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In this paper we propose a general series method to estimate a
semiparametric partially linear varying coefficient model. We establish
the consistency ang/n-normality property of the estimator of the finite-
dimensional parameters of the model. We further show that, when the error
is conditionally homoskedastic, this estimator is semiparametrically efficient
in the sense that the inverse of the asymptotic variance of the estimator of
the finite-dimensional parameter reaches the semiparametric efficiency bound
of this model. A small-scale simulation is reported to examine the finite
sample performance of the proposed estimator, and an empirical application
is presented to illustrate the usefulness of the proposed method in practice.
We also discuss how to obtain an efficient estimation result when the error is
conditional heteroskedastic.

1. Introduction. Semiparametric and nonparametric estimation techniques
have attracted much attention among statisticians and econometricians. One
popular semiparametric specification is a partially linear model as considered by
Robinson (1988), Speckman (1988) and Stock (1989), among others, via

1) Yi =vly +8(zi) +u, i=1,...,n,

where the prime denotes transposg; is the parametric component aditt;) is

an unknown function and, therefore, is the nonparametric component of the model;
see Green and Silverman (1994), Hardle, Liang and Gao (2000) and the references
therein for more detailed discussion of this model. This model can be generalized
to the following semiparametric varying coefficient model:

2) Y; = vy (i) + 8(zi) + ui, i=1,....n,

wherey (z) is a vector of unknown smooth functionsofDefinex; = (1, v/)" and
B(z) = (8(2), v(z)"). Then (2) can be written more compactly as

3 Y; =x{B(zi) +ui, i=1,...,n.
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The varying coefficient model is an appropriate setting, for example, in
the framework of a cross-sectional production function where= (Labor;,
Capita})’ represents the firm’s labor and capital inputs, ane= R&D; is the
firm’'s research and development expenditure. The varying coefficient model
suggests that the labor and capital input coefficients may vary directly with the
firm's R&D input, so the marginal productivity of labor and capital depend on
the firm’'s R&D values. While the partially linear model (1) only allows the R&D
variable to have a neutral effect on the production function, that is, it only shifts the
level of the production frontier, it does not affect the labor and/or capital marginal
productivity. Li, Huang, Li and Fu (2002) use the nonparametric kernel method to
estimate the semiparametric varying coefficient model (2) and apply the method
to China’s nonmetal mineral manufacturing industry data; their results show that
the semiparametric varying coefficient model (2) is more appropriate than either
a parametric linear model or a semiparametric partially linear model for studying
the production efficiency in China’s nonmetal mineral manufacturing industry.

The time-series smooth transition autoregressive (STAR) model is another
example of the varying coefficient model. It is given by= x;8(yi—q) + u,
where 8(y,—q) is a vector of bounded functions; see Chen and Tsay (1993) and
Hastie and Tibshirani (1993). They consider an autoregressive model of the form
Vi = f1i—a)yi—1+ foi—a)yi—2+- -+ fp(Vi—a) yi— p +u:, Wwhere the functional
forms of thef;(-)'s (j =1,..., p) are not specified. Chen and Tsay (1993) and
Hastie and Tibshirani (1993) discuss the identificatiorfaf) and suggest some
recursive algorithms to estimate the unknown functfoq). More recent work on
varying coefficient models can be found in Carroll, Fan, Gijbels and Wand (1997)
and Fan and Zhang (1999), who propose a two-step procedure to accommodate
varying degrees of smoothness among coefficient functions. See also Hoover, Rice,
Wu and Yang (1998), Xia and Li (1999), Cai, Fan and Yao (2000), Cai, Fan and
Li (2000), Fan and Huang (2002) and Zhang, Lee and Song (2002) on efficient
estimation and inference of semiparametric varying coefficient models by using
the local polynomial method and Fan, Yao and Cai (2003) on adaptive estimation
of varying coefficient models.

The semiparametric varying coefficient model has the advantage that it
allows more flexibility in functional forms than a parametric linear model or a
semiparametric partially linear model, and, at the same time, it avoids much of the
“curse of dimensionality” problem, as the nonparametric functions are restricted
only to part of the variable. However, when some of thecoefficients are indeed
constants, one should model them as constants and, in this way, one can obtain
more efficient estimation results by incorporating this information. Consider again
the production function example: if one further separates the capital into liquid
capital and fixed capital, it is likely that the level of R&D will affect the marginal
productivity of fixed capital, but not that of liquid capital. This gives rise to a
partially linear varying coefficient model as follows:

(4) Yi = wjy +x;B(zi) + u;, i=1...,n,
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where w; is a vector of variables whose coefficieptis a vector of constant
parameters, and say, is the firm’s liquid capital in the above production example.

In this paper we propose to estimate the partially linear varying coefficient
model (4) using the general series method, such as spline or power series. We
show that the series method leads to efficient estimation for the finite-dimensional
parametery under the conditional heteroskedastic error condition. Recently, Fan
and Huang (2002) suggested using the kernel-based profile likelihood approach
to estimate a partially varying coefficient model [this paper was brought to
our attention after the first submission of our paper], and they show that their
approach also leads to efficient estimation of the finite-dimensional parapmeter
when the error is conditional homoskedastic. In this paper we also argue that
the efficient estimation result of the series-based method can be extended to the
conditional heteroskedastic error case in a straightforward way. It is more difficult
to obtain efficient estimation results using the kernel-based method when the
error is conditional heteroskedastic. Moreover, the series estimators have well-
defined meanings as estimating the best approximation function for the unknown
conditional mean regression function even when the model is misspecified. The
payoff of using the general series estimation methods is that it is difficult to
establish the asymptotic normality result for the nonparametric components under
optimal smoothings (i.e., balance the squared bias and variance terms). Thus,
the series method should be viewed as a complement to the kernel method in
estimating a partially linear varying coefficient model.

