/2+1, j ≥ 0,

f̄0,1, j = −1,
(4.5)

wheref̄j,k ≡ 2j
∫ 1
0 f 1j,k . Let Nj,k ≡∑i 1j,k(ti) and Ȳj,k ≡∑i Yi1j,k(ti)/Nj,k .

Define

yj,k ≡ δj,k(Ȳj+1,2k−1 − Ȳj+1,2k)√
N(1/Nj+1,2k−1 + 1/Nj+1,2k)1/2

, j ≥ 0, y−1,1 ≡ Ȳ0,1,(4.6)

whereδj,k ≡ I {Nj+1,2k−1Nj+1,2k > 0 or j = −1}. Conditionally on{ti}, yj,k are
naive estimates ofβj,k for δj,k = 1, standardized to have varianceε2 = σ 2/N ,
and yj,k ≡ 0 for δj,k = 0. In fact, conditionally on{ti}, yj,k are independent
N(β̃j,k, δj,kε

2) variables with

β̃j,k ≡ β̃j,k(f )

(4.7)

≡ δj,k(f̃j+1,2k−1 − f̃j+1,2k)√
N(1/Nj+1,2k−1 + 1/Nj+1,2k)1/2

, j ≥ 0, β̃−1,1 ≡ f̃0,1,

wheref̃j,k ≡∑i f (ti)1j,k(ti)/Nj,k . By the strong law of large numbers,β̃j,k →
βj,k asN → ∞.

The statistics{yj,k, δj,k} in (4.6) are sufficient. Since the data contains no
information aboutβj,k for δj,k = 0, we estimateβ[j ] ≡ {βj,k : δj,k = 1} by GEB
based ony[j ] ≡ {yj,k : δj,k = 1},

β̂j,k ≡ yj,kI {j < j∗} + δj,kεt̂[j ](yj,k/ε)I {j∗ ≤ j ≤ J },(4.8)

wheret̂[j ] is as in (2.8) withnj =∑k δj,k , ρ(n) andb(n) in (2.11) and

ϕ̂[j ](x) ≡
√

2 lognj

nj

2j∑
k=1

δj,kK

(
x − yj,k/ε

(2 lognj )−1/2

)
,

κ̂[j ] ≡ 1−
√

2

nj

2j∑
k=1

δj,ke
−(yj,k/ε)

2/2.

We estimatef by (1.7) via the Parseval identity (1.8).
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The following theorem asserts the exactly adaptive minimaxity and supereffi-
ciency of GEB estimators in Besov balls. Letf̄j (x) =∑j−1

�=−1
∑

k β�,k1�,k(x) be
the piecewise average off at resolution levelj . For Haar coefficients (4.5), the
Besov norm in (3.9) can be written as

‖β(f )‖α
p,q =

{
|f̄0,1|q +

∞∑
j=0

2jαq

(∫ 1

0
|f̄j − f̄j+1|p dx

)q/p
}1/q

.

THEOREM 4.1. Let ‖f ‖ ≡ (
∫ 1
0 f 2)1/2 and (α,p) satisfy α2/(α + 1/2) ≥

1/p − 1/2. Let Ef be the expectation in (4.1) under which ti are i.i.d. uniform
variables in (0,1). Let f̂ ≡ f̂N be as in (1.7) based on β̂ = {β̂j,k} in (4.8), with
the cut-off resolution levels J ≡ JN satisfying 1/ logN ≤ ηN ≡ 2J+1/N = O(1).
Then, for all function classes F = {f :‖β(f )‖α

p,q ≤ C}
sup
f ∈F

Ef ‖f̂N − f ‖2 = (1+ ζN) inf
f̃

sup
f ∈F

Ef ‖f̃ − f ‖2 ∼ N−2α/(2α+1)(4.9)

with ζN = o(1), provided that α2/(α + 1/2) > 1/p − 1/2 and ηN = o(1).
Moreover, if α2/(α + 1/2) > 1/p − 1/2 or η−1

N = O(1), then (4.9) holds with
ζN = O(1) and for all ‖β(f )‖α

p,p-compact classes F

sup
f ∈F

Ef ‖f̂N − f ‖2 = o(1)N−2α/(2α+1).(4.10)

For δj,k = 0, the N observations in (4.1) contain no information aboutβj,k

in (4.5). For 2j ≥ N , this happens for at least half ofβj,k . Thus, the minimax MISE
is at least of the order maxf ∈F

∑
j,k β2

j,k(f )I {2j ≥ N} ∼ N−2(α+1/2−1/p) in the

Besov classes in (4.9). It follows that the conditionα2/(α + 1/2) ≥ 1/p − 1/2,
that is,α + 1/2− 1/p ≥ α/(2α + 1), is necessary for (4.9). Theorems 4.1 and 9.1
are proved together at the end of the Appendix.

5. Related problems. Although the focus of this paper is on the white noise
model, our methods have much broader consequences in nonparametric problems
and their applications. In addition to the direct implementations in nonparametric
regression models in Section 4, the connections between the white noise model
and a number of experiments have been recently established in the form of global
asymptotic equivalence. This was done by Brown and Low (1996), Donoho and
Johnstone (1998) and Brown, Cai, Low and Zhang (2002) for nonparametric
regression, by Nussbaum (1996) for the nonparametric density problem and by
Grama and Nussbaum (1998) for nonparametric generalized linear models. The
impact of such equivalence results is that statistical procedures derived in the white
noise model, including those in this paper, can be translated into asymptotically
analogous procedures in all other asymptotically equivalent problems. Adaptive
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estimation in the white noise model (1.1) is also closely related to statistical model
selection [cf. Foster and George (1994) and Barron, Birgé and Massart (1999)] and
to information theory [cf. Foster, Stine and Wyner (2002)].

There has recently been a spate of papers on adaptive wavelet-based nonpara-
metric methods; see Donoho and Johnstone (1994a, 1995), Donoho, Johnstone,
Kerkyacharian and Picard (1995) and Juditsky (1997) on wavelet thresholding in
the white noise and nonparametric regression models, Johnstone, Kerkyacharian
and Picard (1992) and Donoho, Johnstone, Kerkyacharian and Picard (1996) on re-
lated methods in density estimation, Hall, Kerkyacharian and Picard (1998, 1999)
and Cai (1999) on block threshold estimators, Abramovich, Benjamini, Donoho
and Johnstone (2000) on thresholding based on the false discovery rate, and the
recent book of Härdle, Kerkyacharian, Picard and Tsybakov (1998). Adaptive ker-
nel methods were considered by Lepski, Mammen and Spokoiny (1997). These
estimators are either nearly adaptive minimax with an extra logarithmic factor in
maximum risk in Besov balls (3.9) or rate adaptive for restricted values ofα andp,
for example,α + 1/2 − 1/p > {(1/p − 1/2)+ + γ − 1/2}+ in the white noise
model, 0< γ < 1/2, andα ≥ 1/p and p ≥ 1 in nonparametric regression and
density problems. This naturally raised the question of the existence of fully rate
adaptive estimators for all Besov balls in (3.8), to which Theorem 3.4 provides a
positive sharper answer: adaptation to the minimax constants. Cai (2000) pointed
out that such sharp adaptation cannot be achieved by separable estimators. The
practical value of adaptation forα < 1/p andp < 1 is clearly seen from Example
3.1 and Theorem 4.1 and will be further discussed in Section 8. Spatially adaptive
methods were also considered by Breiman, Friedman, Olshen and Stone (1984)
and Friedman (1991). Johnstone and Silverman (1998, 2004, 2005) proposed a
parametric EB approach based on the posterior median for Gaussian errors with
respect to a prior as the mixture of the point mass at zero and a given symmetric
distribution (e.g., double exponential), with a modified MLE for the mixing prob-
ability. Their methods are rate adaptive minimax in all Besov balls and provide
stable threshold levels for sparse and dense signals.

Our strategy is to translate high- and infinite-dimensional estimation problems
into estimating a sequence of normal means and use block EB methods to
derive adaptive estimators. Within each block, one may use general [Robbins
(1951, 1956)], linear [Stein (1956), James and Stein (1961) and Efron and Morris
(1973)] or other restricted EB methods. From this point of view, the estimator
of Efromovich and Pinsker (1984) is block linear EB, while those of Donoho
and Johnstone (1995) are block threshold EB. In the wavelet setting, restricted
EB could yield exactly adaptive minimax estimators in Besov balls with a fixed
primary shape parameterp, if D0 ⊇ {t∗p,c : c > 0}, in view of the difference
between (3.1) and (3.16), wheret∗p,c is the minimax Bayes rule for the class of
priors {G :

∫ |θ |p dG(θ) ≤ cp}. But this is not practical, since the explicit form
of t∗p,c is intractable forp < 2. In particular, forp < 2 the Bayes rulest∗p,c
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are nonlinear analytic functions, so that linear and threshold estimators do not
achieve exact asymptotic minimaxity; see Donoho and Johnstone (1994a, 1998),
(3.15) and (7.1) at the resolution level 2j ∼ ε−1/(α+1/2). We further refer to Morris
(1983), Robbins (1983) and Berger (1985) for general discussion about EB and
Bayes methods.

Adaptive minimax estimation has a number of interpretations. Define

τ(ε; β̂,B) ≡ supβ∈B R(ε)(β̂, β)

R(ε)(B)
,

where R(ε)(B) is the minimax risk in (1.4). Given estimatorŝβ(ε) and a
collectionB of setsB in the parameter space, exactly adaptive minimaxity means
τ(ε; β̂(ε),B) → 1 as ε → 0+ for all B ∈ B, rate adaptive minimaxity means
τ(ε; β̂(ε),B) = O(1), and nearly adaptive minimaxity means thatτ(ε; β̂(ε),B)

is slowly varying in ε, and with obvious change of notationε ↔ σ/
√

n and
β ↔ f for nonparametric regression and density estimation problems. In the
wavelet setting, rate and nearly adaptive minimax estimators were derived in
Hall and Patil (1995, 1996) and Barron, Birgé and Massart (1999), and block
James–Stein estimators were recently investigated by Cavalier and Tsybakov
(2001, 2002), in addition to papers cited above. There is a vast literature in
nonparametric estimation methods, and asymptotic minimaxity and adaptivity
have been commonly used to judge the overall performance of estimators; see
comprehensive reviews in Stone (1994), Donoho, Johnstone, Kerkyacharian and
Picard (1995) and Barron, Birgé and Massart (1999), and recent books by
Efromovich (1999) and Hastie, Tibshirani and Friedman (2001).

