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GENERAL EMPIRICAL BAYES WAVELET METHODS AND
EXACTLY ADAPTIVE MINIMAX ESTIMATION!
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Rutgers University

In many statistical problems, stochastic signals can be represented as
a sequence of noisy wavelet coefficients. In this paper, we develop general
empirical Bayes methods for the estimation of true signal. Our estimators
approximate certain oracle separable rules and achieve adaptation to ideal
risks and exact minimax risks in broad collections of classes of signals.
In particular, our estimators are uniformly adaptive to the minimum risk
of separable estimators and the exact minimax risks simultaneously in
Besov balls of all smoothness and shape indices, and they are uniformly
superefficient in convergence rates in all compact sets in Besov spaces with
a finite secondary shape parameter. Furthermore, in classes nested between
Besov balls of the same smoothness index, our estimators dominate threshold
and James—Stein estimators within an infinitesimal fraction of the minimax
risks. More general block empirical Bayes estimators are developed. Both
white noise with drift and nonparametric regression are considered.

1. Introduction. Suppose a sequenge= {y,} of infinite length is observed,
with
(1.1)  yjx=Bjk+ezj, l<k=<max2,1), j=-1,01,...,

wheree > 0 andz;; are i.i.d. N(0, 1). In many statistical problems, stochastic

signals can be represented in the form of (1.1) as noisy wavelet coefficients
with errorsez i, or simply represented by a sequence of normal variables as
in (2.2) below. In this paper we consider estimation of the true wavelet coefficients

B = {Bj«}, that is, the normal means, with tig risk

o 2/vi
(1.2) ROB. =Y Y ES Bj—Bin)*
j=—1k=1

for estimates$ = {Bjk} based ory, WhereE/(;) is the expectation in model (1.1).

We develop general empirical Bayes (GEB) estimafifs = ) (y), defined
in Section 2, such that under certain mild conditions on the sequétice risks
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of B satisfy
(1.3) RO(B®, )~ RED(B) = inf RO (B, B),
BeD*

whereD* is the class of alteparable estimators of the form ; = h; (y;x) with
Borel i ;. We provideoracle inequalities, that is, upper bounds for thesgret
R®(B®, gy — R (B) for this adaptation to thigleal risk R* (8). Our oracle
inequalities imply that the ideal adaptation (1.3) is uniform for large collect®ns
of classesB of the unknowrg, for example, Lipschitz, Sobolev and Besov bdils
of all smoothness and shape indices and radii, in the sense that ®ra# the
regret is uniformly of smaller order than the minimax risk

(1.4) R (B) =inf supR® (B, B).

B BeB
This uniform ideal adaptation implies: (1) tiegact minimax adaptation
(1.5) Sup{R*(B), B): B € B} = (1+ (1) R (B)

simultaneously for all Besov ballB, (2) adaptation to spatial inhomogeneity of
the signal [Donoho and Johnstone (1994a)], (3) the superefficiency of the GEB
estimators in convergence rates in all compact sef$ iof Besov spaces with a
finite secondary shape parameter and (4) dominance of GEB estimators over other
empirical Bayes (EB) or separable estimators in the limit in all classgsnefted
between Besov balls of the same smoothness index. We also describe more general
block EB methods and implementation of GEB estimators in nonparametric
regression models with possibly unknown variance.

The white noise model (1.1) is a wavelet representation of its original form [cf.
Ibragimov and Khas’minskii (1981)], in which one observes

(1.6) Y() E/Ot Fuydu+sW(), O0<i<1,

where f € L?[0,1] is unknown andW(-) is a standard Brownian motion. In

this representationy;x = [ ¢ (1) dY (1), Bjx = Bjx(f) = [ f()¢;r(t)dt, and
estimates

(1.7) fO=Y Buou®., 0<tr=<1,

Jok
are constructed based on estimaﬁg(sof Bk, whereg ;; are wavelets forming an

orthonormal basis ii.2[0, 1]. Let E(fe) be the expectation in model (1.6). By the
Parseval identity, '

~ A 1 A
(18) ROB.H=E Y (Bjx—Bw)*=EY /o (f@0)— fo¥d,
J.k
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so that our problem is equivalent to the estimatiorfafnder the mean integrated
squared error (MISE). In generap,;(¢) are “periodic” or “boundary adjusted”
dilation and translation/?2¢ (2t — k) of a “mother wavelet? of compact support

for j > jo for certain jo > O; see Donoho and Johnstone (1994a). Singeis
supported in an interval of siz€(1/2/) in the vicinity of k/2/, j andk are,
respectively, resolution and spatial indices, apdrepresent the information about
the behavior off at resolution leve}j and locationk/2/. We refer to Chui (1992),
Daubechies (1992) and Hardle, Kerkyacharian, Picard and Tsybakov (1998) for
wavelet theory and its applications.

This paper is organized as follows. We develop block EB methods in Section 2
which naturally lead to GEB estimators. We state main properties of the
GEB estimators in Section 3. We implement GEB estimators in nonparametric
regression models in Section 4. We discuss related results and problems in
Section 5. We focus on compound estimation of hormal means in Section 6. We
present our main theorems in their full strength in Section 7. We cover Bayes
models and more general classes of the unkngwn Section 8. We study the
equivalence between the nonparametric regression and white noise models in
Section 9. Proofs are given in the Appendix unless otherwise stated or provided
immediately after the statements of results. The main theorems in Sections 3, 6
and 7 have been reported earlier in Zhang (2000) with more details in proofs. We
use the notation logx =1 v logx andx(,) = (x1, ..., x,) throughout.

2. Block EB methods and GEB estimators. We begin with block EB
methodologies, which naturally lead to GEB estimators. Consider a sequence of
N < oo decision problems with observatiod§, ~ p(x|6;) and parameterg;
under the compound risE,iV:lELo(Sk, 0r) for a given lossLq(-, -). Block EB
methods partition the sequence into bloEks= (k;_1,k;], kj—1 < k; < oo, and
apply EB procedures of the forép = [ ;1(Xx), k € [, in individual blocks, where
i1j1() are estimates of theracle rules

(2.1) () =argminy " Eg Lo(t(Xx), 6k)
t(-)eDo kelj]

for a certain classDg of decision rules. Block GEB (linear, threshold EB)
procedures approximate the oracle rules (2.1) corresponding to the clagsés
all Borel (linear, threshold) functions. It follows from compound decision theory
[Robbins (1951)] that[*j] are the Bayes rules when the priors are taken to be the
unknown empirical distributions dby, k € [j1}.

Consider the estimation of normal meaghsased on independent observations

(2.2) y={k<N},  y~N( &2

with known &, under the squared loss as in (1.2). After standardization with
(Xk, 6r) = (v, Br) /¢ to the unit variance, block GEB estimatorsgfbecome

(2.3) B =B () =eiijonfe),  keljl,
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wheref[j] are estimates of (2.1) with squared-error 1d$$3, 8) = (5 — 6)2. The
empirical distribution of6;, k € [j1} is

(2.4) G{")w) = Ly o<, 6=
" kelj] &

wheren; = k; — k;_1 is the size of blockj. Let p(x) = e=**12) /27 and

29 e =06 = [ -0dGw, ¢ G)=00.
The oracle rules (2.1) are explicit functionals of the mixture marginal distributions
o(x; GE%) of the observation$X; = yi /e, k € [j]} [Robbins (1956), page 162,

and Stein (1981)], given by

¢'(x: G5

oG

This formula motivated the GEB estimators of Zhang (1997).

We construct GEB estimators in individual blocks using a hybrid version of the
GEB estimator of Zhang (1997). The hybrid GEB estimator utilizes an estimate of

the order oﬁc(GE%),

2.7) «(G) z/(|u|2A1>dG<u>,

(2.6) () =x+

and switches from the GEB estimator to a threshold estimator whéif.})
is small. Specifically, for certaip(n) > 0 andb(n) given in (2.11) below and
nj>ny > 2, we define (2.3) by

x + @1 (x)/ max{p(n;), ¢;1(x)}, if 11 > b(nj),
sgnx)(|x| — +~/2logn; )", if k1 < b(n,),

wheregy;j1(x), a kernel estimate af(x; ij.}) in (2.6), is given by

(2.8) f[j](x) = {

(2.9) Prj1(x) = Z V2logn ;K (v/2logn ; (x — Xy))
nJ keljl

with K (x) = sin(x)/(mrx) and X; = yi/e, andkp;;, an estimate of the order of
K(GEJ]) is given by

R V2
Rijp=1--=" exp(—XZ/2).
" kel

Forn; < ns, we choose the MLE%(S) =y [i.e. t[,](x) =x0rpn)=o00=—b(n)
for n < n,] or the James and Stein (1961) estimator for the vedigyrsk € [j1}.
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For denoising the wavelet coefficients, we identify the sequenee{y_1 1,
Y0.1, Y1.1, ¥1.2, - - - } in (1.1) with y = {y,k < N} in (2.2) and partition them
into natural blockg j] = (27, 2/+1], j = —1,0, ..., with a single block for each
resolution levelj. This results in

210) fO ==Y}, pO=1" i
(2.10) BO=pYWm={Bi}  Bi {ez[,-]@,-k/s), it j = ji,

wherej, =maxj: j < (logn.)/log2} and;; is as in (2.8) witm ; = 2/,

R J/2jlog2 2 X —Yyjk/e sin(x)
; = — K| ————— K =
¢[j](x) 2] ];- <(2] Iogz)_l/z)’ (X) X )

andijj=1-2"J Z,fj:l V2exp—(y;r/€)?/2). For definiteness, we set

(2.11) p=pm) =A+n)pov2(ogn)/n,  b=b(n)=bo(logn)//n,

with certainn, — 0 and positive constantsy and bg. We simply call (2.10)
GEB estimators since the blocks represent natural resolution levels in the wavelet
setting.

We discuss in detail in Section 6 the construction and properties of the GEB
estimators in individual blocks (resolution levels). Here we briefly describe the
rationale for our choices of the “tuning parameters” for (2.8) and (2.10). The

special kernel and bandwidth in (2.9) ensure thaf(x) — ¢(x; GE?%) at nearly

the optimal raten;l/2 uniformly and in derivatives ag; — oo [Zhang (1997)].

The sample size, (and thus the initial resolution levgl) should be determined

so thatgyjj(x) ~ ¢(x; GS%) with sufficient accuracy for; > n,. Although the

p(n;) andb(n;) in (2.8) could be determined/optimized by data-driven methods,
for example, Stein’s (1981) estimator of mean squared error, bootstrap and cross
validation, properties of the resulting estimators are not clear. The choice in (2.11)
provides the sharpest bounds in our main theorems. Our risk bounds depgnd on

po andbg only through scaling constants in terms of smaller order than minimax
risks. Finally, we remark that (block) GEB estimators (2.3) and (2.10) are scale
equivariant:

(2.12) B () =CpOy/C)  YC >0,

sincefj;)(x) in (2.8) depend ory and e only throughy/e. Thus, for the risks
in (1.3) and allC >0

R®(BO(y), B) = C*RE/O (B (y/C), B/ C),

2.13
22 R (B) = C2R/CD (B C).
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3. Oracle inequalities and their consequences. In this section we describe
main properties of our (block) GEB estimators (2.3), (2.8) and (2.10) and
the concepts of uniform ideal adaptivity, exactly adaptive minimaxity, spatial
adaptivity and superefficiency. Sections 5, 7 and 8 contain further discussion about
these properties and concepts.

3.1. Oracle inequalities. Consider the estimation of normal means with
observations (2.2). Aoracle expert with the knowledge of[*j] in (2.6) could use
the ideal separable rulae[*j](yk/e) for B to achieve the ideal risk

(3.1) RE¥(B)= min RO(B, p)=> min Y Ef{et(yi/e) — B},
peos j O ke
as in (1.3), whereD* is the collection of all separable estimates of the form

B =hj(y), Yk eljl. AIthoughetf‘j](yjk/e) are not statistics, the ideal risk (3.1)
provides a benchmark for our problem.