2. Estimation. Consider the following partially linear varying coefficient
model:

(5) Yi=wly+x/pz)+u, i=1,...,n,

wherew; is ag x 1 vector of random variables, is ag x 1 vector of unknown
parametersy; is of dimensiord x 1, z; = (z;1, . . ., zir) IS Of dimensiorr, () =
(B1(), ..., Ba(+)) is ad x 1 vector of unknown varying coefficient functions, and
u; is an error term satisfying (u; |w;, x;, z;) = 0.

With the series estimation method, foe 1, ..., d, we approximate the varying

coefficient functions; (z) by plkl (z)/ocl"l, a linear combination aof; base functions,

where pfl (2) = [pi11(2), ..., pi(2)1 is ak; x 1 vector of base functions and
af’ = (41, - .., k) is ak; x 1 vector of unknown parameters. The approximation
functionSpfl (z) have the property that, &g grows, there is a linear combination

of plkl (z) that can approximate any smooth functigiiz) arbitrarily well in the
sense that the approximation mean square error can be made arbitrarily small.
Define the K x 1 matricespX (x;,z;) = (xilp’f(zi)/, ...,xidpf,"(zi)/)/ and

o= (a'{l/, ...,aﬂj‘“)’, whereK = Y, k;. Thus, we use a linear combination of
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K functions,pX (x;, z;) «, to approximater’B(z;). Hence, we can rewrité) as

©) Yi=w)y + pX(xi,z0) e + (x[B @) — pX (xiy z) @) + u;
=w]y + pK(xi, z)) a + error,
where the definition of errpishould be apparent.
We introduce some matrix notation. LEt= (Y1, ..., Y,), u = (uy, ..., u,),
W = (w1,...,wy), G= (x{B(z1),....x,B(z) and P = (pX(x1,z21),...,
pX(x,,2,)). Hence, mode{6) can be written in matrix notation as

(") Y =Wy + Pa +error.

Let y and @ denote the least squares estimatorsyofind « obtained by
regressing? on (W, P) from (7). Then we estimatg;(z) by B(z) def pfl )&
(I=1,...,d). We will establish the/n-normality result fory and derive the rate
of convergence foB; (z).

We present an alternative form f@randa that is convenient for the asymptotic
analysis given below. In matrix form, (5) can be written as

(8) Y=Wy+G+u.

Define M = P(P'P)~ P/, where (-)~ denotes any symmetric generalized
inverse of(-). [Under the assumptions given in this papetP is nonsingular with
probability one. In finite sample applications,Af P is singular, one can remove
the redundant regressors to make? nonsingular.] For an x m matrix A, define
A = MA. Then premultiplying8) by M leads to

9) Y=Wy+G+ai.
Subtracting(9) from (8) yields
(10) Y-Y=W-W)y+(G—-G)+u—i.

7 can also be obtained as the least squares regressioa of on W — W, that
is,

(11) P =W —W) W —W)]"(W-W) (-7,
And & can be obtained from (7) with being replaced by,
(12) &=(P'P)"P (Y —Wp),

from which we obtaing (z) = p)' ()&, 1 =1,....d._ B

Under the assumptions given below, bathf — W) (W — W) and P'P are
asymptotically nonsingular. Henc¢, and @ given in (11) and (12) are well
defined and they are numerically identical to the least squares estimator obtained
by regressing” on (W, P).

Next we give a definition and some assumptions that are used to derive the main
results of this paper.
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DEFINITION 2.1. g(x,z) is said to belong to the varying coefficient class of
functionsy if:

() gx,2) =x'h(z) = Zlexlhl(z) for some continuous functions;(z),
whereh(z) = (h1(2), - .., ha(z))'-
(i) ZleE[xl?lhl(z,-)z] < 00, Wherex; (x;;) is thelth component ok (x;).

For any function f(x, z), let Eg[f(x,z)] denote the projection off (x, z)
onto the varying coefficient functional spage(under theL,-norm). That is,
Eg[ f(x,z)]is an element that belongs §oand it is the closest function tf(x, z)
among all the functions i§.. More specifically §; is the /th component ofy,
[=1,...,d),

E{(f(x,2) — EgLf(x, D) (f (x,2) — Eglf (x, 2)])'}

(13) d J ,
Ty xlmmeg E{ (f(x’ 2= gxzhl(z)> (f(x, z) — ;xzhz(z)> }
Thus,
E[(f(x,2) — Eglf (x, 1) (f (x,2) — Eg[f (x, 2)])']
(14)

d d !
< E[(f(x, 2) — szm(m) (f(x, 2) — szh,@) }
=1 =1

for all g(x,z) = Zflzlmhz(z) € G. Here for square matrices and B, A < B
means thatt — B is negative semidefinite.

Defined (x, z) = E[wlx, z] andm(x, z) = Eg[6(x, z)]. The following assump-
tions will be used to establish the asymptotic distributioy @ind the convergence
rates of8(z).

AssUMPTION 2.1. (i) (Y;, w;,x;,z;)7_, are independent and identically
distributed agY1, w1, x1, z1) and the support ofwi, x1, z1) iS @ compact subset
of RI+4+7: (i) both 6 (x1, z1) and vafY1|w1, x1, z1] are bounded functions on the
support of(w1, x1, z1).