6. Compound estimation of normal means. Let (Xk, θk), 1 ≤ k ≤ n,
be random vectors and letPθ(n)

be the conditional probability givenθ(n) ≡
(θ1, . . . , θn) underP . Write P = Pθ(n)

when θ(n) is deterministic. SupposeXk

are independentN(θk,1) variables under the conditional probabilityPθ(n)
. In this

section we consider the estimation ofθk under the compound squared error loss
n−1∑n

k=1(θ̂k − θk)
2, that is, the estimation of normal means within a single block

or resolution level based on (2.2) or (1.1), scaled to the unit variance.
Let X ∼ N(θ,1) underPθ . Define the Bayes risks for Borelt (·) and their

minimum by

R(t,G) ≡
∫

Eθ

(
t (X) − θ

)2
dG(θ), R∗(G) ≡ inf

t
R(t,G).(6.1)

As pointed out by Robbins (1951), the compound mean squared error for the use
of θ̂k = t (Xk) is R(t,Gn), whereGn is the mixture of the marginal distributions
of θ(n),

Gn(x) ≡ 1

n

n∑
k=1

P {θk ≤ x}.(6.2)
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We drive GEB estimators whose compound risk approximates the ideal Bayes
risk R∗(Gn). We measure the performance of this ideal approximation via oracle
inequalities of the form

1

n

n∑
k=1

E(θ̂k − θk)
2 − R∗(Gn) ≤ r(n,Gn),(6.3)

where r(n,G) are functionals ofn and univariate distributionsG only. The
definition ofr(n,G) may vary in different statements in the sequel, as long as (6.3)
holds under specified conditions.

The components of the vectorθ(n) are assumed to be independent in Theo-
rem 6.1 below. In all other theorems, conditions onθ(n) are imposed only through
the mixtureGn in (6.2), so thatθk are allowed to be stochastically dependent. The
independence assumption onθ(n) in Theorem 6.1 accommodates the two impor-
tant special cases of deterministic and i.i.d.{θk}. This allows us to apply Theo-
rem 6.1 conditionally onθ(n) wheneverr(n,G) in (6.3) is concave inG. Note that
if r(n,G) is concave inG, (6.3) follows from its conditional version givenθ(n),
sinceR∗(G) is always concave inG due to the linearity ofR(t,G) in G in (6.1).

6.1. GEB estimators. Zhang (1997) proposed the following GEB estimators:

θ̂k ≡ t̂n,ρ(Xk), k ≤ n, t̂n,ρ(x) ≡ x + ϕ̂′
n(x)

max(ϕ̂n(x), ρ)
,(6.4)

whereρ ≡ ρn → 0+, 1/n ≤ ρ < 1/
√

2π , andϕ̂n is the kernel estimator

ϕ̂n(x) ≡ 1

n

n∑
k=1

anK
(
an(x − Xk)

)= ∫ an

−an

e−ixu

2π

n∑
k=1

eiuXk

n
du(6.5)

with the kernelK(x) ≡ sin(x)/(πx). We use the specialan = √
2 logn throughout

the sequel, which provides the best bounds in this paper. We first describe an
improved version of the oracle inequality of Zhang (1997) and its immediate
consequences.

THEOREM 6.1. Suppose the components of θ(n) ≡ (θ1, . . . , θn) are inde-
pendent variables. Let θ̂k ≡ t̂n,ρ(Xk) be the GEB estimator in (6.4) with
ρ−1(logn)1/4/

√
n = o(1). Then (6.3)holds with

r(n,G) = �(ρ,G) + {1+ η(n,ρ)}�∗(n,ρ),(6.6)

where η(n,ρ) = o(1) depending on (n,ρ) only,

�(ρ,G) ≡
∫ ∞
−∞

{ϕ′
G/ϕG}2{1− ϕG/(ϕG ∨ ρ)}2ϕG dx(6.7)

with ϕG ≡ ϕ(x;G) in (2.5),Gn in (6.3) is as in (6.2),and

�∗(n,ρ) ≡ {√(2/3) logn +
√

− log(ρ2)
}2√

2 logn

πρn
.(6.8)
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REMARK. (i) The oracle inequality (6.6) was proved in Zhang [(1997),
Theorem 1] under the stronger conditionρ−1√(logn)/n = o(1). The weaker
condition is needed since (2.11) is used in this paper. (ii) By (6.7),R∗(G) +
�(ρ,G) ≤ 1, since

R∗(G) = 1−
∫ (

ϕ′
G

ϕG

)2

ϕG dx.(6.9)

The main consequences of Theorem 1 of Zhang (1997) and Theorem 6.1
above under weaker conditions onρn areasymptotic minimaxity andasymptotic
optimality. It is well known that the minimax mean squared error for compound
estimation of normal means is the common variance.

THEOREM 6.2. Let θ̂k ≡ t̂n,ρ(Xk) be as in (6.4) with ρ ≡ ρn → 0 and
(logn)1/4/(ρ

√
n ) → 0.

(i) Asymptotic minimaxity: For the �∗(n,ρ) in (6.8),

sup
θ(n)

1

n

n∑
k=1

Eθ(n)
(θ̂k − θk)

2 ≤ 1+ (1+ o(1)
)
�∗(n,ρn) → 1.

(ii) Asymptotic optimality: If Gn converges in distribution, then

1

n

n∑
k=1

E(θ̂k − θk)
2 − R∗(Gn) → 0,(6.10)

where R∗(G) and Gn are as in (6.1) and (6.2).Moreover, for mn = o(1/ρn) and
any stochastically bounded family G of distributions, (6.10) holds if for certain
0 ≤ wn,0 → 0 and distributions Hn,0, Gn(x) = ∑mn

j=0 wn,jHn,j (x − cn,j ) with
Hn,j ∈ G for j ≥ 1 and reals wn,j ≥ 0 and cn,j , that is, Gn are within o(1) mass
from mixtures of at most o(1/ρn) arbitrary translations of distributions in G. In
particular, (6.10)holds if

∫
|x−cn|>mn

dGn(x) → 0 for mn = o(1/ρn) and certain
constants cn.

REMARK. (i) Zhang [(1997), Proposition 2 and Corollary 3] pointed out that
(6.10) holds whenGn converges in distribution or whenGn are arbitrary discrete
distributions with no more thano(1/ρn) components. The weaker condition in
Theorem 6.2(ii) is equivalent toGn(An) → 1 for certain unionsAn of at most
mn = o(1/ρn) intervals of unit length. This demonstrates the extent of adaptivity
of GEB estimators when{θk} has many clusters.

(ii) The proof of Theorem 6.2(ii) utilizes the following inequality: for all
distributionsHj and weightswj > 0 with

∑m
j=0 wj = 1,

G =
m∑

j=0

wjHj �⇒ �(ρ,G) ≤
m∑

j=0

wj�(ρ/wj ,Hj ).(6.11)
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(iii) The locally uniform asymptotic optimality criterion in (6.10) is slightly
stronger than the usual one for fixedG = Gn in the EB setting.

6.2. Oracle inequalities based on tail-probabilities and moments. We shall
derive more explicit oracle inequalities in terms of the tail and moments ofGn.
Define

�G(x) ≡
∫
|u|>x

dG(u),

(6.12)

µp(G) ≡
(∫

|u|p dG(u)

)1/p

, 0< p < ∞.

LEMMA 6.1. Let x ≥ 0, 0< ρ < 1/
√

2π and ϕG be as in (2.5).Then

�(ρ,G) ≤
∫
ϕG≤ρ

(
ϕ′

G

ϕG

)
ϕG

(6.13)
≤ �G(x) + 2xρ max{L̃2(ρ),2} + 2ρ

√
L̃2(ρ) + 2,

where �(ρ,G) is as in (6.7) and L̃(ρ) ≡ √− log(2πρ2). Furthermore, for x =
L̃(ρ)/2,

�(ρ,G) ≤ �G(x) + �G2(x)
(
1− �G(x)

)+ 2ρ
√

L̃2(ρ) + 2.(6.14)

Lemma 6.1 is used in combination with Theorem 6.1 to produce more explicit
oracle inequalities in Theorems 6.3 and 6.4 below, with (6.13) for stochastically
largeGn and (6.14) for stochastically smallGn. For stochastically very smallGn

and− logρ2
n ≤ (1 + o(1)) logn, the leading term in the combination of (6.6) and

(6.14) is

�∗(n,ρn) + 2ρn

√
L̃(ρn) + 2≤ (1.724+ o(1)

) logn√
n

(
ρ∗

n

ρn

+ ρn

ρ∗
n

)
(6.15)

with equality for− logρ2
n = (1+o(1)) logn, whereρ∗

n ≡ 0.6094
√

2(logn)/n. The
choice ofρ ≈ ρ∗

n and the oracle inequalities below are not necessarily optimal,
since crude bounds are used at several places in the proofs. In principle, we
may use data-drivenρ via any methods of choosing tuning parameters, but this
is beyond the scope of this paper. In what follows, we denote byηn constants
depending onn only and satisfyingηn → 0.

THEOREM 6.3. Let θ̂k be as in (6.4)with ρ ≡ ρ(n) in (2.11).Then (6.3)holds
with

r(n,G) = inf
x

{
�G(x) + (1+ ηn)x

√
8ρ0

(logn)3/2
√

n

}
+ (1+ ηn)C0(ρ0)

logn√
n

(6.16)

≤ (1+ ηn)

[
Cp

(
ρ0µp(G)(logn)3/2

√
n/8

)p/(p+1)

+ C0(ρ0)
logn√

n

]
,
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where �G(x) and µp(G) are as in (6.12), Cp ≡ p1/(p+1) + p−p/(p+1) ≤ 2 and

C0(x) ≡ 1.724(0.6094/x + x/0.6094). Moreover, for xn ≡
√

− log(2πρ2
n)/2,

inequality (6.3)holds with

r(n,G) = (5/4)�G(xn) + (1+ ηn)C0(ρ0)(logn)/
√

n.(6.17)

Theorem 6.3 provides the asymptotic optimality of GEB estimators with
convergence rates{(logn)3/2/

√
n }−p/(p+1) in (6.10) for dependent{θk} with

boundedµp(Gn).

6.3. Stochastically very small distributions and threshold estimators. The risk
bounds in Theorems 6.1 and 6.3 are not very useful if an overwhelming majority
of θk are essentially zero, for example,µ2(Gn) ≤ 1/

√
n. For these stochastically

very small empirical distributionsGn, threshold estimators may outperform the
GEB estimators (6.4).

Soft threshold estimators are defined by

θ̂k ≡ sλ(Xk), sλ(x) ≡ sgn(x)(|x| − λ)+,(6.18)

where λ > 0 is a threshold level. Hard threshold estimators are defined by
functionshλ(x) ≡ xI {|x| > λ}. Hard and soft threshold estimators have similar
properties. We consider soft threshold estimators so that sharp oracle inequalities
in Lemma 6.2 below can be utilized.

The performance of (6.18) is commonly compared withκ(Gn) = E
∑n

k=1(θ
2
k ∧

1)/n given in (2.7). ForA ⊆ {1, . . . , n}, let tA be the estimator defined bŷθk =
XkI {k ∈ A}. Since the MSE ofXk is smaller than the MSE of̂θk = 0 iff |θk| > 1,
κ(Gn) = infA R(tA,Gn) whenθ(n) is deterministic. Thus,κ(Gn) is the ideal risk
for a different oracle expert, someone with the knowledge of the best choice ofA,
who always uses the besttA.