THEOREM3.1. Let f© = {4} beasin (2.3)and (2.8) based on (2.2). Let

ROB,p=YN, Ef;)(,ék — Br)2. Then there exists a universal constant M < oo
such that

R(S)(lé(e)’ ,3) _ R(&*)(Ig)

. n1/p
< MSZZ :njrp/\2<njv Dket 1Pl ) + 1 }

7 Sn}/l’ (logn; + 1)3/2

(3.2)

where R¥(B) istheideal riskin (3.1),n; =k, — k;_1 are block sizesand
p

1<

(logn)r/2-1

(logn)? { C(logn)3/2 }p/<p+1>D

(3.3) rp(n,C) = min( o N

max[

COROLLARY 3.1. If B =0,then R€¥(B)=0and R®(B®, B) = O(c?).

Theorem 3.1, proved in Section 7.1, provides a crucial oracle inequality in the
derivation of our main results. It allows us to bound the regret of our estimators in
terms of the moments ¢f; ;;. Consider block sizes; such that, for allp > 0 and
n > 0and asx — oo,

p
(3.4 E x_i =o(x"), E xn—j) =o(x"), E (1+|Ognj)*3/2<oo.
n' ,
J

nj=>x n;j<x j

Condition (3.4) holds if log ; ~ ;¥ for certain 23 <y < 1.
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THEOREM 3.2. Let f® be as in Theorem 3.1 and || = sup; 8 x
(Ckerj11Bcl? /nj)*P. Suppose (3.4) holds and ap = mins, 25 — 1/2 — 1/(p A
2)} > 0. Then, for all n >0
SUp{R® (B®, B) — R“D(B): || Bll < C} < o(e20/ @27 ase — 0+.

REMARK. If a higher threshold level/2(1 + Ap) logn ; with Ag > 0 is used
in (2.8) forky;; < b(n;), Theorems 3.1 and 3.2 hold witt +logn ;) %2 replaced

by n;AO(l +logn;)~¥2in (3.2) and (3.4). See the remark below Theorem 6.4.

In the rest of Section 3, we focus on the wavelet model (1.1), that is, the case
of n; = 2/. Our methodology is clearly applicable to more general block sizes
satisfying (3.4).

3.2. Uniform ideal adaptation. Let R (B, 8) be thet, risk in (1.2). Sta-
tistical estimatorsg®) are uniformly adaptive to the ideal risR* (8) in
(1.3) and (3.1), with respect to a collectigh of classesB of the unknown se-
quences, if

(3.5) sup{R®(B®, ) — RE ()} =0o(HR®(B) ase—0+VBeSB,
BeB

and 8 depends or(y, £) only, not on B, where R©)(B) is the minimax risk
in (1.4). In other words, uniform ideal adaptation demands that, fa# &llB and
in the minimax sense, thegret

(3.6) OB, B)=ROBC, ) — R (B)

be uniformly of smaller order than the typical convergence rates.iAs an
immediate consequence of uniform ideal adaptation, maximum risks are bounded
by the maximum ideal risks,

(3.7) supR® (8®, B) < (1+0(1)) supR®?(B) VBeB.
BeB BeB

Our GEB estimators possess this uniform ideal adaptivity property with respect
to

Bpesov= {Bg’q(C) 0<a<oo0,

(3.8) L

a+1/2
whereB} . = B} (C) are the Besov balls defined by

B, ={B:1BI%, <C},

<p§oo,0<q§oo,O<C<oo},

(3.9
00 ' 1/q9
1BN.q = {lﬂ—lyol" + ) (2D Hﬁme,zj)"} :

Jj=0
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with || 8} j1 lp2i = (Z%j:l |§jk|p)1/P, and with the usual modifications fgrv g =
oo. Forp Ang <1,|-I%,, is notanorm, butl|g’ + B"[5 )P < (IB'lI5 )P +
(||,8”||%,q)PA‘1 is sufficient here.

|a
p,

THEOREM3.3. Let f® = (A7)} beasin (2.10)based on y = {y;i} in (1.1),
with p(n) and b(n) in (2.11).Then (3.5) holds for B = Beesov

By Donoho and Johnstone [(1998), Theorem 1] and Theorem 7.3 below, the
minimax convergence rates in Besov balls are given by

RE(BY (C RE(BY (C
(3.10) O< inf (Bpq(C)) < sup (Bpq(C)) <
0<e=<C g2¢/(@+1/2)C1/(+1/2) = (27T c2a/(@+1/2) C1/(@+1/2)

oQ.

Based on (3.10), Theorem 3.3 is an immediate consequence of Theorems
3.2 and 7.2 in Section 7, which provide upper bounds for the convergence rates
of theo(1) in (3.5). Note thatrg > o = s — 1/2 in Theorem 3.2 fos > 1/p. We
show in Section 8 that (3.5) and (1.5) hold for much larger collections 8o

3.3. Adaptive minimaxity. A main consequence of the uniform ideal adaptiv-
ity in Theorem 3.3 is the universal exactly adaptive minimaxity over all Besov
balls.

THEOREM 3.4. Let B = {,BA;.‘,?} be as in (2.10) and (2.11) with positive
constants (s, o, bo). Then (1.5) holds for the Besov balls B} (C) in (3.9) for
al («, p,q,C)in(3.8).

This result can be viewed as an extension of the work of Efromovich and
Pinsker (1984, 1986), Efromovich (1985) and Golubev (1992) from Sobolev
versions ofB, 2 » to Besov balls with generad, p, g). Theorem 3.4 follows from
Theorem 7.4 in Section 7, which provides upper bounds for the order ef(ihe
in (1.5).

For a general collectiotB, exact adaptive minimaxity (1.5) is a consequence
of (3.5) and

(3.12) SUPR“ (B) = (L + o(1) R (B),

BeB
since (3.5) implies (3.7). For Besov balls= B}, ,, (3.11) is proved in Donoho
and Johnstone (1998) fgr> p and in Theorem 7.3 for genergb, g).

3.4. Spatial adaptation. Another main consequence of the uniform ideal
adaptivity in Theorem 3.3 is spatial adaptivity of (1.7) whe: 8(f) represents
wavelet coefficients of a spatially inhomogeneous signal funcfion. For g
B} ., thesmoothnessindex « indicates the typical rate of decay|@fx| asj — oo.
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Donoho and Johnstone (1994a) and Donoho, Johnstone, Kerkyacharian and Picard
(1995) pointed out that spatial inhomogeneity of a functjois often reflected

in the sparsity of its wavelet coefficients; = B, (f) at individual resolution
levels, not necessarily in the smoothness ingleba such cases, a handful g« |

could be much larger than the overall order of magnitudgsgf at individual
resolution levels, so that € Bj; , only for smallp < 2. Thus, spatial adaptation

can be achieved via (exacthate or nearly) adaptive minimaxity in Besov balls

with small shape parametgr. Our GEB estimators are spatially adaptive to the

full extent in the sense that they are exactly adaptive minimax in Besov balls for
all («, p, g), under the minimum conditiop > 1/(« +1/2), even allowingp < 1.

EXAMPLE 3.1. Let¥%;,,(C) be the collection of all piecewise polynomi-
als f of degreed in [0, 1], with at mostm pieces and|fll< < C. Let ¢ be a
mother wavelet with/ x/¢ (x)dx =0, j =0,...,d, and¢(x) = 0 outside an in-
terval I of length|Io|. For f € #4..,(C), the wavelet coefficient8;, = Bk (f) =
2i/2 (1 f(x)$(2/x —k)dx =0if f is asingle piece of polynomial itVo + k) /2/
and|Bji| <277/2C [ |¢|dx otherwise. Thus Byl ,.oi < 27/2m*7C Mo for all
Jj and p, where Mo = (|| + 2)Y/7 [ |¢|dx. By (3.9), [B1%,, < oo if @ <1/p
for g < oo ora=1/p for g = co. Theorem 3.4, (3.10) and (1.8) imply that
EY [5(f = f)2dx = RO (B®, B(f)) = 0(e2/ @YD) for all a < co. More-
over, Theorem 8.1 in Section 8 implies that fof®) = o(1)(loge) 2~/ (@+1/2)

lim supe =2/ @+ /2 sup( RO (8D, B()): f € Fy pr (e} =0 VM < o0,
e—0+
with the radiiC =0 in (8.4).

3.5. Superefficiency. An interesting phenomenon with our GEB estimators is
their universabuperefficiency in convergence rates in compact sets in Besov spaces
with g < oo.

THEOREM 3.5. Let f© = (')} be as in (2.10) and (2.11) with positive
constants (j, po, o). Let 0 <@ <00, /(e +1/2) < p<ooand 0 < g < oo.

Then lim,_, o, e~ 2/@t1/2 RE)(BE gy = 0 for 1B1%,, < oo, and for || - [% -
compact sets B
(3.12) lim —20/(@+1/2 gupl R® (B, B): g € B} =0.

e—>0+

Theorem 3.5 is proved at the end of Section 7. It indicates that the minimax
risks R®)(BY ) ~ £/ 1/ are quite conservative as measurements of the risk

of our GEB estimators. As a function gf the ideal riskR¢*)(8) provides more

accurate information about the actual risk; see Theorems 3.2 and 7.2. Brown,
Low and Zhao (1997) constructed universal pointwise superefficient estimators
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for Sobolev spaces (i.ep = 2). Their method also provides the superefficiency

of the estimators of Efromovich and Pinsker (1984, 1986). The classical kernel
and many other smoothing methods do not possess the superefficiency property.
In parametric models superefficiency could possibly happen only in a very small
part of the parameter space, while the superefficiency of the GEB estimators is
universal in all Besov balls.

3.6. Dominance of GEB methods. Consider classe® of the unknowng
satisfying
(3.13) B C B ,(C), liminf e ~2¢/(@+1/2 ) (B > 0,

e—>0+

for certain (o, p, ¢, C) in (3.8), whereR®)(B) is the minimax risk (1.4). It
follows from Theorem 3.4 that our GEB estimators achieve the minimax rate of
convergence irB, but they may not achieve the minimax constant foin the
limit. We show here that the GEB estimators dominate restricted EB estimators
within o(1)e2/(@+1/2) in risk in all classesB satisfying (3.13).

Let R*)(8) be certain “ideal risk” withR* (8) > R (8) and consider
B© satisfying

(3.14) Sup{R'“ (B) — R® (B®), B)} < o(1)e2/@*1/2),
peB

THEOREM 3.6. Let ) = {'})} be as in (2.10) and (2.11) with positive
constants (jy, po, bo). Let R (B) be the minimax risk in (1.4). Suppose
(3.13)and (3.14)hold. Then

REBE gy _ RE(BE gy: B
i SUART(B. B) (B¥,B):B€ }SO.

3.15 |
(3.15) 104 RE(B)

Consequently, lim .o+ {SURc 5 R (B, B)}/{sUpsc R (B, )} < 1.

Theorem 3.6 is an immediate consequence of Theorem 3.3. Condition (3.13)
holds if B ={B:| 8|l < C} are balls for a certain norip- || nested between two
Besov norms witH\/I*1||ﬁ||‘;§,’q, <8l = MBI, fora certain O0< M < oo, for
example, Lipschitz and Sobolev classes. Examplgfatisfying (3.14) include
the Johnstone and Silverman (1998, 2005) parametric EB, block threshold (e.qg.,
VISUAL- and SURESHRINK) and linear (e.g., James—Stein) estimators with

(3.16) RED(B) = Ztiergoz E,(gg)(f jK) — Bjx)
7 k

for restricted classe®q (e.g., threshold, linear) of functions.).
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4. Nonparametricregression. In this section we describe implementation of
our GEB estimators in the nonparametric regression model

(4.1) Yi=f(t)+e, e ~N(@002,i<N.

We report some simulation results for=i /N and unknown variance?, and
present the exact adaptive minimaxity and superefficiency of GEB estimators for
i.i.d. uniforms and knowno 2.

4.1. Deterministic design and ssimulation results. The white noise model (1.1)
is directly connected to the nonparametric regression model via discrete wavelet
reconstruction. Supposg = i/N and N = 2/*1 in (4.1). A discrete wavelet
reconstruction can be expressed by invertible linear mappings

Djr, k<2V0 j <) = N"YV2 Wy, n(Yi,i <N),

4.2
(4.2) J 2vi

Yi=vN Y > yiWil),

j=—1k=1

whereWy « i, called the finite wavelet transformation matrix, is a real orthonormal
matrix, W;.(i) specify the inverse ofWy,y, and ﬁij(i) ~ ¢k (t;) with
waveletse ;. It follows thaty;, are independent normal variables willly j; ~

[ fojir and Valy;x) = ¢2=02/N. See Donoho and Johnstone (1994a, 1995) for
details.