ASSUMPTIONZ2.2. (i) For everyK there is a nonsingular matri& such that
for PX(x,z) = B pX(x, z) the smallest eigenvalue d&[PX (x;, z;)) PX (x;, z;)']
is bounded away from zero uniformly itK; (i) there is a sequence of
constantso(K) satisfying sup, .y | PX(x,2)|| <¢o(K) andK = K, such that
(¢o(K))?K /n — 0 asn — oo, where § is the support of(x1, z1), and for a
matrix A, ||A| = [tr(A’A)]Y/2 denotes the Euclidean norm af
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AssSUMPTION 2.3. (i) For f(x,z) = Y% 1 x18i1(z) or f(x,z) = mj(x,2)
(j=1,....q), there exist some} >0 (I = 1,....d), ay = asx = (a}?,

.,aﬁ"/)’, such that sup .cslf(x.2) — PX(x,2)ay| = O(Zlek,_‘s’);
(i) for min{k, ..., kq} — oo, ﬁ(zlekf25’) — 0 asn — oo.

Assumption 2.1 is a standard assumption being used on series estimation
methods. Assumption 2.2 usually implies that the density functiqw of) needs
to be bounded below by a positive constant. Assumption 2.3 says that there exist
someé; >0 (I =1,...,d) such that the uniform approximation error to the
function shrinks at the ratgf’:lk,_’sl. Assumptions 2.2 and 2.3 are not the easiest
conditions, but it is known that many series functions satisfy these conditions, for
example, power series and splines.

Under the above assumptions, we can state our main theorem.

THEOREM 2.1. Define e; = w; — m(x;, z;), where m(x;, z;) = Eg(w;), and
assume that ® = E[g;¢;] is positive definite. Then under Assumptions 2.1-2.3we
have:

() V/n(p —y) — N(0,%) in distribution, where ¥ = o~ 1Qo~1 Q =
Elo?(w;, x;, z)eiel] and o 2(w;, xi, z;) = E[u?|w;, x;, zi].

(i) A consistent estimator of ¥ is given by = & 1Qd1, where & =
n= Y (i — W) (wi — W), @ =n"t Y0 42 (w; — W) (w; — W), W isthe
ithrowof W and ii; = ¥; — w/p — pX(x;, 2;)'é.

The proof of Theorem 2.1 is given in the Appendix. [One may prove
Theorem 2.1 based on the general result of Shen (1997) and Ai and Chen (2003)
which requires one to establish stochastic equicontinuity of the objective function.
However, for the specific partially linear varying semiparametric model, it is easier
to use a direct proof as given in the Appendix.]

Under the conditional homoskedastic error assumptEimﬂwi,xi, zi] =
E(uiz) = o2, the estimatory is semiparametric efficient in the sense that the
inverse of the asymptotic variance Qfn(y — y) equals the semiparametric
efficiency bound. From the result of Chamberlain (1992) [the concept of semi-
parametric efficient bound we use here is discussed in Chamberlain (1992), which
gives the lower bound for the asymptotic variance of an (regular) estimator satis-
fying some conditional moment conditions; see also Bickel, Klaassen, Ritov and
Wellner (1993) for a more general treatment of efficient and adaptive inference
in semiparametric models], the semiparametric efficiency bound for the inverse of
the asymptotic variance of an estimatonois

(15) Jo= giren; E[(wi — g(x;, z0))(varu; |wi, xi, 7D~ Hwi — g(xi,20))].
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Under the conditional homoskedastic error assumptiofuMas;, x;, zi] = o2,
then (15) can be rewritten as (x;, z;) = Eg(w;))

1. /
Jo= —Z;QTQE[(wi —g(xi,zi)) (wi — g(xi, 20)) ]

o
1 /
(16) = pE[(wi —m(xi, zi))(w; —m(xi, z)) |
1@
= ;E[S[Si] = ;

Note that the inverse of (16) coincides with = o2®~1, the asymptotic
variance of,/n(y — y) when the error is conditional homoskedastic. Hence,
» 1= Jp andy is a semiparametrically efficient estimator under the conditional
homoskedastic error assumption.

The next theorem gives the convergence raté;(n‘) = pfl (z)&lkl to Bi(z) for
[=1,...,d.

THEOREM 2.2. Under Assumptions 2.1-2.3 let §, denote the support of z;.
Thenwehave, for [ =1, ..., d:

(i) SURcs. 1BI(2) — Bi(@)] = 0pGCo(K)VEK [/ + Xy ki ™).
(i) 230 1(Ai@) — Br2)?= Op(K/n+ i1 k).

(i) [(Bi(2) — Bi()PdF.(z) = Op(K/n + X¢_1 k72, where F. is the
cumulative distribution function of z;.

The proof of Theorem 2.2 is given in the Appendix.

Newey (1997) gives some primitive conditions for power series Bsgplines
such that the Assumptions 2.1-2.3 hold. We state them here for the readers’
convenience.

ASSUMPTION 2.4. (i) The support of(x;,z;) is a Cartesian product of
compact connected intervals on which;, z;) has an absolutely continuous
probability density function that is bounded above by a positive constant
and bounded away from zero; (i) far=1,...,d, fi(x,z) is continuously
differentiable of ordeg; on the suppor8, where f;(x, z) = x;8;(z) or fi(x,z) =
my(x, z).

ASSUMPTION2.5. The support ofx;, z;) is [—1, 1]41".