LEMMA 6.2. Let sλ ≡ sλ(x) be as in (6.18) and let the risk R(t,G) be as
in (6.1).Then Eθ(sλ(X) − θ)2 is increasing in |θ |, and

R(sλ,G) ≤
∫

min
{
u2 + 4

λ3ϕ(λ), λ2 + 1
}

dG(u).(6.19)

Consequently, for λ = √
2 logn and with µp(G), �G(x) and κ(G) as in (6.12)and

(2.7),p ≤ 2,

R(sλ,G) ≤ min
{

µ
p
p(G)

(2 logn + 1)p/2−1 , (2 logn)�G(1) + κ(G)

}
(6.20)

+
√

2

n(logn)3/2 .
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The inequalities in Lemma 6.2 are essentially the oracle inequality of Donoho
and Johnstone (1994a). The improvement with the extra factor(logn)−3/2 in the
second term on the right-hand side of (6.20) is needed when we apply it to all
high-resolution levelsj near the infinity in the sequence model (1.1). Lemma 6.2
impliesR(sλ,G) ≤ (λ2 + 1)κ(G)+ 4λ−3ϕ(λ), which is an oracle inequality since
it comparesR(sλ,G) with the ideal riskκ(G). For λ = √

2 logn, Foster and
George (1994) showed thatλ2 + 1 is the optimalrisk inflation factor from a model
selection point of view.

Since �G(x) ≤ κ(G) ≤ µ
p
p(G) for p ≤ 2 andx ≥ 1, the GEB oracle inequal-

ity (6.17) (with xn → ∞) can be directly compared with (6.20). The risk bound
for the threshold estimator is of larger order than the regret of the GEB estimator
if κ(Gn)

√
n/ logn → ∞.

6.4. Hybrid GEB methods. In the white noise model (1.1),
∑

j,k β2
jk < ∞, so

that the ideal riskκ(Gn) converges to zero asn = 2j → ∞. Thus, the performance
of the GEB estimator (6.4) could be enhanced if hybrid estimators are used, that
is, switching to the threshold estimator (6.18) for smallκ(Gn). By Zhang (1990),
�Gn(x) and thusκ(Gn) = ∫ 1

0
�Gn(u)du2 can be estimated only at logarithmic rates.

Our strategy is to construct hybrid estimators based on accurate estimates of the
order ofκ(Gn).

The order of magnitude ofκ(G) in (2.7) is the same as that of

κ̃(G) ≡ 1−
∫ √

2e−x2/2ϕ(x;G)dx = 1−
∫

exp(−u2/4) dG(u).(6.21)

In fact, since(1− 1/e)x ≤ 1− e−x ≤ x for 0≤ x ≤ 1,

e − 1

4e
κ(G) ≤ (1− 1/e)

∫ (
u2

4
∧ 1
)

dG(u)

(6.22)

≤ κ̃(G) ≤
∫ (

u2

4
∧ 1
)

dG(u) ≤ κ(G).

Thus, the order ofκ(Gn) can be estimated by

κ̂n ≡ 1− 1

n

n∑
k=1

√
2exp(−X2

k/2).(6.23)

This suggests the following hybrid estimators:

θ̂k ≡ t̃n(Xk), t̃n(x) ≡ t̂n,ρ,λ,b(x) ≡
{

t̂n,ρ(x), if κ̂n > b,

sλ(x), if κ̂n ≤ b,
(6.24)

where t̂n,ρ(·), sλ(·) and κ̂n are as in (6.4), (6.18) and (6.23), respectively. For
definiteness, we choose in (6.24)ρ ≡ ρ(n) and b ≡ b(n) in (2.11) andλ =√

2 logn, unless otherwise stated. This choice ofρn optimizes the order of risk
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bound (6.17). The choice ofλn matches the universal thresholding [Donoho
and Johnstone (1994a)] and provides the optimal risk inflation factor [Foster
and George (1994)]. The choicebn here ensures the use of (6.4) for large
κ(Gn)

√
n/ logn.

LEMMA 6.3. Suppose that {θk} are independent variables under the expecta-
tion E. Let t̂n ≡ t̂n,ρ,λ,b be the hybrid estimator in (6.24)with λ ≡ λn = √

2 logn.
Then

n∑
k=1

E(t̂n(Xk) − θk)
2

n

≤



n∑
k=1

E
(
t̂n,ρ(Xk) − θk

)2
/n + (2+ ηn)(logn)/n2, κ̃(Gn) ≥ b+

n ,

R(sλ,Gn) + (1+ ηn)(logn)2/(π2ρ2n3), κ̃(Gn) ≤ b−
n ,

n∑
k=1

E
(
t̂n,ρ(Xk) − θk

)2
/n + R(sλ,Gn), otherwise,

(6.25)

with ηn → 0 uniformly for all choices of ρ ≡ ρn and b ≡ bn, where t̂n,ρ , sλ and
κ̃(G) are as in (6.4), (6.18)and (6.21),respectively, b+

n ≡ bn + √
2(logn)/n, and

b−
n ≡ bn − √

3(logn)/n.

REMARK. Let (ρ, b) be as in (2.11) andλ = √
2 logn. By (6.17) and the

fact that�G(1) ≤ κ(G), (6.3) holds withr(n,G) = O(1)(logn)/
√

n for the GEB
estimator (6.4) whenb−

n < κ̃(Gn) < b+
n .

Theorem 6.4 below provides oracle inequalities for (6.24) in terms of the tail
of Gn in (6.2).

THEOREM 6.4. Let θ̂k = t̂n,ρ,λ,b(Xk) be the hybrid GEB estimator in (6.24)
with (ρ, b) in (2.11)and λ = √

2 logn. Then there exists a constant M < ∞ such
that (6.3)holds with

r(n,G) = M min
{
r0(n,G), rp∧2

(
n,µp(G)

)}
(6.26)

+ 1+ ηn

n(logn + 1)3/2 ∀p > 0, n,

where rp(n,C) and µp(G) are as in (3.3)and (6.12),and with �G as in (6.12),

r0(n,G) ≡ min
(

1,

∫ logn

0
�G(√u

)
du,

(6.27)
(logn)2

√
n

+ inf
x≥1

[
�G(x) + x

(logn)3/2
√

n

])
.
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REMARK. It follows from our proof (with slight modification) that if larger
λ = √

2(1+ A0) logn is used in (6.24) withA0 > 0, Theorem 6.4 holds with
(1 + ηn)/{n1+A0(logn)3/2} as the second term on the right-hand side of (6.26).
See the remark below Theorem 3.2.

Theorem 6.4 implies that the compound risk is approximatelyn−1(logn)−3/2

whenθk = 0 for all k. Proposition 6.1 facilitates applications of Theorem 6.4.

PROPOSITION6.1. Let r0(n,G) and rp(n,C) be as in (6.27)and (3.3). Let
w′ ∧ w′′ > 0.

(i) r0(n,G) is concave in G and r0(n,G) ≤ 3rp∧2(n,µp(G)) for all p > 0.
(ii) If �G ≤ w′�G′ + w′′�G′′ for two distributions G′ and G′′, then r0(n,G) ≤

r0(n;w′G′) + r0(n;w′′G′′).

6.5. Minimax risks in �p balls. Now we compare the minimax risk

Rn(�) ≡ inf
θ̂(n)

sup
θ(n)∈�

1

n

n∑
k=1

Eθ(n)
(θ̂k − θk)

2, � ⊂ R
n,(6.28)

in �p balls with the maximum of the Bayes riskR∗(G) (6.1) in Lp balls. Here
θ(n) ≡ (θ1, . . . , θn) are considered as deterministic vectors and the minimization is
taken over all estimatorŝθ(n) based onX(n). Our result is based on Proposition 6.2
below, which provides the continuity of the Bayes riskR∗(G) in G. Let
‖x(n)‖p,n ≡ (

∑n
k=1 |xk|p)1/p as in (3.9). The�p balls are defined as

�p,n(C) ≡ {θ(n) :n−1/p
∥∥θ(n)

∥∥
p,n ≤ C

}
,

while theLp balls are{G :µp(G) ≤ C} with theµp(G) in (6.12).

PROPOSITION6.2. Let R∗(G) be as in (6.1).For all distributions H1 and H2
in R ∣∣R∗((1− w)H1 + wH2

)− R∗(H1)
∣∣≤ w

{
1+
√

2 log
(√

2/w
) }2

.(6.29)

Furthermore, if there exist random variables θ̃k ∼ Gk with P {|θ̃1 − θ̃0| ≤ η2} ≥
1− η1 ≥ 0, then

|R∗(G1) − R∗(G0)| ≤ 2η1
{
1+
√

2 log
(√

2/η1
) }2 + √

8
{

1+ 1√
π

}
η2.(6.30)

PROPOSITION6.3. Let p′ ≡ p ∧ 2 and �(u) ≡ {u log2+(1/u)}1/3. Define

r∗
p(n,C) ≡

{
�
(
log+(C)/(np2)

)
, if C ≥ 1,

�
(
C2p′{

log+
(
1/Cp′)}2−p′

/(np2p′)
)
, if C < 1,

(6.31)
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and r∗∞(n,C) ≡ 0. Then there exists a universal constant M such that for all
0< p ≤ ∞

Rn

(
�p,n(C)

)≤ sup
µp(G)≤C

R∗(G) ≤ Rn

(
�p,n(C)

)+ Mr∗
p(n,C).(6.32)

REMARK. Let λ ≡ {2 log+(1/Cp′
)}1/2. By (6.19) of Lemma 6.2, uniformly

in p asCp′ → 0,

sup
µp(G)≤C

R∗(G) ≤ Cp′(
λ2−p′ + 1+ 4/λ3)

(6.33) = (1+ o(1)
)
Cp′ {2 log+

(
1/Cp′)}1−p′/2.

Thus, for smallCp′
, (6.32) is sharp only whenMr∗

p(n,C) is smaller than the right-

hand side of (6.33), that is, largeCp′
(np2p′)/{log(np2p′)}1+p′/2.

The minimax risk in�p balls and the maximum Bayes risk inLp balls have
been studied by Donoho and Johnstone (1994b), who proved

lim
C→0+

supµp(G)≤C R∗(G)

Cp∧2{−2 log(Cp∧2)}(1−(p∧2)/2)
= 1 ∀p > 0,

Rn

(
�p,n(C)

)≤ sup
µp(G)≤C

R∗(G)(6.34)

≤ b2 sup
µp(G)≤C/b

R∗(G) ∀p > 0, b ≥ 1,

and under the extra conditionCpn/(logn)p/2 → ∞ for p < 2, Rn(�p,n(C)) ≈
supµp(G)≤C R∗(G) asn → ∞. Proposition 6.3 is derived from Proposition 6.2,
(6.34) and Lemma A.3 in the Appendix.

6.6. Adaptive minimax estimation in �p balls. An immediate consequence
of Theorem 6.4 is the adaptive minimaxity of the GEB estimators in�p balls
�p,n(C), in view of the result of Donoho and Johnstone (1994b) on the
equivalence of the minimax risk in�p balls and the maximum Bayes risk inLp

balls.