Although the variance? can be fully identified, that is, estimated without
error, based on data in (1.1) or (1.6) for square summg@pthat is,fo1 2 < o0,
implementation of GEB estimators in the nonparametric regression model (4.1)
requires an estimation of the varianeé Among other methods, estimatescst
can be constructed from observations at the highest resolution level, for example,

mediartv/N |yl : 1<k <27)
mediar(|N (0, 1)|) ’

which converges tar at the rateN—*?/(P+D 4 N=1/2 in Besov balls. The
regression functiorf is then estimated by

(4.3) & =MAD (VNypj)) =

J 2ivi

(4.4) Fa/ny=vN Y 3 Wi B s uw

j=—1k=1

via (4.2), Wherqéj(.;? are asin (2.10) and (2.11).

Now we report some simulation results to illustrate the performance of our
GEB estimators. Figure 1 plots four examples of regression functions in Donoho
and Johnstone (1994a). Normal errors are added to these functions, with signal-
to-noise ratio 7, and the resulting response varialfless in (4.1), are plotted
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5=
=IE

FiG. 1. Sgnals; clockwise fromtop left, Blocks, Bumps, HeaviSine, Doppler.

against; =i /N in Figure 2, with sample siz& = 2048. Figure 3 reports the GEB
estimates (4.4) based on the data in Figure 2, vijtl- 6, oo = 0.4, n, = 0 and

S0
SE

Fic. 2. Sgnals + noisewith N = 2048;signal-to-noiseratiois 7.
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S |E
SIE

FIG. 3. GEB estimate of signals using S8 wavelets; j. =6, pg = 0.4, nj1=0,bp=2.

bo=2in(2.10) and (2.11). Figure 4 reports the reconstructions of these regression
functions using SURESHRINK in S-plus [Donoho and Johnstone (1995)], also

S |E
SIE

FIG. 4. SURESHRINK reconstruction using S8 wavelets.
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based on the data in Figure 2. The GEB and SURESHRINK estimates look similar
in these examples.

4.2. Random design. Now consider (4.1) with i.i.d. uniforn; in [0, 1]. We
implement GEB methods with Haar basis and provide their optimality properties.
Let 1;x(x) = I{(k — 1)/2/ < x < k/2/}. The Haar wavelets are;; =
V2i(1j41.-1 — 1j41.2), j = 0, andp_1.1 = 1, and the corresponding wavelet
coefficients are
(fi+1.26-1 — firr,20)/2//%HL, j=0,
fo1. j=-1

wherefj,k =2/ folf]lj’k. Let Njﬁk = Zi ]lj’k(t,') and ?j,k = Zi Yi]ljyk(l‘i)/Nj’k.
Define

(4.5) B = Bia(f) = /f¢>, {

8jx(Yit1.2c-1— Yj1.2%)
VN@/Nji1.2-1+ 1/Njp1.0)Y2
where(SJ k=1{Nji12t-1Njy1,2 > 0 or j = —1}. Conditionally on{z;}, y;, k are
naive estimates oB;x for §;, = 1, standardized to have varianeé= o'?/N,
and y;x =0 for §;, = 0. In fact, conditionally on{;}, y;« are independent
N(Bj k. 8; xe?) variables with

Bik=Bjr(f)

(46) Vik = ] > O, Yy-11= YO,L

4.7) 5, (F ; )

— Jk\Jj+1,2k—1 — Jj+1,2 0. 7 .

- ’ - —1L1= O, ’
VN@/Nji12-1+ 1/Njp1.20)%? d P-11= fo1

where f; = ¥ f(t)1,(t:)/ N, x. By the strong law of large number§;  —
Bjkx asN — oo.

The statistics{y; «, 8} in (4.6) are sufficient. Since the data contains no
information aboutg; ; for §; = 0, we estimates;;; = {8, «:6,« = 1} by GEB
based onj) = {yj’kitsj"k =1},

(4.8) Bik =ikl (j < ju) + 8 kel vjn/e) (o < j < T,
wheref|;; is as in (2.8) withnj = 3, 8, x, p(n) andb(n) in (2.11) and

Prj1(x) =

\/ZIOQHJZ(S ( X—=Yyjk/e >
(2lognj)~Y2 )"

2
K[j]—l_—Z5 ke—(y/k/e) /2.
nj k=1

We estimatef by (1.7) via the Parseval identity (1.8).
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The following theorem asserts the exactly adaptive minimaxity and supereffi-
ciency of GEB estimators in Besov balls. Lﬁ,t(x) Ze _1Zk Be.xlek(x) be
the piecewise average ¢f at resolution levelj. For Haar coefficients (4.5), the
Besov norm in (3.9) can be written as

a/p) e
1BCHIY, = {|f01l"+221“"</ 1y = Fysal? dx) } .

THEOREM 4.1. Let || f]l = (f§ fAY? and (a, p) satisfy o?/(a + 1/2) >
1/p —1/2. Let E; be the expectation in (4.1) under which ¢; are i.i.d. uniform
variablesin (0,1). Let f = fy beasin (1.7) based on § = {$, 4} in (4.8), with
the cut-off resolution levels J = Jy satisfying 1/logN < ny = 2’+1/N 0.

Then, for all function classes ¥ = {f : IB()I , < C}

(4.9) SUpEsllfx — fII?= (14 ¢y)inf SUpEy| f — f||2 ~ N~2/(atD)
feF f feF

with ¢y = o(1), provided that o?/(a¢ + 1/2) > 1/p — 1/2 and ny = o(1).
Moreover, if «?/(a 4+ 1/2) > 1/p — 1/2 or nyt = 0(2), then (4.9) holds with
v = 0(1) and for all I1BCOIS, ,-compact classes ¥

(4.10) SUpEf| fy — fI? = o()N~2/ 24D,
feF

For §;« = 0, the N observations in (4.1) contain no information abgyt;
in (4.5). For 2 > N, this happens for at least half 8f «. Thus, the minimax MISE
is at least of the order maxs ", ﬁf’k(f)l{zj > N} ~ N~-2@+1/2=1/p) in the
Besov classes in (4.9). It follows that the conditiefy (o« + 1/2) > 1/p — 1/2,
thatis,a +1/2—1/p > a/(2x + 1), is necessary for (4.9). Theorems 4.1 and 9.1
are proved together at the end of the Appendix.

5. Related problems. Although the focus of this paper is on the white noise
model, our methods have much broader consequences in nhonparametric problems
and their applications. In addition to the direct implementations in nonparametric
regression models in Section 4, the connections between the white noise model
and a number of experiments have been recently established in the form of global
asymptotic equivalence. This was done by Brown and Low (1996), Donoho and
Johnstone (1998) and Brown, Cai, Low and Zhang (2002) for nonparametric
regression, by Nussbaum (1996) for the nonparametric density problem and by
Grama and Nussbaum (1998) for nonparametric generalized linear models. The
impact of such equivalence results is that statistical procedures derived in the white
noise model, including those in this paper, can be translated into asymptotically
analogous procedures in all other asymptotically equivalent problems. Adaptive
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estimation in the white noise model (1.1) is also closely related to statistical model
selection [cf. Foster and George (1994) and Barron, Birgé and Massart (1999)] and
to information theory [cf. Foster, Stine and Wyner (2002)].

There has recently been a spate of papers on adaptive wavelet-based nonpara-
metric methods; see Donoho and Johnstone (1994a, 1995), Donoho, Johnstone,
Kerkyacharian and Picard (1995) and Juditsky (1997) on wavelet thresholding in
the white noise and nonparametric regression models, Johnstone, Kerkyacharian
and Picard (1992) and Donoho, Johnstone, Kerkyacharian and Picard (1996) on re-
lated methods in density estimation, Hall, Kerkyacharian and Picard (1998, 1999)
and Cai (1999) on block threshold estimators, Abramovich, Benjamini, Donoho
and Johnstone (2000) on thresholding based on the false discovery rate, and the
recent book of Hardle, Kerkyacharian, Picard and Tsybakov (1998). Adaptive ker-
nel methods were considered by Lepski, Mammen and Spokoiny (1997). These
estimators are either nearly adaptive minimax with an extra logarithmic factor in
maximum risk in Besov balls (3.9) or rate adaptive for restricted valuesaoid p,
for example,a +1/2 - 1/p > {(1/p — 1/2" +y — 1/2}" in the white noise
model, O< y < 1/2, anda > 1/p and p > 1 in nonparametric regression and
density problems. This naturally raised the question of the existence of fully rate
adaptive estimators for all Besov balls in (3.8), to which Theorem 3.4 provides a
positive sharper answer: adaptation to the minimax constants. Cai (2000) pointed
out that such sharp adaptation cannot be achieved by separable estimators. The
practical value of adaptation for < 1/p andp < 1 is clearly seen from Example
3.1 and Theorem 4.1 and will be further discussed in Section 8. Spatially adaptive
methods were also considered by Breiman, Friedman, Olshen and Stone (1984)
and Friedman (1991). Johnstone and Silverman (1998, 2004, 2005) proposed a
parametric EB approach based on the posterior median for Gaussian errors with
respect to a prior as the mixture of the point mass at zero and a given symmetric
distribution (e.g., double exponential), with a modified MLE for the mixing prob-
ability. Their methods are rate adaptive minimax in all Besov balls and provide
stable threshold levels for sparse and dense signals.

Our strategy is to translate high- and infinite-dimensional estimation problems
into estimating a sequence of normal means and use block EB methods to
derive adaptive estimators. Within each block, one may use general [Robbins
(1951, 1956)], linear [Stein (1956), James and Stein (1961) and Efron and Morris
(1973)] or other restricted EB methods. From this point of view, the estimator
of Efromovich and Pinsker (1984) is block linear EB, while those of Donoho
and Johnstone (1995) are block threshold EB. In the wavelet setting, restricted
EB could yield exactly adaptive minimax estimators in Besov balls with a fixed
primary shape parameter, if Do 2 {1, .:c > 0}, in view of the difference
between (3.1) and (3.16), wherg. is the minimax Bayes rule for the class of
priors {G: [ |0|? dG(0) < c¢P}. But this is not practical, since the explicit form

of ¢, . is intractable forp < 2. In particular, forp < 2 the Bayes rules; .
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are nonlinear analytic functions, so that linear and threshold estimators do not
achieve exact asymptotic minimaxity; see Donoho and Johnstone (1994a, 1998),
(3.15) and (7.1) at the resolution level 2 ¢~1/@+1/2) ‘We further refer to Morris
(1983), Robbins (1983) and Berger (1985) for general discussion about EB and
Bayes methods.

Adaptive minimax estimation has a number of interpretations. Define

. SUpeg RO(B,B)
'E(8,,3,B)= JQ(S)(B)

k]

where R (B) is the minimax risk in (1.4). Given estimator$® and a
collection8B of setsB in the parameter space, exactly adaptive minimaxity means
7(e; B®, B) - 1 ase — O+ for all B € B, rate adaptive minimaxity means
t(e; B©, B) = 0(1), and nearly adaptive minimaxity means that; 3¢, B)

is slowly varying ine, and with obvious change of notatian<> o/,/n and

B < f for nonparametric regression and density estimation problems. In the
wavelet setting, rate and nearly adaptive minimax estimators were derived in
Hall and Patil (1995, 1996) and Barron, Birgé and Massart (1999), and block
James—Stein estimators were recently investigated by Cavalier and Tsybakov
(2001, 2002), in addition to papers cited above. There is a vast literature in
nonparametric estimation methods, and asymptotic minimaxity and adaptivity
have been commonly used to judge the overall performance of estimators; see
comprehensive reviews in Stone (1994), Donoho, Johnstone, Kerkyacharian and
Picard (1995) and Barron, Birgé and Massart (1999), and recent books by
Efromovich (1999) and Hastie, Tibshirani and Friedman (2001).

6. Compound estimation of normal means. Let (Xi,6:), 1 <k < n,
be random vectors and lef, be the conditional probability gived, =
(61, ...,6,) under P. Write P = Py, when 6, is deterministic. Suppos&
are independen¥ (6¢, 1) variables under the conditional probabilify(n). In this
section we consider the estimation&funder the compound squared error loss
n—1 Zzzl(ék — 6r)?, that is, the estimation of normal means within a single block
or resolution level based on (2.2) or (1.1), scaled to the unit variance.