Suppose that a smooth functigiz) (z € R") is continuously differentiable of
orderc. It is well established that the approximation error by using power series
or B-splines is of the order 0O (K ~</"); see Lorentz (1966), Andrews (1991),
Newey (1997) and Huang (1998). Therefore, Assumption 2.3(i) holds for power
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series andB-splines ifﬁ(zlekfcl/’) =0(1) (i.e., 8 = c;/r). Newey (1997)
shows that, for power series or splines, Assumption 2.4 implies that the smallest
eigenvalue ofz[ PX (x;) PX (x;)'] is bounded for alK . Also, Assumptions 2.4 and

2.5 imply that Assumptions 2.2 and 2.3 hold ®rsplines with¢o(K) = O (VK ).
Hence, we have the following results for regression splines.

THEOREM2.3. For splines, if Assumptions 2.1, 2.4and 2.5 are satisfied, and
kf/n—)OaSn—>oof0rl=l,...,d,then:

(i) The conclusion of Theorem 2.1 holds.
(i) The conclusion of Theorem 2.2 holds with v/K replacing zo(K).

Theorem 2.2 only gives the rate of convergence of the series estimator for
the varying coefficient functior8(z). As we mentioned in the Introduction, it
is difficult to obtain asymptotic normality results for the series estimator of
B(z) under optimal smoothings. The reason is that the asymptotic bias of the
series estimator is unknown in general. Recently, Zhou, Shen and Wolfe (1998)
have obtained an asymptotic bias for univariate spline regression functions that
belong toC? (i.e., the regression functions have continuguts derivatives)
under somewhat stringent conditions such as the knots are asymptotically equally-
spaced, and the degree of the splineis equal top — 1. See Huang (2003)
for a more detailed discussion on the difficulty of obtaining the asymptotic bias
for general cases with splines. Alternatively, one may choose to undersmooth
the data. In this case the bias is asymptotically negligible. Huang (2003) has
obtained the asymptotic distribution of spline estimators under quite general
conditions (provided the data are slightly undersmoothed). Huang, Wu and Zhou
(2002, 2004) have further provided asymptotic distribution results for spline
estimation of a varying coefficient model. Their results can be directly applied to
obtain the asymptotic distribution @f(z) in a partially linear varying coefficient
model. This is becausg — y = 0, (n~Y2), which converges to zero faster than
any nonparametric estimation convergence rate. Therefite, has the same
asymptotic distribution whether one uses the estimgtor the truey, the latter
becomes a varying coefficient model (whgnis unknown) and the results of
Huang, Wu and Zhou (2002, 2004) apply.

3. Monte Carlo simulations. In this section we report some simulation
results to examine the finite sample performance of our proposed estimator, and
also compare it with the kernel-based profile likelihood estimator suggested by
Fan and Huang (2002). We first consider the following data generating process
(DGP):

a7 DGP1:y; =1+ 0.5w; + x; B1(z;) + u;, i=1...,n,
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where
(18) B1(zi) = 1+ (24z;)3 exp(—24z;)

is taken from Hart (199730 = 1 andy = 0.5. The errol;’s are i.i.d. normal with

mean 0 and variance 0.2§, is generated by the i.i.d. unifol 2] distribution,

w; = vy + 2vz; andx; = vy; + vz, Wherev;, j =1, 2, 3, are i.i.d. uniforno, 2].
We also consider a second data generating process:

(19) DGP2:y; =4+ 0.5w; + x;181(zi) + xi2B2(zi) + ui, i=1...,n,

where B1(z;) is the same as in DGP1682(z;) = z; + sin(z;), z; is i.i.d.
uniform[O, 2], u; is i.i.d. normal with mean 0 and variance 0.2h,= v1; + 2v3;,
x1 = vy + vz, and xy = vg + 0.5v3;, wherev;; (j = 1,2, 3,4) are i.id.
uniform[0, 2].

The sample sizes are= 100 andn = 200, and the number of replications is
5000 for all cases. We compare the estimated mean squared error (M$E) of
defined byMSE(P) = 559527237 — ¥)2 and estimated mean average squared
error (MASE) of () defined byMASE(A(-)) = g0 721 15 Srea (Br.j (zi) —
Bi(zi)? (I =1 for DGP1,1 = 1,2 for DGP2), wherep; and f; ;(z;) are,
respectively, the estimates ofand §;(z;) from the jth replication based on one
of the two methods: thé-spline method and the kernel-based profile likelihood
method. We use a univariate culiiespline basis function defined by

13 .
(20) Bl = 5 Y (D) (%) maxo.z - 1%
J:

wherer, ..., t4 are the evenly-spaced design knots. The kernel estimatpriof
discussed at the end of Section 2. The number of t&fms series estimation and

the smoothing parametérin kernel estimation are both selected by leave-one-
out least squares cross-validation. As discussed in Bickel and Kwon (2002), the
estimation of the parametric component does not very sensitively depend on the
choice of smoothing parameters, as long as the selected smoothing parameters do
not create excessive bias in the estimation of the nonparametric components. In
this regard, the cross-validation method usually performs well. (Other data driven
methods in selecting in series estimation include the following: the generalized
cross-validation criterion [Craven and Wahba (1979) and Li (1987)] and Mallows’
C, criterion [Mallows (1973)].)

The simulation result is presented in Table 1. From Table 1, first we observe that
as the sample size doubles, the estimated MSE for all three different estimators
reduces to about half of the original values; this is consistent with the fact that
all of them are,/n-consistent estimators gf. Second we observe that the
spline method gives slightly smaller estimated MSE déér both DGPs. Under the
conditional homoskedastic error condition, both methods are semiparametrically
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TABLE 1
MSE(y) by spline and kernel methods

DGP1 DGP2
n=100 n=200 n=100 nr =200

Cubic B-spline MSE(y) 0.00278 0.00133 0.00357 0.00153
Profile likelihood MSE(y) 0.00315 0.00145 0.00443 0.00178

efficient. Therefore, they have the same asymptotic efficiency. The results in
Table 1 may reflect small sample differences of the two estimation methods for
the chosen data generating processes (DGP). It is possible that for some other
DGPs the kernel method may have better small sample performance. In fact, a few
simulated examples cannot differentiate the finite sample performance of the two
methods.