THEOREM 6.5. Let Rn(�) be the minimax risk in (6.28) and θ̂(n) ≡
(θ̂1, . . . , θ̂n) be the hybrid GEB estimator in Theorem 6.4. If Cp

√
n/

(logn)1+(p∧2)/2 → ∞, then

sup
θ(n)∈�p,n(C)

1

n

n∑
k=1

E(θ̂k − θk)
2 = {1+ o(1)}Rn

(
�p,n(C)

)
.(6.35)

Moreover, if Cpn/(logn)(p∧2/2) → ∞, then (6.35) holds with the o(1) replaced
by O(1).
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7. Oracle and risk inequalities for block GEB estimators. We provide here
stronger versions of the theorems in Section 3. This is accomplished by inserting
the inequalities in Section 6 in individual blocks or resolution levels. Throughout
the section,E(ε)

β denotes the expectation of models (2.2) or (1.1) andβ is treated as
a deterministic sequence. Performance of GEB estimators in more general classes
of β will be considered in Section 8.

7.1. Oracle inequalities. Consider the general sequence (2.2). It follows from
(3.1) that

R(ε,∗)(β) = ε2
∑
j

nj min
t (·) R

(
t,G

(ε)
[j ]
)= ε2

∑
j

njR
∗(t,G(ε)

[j ]
)
,(7.1)

whereR(t,G) andR∗(G) are as in (6.1) andG(ε)
[j ] are as in (2.4). By (2.3) and (2.8)

R(ε)(β̂(ε), β
)=∑

j

∑
k∈[j ]

E
(ε)
β

(
β̂

(ε)
k − βk

)2
(7.2)

=∑
j

ε2
∑
k∈[j ]

E
(ε)
β

(
t̂[j ](Xk) − θk

)2
,

where (Xk, θk) ≡ (yk, βk)/ε. Since (2.8) is the implementation of (6.24) in
block j , application of Theorem 6.4 in individual blocks in (7.2) and (7.1) yields
Theorem 3.1 and the following theorem.

THEOREM 7.1. Let β̂(ε) and G
(ε)
[j ] be as in Theorem 3.1, let R(ε,∗)(β) be as

in (3.1)and let r0(n,G) be as in (6.27).Then there is a universal constant M < ∞
such that

R(ε)(β̂(ε), β
)− R(ε,∗)(β) ≤ Mε2

∑
j

{
nj r0

(
nj ,G

(ε)
[j ]
)+ 1

(lognj + 1)3/2

}
.(7.3)

7.2. Uniform ideal adaptation in Besov balls. In the wavelet setting (1.1),
nj = 2j , and‖β‖α

p,q ≤ C iff for certainCj ≥ 0 with (
∑

j C
q
j )1/q = C,

µp

(
G

(ε)
[j ]
)= ( 1

2j

2j∨1∑
k=1

∣∣∣∣βjk

ε

∣∣∣∣p
)1/p

≤ 2−j (α+1/2) Cj

ε
≤ 2−j (α+1/2) C

ε
∀ j,(7.4)

in view of (6.12), (2.4) and (3.9). Thus, the bound in Theorem 3.1 can be
explicitly computed to provide uniform convergence rates for the regret of the
GEB estimator (2.10).

We first define certain constants and bounded nonincreasing slowly varying
functions. Set

α1 ≡ 2α + 1/2− 1/p′, α2 ≡ min(α1, α + 1/2),(7.5)
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with p′ ≡ min(p,2), and

γ1 ≡ 2− 1/2+ 1/p′

α1 + 1/2
,

(7.6)

γ2 ≡
{

1+ 3/(2α + 2), if αp′ > 1,

3− (1/2+ 2/p′)/(α1 + 1/2), otherwise.

Let γ ≡ p′(α + 1/2) − 1 andp̃ ≡ 1/(1− p′/q)+ ∈ [1,∞]. Define

L(1)(ε) ≡ L(1)
α,p,q(ε) ≡ (1+ α)−γ1

[
c′
α,p,q +

(
log+(1/ε)

α + 1

)p′/2−1

c′′
α,p,q

]
(7.7)

with c′
α,p,q ≡ (1− 1/2p̃γ )−1/p̃ andc′′

α,p,q ≡ (1− 1/2p̃γ )−1/p̃−1+p′/2, and

L(2)(ε) ≡ L(2)
α,p(ε) ≡ (1+ α)−γ2 min

[
1,

(α + 1)/ log+(1/ε)

1− 2−|(α+1)p′/(p′+1)−1|
]
.(7.8)

THEOREM 7.2. Let R(ε,∗)(β) be the ideal risk in (1.3)and let R(ε)(β̂(ε), β) be
the risk (1.2) of the GEB estimator (2.10).Then there exists a universal constant
M < ∞ such that

sup
{
R(ε)(β̂(ε), β

)− R(ε,∗)(β) :β ∈ Bα
p,q(C)

}
(7.9)

≤ MC2

{
(ε/C)2 +

2∑
j=1

(ε/C)2αj /(αj+1/2) log
γj

+ (C/ε)L(j)(ε/C)

}
,

for all 0 < ε ≤ C and Besov balls Bα
p,q(C) ∈ BBesovin (3.8),where αj > α and γj

are as in (7.5) and (7.6),and L(j) are the bounded nonincreasing slowly varying
functions in (7.7)and (7.8).

REMARK. (i) Sinceα1 ≥ α2 > α, the right-hand side of (7.9) is of smaller
order thanε2α/(α+1/2). Thus, (3.10) and (7.9) imply Theorem 3.3.

(ii) The scale equivariance (2.12) and (2.13) of the GEB estimators (2.10) is
reflected in (7.9).

7.3. Minimax risks in Besov balls. Let R(ε)(B) andR(ε,∗)(β) be the minimax
and ideal risks in (1.4) and (3.1). It follows from Theorem 7.2 that for all Besov
ballsB ∈ BBesov

R(ε)(B) ≤ sup
β∈B

R(ε,∗)(β) + o(1)ε2α/(α+1/2) asε → 0+ .(7.10)

In this section, we provide an inequality which implies

lim
ε→0+

supβ∈Bα
p,q (C) R

(ε,∗)(β)

R(ε)(Bα
p,q(C))

= 1.(7.11)



GENERAL EB METHODS 81

Let ‖(x1, . . . , xn)‖p,n ≡ (
∑n

k=1 |xk|p)1/p for p > 0 and n ≥ 1 with usual
extensions forp ∨ n = ∞. Let Cj denote nonnegative constants. It follows from
(1.4) and (3.9) that

R(ε)(Bα
p,q(C)

)
≥ sup

‖{Cj }‖q,∞≤C

∞∑
j=−1

inf
β̂

sup

{ 2j∨1∑
k=1

E
(ε)
β (β̂jk − βjk)

2 :
‖β[j ]‖p,2j

2j/p
≤ Cj

2j (α+1/2)

}
,

so that by (6.28) with the scale changeθjk = βjk/ε

R(ε)(Bα
p,q(C)

)≥ ε2 sup
‖{Cj }‖q,∞≤C

∞∑
j=1

2jR2j

(
�p,2j

(
2−j (α+1/2)Cj/ε

))
.

Furthermore, it follows from (7.1) and (7.4) that

sup
β∈Bα

p,q (C)

R(ε,∗)(β)

= ε2 sup
‖{Cj }‖q,∞≤C

∞∑
j=1

2j sup
{
R∗(G(ε)

[j ]
)
:µp

(
G

(ε)
[j ]
)≤ 2−j (α+1/2)Cj/ε

}
.

The above facts and Proposition 6.3 imply

sup
β∈Bα

p,q(C)

R(ε,∗)(β) − R(ε)(Bα
p,q(C)

)
(7.12)

≤ ε2 sup
‖{Cj }‖q,∞≤C

∞∑
j=1

2jMr∗
p

(
2j ,2−j (α+1/2)Cj/ε

)
for ther∗

p(n,C) in (6.31), since supµp(G)≤C R∗(G) − Rn(�p,n(C)) ≤ Mr∗
p(n,C)

for all (n,C).
Theorem 7.3 below, which implies (7.11), is a consequence of (7.12). Define

α3 ≡ α + (α + 1/2)/2, γ3 ≡ 2/3,(7.13)

and forγ ≡ p′(α + 1/2) − 1 define bounded slowly varying functionsL(3)(ε) ≡
L

(3)
α,p(ε) by

L(3)(ε) ≡ log2/3
+ (ε−1/(α+1/2)p2p′)

(p2p′)1/3 log2/3
+ (1/ε)

×
[
(γ + 1)1/3 + (γ + 1)(2−p′)/3

(1− 2−γ )1+(2−p′)/3
(7.14)

+ log−2/3
+

(
ε−1/(α+1/2)p2p′) (γ + 1)(4−p′)/3

(1− 2−γ )1+(4−p′)/3

]
.
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THEOREM 7.3. Let R(ε)(B) and R(ε,∗)(β) be the minimax and ideal risks in
(1.4)and (1.3).Then (3.10)and (7.11)hold, and there exists a universal constant
M < ∞ such that

sup
β∈B

R(ε,∗)(β) ≤ R(ε)(B) + MC2(ε/C)2α3/(α3+1/2) log
γj

+ (C/ε)L(3)(ε/C)(7.15)

for all 0 < ε ≤ C and Besov balls B = Bα
p,q(C) ∈ BBesov in (3.8),where α3 > α

and γ3 are the constants in (7.13),and L(3) is the bounded nonincreasing slowly
varying function in (7.14).

REMARK. Forp ≤ q, Donoho and Johnstone (1998) proved (3.10) and (7.11)
using the minimax theorem for certain classes of randomβ.

7.4. Exactly adaptive minimaxity and superefficiency. The universal exactly
adaptive minimaxity and related inequalities in Theorem 7.4 below follow
immediately from Theorems 7.2 and 7.3, since the sum of the right-hand sides
of (7.9) and (7.15) is of smaller order than the rateε2α/(α+1/2) in (3.10), due to
αj > α, j = 1,2,3.

THEOREM 7.4. Let β̂(ε) be the GEB estimator in (2.3) or (2.10), and let
R(ε)(B) be the minimax risk in (1.4). Then there exists a universal constant
M < ∞ such that

R(ε)(Bα
p,q(C)

)
≤ sup

{
R(ε)(β̂(ε), β

)
:β ∈ Bα

p,q(C)
}

≤ R(ε)(Bα
p,q(C)

)
+ MC2

{
(ε/C)2 +

3∑
j=1

(ε/C)2αj /(αj+1/2) log
γj

+ (C/ε)L(j)(ε/C)

}
,

for all 0 < ε ≤ C and Besov balls Bα
p,q(C) ∈ BBesov in (3.8), where constants

αj > α and γj and bounded functions L(j) are as in Theorems 7.1and 7.2.

REMARK. Sinceαj > α, Theorem 7.4 and (3.10) imply Theorem 3.4.