Let X ~ N(0,1) under P,. Define the Bayes risks for Borel-) and their
minimum by

(6.1) R, G)E/Eg(t(X)—@)sz(G), R*(G) =infR(t, G).

As pointed out by Robbins (1951), the compound mean squared error for the use
of O, = t(Xy) is R(¢t, G,,), whereG,, is the mixture of the marginal distributions
of 9(11)1

(6.2) Gp(x)= 1 > P{6r <x).
2
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We drive GEB estimators whose compound risk approximates the ideal Bayes
risk R*(G,). We measure the performance of this ideal approximation via oracle
inequalities of the form

(6.3) EX:E(ék—Qk)z—R*(Gn)Sr(n,Gn),
]

where r(n, G) are functionals ofr and univariate distributiong; only. The
definition ofr (n, G) may vary in different statements in the sequel, as long as (6.3)
holds under specified conditions.

The components of the vectéy,, are assumed to be independent in Theo-
rem 6.1 below. In all other theorems, conditionségy are imposed only through
the mixtureG,, in (6.2), so that; are allowed to be stochastically dependent. The
independence assumption 6y, in Theorem 6.1 accommodates the two impor-
tant special cases of deterministic and i.i€}.}. This allows us to apply Theo-
rem 6.1 conditionally o®,) whenever (n, G) in (6.3) is concave itG. Note that
if r(n, G) is concave inG, (6.3) follows from its conditional version givef,),
sinceR*(G) is always concave i due to the linearity oR (7, G) in G in (6.1).

6.1. GEB estimators. Zhang (1997) proposed the following GEB estimators:
@y (x)

max(@, (x), p)’

wherep = p, — 0+, 1/n < p < 1/+/27, andg, is the kernel estimator

(6.4) Gk =1n (X0, k <n, fnp(X) =x +

an e—ixu n eiuXk
du

1 n
(6.5)  Gu()== apK(an(x — Xp) = f
]

—ay 27'[ =1 n

with the kernelk (x) = sin(x)/( x). We use the special, = \/2logn throughout

the sequel, which provides the best bounds in this paper. We first describe an
improved version of the oracle inequality of Zhang (1997) and its immediate
consequences.

THEOREM 6.1. Suppose the components of 6,) = (61,...,6,) are inde-

pendent variables. Let O = tnp(Xk) be the GEB estimator in (6.4) with
p~Ylogn)/*//n = o(1). Then (6.3) holds with

(6-6) r(n,G)=A(p,G) +{1+nn, p)}A*(n, p),
where n(n, p) = 0(1) depending on (n, p) only,
(6.7) A(p.G) = /_ (0 /00121 — 96/ (96 v p)Vopc dx

with g = o(x; G) in (2.5), G, in (6.3)isasin (6.2),and
(6.8) A*(n, p) = {V/(2/3)1ogn +v/—log(p?)}2 2;9”
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REMARK. (i) The oracle inequality (6.6) was proved in Zhang [(1997),
Theorem 1] under the stronger conditigmt,/(logn)/n = o(1). The weaker
condition is needed since (2.11) is used in this paper. (i) By (&R7)G) +
A(p, G) <1, since

/N2
(6.9) R*(G):l—/(Z—i) oG dx.

The main consequences of Theorem 1 of Zhang (1997) and Theorem 6.1
above under weaker conditions pp are asymptotic minimaxity and asymptotic
optimality. It is well known that the minimax mean squared error for compound
estimation of normal means is the common variance.

THEOREM 6.2. Let 6 = i, ,(Xz) be as in (6.4) with p = p, — 0 and
(logn)**/(p/n) — 0.
(i) Asymptotic minimaxity: For the A*(n, p) in (6.8),

12 N
sup-— Z Eq,, (O — 0% <1+ (14 0(1)A*(n, py) — 1.
O ™ k=1

(i) Asymptotic optimality: If G,, convergesin distribution, then

(6.10) % > E@ — 60)% - R*(G,) — 0,
k=1

where R*(G) and G, areasin (6.1) and (6.2). Moreover, for m,, = o(1/p,) and
any stochastically bounded family ¢ of distributions, (6.10) holds if for certain
0 < wy,0 — 0 and distributions H, 0, G,(x) = Zﬁio Wy, jHy, j(x — ¢, ;) With
H, ;e §for j>1andrealsw,;>0andc, , thatis, G, arewithin o(1) mass
from mixtures of at most o(1/p,) arbitrary trandations of distributionsin g. In
particular, (6.10)holds if fl dG,(x) — 0 for m,, = 0(1/p,) and certain
constants ¢, .

X—cp|>my

REMARK. (i) Zhang [(1997), Proposition 2 and Corollary 3] pointed out that
(6.10) holds wherG,, converges in distribution or whef,, are arbitrary discrete
distributions with no more than(1/p,) components. The weaker condition in
Theorem 6.2(ii) is equivalent t6/,,(A,) — 1 for certain unionsA,, of at most
my, = o(1/py) intervals of unit length. This demonstrates the extent of adaptivity
of GEB estimators whefv;} has many clusters.

(i) The proof of Theorem 6.2(ii) utilizes the following inequality: for all
distributionsH; and weightsw; > 0 with 3>7_qw; =1,

m m
(6.11) G=> wiH; = A(p.G)<> wjA(p/wj, H)).
j=0 j=0
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(iii) The locally uniform asymptotic optimality criterion in (6.10) is slightly
stronger than the usual one for fixéd= G, in the EB setting.

6.2. Oracle inequalities based on tail-probabilities and moments. We shall
derive more explicit oracle inequalities in terms of the tail and moments,of
Define

(_;(x)E/> dG ).
(6.12) "
wp(G) = (/ IulpdG(u)) , 0<p<oo.

LEMMA 6.1. Letx>0,0< p <1/+/27 and ¢g beasin (2.5).Then

/
Mp.G) < [ (“’—G)soc
oc<p \QPG

< G(x) + 2xpmax{L?(p), 2) + 2oV L%(p) + 2,

where A(p, G) is asin (6.7) and L(p) = v/~ log(2rp?). Furthermore, for x =
L(p)/2,

(6.14)  A(p.G)<Gx)+G(x)(1-G(x) +2pVL?(p) +2

(6.13)

Lemma 6.1 is used in combination with Theorem 6.1 to produce more explicit
oracle inequalities in Theorems 6.3 and 6.4 below, with (6.13) for stochastically
large G, and (6.14) for stochastically small,. For stochastically very smadt,
and— Iog,o,f < (1+ o(1))logn, the leading term in the combination of (6.6) and
(6.14) is

%

(6.15) A*(n, pu) + 20,V L(pn) +2 < (L.724+ 0(1))@ ('0—” + p—:)

vn\p, o}
with equality for—log p? = (1+0(1)) logn, wherep; = 0.6094,/2(Togn)/n. The
choice ofp ~ p; and the oracle inequalities below are not necessarily optimal,
since crude bounds are used at several places in the proofs. In principle, we
may use data-drivep via any methods of choosing tuning parameters, but this
is beyond the scope of this paper. In what follows, we denotey,bgonstants
depending om only and satisfying;, — O.

THEOREMG6.3. Let 6 beasin (6.4)with p = p(n) in (2.11).Then (6.3)holds
with

o logn)?/2 |
r1.G) = 0t { G0 + (L ) Boo DT | (1 1) ot
(6.16)
pou,,(G)dogn)S/Z)P/(P“) Iogn}
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where G(x) and 11,(G) are as in (6.12), C, = pY/#P*D 4 p=p/(+D < 2 and
Co(x) = 1.724(0.6094/x + x/0.6094). Moreover, for x, = \/—Iog(an,%)/Z,
inequality (6.3) holds with

(6.17) r(n, G) = (5/4G (x,) + (L+ 1) Co(po)(logn)/v/n.

Theorem 6.3 provides the asymptotic optimality of GEB estimators with
convergence rate§(logn)®?2/./n}~P/?*D in (6.10) for dependentd;} with
boundedu,(G,).

6.3. Sochastically very small distributions and threshold estimators. The risk
bounds in Theorems 6.1 and 6.3 are not very useful if an overwhelming majority
of 0, are essentially zero, for examplez(G,) < 1/./n. For these stochastically
very small empirical distributions;,,, threshold estimators may outperform the
GEB estimators (6.4).

Soft threshold estimators are defined by

(6.18) O =su(Xp),  su(x)=sgnx) (x| — )T,

where A > 0 is a threshold level. Hard threshold estimators are defined by
functionsh; (x) = xI{|x| > A}. Hard and soft threshold estimators have similar
properties. We consider soft threshold estimators so that sharp oracle inequalities
in Lemma 6.2 below can be utilized.

The performance of (6.18) is commonly compared wittv,,) = E Zzzl(ekz A
1)/n given in (2.7). ForA € {1,...,n}, lett, be the estimator defined iy =
Xi1{k € A}. Since the MSE of{; is smaller than the MSE df, = 0 iff |6;] > 1,
k(G,) =Iinfs R(t4, G,) whenfy, is deterministic. Thus¢(G,) is the ideal risk
for a different oracle expert, someone with the knowledge of the best choike of
who always uses the best.

LEMMA 6.2. Let s, =s,(x) beasin (6.18)and let the risk R(¢, G) be as
in (6.1). Then Eg(s,(X) — )2 isincreasing in |6, and

4
(6.19) R(sA,G)ffmin{uz—}— Fgo()»),kz—l—l} dGu).

Consequently, for 2 = \/2logn and with ., (G), G(x) and k(G) asin (6.12)and
(2.7),p <2,

Kwh(G)
(2logn + 1)r/2-1’

V2

+ n(logn)3/2°

R(s;., G) < min{ (2logn)G (1) +K(G)}

(6.20)
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The inequalities in Lemma 6.2 are essentially the oracle inequality of Donoho
and Johnstone (1994a). The improvement with the extra fatigr)—%/2 in the
second term on the right-hand side of (6.20) is needed when we apply it to all
high-resolution levelg near the infinity in the sequence model (1.1). Lemma 6.2
impliesR(s;, G) < (A2 + 1)k (G) +4r~3¢(1), which is an oracle inequality since
it comparesR(s;, G) with the ideal riskk(G). For A = /2logn, Foster and
George (1994) showed thaf + 1 is the optimatisk inflation factor from a model
selection point of view.

SinceG(x) < k(G) < ;Lﬁ(G) for p <2 andx > 1, the GEB oracle inequal-
ity (6.17) (with x, — o0) can be directly compared with (6.20). The risk bound
for the threshold estimator is of larger order than the regret of the GEB estimator
if K(G,)/n/logn — co.

6.4. Hybrid GEB methods.  In the white noise model (1.1} ; x ,Bfk < 00, SO

that the ideal risk (G,,) converges to zero as= 2/ — oo. Thus, the performance
of the GEB estimator (6.4) could be enhanced if hybrid estimators are used, that
is, switching to the threshold estimator (6.18) for smdll7,,). By Zhang (1990),
G, (x) and thusc(G,,) = [3 G, (u) du? can be estimated only at logarithmic rates.
Our strategy is to construct hybrid estimators based on accurate estimates of the
order ofx (G,,).

The order of magnitude af(G) in (2.7) is the same as that of

(6.21) #(G)= 1—/ﬁe—xz/z<p(x; G)dx =l—/exp(—u2/4)dG(u).

Infact, since(l—1/e)x <1l—e*<xforO<x <1,

e—1
de

2
K(G) < (1— 1/e)/ <MZ A 1) dG )
(6.22) ,

<i%(G) < / (”Z A 1) dGu) <k (G).

Thus, the order of (G,,) can be estimated by
(6.23) Rp=1— 1 > V2exp—X32/2).
n k=1

This suggests the following hybrid estimators:

fn,p(x), if £, > b,

6.24) O =1,(X1), f.(x) =1, =
(6.24) 06 (Xx) (x) 0 0,b(X) Lx(x), it <b.

wherei, ,(), s(-) andk, are as in (6.4), (6.18) and (6.23), respectively. For
definiteness, we choose in (6.28)= p(n) and b = b(n) in (2.11) andx =
/2logn, unless otherwise stated. This choiceppfoptimizes the order of risk



76 C.-H. ZHANG

bound (6.17). The choice of, matches the universal thresholding [Donoho
and Johnstone (1994a)] and provides the optimal risk inflation factor [Foster
and George (1994)]. The choidg, here ensures the use of (6.4) for large

k(Gp)/n/logn.