Table 2 reportsMASE(B(z)) for the spline and the profile likelihood methods.
The spline and the kernel methods give similar estimation resutdASE(S(z))
for both DGPs.

The results of Tables 1 and 2 are based on the least-squares cross-validation
selection ofK (for spline) and: (for the profile likelihood method). To examine
whether our findings only reflect a particular way of selecting the smoothing
parameters (the cross-validation method), we also computeMi®e(y) and
MASE(B(-)) for a range of different values df and’ without leave-one-out in
the estimation. Figures 1 and 2 plot the estimation results.

In Figure 1(a) the dashed line plots the leave-one-out cross-validation function
for a range ofK for the spline method (DGP1s = 100, average over the
5,000 replications). We observe that the cross validation function is minimized
around K = 10. The solid line in Figure 1(a) is the sum of squared residuals
computed without using the leave-one-out estimator; as expected, it decreases as
K increases.

Figure 1(b) graphs thtMSE(y) computed using all observations (not using
the leave-one-out method). We see tM8E(y) takes minimum values around
K =10 andK = 11. Figure 1(c) plots th®1ASE(8(z)), again computed using all

. TABLE 2
MASE(B(-)) by spline and kernel methods

DGP1 DGP2
MASE (B1(-)) MASE (81(-) MASE(82(-))
n=100 n=200 n=100 n=200 n=100 n=200

Cubic B-spline 0.0162 0.00764 0.0576 0.0245 0.0635 0.0326
Profile likelihood  0.0224 0.0110 0.0815 0.0356 0.0593 0.0318
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Fic. 1. (a)CV function and SSR (spline, DGP1, n = 100). (b)MSE(y) (spline, DGP1, n = 100).
(c) MASE(B(2)) (spline, DGP1, n = 100).
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observationsMASE(S(z)) assumes minimum values aroukic= 10. The average
of 5,000 cross-validation selectéfls is 10.42.

From Figure 1 we can see that, on average, the least squares cross-validation
method performs well in selecting that is close to values of that minimize
MSE(y) and MASE(B(z)). Note that both Figures 1(b) and 1(c) do not use the
leave-one-out estimator. Therefore, unlike the sum of squared resiti&Etsy )
andMASE(B(z)) do not monotonically decrease Asincreases.

Figure 2 gives the corresponding cases for the profile kernel method. Figure 2(a)
shows that the cross-validation function is minimized arotre 0.04, while the
sum of squares of residuals monotonically increases kvith

Figures 2(b) and 2(c) show that bd#SE(7) andMASE(B(z)) are minimized
around 2 = 0.04. Note that Figures 2(b) and 2(c) are computed using all
observations (without using the leave-one-out method). Therefore, similar to the
spline caseMSE(y) and MASE(ﬁ(z)) do not decrease monotonically with but
rather they are both minimized around the valug:dhat minimizes the cross-
validation function.

Summarizing the results of Figures 1 and 2, we find that the cross-validation
method performs adequately for the simulated data. The simulation results
reported in this section show that both the spline and the kernel methods can be a
useful tool in estimating a partially linear varying coefficient model.

4. An empirical application. In this section we consider estimation of a
production function in China’s manufacturing industry to illustrate the application
of the patrtially linear varying coefficient model. The data used in this paper are
drawn from the Third Industrial Census of China conducted by the National
Statistical Bureau of China in 1995. The Third Industrial Census of China
is currently the most comprehensive industrial survey in China. To avoid
heterogeneity across different industries and also to maintain enough observations
in the sample for accurate semiparametric estimation, we include firms from the
sector of food, soft drink and cigarette manufacturing in this study. After removing
firms with missing values, the sample size we use is 877. We estimate a benchmark
parametric linear model as follows:

(22) INnY =B0+ynw+BINL+BrInK + B;Inz+u,

whereY is the sales of the firmy is the liquid capital L is the labor inputk is
the fixed capital and is the firm’s R&D (all monetary measures are in thousand
RMB, the Chinese currency).

The patrtially linear varying coefficient model is given by

(22) INY =y Inw + Bo(z) + fi(2) INL + Be(z) INK + u.

Here we choose liquid capital as thevariable whose coefficient does not depend
on the firm's R&D spendingz). We have given some theoretical arguments for
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this model specification in the Introduction; to justify this choice statistically, we
test both models (21) and (22) against a more general semiparametric varying
coefficient model,

(23) INY =y (@) Inw+ Boz) + B () INL + Br(z)INK +u.

Obviously, (23) includes (22) as special case whép) is constant for alk.
We use quadratic and cubic splines and the number of knots is chosen by
the least squares cross-validation method. The cross-validation method selected
the quadratic spline. Our test for the null models (21) and (22) is based on
(RS% — RSS)/RSS, whereRSS is the residual sum of squares from the null model,
andRSS is from the alternative model (23). We obtain the critical values of our
test based on 1,000 residual-based bootstrap procedures where we first obtain the
residuals from the null model, from which we generate two point wild bootstrap
errors, which in turn are used to generate bootstrapdr(using the estimated
null model); the bootstrap statistic {RSS; — RSS")/RSS", whereRSS; is the
residual sum of squares from the null model computed using the bootstrap sample
andRSS* is computed from the alternative model also using the bootstrap sample.
Note that the bootstrap sample is generated according to the null model. Therefore,
the bootstrap statistic approximates til distribution of the original test statistic
even when the null hypothesis is false. When testing the parametric null model, we
firmly reject the null model with g-value of 0.001. For testing the partially linear
varying coefficient model (22), we cannot reject this null model at conventional
levels (ap-value of 0.162). Therefore, both economic theory and the statistical
testing results support our specification (22).