Now we consider the superefficiency of the GEB estimators. LetB be a compact
set under the Besov norm‖ · ‖α

p,q (3.9) withq < ∞. Let �J be the projections up
to resolution levelsJ , (�J β)jk ≡ βjkI{j≤J }. Since‖β − �J β‖α

p,q → 0 for every
β ∈ B andB is compact,

c∗
J (B) ≡ sup{‖β − �J β‖α

p,q :β ∈ B} → 0 asJ → ∞.(7.16)
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The superefficiency follows, since the risk for the estimation of�J β by the GEB
estimator is at mostO(1)2J ε2 and{β − �J β :β ∈ B} ⊆ Bα

p,q(c
∗
J (B)). Formally,

by (7.1) withnj = 2j ,

R(ε,∗)(β) ≤ ε22J+1 + ε2
∞∑

j=J+1

2j∑
k=1

2jR∗(G(ε)
[j ]
)≤ ε22J+1 + sup

‖β‖α
p,q≤c∗

J (B)

R(ε,∗)(β)

for all β ∈ B. SincecJ (B) → 0, the right-hand side above iso(ε2α/(α+1/2)) as
ε → 0+ and thenJ → ∞, by (7.11) and (3.10) in Theorem 7.3. This and (7.9)
imply (3.12) and complete the proof of Theorem 3.5.

8. Bayes and more general classes. The results in Sections 3 and 7 can
be extended in several directions, for example, Bayes models, more general
deterministic and stochasticβ and blocks with sizesnj �= 2j . The extension
to stochasticβ is relatively straightforward, since the key oracle inequalities in
Theorems 3.1 and 7.1 are valid under integration overβ, for example,

ER(ε)(β̂(ε), β
)− ER(ε,∗)(β)

(8.1)
≤ Mε2

∑
j

{
nj r0

(
nj ,EG

(ε)
[j ]
)+ 1

(lognj + 1)3/2

}
,

due to the concavity ofr0(n,G) in G. We consider here certain general classes of
Bayes models including wavelet coefficients in Besov balls and of functions with
a large number of discontinuities.

Let β be a random sequence and letE be the certain expectation under which
E

(ε)
β of model (1.1) is the conditional expectation givenβ. Let �µp(β) be the

sequence{(E|βjk|p)1/p} of the marginalLp norms ofβ. Let β[j ] ≡ {βjk, k ≤
1∨ 2j } andκ(X1, . . . ,Xn) ≡ n−1∑n

k=1 E(X2
k ∧ 1). Consider

B(ε) ≡
{
β = β ′ + β ′′ : �µp(β ′) ∈ Bα

p,q(C), κ
(
β ′′[j ]/ε

)≤ m(ε)

2j

[
1∧ M(ε)

ε22j

]}
,(8.2)

where m(ε) and M(ε) are constants. LetFd,m(C) be the class of piecewise
polynomialsf of degreed with no more thanm pieces and‖f ‖∞ ≤ C. A
deterministicβ = β ′ + β ′′ belongs toB(ε) if β ′ ∈ Bα

p,q(C) andβ ′′
jk = ∫ φjkf are

the wavelet coefficients off ∈ Fd,cm(ε)(cM(ε)) as in Example 3.1, for certain fixed
smallc > 0.

THEOREM 8.1. Suppose (logε)2m(ε) = o(1)ε−1/(α+1/2) and log+(M(ε)) =
O(| logε|). Then (2.10) is uniformly adaptive to the ideal risk R(ε,∗)(β) in (1.3)
over classes (8.2)of random β,

sup
{
ER(ε)(β̂(ε), β

)− ER(ε,∗)(β) :β ∈ B(ε)}= o
(
ε2α/(α+1/2)).(8.3)
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Moreover, the GEB estimators are exactly adaptive minimax,

sup
β∈B(ε)

ER(ε)(β̂(ε), β
)= (1+ o(1)

)
R(ε)(B(ε))= (1+ o(1)

)
R(ε)(Bα

p,q(C)
)
,(8.4)

where R(ε)(B) is the minimax �2 risk for the estimation of a random β in B.

REMARK. (i) Although B(ε) in (8.2) is much larger than the Besov class
Bα

p,q(C), the minimax risks for the two classes are within an infinitesimal fraction
of each other.

(ii) The condition onm(ε) in Theorem 8.1 is the weakest possible up to a factor
of (logε)2, sincem(ε) = o(1)ε−1/(α+1/2) is a necessary condition.

(iii) Deterministic versions of the classes (8.2) were considered in Hall,
Kerkyacharian and Picard (1998) in the context of density estimation.

9. Equivalence between the white noise model and nonparametric regres-
sion. In this section we establish the asymptotic equivalence between the prob-
lems of estimatingf in the nonparametric regression model (4.1) andβ in the
white noise model (1.1) in Besov classes whenβ ≡ β(f ) are the Haar coefficients
of f . The asymptotic equivalence is used to prove the adaptive minimaxity of the
GEB estimators in Theorem 4.1. We assume throughout the section that the design
variablesti in (4.1) are independent uniformly distributed in(0,1).

THEOREM 9.1. Let Ef be as in Theorem 4.1 with i.i.d. uniform ti . Let β(f )

and β̃(f ) be as in (4.5) and (4.7),respectively, and let �J :βj,k → βj,kI {j ≤ J }
be the projections as in (7.16).

(i) There exist finite constants Mα,p such that

Ef {‖�J β̃(f ) − �J β(f )‖α
p′,p′ }p′ ≤ Mα,p′(2J /N)p

′/2{‖β(f )‖α
p,q}p

′
,(9.1)

where p′ = p ∧ 2, and

Ef ‖�J β̃ − β‖2
2

(9.2)

≤ Mα,p′(‖β‖α
p,q)

2
{

J

N
I {αp′ = 1} + 1

N
+ 2J /N + 1

22J (α+1/2−1/p′)

}
.

(ii) Let ε = σ/
√

N and N → ∞. For F ≡ {f :β(f ) ∈ Bα
p,q(C)} and estimates

f̂N based on (4.1),

inf
f̂N

sup
f ∈F

Ef ‖f̂N − f ‖2 = (1+ o(1)
)
R(ε)(Bα

p,q(C)
)

(9.3)

for α2/(α + 1/2) > 1/p′ − 1/2, where ‖f ‖ ≡ (
∫ 1
0 f 2)1/2.
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Theorem 9.1(i) provides upper bounds for the difference between the wavelet
coefficientsβj,k = ∫ f φjk and the corresponding coefficientsβ̃j,k for the random
discrete Haar system in (4.7). Deterministic discrete wavelet systems were
considered in Donoho and Johnstone (1998) based on Dubuc (1986). Forα > 1/p

andp ∨ q ≥ 1 or α = p = q = 1, Donoho and Johnstone (1998) established (9.3)
for deterministic discrete wavelet systems.

APPENDIX

We shall denote byM generic finite universal constants which may take
different values from one appearance to the next, that is,M ≡ O(1) uniformly.

PROOF OFTHEOREM 3.2. Consider smallε > 0. Letη > 0 and

r̃p(n,C) ≡ min
[
1,Cp,

(
C/

√
n
)p/(p+1)]

= min
[
1,Cp,max

{
n−1/2,

(
C/

√
n
)p/(p+1)}]

.

It follows from Theorem 3.1 and part three of (3.4) that the regret (3.6) is bounded
by

sup
‖β‖≤C

r(ε)(β̂(ε), β
)≤ O(ε2) + o(ε2−η)

∑
j

nj r̃p′
(
nj , (εn

s
j )

−1), p′ ≡ p ∧ 2.

We compute the above bound by splitting the sum into three pieces fornj ∈
[xk, xk+1), k = 0,1,2, wherex0 = 1, x1 = ε−1/(s+1/2), x2 = ε−2/(2s−1/p′) and
x3 = ∞. This yields by (3.4)∑

j

nj r̃p′
(
nj , (εn

s
j )

−1)
≤ ∑

j<x1

nj + ∑
x1≤nj<x2

nj (εn
s+1/2
j )−p′/(p′+1) + ∑

x2≤nj

nj (εn
s
j )

−p′

≤ o(ε−η)
{
x1 + x1 + x2(εx

s
2)

−p′}= o(ε−η−v),

wherev = max
{
1/(s + 1/2),1/(2s − 1/p′)} = 1/(α0 + 1/2). Thus the regret is

uniformly bounded byo(1)ε2−v−2η. This completes the proof, sinceη is arbitrary
and 2− v = 2α0/(α0 + 1/2). �

LEMMA A.1. Let h(m)(x) = (d/dx)mh(x). Let ϕ̂n be given by (6.5) with
a ≡ an ≥ √

2 logn. For p ≥ 2, there exist universal constants Mp < ∞ such that∫
E
∣∣ϕ̂(m)

n (x) − ϕ
(m)
G (x)

∣∣p dx ≤ Mp

amp+p/2

np/2

{
1+
(

a√
n

)p/2−1}
.
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PROOF. Let Mp denote any positive universal constant. We shall omit the
calculation involving the biasbn(x) ≡ Eϕ̂n(x) − ϕGn(x), since it is of smaller
order in the sense that∥∥b(m)

n (x)
∥∥∞ ≤ 1

π

∫ ∞
a

ume−u2/2 du ≤ O(1)
am−1

n

by (6.5) and the Fourier inversion formula, and by the Plancherel identity∫ ∣∣b(m)
n (x)

∣∣2 dx = 1

π

∫ ∞
a

u2me−u2
du ≤ O(1)

a2m−1

n2 .

Let Wk(x) ≡ am+1K(m)(a(x − Xk)) and hp(x) ≡ ∑n
k=1 E|Wk(x)|p/n. Since

ϕ̂
(m)
n (x) is the average ofWk(x) and {Wk(x), k ≤ n} are independent given{θk,

k ≤ n},
E
∣∣ϕ̂(m)

n (x) − Eϕ̂(m)
n (x)

∣∣p ≤ Mp

np
h

p/2
2 (x) + Mp

np
hp(x).

This implies the conclusion, since‖hp(x)‖∞ + ∫ hp(x) dx = O(amp+p−1) via

hp(x) =
∫ ∣∣am+1K(m)(a(x − u)

)∣∣pϕGn(u) du

= amp+p−1
∫ ∣∣K(m)(u)

∣∣pϕGn(x − u/a)du. �

PROOF OFTHEOREM 6.1. The difference between the proof here and that of
Zhang (1997) is the use of the improved bounds in Lemma A.1. We shall only
describe the differences and refer to Zhang (1997) for the rest. Leta ≡ an =√

2 logn.
The conditionρ−1a/

√
n = o(1) of Lemma 1 of Zhang (1997) can be weakened

to ρ−1√a/n = o(1), since by Theorem 2 of Zhang (1997) and Lemma A.1

E

∫ {
ϕ̂(m)

n (x) − ϕ
(m)
G (x)

}2max(ϕGn(x), ρ)

max(ϕ̂n(x), ρ)
dx

≤ E

∫ {
ϕ̂(m)

n (x) − ϕ
(m)
G (x)

}2{1+ ∣∣ϕ̂n(x) − ϕGn(x)
∣∣/ρ}dx

≤ E
∥∥ϕ̂(m)

n − ϕ
(m)
G

∥∥2
2 + ρ−1

√
E
∥∥ϕ̂(m)

n − ϕ
(m)
G

∥∥4
4E
∥∥ϕ̂n − ϕGn

∥∥2
2

≤ (1+ o(1))a2m+1

(2m + 1)πn
+ Ma2m+3/2

ρn3/2 .