LEMMA 6.3. Supposethat {9} are independent variables under the expecta-
tion E. Let i, =1, .55 be the hybrid estimator in (6.24)with A = 1, = /2Togn.
Then
" E(tn(Xy) — 00

D

k=1

n

3 E(fnp(X) — 00)°/n+ @+ n)(logn)/n?, &(Ga) = b},
(6.25) k=1

<{ R(sx, Gy) + (L + n,)(logn)?/ (w2 p?n?), (Gp) <by,
3" E(fnp(Xx) — 08)%/n + R(s1, G, otherwise,
k=1

with 1, — 0 uniformly for all choices of p = p, and b = by, where 7, ,, s, and
K(G) areasin (6.4), (6.18)and (6.21),respectively, b} = b, + +/2(logn)/n, and
b, =b, — /3(logn)/n.

REMARK. Let (p,b) be as in (2.11) and = ,/2logn. By (6.17) and the
fact thatG (1) < «(G), (6.3) holds withr(n, G) = 0(1)(logn)//n for the GEB
estimator (6.4) wheh, <&(G,) <b;'.

Theorem 6.4 below provides oracle inequalities for (6.24) in terms of the tail
of G, in (6.2).

THEOREM6.4. Let 6y =1, ,.,.5(Xx) be the hybrid GEB estimator in (6.24)
with (p, b) in (2.11)and A = /2logn. Then there exists a constant M < oo such
that (6.3) holds with

r(n,G) = Mmin{ro(n, G), rpr2(n, up(G))}

1+m,
n(logn + 1)3/2

wherer,(n, C) and i, (G) areasin (3.3)and (6.12),and with G asin (6.12),

(6.26)
Vp>0n,

logn
ro(n, G) = min (1,/00g G(vu)du,
(6.27)
(logn)®> . . [= (logn)®/?
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REMARK. It follows from our proof (with slight modification) that if larger
A= +/2(1+ Ap)logn is used in (6.24) withAg > 0, Theorem 6.4 holds with
(1 + n,)/{nt*40(logn)3/2} as the second term on the right-hand side of (6.26).
See the remark below Theorem 3.2.

Theorem 6.4 implies that the compound risk is approximatei(logn)—3/2
when6;, = 0 for all k. Proposition 6.1 facilitates applications of Theorem 6.4.

PROPOSITIONG.1. Let ro(n, G) and r,(n, C) beasin (6.27)and (3.3). Let
w Aw” > 0.

(i) ro(n, G) isconcavein G and ro(n, G) < 3rpa2(n, u,(G)) for all p > 0.
(i) If G <w'G’ + w’G" for two distributions G’ and G”, then ro(n, G) <
ro(n; w' G’ + ro(n; w”’G").

6.5. Minimax risksin £, balls. Now we compare the minimax risk
1 A
(6.28)  R,(®)=inf sup = > Eg, 6k —0)? ~ OCR",
O O e® 1

in ¢, balls with the maximum of the Bayes risk*(G) (6.1) in L, balls. Here

Oy = (61, ..., 6,) are considered as deterministic vectors and the minimization is
taken over all estimato,,, based orX . Our result is based on Proposition 6.2
below, which provides the continuity of the Bayes rigk'(G) in G. Let

lxoyll pn = Qi Ix¢|P)YP as in (3.9). The, balls are defined as

©pn(C) = {0y :n VP |00, < C},

while theL , balls are{G : 1, (G) < C} with the u,(G) in (6.12).
PROPOSITION6.2. Let R*(G) beasin (6.1).For all distributions H1 and H»

inRR

(6.29) |R*((1— w)Hy + wHy) — R*(Hy)| < w{1+ v2log(v2/w) }*.

Furthermore, if there exist random variables 6, ~ G with P{|61 — 6| < 12} >
1—1n1>0,then

(630) |R*(Gy) ~ R*(Go)| = 2ma[1+V210g(v2/m) |* + VB[ 1+ %}’72,

PROPOSITIONG.3. Lét p’ = p A 2and W (u) = {ulog? (1/u)}*3. Define

¥(log,(C)/(np?), if C>1,

6.31) ri(n,C)= / 2y
(63D 70 O {III(CZP{IOQ+(1/C”)}2p/(npzp/)), if C <1,
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and r% (n,C) = 0. Then there exists a universal constant M such that for all
O<p=<o0

(6.32) Ry(©pn(C)) < SUP R*(G) < Ru(©p4(C)) + Mri(n, C).
1p(G)=C

REMARK. Leta = {2log, (1/CP)}*2. By (6.19) of Lemma 6.2, uniformly
in pasC” — 0,
sup R*(G) < CP'(3Z7 + 14453

1wp(G)=C

(6-33) = (1+o0(1)C?{2log, (1/CP )72,

Thus, for smallC”’, (6.32) is sharp only wheM r;(n, C) is smaller than the right-
hand side of (6.33), that is, large” (np?p’)/{log(np?p/)}1+7'/2,

The minimax risk inf,, balls and the maximum Bayes risk I, balls have
been studied by Donoho and Johnstone (1994b), who proved

i sup, ,)<c R*(G) B
Cl_)r%_,_ Cp/\Z{_Z |Og(CpA2)}(1—(pA2)/2) -

1 Vp>0,

(6.34) C'Rn(®p,n(c))§ sup R*(G)
1p(G)=C

<b® sup R*G) Vp=>0 b>1,
up(G)<C/b
and under the extra conditia®”n/(logn)?/2 — oo for p < 2, Rn(©p n(C)) &~
sup, ,()<c R*(G) asn — oc. Proposition 6.3 is derived from Proposition 6.2,

(6.34) and Lemma A.3 in the Appendix.

6.6. Adaptive minimax estimation in £, balls. An immediate consequence
of Theorem 6.4 is the adaptive minimaxity of the GEB estimators jrballs
©p..(C), in view of the result of Donoho and Johnstone (1994b) on the
equivalence of the minimax risk ify, balls and the maximum Bayes risk In,
balls.

THEOREM 6.5. Let R,(©) be the minimax risk in (6.28) and 6, =
(01,...,6,) be the hybrid GEB estimator in Theorem 6.4. If CP./n/
(logn)1t®12/2 _5 o6, then

12 A
(6.35) sup =D E@ — 007 = {1+ 0(D)}Ru(©)4(C)).
O €Opn(C) 1} 21
Moreover, if CPn/(logn)P*2/2 — o, then (6.35) holds with the o(1) replaced
by O(2).
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7. Oracleandrisk inequalitiesfor block GEB estimators. We provide here
stronger versions of the theorems in Section 3. This is accomplished by inserting
the inequalities in Section 6 in individual blocks or resolution levels. Throughout

the sectionE/(;) denotes the expectation of models (2.2) or (1.1) aigltreated as
a deterministic sequence. Performance of GEB estimators in more general classes
of g will be considered in Section 8.

7.1. Oracleinequalities. Consider the general sequence (2.2). It follows from
(3.1) that

(7.1) R(s*)(ﬂ)—SZan mlnRt G{%)) —EZanR*t G{*)).

whereR(¢, G) andR*(G) are asin (6.1) anG(g) areasin (2.4). By (2.3)and (2.8)

R® /3(8) Z Z E(S) (8) )2

72) J keljl
. = ZSZ Z Eée)(f[j](Xk) — Qk)z,
J kelj]

where (Xi, 6k) = (v, Br)/e. Since (2.8) is the implementation of (6.24) in
block j, application of Theorem 6.4 in individual blocks in (7.2) and (7.1) yields
Theorem 3.1 and the following theorem.

THEOREM 7.1. Let B and Gfﬁ be as in Theorem 3.1, let R*) (B) be as

in(3.1)and let ro(n, G) beasin (6.27).Then thereisa universal constant M < oo
such that

e)(ple 8% € 1
(7:3) RGO ) = RO$) <Mty ot G5 + W}

7.2. Uniform ideal adaptation in Besov balls. In the Wavelet setting (1.2),
nj=2/,and||g||% , < C iff for certain C; > 0 with (3_; C")l/q =

Bjk|?

1/p
) <2 i1 C oy
&

( ) 1 ZJV].
7.4 F -
(7.4) Mp(G[]]) (21 k2=:1 P P
in view of (6.12), (2.4) and (3.9). Thus, the bound in Theorem 3.1 can be
explicitly computed to provide uniform convergence rates for the regret of the
GEB estimator (2.10).

We first define certain constants and bounded nonincreasing slowly varying
functions. Set

(7.5) a1=20+1/2-1/p, a2 =min(ag, o + 1/2),
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with p’ = min(p, 2), and

,_L2+1/p
a1+1/2°
_ 143/ +2), if ap’ > 1,
3—(1/24+2/p") /(1 + 1/2), otherwise.
Lety =p'(a+1/2)—1andp=1/(1— p'/q)" €[1, oc]. Define

log +(1/<c,~)>1”/2—1 , }

a+1 P
with¢, = (1—1/2°P7)"YP andc” = (1—1/2P7)~Yp=140'/2 and

o,p,.q o, p.q
(@ +1)/log, (1/¢)
"1 — 2—le+Dp /(p+D-1] |

=
(7.6)

Dy — 7D = - !
(7.7 L% ()= La,p’q(&“) =14+a)™ |:Cot,p,q + (

(7.8) LP(e)=LZ),(e)=(1+a) 2min [1

THEOREM7.2. Let R%(B) betheideal riskin (1.3)and let R (8®, B) be
the risk (1.2) of the GEB estimator (2.10).Then there exists a universal constant
M < oo such that

sup{R® (B, B) — R (B): B e B% ,(C))
(7.9) )
<MC?i(/C)? + Y (s/C)*i/ @it logl! (C/e>L<f><e/C)},
j=1
for all 0 < ¢ < C and Besov balls Bg,q(C) € Bgesovin (3.8),wherea; > o and y;

areasin (7.5)and (7.6),and L) are the bounded nonincreasing slowly varying
functionsin (7.7)and (7.8).

REMARK. (i) Sinceay > a2 > «, the right-hand side of (7.9) is of smaller
order thare2*/@+1/2) Thys, (3.10) and (7.9) imply Theorem 3.3.

(i) The scale equivariance (2.12) and (2.13) of the GEB estimators (2.10) is
reflected in (7.9).

7.3. Minimax risksin Besov balls. Let R®)(B) andR“* () be the minimax
and ideal risks in (1.4) and (3.1). It follows from Theorem 7.2 that for all Besov
ba”SB € o(BBesov

(7.10)  R®(B) < supRE?(B) + 0(1)e2*/ @+ ase > 0+ .
BeB

In this section, we provide an inequality which implies

SUPscpa (o) RE(B)
(7.11) lim PB4 (©) -
201 RO (B _(C))
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Let |(x1, .-, )l pn = (Ch_q Ixk|PYP for p > 0 andn > 1 with usual
extensions fop v n = co. Let C; denote nonnegative constants. It follows from
(1.4) and (3.9) that

(&)
R (B;’,"q(C))
o0 2ivi
. ©,5 2. ”,B[j]”p,z.f Cj
> sup infsup Eg " (Bjk — Bjr)™ —5; <> ,
1C ) laoo<C j;l 5 ]; B N 2ilp 2/ (a+1/2)
so that by (6.28) with the scale charngje = B«/e

(e¢)
REO(By ,(C) z6®  sup D 2R,(0,,5(277 ¢ /e)).
HCjMg.00=C j—1

Furthermore, it follows from (7.1) and (7.4) that
sup  R“M(p)
BeBE ,(C)
o . .
=e2  sup > 2/ sup{R*(G{%)): up(G()) =27/ TYAC; /).
IH{Cj}lg,00<C j—1
The above facts and Proposition 6.3 imply

sup R*(g) — R(B; ,(C)
By 4(C) ’
(7.12)

o0
<& sup Y 2Mri(2, 277D )
I{Cj}Hlg.00=C ;=1

for ther;‘;(n, C) in (6.31), since SUp, (G)<c R*(G) — Ru(©,,(C)) < Mr;(n, 0)
for all (n, C).
Theorem 7.3 below, which implies (7.11), is a consequence of (7.12). Define

(7.13) as=a+(@+1/2)/2,  y3=2/3,

and fory = p/(a« + 1/2) — 1 define bounded slowly varying functiods® (¢) =
LE)(e) by

2/3, _
log} *(e=Y/@+1/2) p2p')
2/3
(p2p)Y/3logy>(1/e)

(y + 1)@ r)/3
1—2-7)+2Z-p"H/3

L® ) =

(7.14) x [(y + 134

(4-p")/3
—2/3, ~1j@+1/2 2. Y +D
+log, " (g7 p°p )(1 PRVl L
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THEOREM7.3. Let R (B) and R®* (B) be the minimax and ideal risksin
(1.4)and (1.3).Then (3.10)and (7.11)hold, and there exists a universal constant
M < oo such that

(7.15) ;quR“’*) (B) < RO (B) + MC?(e/ C)**3/*3t12 jogl! (C /&) L®) (2/ C)
(S

for all 0 < ¢ < C and Besov balls B = B;‘,"q(C) € Bgesovin (3.8),where a3 > «

and y3 are the constants in (7.13),and L is the bounded nonincreasing slowly
varying function in (7.14).