The estimated value of based on (22) is 0.481, with a standard error of 0.0372
(thez-statistic is 12.91). The goodness-of#it is 0.566 [R? =1 — RSS/ Y (vi —
)2, y; = InY;]. The estimated varying coefficient functions are plotted in Figures
3(a) to 3(c).Bo(z) is plotted in Figure 3(a). Figure 3(b) shows that the marginal
productivity of laborB;(z) is a nonlinear function ot (R&D). The marginal
productivity of labor first increases with and then decreases asincreases
further. The bell shape of the curve suggests that, while modest R&D can improve
labor productivity, higher R&D leads to lower labor productivity. Figure 3(c)
shows that the marginal productivity of (fixed) capital is also nonlineas. it
exhibits a general up trend with indicating that firms with large R&D spending
yield relative higher marginal (fixed) capital productivity. These results are not
surprising given that most of the firms in our sample are state-owned. It is typical
in these firms that capital is scarce while labor is excessive. Thus, most of the
R&D expenses are used to improve equipment performance, but not to train labor.
In Figure 3(d) we graph the return to scale functjor 8;(z) + Bk (z). The return
to scale is well below one (the constant return to scale level) for firms with small
R&D, and it increases to a range between 0.8 to 0.9 for firms with large R&D
expenditures. The results indicate that most of the firms in our sample exhibit
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Return to Scale
~

(d)
FIG. 3 (CONTINUED). (d)Return to scale (spline).

decreasing returns to scale in production. It partly reflects the fact that the firms

included in the survey are large firms, most of which are state-owned firms. These
firms typically have a production scale larger than ideal. In particular, there are

usually too many employees in these firms. It was not until several years after

the survey we use in this paper, as a result of fierce competition from foreign

firms and the passage of bankruptcy law in China, that the food, soft drink and

cigarette sector withessed a string of reorganizations, mergers and acquisitions.
Further discussion is beyond the scope of this paper.

We have also applied the kernel profile likelihood method to this data set. The
estimation results are quite similar to those obtained by the spline method. For
example, the estimated is 0.489 with a¢-statistic of 1320. TheS(z) functions
all have similar shapes as those obtained by the spline method. Therefore, we do
not report the kernel estimation results here.

5. Possible extension. In this section we briefly discuss (without providing
technical details) efficient estimation of a partially varying coefficient model when
the error is conditional heteroskedastic.

Theorem 2.1 holds even when the error is conditional heteroskedastic, say,
Ew?|v;) = 0%(v;), where v; = (w;,x;,z;). However, in this case is not
semiparametric efficient. An efficient estimator can be obtained by dividing each
term in (5) byo; = o 2(v;):

(24) ﬁ:ﬂy_,_w_,_ﬂ.
oi O of o

We estimate(y’, B(z;)’) by the least squares regression¥pfo; on (w;/o;,
pX(xi,z:) /oi). The transformed errar; /o; becomes conditional homoskedastic.
Under the assumption that9n, < inf, 02(v) < sup, o2(v) < n2 < oo for some
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positive constantg; < 12, by the same arguments as in the proof of Theorem 2.1,
one can show that

(i —y)— N©, Jy A0dgHy =N, JgY)  indistribution
where
(25) Jo= int E{{wi —x{&@)]w; - xXj£@)) Jo? (i)
and
Ao = inf E{lwi — /& (z)llwi = xfg @)V /o ()
= Inf E{lw; —xi§ @)llw; = x{£@)1 fo* )} = Jo

Therefore, by the result of Chamberlain (1992), we know thais semi-
parametrically efficient. Note that if we let(x,z) = x'é(z) € § denote the
solution of the minimization problem of (25), that i&{[w; — a(x;, z;)|[w; —
a(xi, z)) jo?(u)} =infeeg E([wi —x/& (z0)][wi — x/& (z)]' /o ?(v1)}, thena(x, 2),
in general, differs fronm (x, z) = Eg (w;) defined in (16) because of the weighting
function /o2 (v;).

It is unlikely thato?(v;) is known in practice. Le62(v;) denote a generic
nonparametric estimator ef2(v;), and writeé; = v/62(v;). Then one can obtain
feasible estimators fop andg(z) by regressing’;/6; on [w]/6;, pX(xi,2)/6:].

The resulting estimator of will be semiparametric efficient provided thatv)
converges ta (v) uniformly with a certain rate for alb in the compact support
of v.