The assumptionρ−1a/
√

n is used in the proof of Theorem 3 of Zhang (1997)
only for the application of Lemma 1 there. The assumptiona = O(

√
logn ) is

actually not used in the proof of Theorem 3 of Zhang (1997). Hence, Theorem 3
of Zhang (1997) holds under weaker conditionsa ≥ √

logn andρ−1√a/n = o(1).
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The proof in Section 5 of Zhang (1997) is based on Theorem 3 of Zhang (1997)
and the additional conditionsa ≥ √

2 logn and �∗(n,ρ) = O(1) only, since
a3/2/(ρn) = o(1)a3/(ρn). �

PROOF OF THEOREM 6.2. Part (i) follows directly from Remark 2 below
Theorem 6.1 and the fact that�∗(n,ρn) → 0 in Theorem 6.1. For part (ii), we
shall first prove (6.11). Letϕj (·) ≡ ϕ(·;Hj) andϕG ≡ ϕ(·;G) be as in (2.5) and
w̃j ≡ wjϕj/ϕG. Since

∑
j w̃j = 1, by Cauchy–Schwarz

(
ϕ′

G

ϕG

)2

ϕG =
(

m∑
j=0

w̃j

ϕ′
j

ϕj

)2

ϕG ≤
m∑

j=0

w̃j

(ϕ′
j

ϕj

)2

ϕG =
m∑

j=0

wj

(ϕ′
j

ϕj

)2

ϕj .

This and (6.7) imply (6.11), since 1− ϕG/(ϕG ∨ ρ) is decreasing inϕG and
ϕG ≥ wjϕj . Let A be a union ofm disjoint intervals Ij of length ≤ 1.
A distribution G can be written asG =∑m

j=0 wjHj , wherew0 = G(Ac), wj ≡
G(Ij ) and Hj are the conditional distributions givenθ ∈ Ij under G. Define
η(ρ) ≡ sup{�(ρ,H) :H([0,1]) = 1}. Since�(ρ,Hj ) ≤ 1, (6.11) implies

�(ρ,G) ≤ G(Ac) +
m∑

j=1

wjI{ρ/wj≥1/M} + η(1/M)

(A.1) ≤ G(Ac) + Mmρ + η(1/M).

It follows from Proposition 2 of Zhang (1997) thatη(ρ) → 0 asρ → 0.
Now, let An ≡ ⋃mn

j=1[cn,j − M,cn,j + M]. The condition of part (ii) implies
Gn(A

c
n) ≤ wn,0 + sup{H([−M,M]c) :H ∈ G} → 0 for large n and M . Thus,

we may assumeGn(A
c
n) → 0 for certainAn = ⋃mn

j=1 In,j with disjoint intervals

{In,j , j ≤ mn} of at most unit length and (possibly different)mn = o(1/ρn). Under
this assumption and conditionally onθ(n), Theorem 6.1 and (A.1) imply

1

n

n∑
k=1

E(θ̂k − θk)
2 ≤ ER∗(G(n)) + EG(n)(A

c
n) + Mmnρn + η(1/M) + o(1)

≤ ER∗(Gn) + o(1)

with G(n)(x) ≡ n−1∑n
k=1 I {θk ≤ x}, as n → ∞ and thenM → ∞, since

ER∗(G(n)) ≤ R∗(EG(n)) = R∗(Gn) due to the concavity ofR∗(G) in G and
EG(n)(A

c
n) = Gn(A

c
n) → 0. �

PROOF OF LEMMA 6.1. Letx be fixed. LetH1 andH2 be the conditional
distributions given|θ | > x and |θ | ≤ x, respectively, underG. Let w1 ≡ �G(x),
w2 ≡ 1 − w1 andϕj (·) ≡ ϕ(·;Hj) be as in (2.5). SinceH2([−x, x]) = 1, by the
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unimodality ofϕ, ϕ2 is monotone in both(−∞,−x) and(x,∞). By Lemma 2 of
Zhang (1997),|ϕ′

2/ϕ2| ≤ L̃(ϕ2). This and the monotonicity ofϕ2 imply

∫ ∞
x

I{ϕ2<ρ/w2}
(

ϕ′
2

ϕ2

)2

ϕ2 ≤
∫ ∞
x

I{ϕ2<ρ/w2}L̃(ϕ2)|dϕ2|

≤
∫ ρ/w2

0
L̃(u) du ≤ 1

w2

∫ ρ

0
L̃(u) du

and a similar inequality for
∫−x
−∞. These and Cauchy–Schwarz imply

w2

2

∫
|u|>x

I{ϕ2<ρ/w2}
(

ϕ′
2

ϕ2

)2

ϕ2 du ≤
∫ ρ

0
L̃(u) du ≤

(
ρ

∫ ρ

0
L̃2(u) du

)1/2

(A.2)
= ρ
√

L̃2(ρ) + 2.

For (6.13), we find again by Lemma 2 of Zhang (1997) that

w2

∫
|u|≤x

I{ϕ2<ρ/w2}
(

ϕ′
2

ϕ2

)2

ϕ2 du ≤ w2

∫
|u|≤x

I{ϕ2<ρ/w2}L̃2(ϕ2)ϕ2 du

≤ 2x max{L̃2(ρ),2}ρ
due to the monotonicity ofumax{L̃2(u),2} andL̃2(u). Thus, (6.13) holds, since
by (6.11)

�(ρ,G) ≤ w1 + w2�(ρ/w2,H2) ≤ w1 + w2

∫
ϕ2≤ρ/w2

(
ϕ′

2

ϕ2

)2

ϕ2.

For (6.14),{1 − ϕ2/(ϕ2 ∨ (ρ/w2))} ≤ {1 − ρ/(ρ ∨ (ρ/w2))} = w1 for |u| ≤ x,
sinceϕ2(u) ≥ ϕ(2x) = ρ. Thus, (6.14) follows from (A.2) and

w2

∫
|u|≤x

(
ϕ′

2

ϕ2

)2

ϕ2

(
1− ϕ2

ϕ2 ∨ (ρ/w2)

)2

≤ w2
1w2. �

PROOF OF THEOREM 6.3. Since the right-hand sides of (6.16) and (6.17)
are both concave inG, it suffices to apply Theorem 6.1 conditionally onθ(n). By
(6.8) and simple calculation, (6.15) holds, so that (6.17) follows from Theorem 6.1
and (6.14). For (6.16) we use the Markov inequality�G(x) ≤ µ

p
p(G)/xp in (6.13)

and then minimizeµp
p(G)/xp + 2xρn(1+ o(1)) logn overx > 0. �

PROOF OFLEMMA 6.2. By (6.1) it suffices to verify (6.19) for degenerateG.
Let X ∼ N(µ,1) under Pµ. Let h(x) ≡ sλ(x) − x = min(λ,max(−λ,−x)).
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For θ1 = µ,

R(sλ,G1) = Rs(µ;λ) ≡ Eµ{h(X) + X − µ}2 = E0{h(X + µ) + X}2.

Differentiating twice the right-hand side above with respect toµ, we find(
∂

∂µ

)2

Rs(µ;λ) = 2
[∫ λ−µ

−λ−µ
ϕ(u)du + µϕ(λ + µ) − µϕ(λ − µ)

]
≤ 2

for all positiveµ andλ. SinceRs(µ;λ) is an even function,Rs(µ;λ) ≤ Rs(0;λ)+
µ2. This implies the first component of (6.19) due to

Rs(0;λ) = 2
∫ ∞
λ

(u − λ)2ϕ(u)du

= 2ϕ(λ)

∫ ∞
0

u2e−λu−u2/2 du ≤ 2λ−3ϕ(λ)

∫ ∞
0

u2e−u du.

The second component of (6.19) follows from the monotonicity ofRs(µ;λ) in |µ|,
proved below, as limµ→∞ Rs(µ;λ) = λ2 +1. By Stein’s formula of mean-squared
error,

Rs(µ;λ) = Eµ{h2(X) + 1+ 2h′(X)}

=
∫ λ

0
Pµ{|X| > u}du2 + 2Pµ{|X| > λ} − 1.

The monotonicity ofRs(µ;λ) then follows from that ofPµ{|X| > u} in |µ|.
Inequality (6.20) is a direct consequence of (6.19).�

LEMMA A.2. Let Uk be independent random variables with P {0 ≤ Uk ≤ 1} =
1. Set µn ≡ n−1∑n

k=1 EUk . For all 0< µn < u < 1,

P

{
n−1

n∑
k=1

Uk > u

}
≤ exp[−nK(u,µn)] ≤ exp[−2n(u − µn)

2],(A.3)

where K(p1,p2) is the Kullback–Leibler information for Bernoulli variables,
defined by

K(p1,p2) ≡ p1 log
(

p1

p2

)
+ (1− p1) log

(
1− p1

1− p2

)

=
∫ p1−p2

0

p1 − p2 − u

(p2 + u)(1− p2 − u)
du.

PROOF. Let pk ≡ EUk andδk be Bernoulli variables withEδk = pk . Since
EUm

k ≤ pk = Eδm
k for all integerm ≥ 0 and log(1+ pk(e

λ − 1)) is concave inpk ,
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for λ ≥ 0,

E exp

(
λ

n∑
k=1

Uk

)
≤

n∏
k=1

Eeλδk =
n∏

k=1

(
1+ pk(e

λ − 1)
)≤ (1+ µn(e

λ − 1)
)n

.

The first inequality of (A.3) follows fromP {∑k Uk > nu} ≤ e−λnu(1 + µn(e
λ −

1))n with λ = log[{u(1 − µn)}/{µn(1 − u)}]. The second one follows from the
integral formula of the Kullback–Leibler information and the bound(p2 + u)(1−
p2 − u) ≤ 1/4. �

PROOF OF LEMMA 6.3. By (6.21) and (6.23),Eκ̂n = κ̃(Gn), so that by
Lemma A.2,

P
{±(κ̂n − κ̃(Gn)

)
> u
}≤ exp(−nu2) ∀u > 0,(A.4)

with Uk (or 1 − Uk) being exp(−X2
k/2). Sinceδn ≡ I {κ̂n ≤ bn} are Bernoulli

variables,

1

n

n∑
k=1

E
(
t̂n(Xk) − θk

)2
(A.5)

= 1

n

n∑
k=1

E
(
t̂n,ρ(Xk) − θk

)2
(1− δn) + 1

n

n∑
k=1

E
(
sλ(Xk) − θk

)2
δn.