REMARK. Forp < ¢, Donoho and Johnstone (1998) proved (3.10) and (7.11)
using the minimax theorem for certain classes of rangom

7.4. Exactly adaptive minimaxity and superefficiency. The universal exactly
adaptive minimaxity and related inequalities in Theorem 7.4 below follow
immediately from Theorems 7.2 and 7.3, since the sum of the right-hand sides
of (7.9) and (7.15) is of smaller order than the rafe&/(“+1/2) in (3.10), due to
aj>a,j=123.

THEOREM 7.4. Let B be the GEB estimator in (2.3) or (2.10), and let
R (B) be the minimax risk in (1.4). Then there exists a universal constant
M < oo such that

R (BY ,(O))
<sup{R (B, p):p e By (O}
<R (B ,(O))

3
+MC?(e/C)? + Y (e/C)?*1/ D logl (C/e) LY (e/C) {.
j=1

for all 0 < ¢ < C and Besov balls B ,(C) € Bpesov iN (3.8), where constants
a; >« and y; and bounded functions L) are asin Theorems 7.1and 7.2.

REMARK. Sincea; > «, Theorem 7.4 and (3.10) imply Theorem 3.4.

Now we consider the superefficiency of the GEB estimatorsBlUgt a compact
set under the Besov norfit ||, (3.9) withg < co. LetI1; be the projections up
to resolution levels/, (I1;B) jx = Bjil;j<sy- Since|| — Hjﬁ||‘;‘,,q — 0 for every
B € B andB is compact,

(7.16)  cj(B)=suplp—-T,8l%,:8€B}—>0 asJ — oo.
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The superefficiency follows, since the risk for the estimatioflgf3 by the GEB
estimator is at mos® (1)2’¢2 and{ — I1;8:8 € B} C B;‘,‘yq(c}‘(B)). Formally,
by (7.1) withn; = 2/,

o 2
R(s,*)(IB) < g2/ 1 4 o2 Z Z sz*(GS%) < g2+ 4 sup R(g’*)(ﬁ)
j=J+1k=1 1814, ,=c5(B)

for all B € B. Sincec;(B) — 0, the right-hand side above igs2*/(@+1/2) a5
¢ — 0+ and thenJ — oo, by (7.11) and (3.10) in Theorem 7.3. This and (7.9)
imply (3.12) and complete the proof of Theorem 3.5.

8. Bayes and more general classes. The results in Sections 3 and 7 can
be extended in several directions, for example, Bayes models, more general
deterministic and stochastié and blocks with sizes:; # 2/. The extension
to stochasticg is relatively straightforward, since the key oracle inequalities in
Theorems 3.1 and 7.1 are valid under integration gydor example,

ER(e)(,é(g), :3) _ ER(S’*)(,B)
(8.1) , o 1
&
due to the concavity ofg(n, G) in G. We consider here certain general classes of
Bayes models including wavelet coefficients in Besov balls and of functions with
a large number of discontinuities.

Let 8 be a random sequence and iebe the certain expectation under which
E[(f) of model (1.1) is the conditional expectation givgn Let ji,(8) be the
sequence (E|B;x|”)Y/P} of the marginalL,, norms of 8. Let B;; = {Bjk, k <
1v 2/} ande (X1, ..., X,) =n"1Y7_; E(X2 A 1). Consider

(&) — / ". = / o " m(g) M(S)
(8.2) B =1p=p"+B":101,(B") € B, ,(C), k(B{})/e) < > in 27 ||’
where m®© and M® are constants. Lef,,,(C) be the class of piecewise
polynomials f of degreed with no more tharwm pieces and|| fllcc < C. A
deterministics = ' + g” belongs toB® if g’ € By ,(C) andp’, = [ ¢;i f are
the wavelet coefficients of € ¥, ., (cM ) as in Example 3.1, for certain fixed
smallc > 0.

THEOREM 8.1. Suppose (loge)?m® = o(1)e~Y@+/2) and log, (M®) =
O(|logel). Then (2.10)is uniformly adaptive to the ideal risk R*(8) in (1.3)
over classes (8.2) of random g,

(8.3) sup{ER®(B®,B) — ER®¥(B): B e B} =o(e2/@F1/2),
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Moreover, the GEB estimators are exactly adaptive minimax,

(8.4) sup ER® (B, B) = (14 0(1) R (B®) = (1+0(1)R® (B ,(C)),
BeB®©

where K@) (B) isthe minimax 5 risk for the estimation of a random g in B.

REMARK. (i) Although B® in (8.2) is much larger than the Besov class
Bqu(C), the minimax risks for the two classes are within an infinitesimal fraction
of each other.

(ii) The condition onm‘®) in Theorem 8.1 is the weakest possible up to a factor
of (loge)?, sincem® = o(1)e~Y@+1/2 js a necessary condition.

(iii) Deterministic versions of the classes (8.2) were considered in Hall,
Kerkyacharian and Picard (1998) in the context of density estimation.

9. Equivalence between the white noise model and nonparametric regres-
sion. In this section we establish the asymptotic equivalence between the prob-
lems of estimatingf in the nonparametric regression model (4.1) #nih the
white noise model (1.1) in Besov classes wiges 8(f) are the Haar coefficients
of f. The asymptotic equivalence is used to prove the adaptive minimaxity of the
GEB estimators in Theorem 4.1. We assume throughout the section that the design
variables; in (4.1) are independent uniformly distributed( 1).

THEOREM9.1. Let Ef beasin Theorem4.1withi.i.d. uniformy;. Let B(f)
and B(f) beasin (4.5)and (4.7), respectively, and let IT; Bk — BjxI{j < J}
be the projections asin (7.16).

(i) Thereexist finite constants M, , such that

9.1) EF(IT A —TBAOIG )3 < Moy @) /NP 2B 43P
where p’ = p A 2,and

Ef|IT1,B - B3
(9.2)

J 1 2/ /N +1
2 ’r_
SMa,p’(”:B”(;,q {Nl{ap —1}+N+m}

(i) Lete=0/+/N and N — oo.For F ={f:B(f) € B% ,(C)} and estimates
fn based on (4.1),

(9.3) inf fs_uﬁEfqu — fI7=(1+0) R (B} ,(C))

for o?/(a +1/2) > 1/p’ — 1/2,where || | = (f§ fAY2.
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Theorem 9.1(i) provides upper bounds for the difference between the wavelet
coefficientsg; x = [ f¢;x and the corresponding coefficierﬁ;gk for the random
discrete Haar system in (4.7). Deterministic discrete wavelet systems were
considered in Donoho and Johnstone (1998) based on Dubuc (198&)>Fbfp
andpvg >1ora=p=gq=1, Donoho and Johnstone (1998) established (9.3)
for deterministic discrete wavelet systems.

APPENDIX

We shall denote byM generic finite universal constants which may take
different values from one appearance to the next, thatiss O (1) uniformly.

PROOF OFTHEOREM3.2. Consider smal > 0. Letn > 0 and
Fp(n,C)= min[]_, cP, (C/ﬁ)p/(p+l)]
=min[1, C?, max{n—l/z’ (C/\/E)P/(P-i—l)}].

It follows from Theorem 3.1 and part three of (3.4) that the regret (3.6) is bounded
by

”ﬁs”upcr(s) (B9, B) < 0 +0(® )Y njipy(nj, (en$)™"), P=pA2
= j

We compute the above bound by splitting the sum into three piecesfer
[xXk, Xk1+1), k =0,1,2, wherexg = 1, x1 = ¢ V6412 | x, = g=2/2Z=1/p") gnd
x3 = o0. This yields by (3.4)

Y onjFp(ng. (en) ™
j

. (e STY2\=p'/(p'+1) (enSN—P
= BETE D D C + ) nj(en’)
j<x1 x15nj<x2 ngnj

<o(e™{x1 4 x14 x2(6x5) P} = 0(e7"7Y),

wherev = max{1/(s + 1/2),1/(2s — 1/p’)} = 1/(x0 + 1/2). Thus the regret is
uniformly bounded by (1)e2-v=27, This completes the proof, singds arbitrary
and 2— v =2u0/(x0+1/2). O

LEMMA A.1. Let A" (x) = (d/dx)"h(x). Let ¢, be given by (6.5) with
a=a, > +/2logn. For p > 2,there exist universal constants M, < oo such that

A (m) (m) P a"mp+r/2 a \r/2-1
fE!son () — o ()| deMpW{H(ﬁ) }
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PROOF. Let M, denote any positive universal constant. We shall omit the
calculation involving the bia$, (x) = E@¢,(x) — ¢g,(x), since it is of smaller
order in the sense that

am— 1

||b(m)(x)} < _/ W= 12 gy < 0(1)_

by (6.5) and the Fourier inversion formula, and by the Plancherel identity
q2n-1

/¢b<m>(x)| dx == / 2m o= gy < 0(1)2
Let Wi(x) = a™ 1K™ (a(x — Xy)) and hy,(x) = Y{_q E|Wi(x)|P/n. Since
,(,m)(x) is the average oW, (x) and {W;(x), k < n} are independent givefoy,
k <n},
E|p0 () = B (0l < 2215206) + 22 (x)
np 2 np PV
This implies the conclusion, sind , (x)|lcc + [ 71 (x)dx = O (a"P*+P=1y via
hp(x) = / \am+1K(m)(a(x —w)|"pc, ) du

:amp+”_1/ |K™ w)|”pg, (x —u/a)du. 0

ProOF OFTHEOREM®6.1. The difference between the proof here and that of
Zhang (1997) is the use of the improved bounds in Lemma A.1. We shall only
describe the differences and refer to Zhang (1997) for the resta l=eta,, =

J/2logn.
The conditionp~a//n = 0(1) of Lemma 1 of Zhang (1997) can be weakened
to p~1/a/n = o(1), since by Theorem 2 of Zhang (1997) and Lemma A.1

50m) (m) 2max(¢g, (x), ,0)
/ ()= ] max(@y (x), p) a

< £ [ {30 — 00 {1+ 19a06) — 96,01 /p} dx

< B[ — o2+ oL E|6™ — 0% |2E] 6w — 06, |2
- (1+0(1))a2m+1 Ma?m+3/2
- @m+Dan pnd/2 -

The assumptiop—1a/./n is used in the proof of Theorem 3 of Zhang (1997)
only for the application of Lemma 1 there. The assumptica O(\/logn) is
actually not used in the proof of Theorem 3 of Zhang (1997). Hence, Theorem 3
of Zhang (1997) holds under weaker conditiarts \/logn andp~1/a/n = o(1).
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The proof in Section 5 of Zhang (1997) is based on Theorem 3 of Zhang (1997)
and the additional conditions > ,/2logn and A*(n, p) = O(1) only, since
a%?/(pn) = o(D)a3/(pn). O

PROOF OF THEOREM 6.2. Part (i) follows directly from Remark 2 below
Theorem 6.1 and the fact that*(n, p,) — 0 in Theorem 6.1. For part (ii), we
shall first prove (6.11). Lep;(-) = ¢(-; H;) andyg = ¢(-; G) be as in (2.5) and
wj =w;;/pc. Sincey_; w; =1, by Cauchy—Schwarz

0 2 m 9i\2
( G) ¢G—<Zw1 ) ‘PG<Z“’1( ) ‘PG—ZWJ( ) Pj-
Z¢ =0 9Yi =0 =0 Qj

This and (6.7) imply (6.11), since & ¢g/(¢c V p) is decreasing inpg and
¢G = wjp;. Let A be a union ofm disjoint intervals /; of length < 1.
A distribution G can be written a&; = }_7"_qw; H;, wherewo = G(A°), w; =
G(I;) and H; are the conditional distributions givethe I; under G. Define
n(p) =sugA(p, H): H([O, 1]) = 1}. SinceA(p, H;) <1, (6.11) implies

Ap,G) < G(A) + Y wjlipjw;=1/m) + n(1/M)
j=1
(A1) '
< G(AY) + Mmp +n(1/M).