For the kernel-based profile likelihood approach, it is more difficult to obtain
efficient estimation when the error is conditional heteroskedastic. Recall that
Eg4(A;) denotes the projection of; on the varying coefficient functional spage
From (5) we have

(26) yi — Eq(vi) = (w; — Eg(w))y +u;.
Dividing each term in (26) by;, we get

(27) =

o Oj Oi

vi—Eg(yi) (w; — E?(wi))/y LM

Let y denote the least squares estimatoydiased on (27). By the Lindeberg
central limit theorem, we have
V(7 —y) = NO, {E[(wi — Eg(wp))(w; — Eg(w)) /o))

in distribution

(28)
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However,y is not semiparametrically efficient because
E[(wi — Eg(w))(wi — Eg(wy)'/of]
# ;2; E[(w; — g(xi,z0)) (wi — g(xi,20)) /o2 (vi)]

due to the weight function /bl?. [Eg(w;) Iis defined as the (un-weighted)
projection ofw; on the varying coefficient functional spage It differs from

the weighted projection in general.] We conjecture that some iterative procedure
(similar to the backfitting algorithm) is needed in order to obtain an efficient
kernel-based estimator forwhen the error is conditional heteroskedastic.

APPENDIX

Throughout this Appendix¢ denotes a generic positive constant that may be
different in different usesy"; =>_" ;. The norm|| - || for a matrix A is defined
by |A| = [tr(A’A)]Y2. Also, whenA is a matrix andu,, is a positive sequence
depending om, A = O,(a,) [0r 0,(a,)] means that each element.fis O, (a,)
[or o, (a,)]. Also, when we writeA < C for a constant scala, it means that each
element ofA is less or equal t@’'.

PROOF OFTHEOREM 2.1. Recall that (x;, z;) = E[w;|x;, zil, m(x;, z;) =
Eg(w;) = E¢(0(x;,z;)) ande; = w; —m(z;, x;). Definev; = w; —0(x;, z;) and
n; = 0(zi, x;) — m(x;, z;). We will use the following short-hand notatios; =
0(xi,zi), g = x;B(z;) andm; = m(x;, z;). Hencey; = w; — 0;, &; = 0; +v; —m;,
n; = 6; — m;. Finally, the variables without subscript represent matrices, for
examplef = (01, ..., 6,) is of dimensiom x 1.
Also recall that for any matrid with n rows, we defined = P(P'P)~P'A
[P is defined below (6)]. Applying this definition t6,m, g, n,u,v, we get
Sincew; = 6; +v; and6; = m; + n;, we getw; =n; +v; + m; andw; =
iii + U; + ;. In matrix notation,

W=n+v+m and W=7+7+m.
Therefore, we have
(29) W—W=n+v+@m—m)—17—i.

For scalars or column vectors; and B;, we defineSs g = n‘lzi A;B; and
S4 = Sa.a. We also define the scalar functiE@ =n~1y; AlA;, which s the sum
of the diagonal elements ¢f;. Usingab < (a®+b?)/2, itis easy to see that each
elementofS, p is less or equal to4 +- S. When we evaluate the probability order
of Sa 5, we often writeS4 g < Sa + Sp. The scalar bound, + Sp bounds each
of the elements irf4_p. Therefore, ifSy + Sg =0 »(ay) (for some sequenas,),
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then each element df, p is at mostO,(a,), which implies thatS, g = O (ay).
Similarly, using the Cauchy—Schwarz inequality, we hslyg; < (S4Sp)/2. Here
again, the scalar bounds all the elementS 4.

Note that iva_vl_W exists, then, fron{10) and(11), we get

-1
V@ —y)= |:”_1Z(wi — w;)(w; — lj)i)/j|

30
(30) X«/ﬁ:n_lz(wi—ﬁ)i)(gi—éiJrui—ﬁi)}

l
-1
= SW_W‘/ESWfW,gngrufﬁ’
whereg; = x/B(z;).
For the first part of the theorem, we will prove the following: §),_# =

@ + 0p(1), (i) Sy_j7 35 = op(nfl/z), (i) Sy_wan = Op(nfl/z) and
(V) V/nSyw_i., — N(0, Q) in distribution.

PROOF OF(i). For a matrixA and scalar sequeneg, A = O,(a,) (0, (ay))
means that each element afhas an order oD, (a,) (0,(a,)). Using (29), we
have

(BL) Sw_ = Sprvrm—sy—i—i = Sy+v + Sen—sy—5—7 + 2Sn1v, (n—it)—5—ii-

The firsttermsS, ., = 2 3, (i +v) (i +v:) = 2 3 e16] = @ +0, (1) by virtue
of the law of large numbers.

The second termS, iy —5—i < 3(Sgn—m) + Sz + S7) = 0,(1) by Lemmas A.3,
A.4(i)) and A.5, stated and proved at the end of this Appendix.

The last termS, ¢, (n—s)—i—i < {Sn+vSem—sn)—i—i} /2 = (0, Do, (1)Y2 =
0,(1) by the preceding results, where foran< m matrix A, Diag(A) is anm x 1
matrix with the diagonal elements df andAY/2 has the same dimension Ay
taking the square root for each elementdof O

PROOF OF(ii). Using (29), we have

(32) SW—W,g—g = Sptvt-(m—in)—i—7i,g—&
= Sytv,g—g T Sm—sn,g—g — So.g-z — Sig-z-

For the first term, by noting thaf; + v; is orthogonal to the varying coeffi-
cient functional spacg, andg; — g; belong to4, we have using Lemma A.3,
E[llSyv.g-31121 = 17250y E[(ni +vi) (i + i) (8 — 8)%1 < Cn= YTy k™) x
Ellln1 + vl = 0=t Y01 k%) = o(n™1), which implies thatS, ., , ; =
0, Y2y k).
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The second terns,, _; —; < (Sy—iS;—3)Y2 = 0,(X k") by Lem-
ma A.3.

The third term S;,_; < (S35,-p)"2 = 0,(K/m")0,(SiL1k ") by
Lemmas A.3 and A.4(j). The last terfy ,_; < (S75,-2)Y? = 0,((k/n)?) x
0,01k %) by Lemmas A.3 and A.5.