Thus, it suffices to consider the first two cases of (6.25).
Supposẽκ(Gn) > b+

n ≡ bn + √
2(logn)/n. By (A.4)

P {δn = 1} ≤ P
{
κ̂n − κ̃(Gn) ≤ −√

2(logn)/n
}≤ exp(−2 logn) = n−2,

so that by (6.18), withχ2
n ≡∑n

k=1(Xk − θk)
2 andλ = √

2 logn,

Eδn

n∑
k=1

(
sλ(Xk) − θk

)2
/n ≤ Eδn

(√
χ2

n/n + λ
)2

≤
∫ ∞
u2,n

(√
u/n + λ

)2
pn(u)du,

where pn(u) ≡ (u/2)n/2−1e−u/2/{2�(n/2)} is the density ofχ2
n and P {χ2

n >

uj,n} = 1/nj . By standard large deviation theory,uj,n = n + (2 + o(1)) ×√
jn logn for eachj . Integration by parts yields

∫∞
u2,n

(u/n)pn(u)du ≤ (uj,n/n +
1)
∫∞
u2,n

pn(u) du = (2+ o(1))/nj . Thus,

Eδn

n∑
k=1

(
sλ(Xk) − θk

)2
/n ≤ n−2(λ + O(1)

)2 = (2+ o(1)
)
(logn)/n2.
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Now consider the casẽκ(Gn) ≤ b−
n ≡ bn − √

3(logn)/n. By Lemma A.2

P {δn = 0} ≤ P
{
κ̂n − κ̃(Gn) ≥ √

3(logn)/n
}≤ n−3.

By (6.5) and (2.11) andan = √
2 logn, |t̂n,ρ(Xk) − Xk| ≤ a2

n/(2πρ) = (logn)/

(πρ), so that

E(1− δn)

n∑
k=1

(
t̂n,ρ(Xk) − θk

)2
/n

≤
∫ ∞
u3,n

(√
u/n + (logn)/(πρ)

)2
pn(u)du

= n−3((logn)/(πρ) + O(1)
)2

. �

PROOF OFPROPOSITION6.1. Part (i) follows from the proof of Theorem 6.3.
For part (ii) we have∫ logn

0
w′�G′(√u

)
du + inf

x≥1

[
w′′�G′′(x) + x

(logn)3/2
√

n

]

≥ inf
x≥1

[
�G(x) + x

(logn)3/2
√

n

]
, n > 2. �

PROOF OF THEOREM 6.4. By Proposition 6.1(i) it suffices to consider
r0(n,G) in the minimum in (6.26) and independent{θk}. By Lemma 6.3 it suffices
to boundR(sλ,Gn) for κ̃(Gn) < b+

n and
∑n

k=1 E(t̂n,ρ(Xk)− θk)
2/n−R∗(Gn) for

κ̃(Gn) > b−
n . In fact, by Lemma 6.2 we need

R(sλ,Gn) ≤ M
(logn)2

√
n

, κ̃(Gn) < b+
n ,(A.6)

and by Theorems 6.2(i) and 6.3 and the fact thatκ(G) = ∫ 1
0

�G(
√

u )du we need

1

n

n∑
k=1

E
(
t̂n,ρ(Xk) − θk

)2 − R∗(Gn) ≤ Mκ(Gn), κ̃(Gn) > b−
n .(A.7)

By (6.22) and the second part of (6.20),κ̃(Gn) < b+
n = (2 + o(1))(logn)/

√
n

implies

R(sλ,Gn) ≤ (2 logn + 1)κ(Gn) + 1

n
≤ M

(logn)2
√

n
,

so that (A.6) holds. By (6.12) and (2.7)�Gn(1) ≤ κ(Gn), so that

1

n

n∑
k=1

E
(
t̂n,ρ(Xk) − θk

)2 − R∗(Gn) ≤ 5

4
κ(Gn) + O(1)b−

n
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by (6.17) and the fact thatb−
n ∼ (logn)/

√
n. This implies (A.7), sincẽκ(Gn) ≤

κ(Gn) by (6.22). �

PROOF OFPROPOSITION6.2. Letϕk ≡ ϕ(·;Hk), k = 1,2,ϕG ≡ (1−w)ϕ1+
wϕ2, andG ≡ (1− w)H1 + wH2. By (6.9) and algebra

R∗(G) − R∗(H1)

=
∫ (

ϕ′
1

ϕ1

)2

ϕ1 −
∫ ( 2∑

k=1

w̃k

ϕ′
k

ϕk

)2

ϕG

= w

∫ (
ϕ′

1

ϕ1

)2

ϕ1 +
∫ (

ϕ′
1

ϕ1

)2

w̃1w̃2ϕG

− 2
∫ (

ϕ′
1

ϕ1

)(
ϕ′

2

ϕ2

)
w̃1w̃2ϕG −

∫ (
ϕ′

2

ϕ2

)2

w̃2
2ϕG,

where w̃1 ≡ (1 − w)ϕ1/ϕG ∈ [0,1] and w̃2 ≡ 1 − w̃1 = wϕ2/ϕG. Set q =
log(

√
2/w). Forq ≤ 1 the right-hand side of (6.29) is greater than supG R∗(G) = 1.

Assumeq > 1. By Hölder∫ (
ϕ′

k

ϕk

)2

w̃kw̃2ϕG ≤
[∫ (

ϕ′
k

ϕk

)2q

w̃kϕG

]1/q[∫
w̃2ϕG

]1−1/q

≤ (E|Z|2q)1/qw1−1/q

with Z ∼ N(0,1), sinceϕ′
k/ϕk is the conditional expectation ofZ given a random

variable with densityϕk . Similarly, due to
∫
(ϕ′

k/ϕk)
2ϕk ≤ 1,∫ (

ϕ′
1

ϕ1

)(
ϕ′

2

ϕ2

)
w̃1w̃2ϕG ≤

[∫ (
ϕ′

1

ϕ1

)2

w̃1w̃2ϕG

∫ (
ϕ′

2

ϕ2

)2

wϕ2

]1/2

≤ (E|Z|2q)1/(2q)w1−1/(2q).

Thus,|R∗(G) − R∗(H1)| ≤ w(1+ w−1/(2q)‖Z‖2q)2. Let h0(q) ≡ �(q + 1/2)eq/

qq . Sinceh0(q) ≤ h0(q +1) → √
2π , ‖Z‖2q

2q = �(q +1/2)2q/
√

π ≤ √
2(2q/e)q .

These two inequalities imply

|R∗(G) − R∗(H1)| ≤ w
{
1+ (√2/w

)1/(2q)
√

2q/e
}2

= w
{
1+
√

2 log
(√

2/w
) }2

.

Now we prove (6.30). LetU ≡ θ̃1 − θ̃0 andHt be the conditional distribution
of θ̃t ≡ (1 − t)θ̃0 + t θ̃1 given |U | ≤ η2. For k = 0,1, Gk are mixtures ofHk and
the conditional distributions of̃θk given |U | > η2, so that|R∗(Gk) − R∗(Hk)| are
bounded by the right-hand side of (6.29) withw = η1. Thus, (6.30) follows from
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|(d/dt)R∗(Ht)| ≤
√

8{1+ 1/
√

π }η2. By (6.9) and calculus,

(d/dt)R∗(Ht) = −(d/dt)

∫
[{E∗(x − θ̃t )ϕ(x − θ̃t )}2/E∗ϕ(x − θ̃t )]dx

= E∗[2E∗,tZ{E∗,tU(1− Z2)} − {E∗,tZ}2{E∗,tUZ}],
whereE∗ is the conditional expectation given|U | ≤ η2, Z is anN(0,1) variable
independent of(θ̃0, θ̃1) andE∗,t is the conditional expectation givenZ + θ̃t and
|U | ≤ η2. Hence,

|(d/dt)R∗(Ht)| ≤ η2
{
2
√

E∗(1− Z2)2 + E∗|Z|3}= η2
√

8
{
1+ 1/

√
π
}
. �

In addition to Proposition 6.2, we need the following lemma for the proof of
Proposition 6.3.

LEMMA A.3. For p = ∞, supµp(G)≤C R∗(G) = Rn(�p,n(C)). For 0 < p <

∞,

sup
µp(G)≤C/b

R∗(G) − Rn

(
�p,n(C)

)

≤ 2π0
{
1+
√

2 log
(√

2/π0
) }2 + I {bpπ0 < 1}4C2/(bπ

1/p
0 )2

exp[nK(bpπ0, π0)] ,

for all b > 1 and 0< π0 < 1,where K(p1,p2) is the Kullback–Leibler information
in Lemma A.2.

PROOF. Let θ ∼ G with µp(G) ≤ C/b. Let G1 be the distribution ofθ̃ ≡
θI {|θ | ≤ M}, whereM ≡ C/(bπ

1/p
0 ). SinceP {|θ − θ̃ | > 0} = P {|θ | > M} ≤

µ
p
p(G)/Mp ≤ π0, by Proposition 6.2

R∗(G) ≤ R∗(G1) + 2π0
{
1+
√

2 log
(√

2/π0
) }2

.(A.8)

Let νn be the prior inR
n under whichθk are i.i.d. variables with marginal

distributionG1. Forb > 1 and estimatorŝθ(n) ∈ �∞,n(M),

Eνn

1

n
Eθ(n)

∥∥θ̂(n) − θ(n)

∥∥2
2,n

≤ sup
{

1

n
Eθ(n)

∥∥θ̂(n) − θ(n)

∥∥2
2,n : θ(n) ∈ �∞,n(M) ∩ �p,n(C)

}
+ 4M2νn

{
n−1/p

∥∥θ(n)

∥∥
n,p > C

}
.

Taking the infimum on both sides above overθ̂(n) ∈ �∞,n(M), we find by (6.1)
that

R∗(G1) ≤ Rn

(
�∞,n(M) ∩ �p,n(C)

)+ 4C2

b2π
2/p
0

νn

{
n∑

k=1

|θk|p
n

> Cp

}
,(A.9)
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since all admissible estimators are almost surely in�∞,n(M) when �∞,n(M)

is the parameter space. Since|θk|p/Mp ≤ 1 are i.i.d. variables underνn with
Eνn |θk|p/Mp ≤ π0, by Lemma A.2

νn

{
n∑

k=1

|θk|p
Mpn

>
Cp

Mp
= bpπ0

}
≤ I {bpπ0 < 1}exp[−nK(bpπ0, π0)].(A.10)

We complete the proof by inserting (A.10) into (A.9) and then inserting (A.9)
into (A.8). �

PROOF OFPROPOSITION6.3. The first inequality of (6.32) is that of (6.34). It
follows from Lemma A.3 that supµp(G)≤C R∗(G)−Rn(�p,n(C)) is bounded from
above by a sum of three terms: two in Lemma A.3, and via the second inequality
of (6.34), a third term bounded by

sup
µp(G)≤C

R∗(G) − sup
µp(G)≤C/b

R∗(G) ≤ (b2 − 1) sup
µp(G)≤C

R∗(G).(A.11)

We chooseb andπ0 so that the three terms are of the same order.
Let b2 = 1+ π0 log+(1/π0)/supµp(G)≤C R∗(G). By Lemma A.3 and (A.11),

sup
µp(G)≤C

R∗(G) − Rn

(
�p,n(C)

)
(A.12)

≤ (M ′ + 1)π0 log+(1/π0) + I {bpπ0 < 1, b2 < 2}4C2π
−2/p
0

exp[nK(bpπ0, π0)] .