It follows from Proposition 2 of Zhang (1997) thafp) — 0 asp — 0.

Now, let A, = U’}Zl[cn,j — M, c, j + M]. The condition of part (i) implies
Gn(AY) < wpo+ SUpH([—M,M]°):H € §} — 0 for largen and M. Thus,
we may assumeé, (A¢) — 0 for certainA, = U’}Zl I, j with disjoint intervals
{1,,j, j <mjy} of at most unit length and (possibly different), = o(1/p,). Under
this assumption and conditionally @p,,, Theorem 6.1 and (A.1) imply

= Z E@ — 002 < ER*(G ) + EG ) (AS) + Mmy p, + 1(1/M) + o(1)
k 1

< ER*(Gn) +o(1)

with Gy(x) = n 17 {6 < x}, asn — oo and thenM — oo, since
ER*(G@yn) < R*(EG@)) = R*(G,) due to the concavity oR*(G) in G and
EGu)(AS) = G,(AS) — 0. O

PROOF OFLEMMA 6.1. Letx be fixed. LetH; and H> be the condI[ional
distributions given|d| > x and|0| < x, respectively, undet. Let w1 = G(x),
w2 =1—wy ande;(-) = ¢(:; H;) be as in (2.5). Sincél>([—x, x]) =1, by the
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unimodality ofp, @2 is monotone in botli—oo, —x) and(x, co). By Lemma 2 of
Zhang (1997)|¢5/¢2| < L(¢2). This and the monotonicity af, imply

o0 SD/Z 2 oo ~
/ I{<p2<p/w2}<_) Y2 = / I{(p2<p/w2}L(§02)|d(p2|
X @2 X

/w2 o 1 e~
Sf L(u)duf—/ L(u)du
0 w2 Jo
and a similar inequality fof " . These and Cauchy—Schwarz imply

wo / 1/2

I ((pz)Z d /pZ( )d ( /pZZ( )d )
a < — u=< u)du < u)dau
2 Julox {p2<p/w2} 02 ¥2 0 p 0

= pVL*(p) +2.

For (6.13), we find again by Lemma 2 of Zhang (1997) that

(A.2)

/

2
(p ~
w2/ I{(p2<p/w2}<_2> p2du < wz/ 1{<p2<p/w2}L2(<P2)<P2du
lu|<x @2 [u|<x

<2xmax{L?(p), 2}p

due to the monotonicity of max{L2(u), 2} and L2(u). Thus, (6.13) holds, since
by (6.11)

2
(p/
A(p, G) w1+ waA(p/wz, Hy) < w1+ wZ/ <_2> ©o.
p2=p/w2 \P2

For (6.14),{1 — ¢2/(p2 V (p/w2))} < {1 — p/(p V (p/w2))} = w1 for |u| < x,
sincepo(u) > ¢(2x) = p. Thus, (6.14) follows from (A.2) and

2 2
‘P/2> ( @2 > 2
wz/ <— g2\ 1— ————— ) =wiwa.
jul=x \$2 P2V (p/w2) ! -

PROOF OF THEOREM 6.3. Since the right-hand sides of (6.16) and (6.17)
are both concave i, it suffices to apply Theorem 6.1 conditionally 6. By
(6.8) and simple calculation, (6.15) holds, so that (6.17) follows from Theorem 6.1
and (6.14). For (6.16) we use the Markov inequalityx) < /,LZ(G)/)CP in (6.13)
and then minimizquZ(G)/xP + 2xp, (14 0(1))logn overx > 0. O

PROOF OFLEMMA 6.2. By (6.1) it suffices to verify (6.19) for degenerate
Let X ~ N(u,1) under P,. Let h(x) = 55(x) — x = min(A, max(—x, —x)).
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For61 = pu,
R(s3, G1) = Ry(w; 1) = E{h(X) + X — 1)? = Eolh(X + 1) + X)2.

Differentiating twice the right-hand side above with respegi tave find
9 \? r—p
(a_) Ry (3 1) 22[/ o) du + pe(d + un) —pr(k—u)} <2
128 —A—p
for all positivep andi. SinceR; (w; 1) is an even functionR, (u; A) < R, (0; A) +
w?. This implies the first component of (6.19) due to

Ry(0; 1) = 2/oo(u — %) du
A

o o0
= 2¢(A)/ w2e =12 gy < 2A_3go(k)/ ule ™" du.
0 0

The second component of (6.19) follows from the monotonicitR afie; 1) in |u],
proved below, as lim_, o Rs(1; A) = 12+ 1. By Stein’s formula of mean-squared
error,

Ry(1; A) = E, {h?(X) + 14 20/ (X))

A
_ / Pu{IX| > u}du®+ 2P, {|X] > A} — 1.
0

The monotonicity ofRs(u; A) then follows from that ofP, {|X| > u} in |u].
Inequality (6.20) is a direct consequence of (6.19)1

LEMMA A.2. Let Uy beindependent randomvariableswith P{O< U, <1} =
1.Set wy En_lzzzlEUk. Forall O< pu, <u<1,

(A.3) P{n‘1 > Uk> u} < exp—nK (u, )] < expl—2n(u — pa)?l,
k=1

where K (p1, p2) is the Kullback-Leibler information for Bernoulli variables,
defined by

1 _
K (p1, p2) = p1log (—pl) + (1 - p1)log ( pl)
P2 1-po

/Pl—PZ pL—p2—u d
= u
0 (p2+u)(L—p2—u)

PROOF Let py = EU; and§; be Bernoulli variables withES;, = pi. Since
EU" < pi = E§" for all integerm > 0 and log1+ pr(e* — 1)) is concave irpy,
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for A >0,

n

Eexp(A > Uk) <[[E* =T] @+ pee* — D) < (1+ pn(e* — D))"
k=1 k=1 k=1

The first inequality of (A.3) follows fromP (3", Uy > nu} < e (1 + pun (e’ —
1))" with A = log[{u(1 — u,)}/{n.(1 — u)}]. The second one follows from the
integral formula of the Kullback—Leibler information and the boupd + «)(1 —
p2—u)<1/4. O

PROOF OF LEMMA 6.3. By (6.21) and (6.23)Fk, = k(G,), so that by
LemmaA.2,

(A.4) P{£(ky — #(Gp)) > u} <exp(—nu?)  Yu>0,

with Uy (or 1 — Uy) being exm—X,g/Z). Sinces, = I{k, < b,} are Bernoulli
variables,

12 ~
=S E(f(Xp) — 6r)°
=]

(A.5)

12 N 12
= =3 E(fp(X0) — 67 (L= 8) + = 3 E(su(Xp) — 0) 5.
2 2

Thus, it suffices to consider the first two cases of (6.25).
Suppose (G,) > b;” = b, + /2(logn)/n. By (A.4)
P8, =1} < P{k, — R(G,) < —v/2(logn)/n} < exp(—2logn) =n~2,

so that by (6.18), withy2 = Y _; (Xx — 6r)? andx = /2Togn,

E8y Y (52(Xi) — 00)°/n < E8,(Vx2/n + 1)

k=1

o0

< [ w2 putur du,
U n

where p, () = (u/2)"/?~te=#/2/{2I'(n/2)} is the density ofy?2 and P{x? >

uj,} = 1/n’/. By standard large deviation theory, , = n + (2 + o(1)) x

/jnlogn for eachj. Integration by parts yield§ (u/n)p,(u)du < (ujn/n+

1) fis, pa(w)du =2+ o(1))/n’. Thus,

ESy Y (sx(X) — 6)°/n <n 2(A + 0(D)* = (2+ o(1)) (logn) /n?.
k=1
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Now consider the cas&(G,) < b, =b, — +/3(logn)/n. By Lemma A.2
P8, =0} < P{k, — k(Gy,) = ~/3(logn)/n} <n~3.
By (6.5) and (2.11) and,, = /2Togn, |iy.,(Xx) — Xi| < a?/(2np) = (logn)/
(mp), so that

EQ—8) Y (fnp(Xp) — 64)%/n

k=1

< / (Vu/n + (10gn)/ (20))2 pu (i) du

3.n

=n"3((logn)/(rp) + O (1)) 0

PROOF OFPROPOSITIONG.1. Part (i) follows from the proof of Theorem 6.3.
For part (ii) we have

Iogn Vall H rall (I()gn')S/2
= (logn)3/?

PROOF OF THEOREM 6.4. By Proposition 6.1(i) it suffices to consider
ro(n, G) in the minimum in (6.26) and independd#t}. By Lemma 6.3 it suffices
to boundR sy, Gy) for €(G,) < b;f andX-}_y E(f.»,(Xx) — 6k)?/n — R*(G,) for
k(Gy,) > b, . Infact, by Lemma 6.2 we need

2
(A.6) R(sA,Gn)fM(Iojf) , K(Gp) < b/,
n

and by Theorems 6.2(i) and 6.3 and the fact ih@i) = fol G (Vu)du we need
12 n

(A7) = E(fp(Xp) — 6)° — R*(Gn) < Mk(Gy),  R&(Gy) > by .
]

By (6.22) and the second part of (6.2@XG,) < b;" = (2+ o(1))(logn)//n
implies

(logn)?
ﬁ 9
so that (A.6) holds. By (6.12) and (2.G),(1) < «(G,), so that

1
R(s),Gy) < logn+ Dk (Gy) +— <M
n

12 N 5
=3 Elbnp(X) = 00)” = R*(G) = 76(Gy) + O (Db
k=1
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by (6.17) and the fact that, ~ (logn)//n. This implies (A.7), sinc&(G,) <
k(Gy) by (6.22). O

PROOF OFPROPOSITIONG.2. Letgy=o¢(; Hy),k=1,2,06 = (1—w)p1+
we2, andG = (1 — w)H1 + wH>. By (6.9) and algebra
R*(G) — R*(H1)

[ (@S (Eme) v

k=1

2 I\ 2
@] A
@1 @1
(,0/ §0/ o (,0/ 2~
—2/ (—1> <—2>w1w2<ﬂc—/(—2> 506,
@1/ \@2 ©2

where w1 = (1 — w)p1/¢c € [0,1] and w2 = 1 — w1 = wez/pg. Setqg =

log(~/2/w). Forg < 1 the right-hand side of (6.29) is greater thans®s(G) = 1.
Assumeg > 1. By Hélder

w]/c 2 o q)l/c zq » l/q - 1_1/q
/(—) WrW29G = [/(—) wk‘/’G] [/wsz]
Pk Pk
< (E|Z|2q)1/qwl_1/q

with Z ~ N (0, 1), sinceg; /¢x is the conditional expectation &f given a random
variable with densityp. Similarly, due tof(ﬁl)//(/(/)k)zfpk <1,

(,0/ (,0/ o g0/ 2~ ~ (,0/ 2 1/2
/(—1> (—Z)wlwzfpc = [/(—1) w1w2§0G/(—2) w2
@1/ \@2 ¥1 @2
< (E|Z|ZQ)1/(261)w1*1/(2q).

Thus,|R*(G) — R*(H1)| < w(1+w @] Z||3)%. Letho(q) =T(q +1/2)e?/
q7. Sinceho(q) < holq +1) — V27, | Z|5} =T(q +1/2)20 /T < ~2(2q/e)".
These two inequalities imply

IR*(G) — R*(Hy)| < w{1+ (vV2/w)Y®/2q/e)?
= w{1+v2log(v2/w) }°.

Now we prove (6.30). Let/ = 6, — g and H, be the conditional distribution
of 6, = (1 — )8y + 161 given |U| < n. Fork =0, 1, G, are mixtures ofH; and
the conditional distributions af, given|U| > 1, so that| R*(Gy) — R*(H,)| are
bounded by the right-hand side of (6.29) with= 1. Thus, (6.30) follows from
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|(d/dt)R*(H;)| < V/8{1+ 1//7 }n2. By (6.9) and calculus,
(d/dt)R*(H,) = —(d/dt) / [E.«(x —6)o(x — 1)/ Exp(x — 6,)]1dx

= E[2Es; Z{E«;U(1— Z%)} —(Ew Z}*{E+ U Z}],

whereE, is the conditional expectation gively| < n2, Z is anN (0, 1) variable
independent ofég, 61) and E.. is the conditional expectation giveh + g, and
|U| < n2. Hence,

|(d/dt)R*(Hy)| < n2{2V E(1 — Z2? + E(|Z]3) = nov/8{1+ 1//7 ). O

In addition to Proposition 6.2, we need the following lemma for the proof of
Proposition 6.3.

LEMMA A.3. For p = o0, sup,,G)<c R*(G) =R (®) ,(C)). For 0< p <
00,

SUD  R*(G) — Ru(©,.,(C))
Hp(G)SC/b

o I{bPmo < 1J4C?/(brl!P)?
< 2mo{1+ v2log(v'2/m0) }* + expnK (bPmo, mo)]

forall b > 1and0 < g < 1,where K (p1, p2) isthe Kullback—Leibler information
inLemmaA.2.

PROOF Let 6 ~ G with u,(G) < C/b. Let G; be the distribution of =
61{16] < M}, where M = C/(bmy'"). Since P{|6 — 6] > 0} = P{|6] > M} <
wh(G)/MP < o, by Proposition 6.2

(A.8) R*(G) < R*(G1) + 2mo{1+ v2log(v/2/m0) }2.

Let v, be the prior inR" under Whic[wk are i.i.d. variables with marginal
distributionG1. Forb > 1 and estimator§,) € O« (M),

1 A 2
Ev,, ;EG(V,) H@(n) - 9(”) H2,n

1 ~
< Sup{ - Eou 10y = ) |5, :0n) € Ooon (M) N ®p’”(c)}
+ 4M2Vn {n—l/p ”‘9(11) ”n,p = C}

Taking the infimum on both sides above o@@,[) € O n (M), we find by (6.1)
that

4C2 " |6k |P
(A9) R*(G1) < Ro(Ouen(M) 1O, 1(C)) + ol ST et
p 2_2/p
b no k=1 n
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since all admissible estimators are almost surelyin ,(M) when © , (M)
is the parameter space. Singg|?/M? < 1 are i.i.d. variables under, with
E,, |0k|? /MP < 7, by Lemma A.2

"GP CP
(A.10) v, > % > = bProt < I{bPmo < 1} expd—nK (bP 1o, 70)].
=1 M

We complete the proof by inserting (A.10) into (A.9) and then inserting (A.9)
into (A.8). O

PROOF OFPROPOSITION6.3. The firstinequality of (6.32) is that of (6.34). It
follows from Lemma A.3 that SYP,(G)<c R*(G) — R, (0, ,(C)) is bounded from
above by a sum of three terms: two in Lemma A.3, and via the second inequality
of (6.34), a third term bounded by

(A11) sup R*(G)— sup R*(G)<@®b’-1) sup R*(G).
1p(G)=C up(G)=C/b up(G)=C

We choosé andrg so that the three terms are of the same order.
Letb? = 1 4 molog, (1/70)/ SUR, ,(G)=c R*(G). By Lemma A.3 and (A.11),

sup R*(G) — Ru(©) 4 (C))
up(G)=C
(A.12) ) y —2/p
I{bPmo < 1,b° < 2}4C“m,

< (M’ + Dmolog, (1/m0) + expnK (bPmo, mo)]

SinceK (p1, p2) > (p1 — p2)?/(2p1) for p2 < p1 < 1, for 1< b? < 2 and small
mo>0

P — 70)2 231002
(bPmg — mo) Zn’obopz(bz—l)z— bop“mylogs (1/m0)

K (bP o, m0) > = ,

wherebg = min[(b? — 1)2/{b? p?(b? — 1)%}:1 < b%® < 2, p > 0] > 0. Thus, the
second term in (A.12) is of the ordep for the choice ofrg satisfying for certain
M’ < oo

bonp?rlog? (1/m0) = (M"y?min{1, C¥'{log, (1/C”)}* " }log(C?/my™2/7),

since sup (g)<c R*(G) < M"min{1, C'{log, (1/C?")}*~7'/?} by (6.33). This
holds with

23log, (1/70) = 6(M")2min{1, €% {log, (1/C”)}* " }log, (C*')/(bonp?p)).

Hence, the conclusion holds, sinoélog+(1/x) = O(y) iff xlog (1/x) =
oY (y)forx ny>0. O
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PROOF OFTHEOREM 7.2. The proof of Theorem 3.2 provides an outline of
the proof. Then(¢ ") there is clearly bounded by a polynomial of lod./¢). We
omit the details, since the full proof of Theorem 7.2 can be found in Zhang (2000).
O

PROOF OF THEOREM 7.3. The computation in the proof is similar to that
in the proof of Theorem 7.2 and is provided in Zhang (2000). We again provide
just an outline of the proof of (7.15) here. LEts) denote generic polynomials of
log, (1/e). Let B = B ,(C) for fixed («, p, g, C). By (7.12) and (6.31),

o0
(A.13) supRE?(B) — R (B) < L(e)e® Y 2/75(2/, 271+ /),
BeB j=2

where 7% (n, C) = min(l, C2r'/3) /13, Splitting the sum in the right-hand side
of (A.13) into two parts, for 24t1/2¢ > 1 and< 1, we find that the sum is of the

ordere~(2/3/(@+1/2) — g=1/(@3t+1/2) Thys, the left-hand side of (A.13) is bounded
by L(e)e?~Y/(@3t1/2) — [ (g)g203/(@3+1/2)

Now we prove (3.10) and (7.11). Let* > 0 satisfy 2"@+1/2 < C/e <
20" +D@+1/2) and let P be a probability measure under whigh: ; are i.i.d.
uniform variables in[—¢,¢] and Bjx = 0 for j # j*. By (3.9), IBI}, <

2/ (@+1/2=1/P)gi"/P < C almost surely underP, so that the minimax risk
in By ,(O) is no smaller than the Bayes risk undBr With the scale change
B — B/e, we find

2J
R (B) = inf / { S ES (Bjes — Biew)? [ dP =2"e?R*(Go)
B k=1

> (C/e)Y @YD 2R*(Go) /2,

whereGy is the uniform distribution if—1, 1] and O< R*(Go) < 1 is the optimal
Bayes risk in (6.1). This proves the lower bound in (3.10), and the lower bound,
(7.10) and (7.15) imply (7.11). The upper bound in (3.10) follows from (7.10),
(7.2), (7.4) and (6.33).

PROOF OFTHEOREM8.1. DefineG ;(u) =277 Y, P{Bjx/e <u}, and define
G’; and G/ in the same way fop’ and 8" SinceG ;(u) < 5;. (u/2) + 5?(14/2),
by Proposition 6.1

ro(2/, G ) < 2P3rpp2(27, 11y (G)) +4ro(2/, G7)).

This splits the right-hand side of (8.1) into three sums. Sjagés’) € B} ,(O),
(7.4) holds withG{®) = G';, so thate? Y ; 2/r,2(2, 11,(G')) = 0(1)e2/ @1/
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as in the proof of Theorem 3.2. Moreover, sm@‘eG”([)W < XK(,B[J]/S) for
x>1,

Z 2 (27, G/J/) < Z 2/ |Og(2j)K(,3f}]/‘9)
j J

(©)

<m® Zlog(Zj)<l/\ g 2j> < 0(1)(loge)?m'®,
J

so thate? Y~ ; 2/ro(2/, G')) is also of ordemn(1)e2/@+1/2) Thus, the right-hand
side of (8.1) is uniformly(1)e2*/@+Y2 over g € B®). This proves (8.3).

It follows from (7.1) thatER®*) (B) < £2 Y ; 2 R*(EG(S)) =¢2Y; 2/R*(G)).
The total ideal risk for blocks with 2= o(1)e~1/@+1/2 js 0(1)82"‘/(““/2). For
blocks with 2 ~ ¢~/ @+1/2 R*(G ;) = (14 0(1))R*(G',) by Proposition 6.2.
For blocks withe =1/(@+1/2 — ,(2/), the total ideal risk is smaller than the opti-

mal soft thresholding risk, which is(1)e2¢/(®*+1/2) as in the proof of (8.3). Thus,
(8.4) holds. We omit certain details[]

PROOF OF THEOREMS 4.1 AND 9.1. We first prove Theorem 9.1(i). It
follows from the proof of Lemma 7 in Brown, Cai, Low and Zhang (2002) that

2jv0 2jVv0

Ef(,éj,k — /3j,k)2 < 4

/ (f = Frun?ju
(A.14)

/(f fij) ]ljk_

=4Nﬁj%k1{ >

{=j+1m=1

since (fi+1 — fO)lem = Bembem and [|foyr — fel®Lew = BZ,,. Thus, for
p'=pn2

2/v1 _ /
Y EflBix—Bjxl”
k=1
(A.15) 2<Jv0>P n( 2 -~
< —E :2 Z|ﬂ]k|P1{1>0}+ ) Zwemw}
l=j+1m=1

Since Y24 |Bjml? < 27 UVOP V20 g1, )P and (18112, < 181,
by (A.15)

2iv1 r
2(]VO)(a+l/2—l/P)<Ef Z 1Bk — ,Bj,k|p) < Ma,p’||,3||‘;,q‘/21/N,

k=1
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so that (9.1) holds. Furthermore, (A.15) with= 2 implies thatZ /|1, 8 — |13
is bounded by

J 2 00
{Efw 11— B-11P+Ef Y D IBjk—BiklP+ Y Zﬂ,k}

j=0k=1 j=J+1k=1

<

00 (ZZ/\(J+1) 22+Z
(=0

ot / 2/p’
T 1{@51}+1{6>J})(Elmg,mw)

5 1y
=0

2/H1 & 20(a+1/2—-1/p)

- 1 2~ o —4i/P

+< ~+ ) ) }
t=J+1

J 1 (2 _ 1y
< Mo B 2 e = 1)+ o+ (5 )2 2erz 2],

This implies (9.2) and completes the proof of Theorem 9.1(i).
Now we prove that foe = o/+/N and thezy in Theorem 4.1

(A.16) sup Efllfy = fI7 < A+ RO (BY,(O)).

Define G, (u) =n; Zk Jkl{ﬁjk <u} andG; ju) =27 I3 P{ﬁjk < u} with
theB; x in (4 7). Lety,,k =8;xyjk+(1—8;x)N(0,e?). By Theorem 3.1 and (3.3)

J
Ey Z Z(Bj,k_,éj,k)z

j=—1 k

J
Ey Z mfZ(SJk ti(yjx) — ﬂj,k)z-i-sz Z Efnjrp/(l’ljaﬂp/(Glj))

-1 ] j=—1

J
Es Z mfZ G = Bi)+e2 S 2y (20 1y(G))).
j=—1 ) j=-1

Sincey; i ~ N(ﬂj’k, &2) giveny;, a slight modification of the proof of Theorem 8.1
implies that the right-hand side above is boundedby- ;)R (B% (C)), in
view of Theorem 9.1(i). This and (9.2) imply (A.16) with tlgg in Theorem 4.1
for the choices off = Jy in Theorem 4.1.

It remains to show that fax +1/2—1/p > o/(a + 1/2) and f based on (4.1)

(A.17) inf SUpEf”f FIZ= (1+0(D) R (B ,(C)).
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Let Ty = Tn,i;) be the randomized mappind¥;,t;,i < N} — {¥jk. 8/}

Brown, Cai, Low and Zhang (2002) proved that due to the orthonormality of

the mappingsy given {#;}, the inverse mappings dfy provide {y;«,d;} —

{Y/,1;,i < N} satisfying (4.1) with regression functiong(¢) such that (A.14)

holds with 8; x = [ f'¢;x. This yields (A.17) by repeating the proof of (A.16).
O
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