SinceK(p1,p2) ≥ (p1 − p2)
2/(2p1) for p2 < p1 < 1, for 1< b2 < 2 and small

π0 > 0

K(bpπ0, π0) ≥ (bpπ0 − π0)
2

2(bpπ0)
≥ π0b0p

2(b2 − 1)2 = b0p
2π3

0 log2+(1/π0)

{supµp(G)≤C R∗(G)}2 ,

whereb0 ≡ min[(bp − 1)2/{bpp2(b2 − 1)2} : 1 ≤ b2 ≤ 2,p > 0] > 0. Thus, the
second term in (A.12) is of the orderπ0 for the choice ofπ0 satisfying for certain
M ′′ < ∞
b0np

2π3
0 log2+(1/π0) ≥ (M ′′)2 min

{
1,C2p′{

log+
(
1/Cp′)}2−p′}

log(C2/π
1+2/p
0 ),

since supµp(G)≤C R∗(G) ≤ M ′′ min{1,Cp′ {log+(1/Cp′
)}1−p′/2} by (6.33). This

holds with

π3
0 log+(1/π0) = 6(M ′′)2 min

{
1,C2p′{

log+
(
1/Cp′)}2−p′}

log+
(
Cp′)

/(b0np
2p′).

Hence, the conclusion holds, sincex3 log+(1/x) = O(y) iff x log+(1/x) =
O(1)�(y) for x ∧ y > 0. �
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PROOF OFTHEOREM 7.2. The proof of Theorem 3.2 provides an outline of
the proof. Theo(ε−η) there is clearly bounded by a polynomial of log+(1/ε). We
omit the details, since the full proof of Theorem 7.2 can be found in Zhang (2000).

�

PROOF OF THEOREM 7.3. The computation in the proof is similar to that
in the proof of Theorem 7.2 and is provided in Zhang (2000). We again provide
just an outline of the proof of (7.15) here. LetL(ε) denote generic polynomials of
log+(1/ε). Let B = Bα

p,q(C) for fixed (α,p, q,C). By (7.12) and (6.31),

sup
β∈B

R(ε,∗)(β) − R(ε)(B) ≤ L(ε)ε2
∞∑

j=2

2j r̃∗
p

(
2j ,2−j (α+1/2)/ε

)
,(A.13)

where r̃∗
p(n,C) ≡ min(1,C2p′/3)/n1/3. Splitting the sum in the right-hand side

of (A.13) into two parts, for 2j (α+1/2)ε > 1 and≤ 1, we find that the sum is of the
orderε−(2/3)/(α+1/2) = ε−1/(α3+1/2). Thus, the left-hand side of (A.13) is bounded
by L(ε)ε2−1/(α3+1/2) = L(ε)ε2α3/(α3+1/2).

Now we prove (3.10) and (7.11). Letj∗ ≥ 0 satisfy 2j
∗(α+1/2) ≤ C/ε <

2(j∗+1)(α+1/2) and letP be a probability measure under whichβj∗,k are i.i.d.
uniform variables in[−ε, ε] and βjk = 0 for j �= j∗. By (3.9), ‖β‖α

p,q ≤
2j∗(α+1/2−1/p)ε2j∗/p ≤ C almost surely underP , so that the minimax risk
in Bα

p,q(C) is no smaller than the Bayes risk underP . With the scale change
β → β/ε, we find

R(ε)(B) ≥ inf
β̂

∫ { 2j∗∑
k=1

E
(ε)
β (β̂j∗,k − βj∗,k)

2

}
dP = 2j∗

ε2R∗(G0)

≥ (C/ε)1/(α+1/2)ε2R∗(G0)/2,

whereG0 is the uniform distribution in[−1,1] and 0< R∗(G0) < 1 is the optimal
Bayes risk in (6.1). This proves the lower bound in (3.10), and the lower bound,
(7.10) and (7.15) imply (7.11). The upper bound in (3.10) follows from (7.10),
(7.1), (7.4) and (6.33). �

PROOF OFTHEOREM8.1. DefineGj(u) ≡ 2−j∑
k P {βjk/ε ≤ u}, and define

G′
j andG′′

j in the same way forβ ′ andβ ′′. Since�Gj(u) ≤ �G′
j (u/2) + �G′′

j (u/2),
by Proposition 6.1

r0(2
j ,Gj ) ≤ 2p3rp∧2

(
2j ,µp(G′

j )
)+ 4r0(2

j ,G′′
j ).

This splits the right-hand side of (8.1) into three sums. Since�µp(β ′) ∈ Bα
p,q(C),

(7.4) holds withG(ε)
[j ] = G′

j , so thatε2∑
j 2j rp∧2(2j ,µp(G′

j )) = o(1)ε2α/(α+1/2)
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as in the proof of Theorem 3.2. Moreover, since
∫ x
0

�G′′
j (

√
u )du ≤ xκ(β ′′[j ]/ε) for

x ≥ 1,∑
j

2j r0(2
j ,G′′

j ) ≤∑
j

2j log(2j )κ
(
β ′′[j ]/ε

)

≤ m(ε)
∑
j

log(2j )

(
1∧ M(ε)

ε22j

)
≤ O(1)(logε)2m(ε),

so thatε2∑
j 2j r0(2j ,G′′

j ) is also of ordero(1)ε2α/(α+1/2). Thus, the right-hand

side of (8.1) is uniformlyo(1)ε2α/(α+1/2) overβ ∈ B(ε). This proves (8.3).
It follows from (7.1) thatER(ε,∗)(β) ≤ ε2∑

j 2jR∗(EG
(ε)
[j ]) = ε2∑

j 2jR∗(Gj ).

The total ideal risk for blocks with 2j = o(1)ε−1/(α+1/2) is o(1)ε2α/(α+1/2). For
blocks with 2j ≈ ε−1/(α+1/2), R∗(Gj ) = (1 + o(1))R∗(G′

j ) by Proposition 6.2.

For blocks withε−1/(α+1/2) = o(2j ), the total ideal risk is smaller than the opti-
mal soft thresholding risk, which iso(1)ε2α/(α+1/2) as in the proof of (8.3). Thus,
(8.4) holds. We omit certain details.�

PROOF OF THEOREMS 4.1 AND 9.1. We first prove Theorem 9.1(i). It
follows from the proof of Lemma 7 in Brown, Cai, Low and Zhang (2002) that

Ef (β̃j,k − βj,k)
2 ≤ 4

2j∨0

N

∫
(f − f̄j∨0)

21j,k − 3
2j∨0

N

∫
(f − f̄j+1)

21j,k

(A.14)

= 4
2j

N
β2

j,kI {j ≥ 0} + 2j∨0

N

∞∑
�=j+1

2�∑
m=1

β2
�,m1j,k(m/2�),

since (f̄�+1 − f̄�)1�,m = β�,mφ�,m and
∫ |f̄�+1 − f̄�|21�,m = β2

�,m. Thus, for
p′ ≡ p ∧ 2

2j∨1∑
k=1

Ef |β̃j,k − βj,k|p′

(A.15)

≤ 2(j∨0)p′/2

Np′/2

{
2p′ 2j∨1∑

k=1

|βj,k|p′
I {j ≥ 0} +

∞∑
�=j+1

2�∑
m=1

|β�,m|p′
}
.

Since
∑2j∨1

m=1 |βj,m|p′ ≤ 2−(j∨0)p′(α+1/2−1/p′)(‖β‖α
p′,q)p

′
and ‖β‖α

p′q ≤ ‖β‖α
p,q ,

by (A.15)

2(j∨0)(α+1/2−1/p′)
(
Ef

2j∨1∑
k=1

|β̃j,k − βj,k|p′
)1/p′

≤ Mα,p′‖β‖α
p,q

√
2j /N,
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so that (9.1) holds. Furthermore, (A.15) withp = 2 implies thatEf ‖�J β̃ − β‖2
2

is bounded by{
Ef |β̃−1,1 − β−1,1|2 + Ef

J∑
j=0

2j∑
k=1

|β̃j,k − βj,k|2 +
∞∑

j=J+1

2j∑
k=1

β2
j,k

}

≤
∞∑

�=0

(
2�∧(J+1)

N
+ 22+�

N
I {� ≤ J } + I {� > J }

)( 2�∑
m=1

|β�,m|p′
)2/p′

≤ (‖β‖α
p,q)

2

[
5

N

J∑
�=0

2�{1−2(α+1/2−1/p′)}

+
(

2J+1

N
+ 1
) ∞∑

�=J+1

2−2�(α+1/2−1/p′)
]

≤ Mα,p′(‖β‖α
p,q)

2
{

J

N
I {αp′ = 1} + 1

N
+
(

2J

N
+ 1
)

2−2J (α+1/2−1/p′)
}
.

This implies (9.2) and completes the proof of Theorem 9.1(i).
Now we prove that forε = σ/

√
N and theζN in Theorem 4.1

sup
f ∈F

Ef ‖f̂N − f ‖2 ≤ (1+ ζN)R(ε)(Bα
p,q(C)

)
.(A.16)

Define G̃′
j (u) = n−1

j

∑
k δj,kI {β̃j,k ≤ u} and G̃j (u) = 2−j∑

k P {β̃j,k ≤ u} with

theβ̃j,k in (4.7). Letỹj,k ≡ δj,kyj,k +(1−δj,k)N(0, ε2). By Theorem 3.1 and (3.3)

Ef

J∑
j=−1

∑
k

(β̂j,k − β̃j,k)
2

≤ Ef

J∑
j=−1

inf{tj }
∑
k

δj,k

(
tj (yj,k) − β̃j,k

)2 + ε2
J∑

j=−1

Ef nj rp′
(
nj ,µp′(G̃′

j )
)

≤ Ef

J∑
j=−1

inf{tj }
∑
k

(
tj (ỹjk) − β̃j,k

)2 + ε2
J∑

j=−1

2j rp′
(
2j ,µp′(G̃j )

)
.

Sinceỹj,k ∼ N(β̃j,k, ε
2) giventi , a slight modification of the proof of Theorem 8.1

implies that the right-hand side above is bounded by(1 + ζN)R(ε)(Bα
p,q(C)), in

view of Theorem 9.1(i). This and (9.2) imply (A.16) with theζN in Theorem 4.1
for the choices ofJ = JN in Theorem 4.1.

It remains to show that forα + 1/2− 1/p > α/(α + 1/2) andf̃ based on (4.1)

inf
f̃

sup
f ∈F

Ef ‖f̃ − f ‖2 ≥ (1+ o(1)
)
R(ε)(Bα

p,q(C)
)
.(A.17)
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Let TN ≡ TN,{ti} be the randomized mappings{Yi, ti, i ≤ N} → {ỹj,k, δj,k}.
Brown, Cai, Low and Zhang (2002) proved that due to the orthonormality of
the mappingsTN given {ti}, the inverse mappings ofTN provide {ỹj,k, δj,k} →
{Y ′

i , ti , i ≤ N} satisfying (4.1) with regression functionsf ′(t) such that (A.14)
holds with β̃j,k = ∫ f ′φjk . This yields (A.17) by repeating the proof of (A.16).

�
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