Combining the above four terms we haw®, _§, ;. = 0,((n"Y2 +

(K/m)Y2) (i k7)) + YLk ?1) = 0,(n=1/2) by Assumption 2.3. [0

PROOF OF(iii)). Using (29), we have

(B3)  Sw_iw.i = Sprvrm—iiy—s—i.i = Sp+v.a + Sm—sm.i — So.a — Sq.a-

The first term S,z < (Sp+052)Y2 = 0,(K/n) by Lemma A.4(ii). The
second terns,, i i < (Su_iSi) /2= 0,(X4_1 k) 0,(~K//n) by Lemmas
A.3 and A.4(ii).

The third termS; ; < (S;5;)Y? = 0,(K/n) by Lemma A.4(i), (ii). The last
termsS; ; < (S; Sz )1/2 0, (K /n) by Lemmas A.4(ji) and A.5.

Comblnlng all four terms, we gefy,_7.; = Op(K/n +n~Y2Y 4 k%) =
0,(n~Y2) by Assumption 2.3. O

PrRoOF OF(iv). Using(29), we have
Sy i = NSy vt (m—si) -7
= \/ESH-HJ,M + \/E(Smfnﬁ,u - Sf),u - Sﬁ,u)-

The firsttermy/n Sy = /0> l_1(ni +vi)u; = /n Y14 giui — N(0, Q) in
distribution by the Lindeberg—Feller central limit theorem.

The second terrrE[Ssl _aul X, Z]l = niztr{(m —m)m — m) Eluu'|X,Z]} <
(C/n)tr[(m —m) (m —m)/n]l = (C/n)Sy_i = op(n‘l) by Lemma A.3. Hence,
Sm—rh,u = Op(n_l/z)-

The third term E[S§7M|X, 7] = n—lztr(P(P’P)_lP/vv’P(P’P)_lP/E[uu/|X,
7)) < (C/nz) tr[P(P'P)~ 1P vv'P(P'P)~1P'] = (C/n)tr(3¥' /n) = (C/n)S; =
0,(n~1) by Lemma A.4(j). HencesS; , = 0,(n~1/?).

The last terms; , = 0, (n~Y/2) by the same proof as; , = 0, (n~Y/2) by citing
Lemma A.5, rather than citing Lemma A.4(i))1J

(34)

Combining proofs of (i)—(iv) with(30), we conclude that/n(y — y) —
N, @ 1Qd~1) in distribution.

For the second part of the theorem, we need to show hat ¥ + 0,(1),
wheres = d~1Qd~L But & = Sy _ = @ + 0,(1) is proved in the proof of
(|) above. By a similar argument, it is easy to show fat Q +0,(1). Therefore,

S=%+0,(1). O
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PROOF OFTHEOREM2.2.  We will prove Theorem 2.2 by replacigz) and
B(z) by g(x,z) = x'B(z) andg(x, z) = x'B(z), respectively, becausé (x, z) —

g(x, )2 = ¥ (Bz) — B()I? <d X1 xF(Bi(2) — Bi(2))?, which has the same
order as| 8(z) — B(z) |2 under the bounded support assumption. Hence, the rate of
convergence fog(x, z) — g(x, z) is the same as that gﬁf(z) — B(2).

The proof is similar to the proof of Theorem 1 in Newey (1997). Define an
indicator functionl,, which equals 1 i P’ P) is nonsingular and 0 otherwise. We
first find the convergence rate @f||@ — «|. By (12) and(7), and if (P’P)~1
exists, we have

a=(P' PP (Y —Wyp)

=(P'P)IP(Y =Wy —W (P —))
(35) =(P'P) P (Pa+ (G — Pa)+u— Wy —y))

=a+ (P'P/n)"tP(G— Pa)/n+ (P'P/n) " P'u/n

~(P'P/m) T P'W (@ —y)/n.
Hence,
1Lllé —al <1, (P'P/n)"*P'(G — Pa)/n|
(36) + 1, |(P"P/n) " Pu/n||
+ 1,/(P'P/n) TP’ W (P — y)/nl.

The first term1,||(P'P/n)"1P' (G — Pa)/n| = OP(Zlekf‘s’) by Lem-
ma A.2.
The second term

E[L,I(P'P/n)"tP'u/n||X, Z]

1/2

=1L, E[('P/n)(P'P/n)"X(P'P/n) Y (P'u/n))"*|X, Z]

< 0,1, tr(P(P'P)"*P'Eluu'|X, Z]/n)"?

< 0,(D1L,CVK //n

by Lemma A.1 and Assumption 2.1. Hencd,|(P'P/n)"1Pu/n| =
0,(WK/Jn).

As for the last term, note th&% = n +v+m =¢+m andy —y = 0,(n~Y?)
by Theorem 2.1. Therefore,

E[L,||(P'P/n)LP'W/nl|||X, Z]
= 1L,E[|(P'P/n)"tP'(e + m)/n||X, Z]
< LE[(P' P/n)"tP'e/n||X, Z]1 + LE[I(P' P/n) L P'm/n||X, Z].
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Also,
LELI(P'P/n) " P'e/nl||X, Z]
= L,E[|I(g'P/n)(P'P/n) " (P'P/n) " (P'e/n)||| X, Z]
< 0,()1,tr(P(P'P) " P Elec'|X, Z]/n)"?
< 0,(DL,CVK /v/n

by Lemma A.1 as in the proof of Theorem 2.1. Hentg(P'P/n)"1P'e/n| =

0, (VK /1) =0p(D).
1P P)"P'm| = 1, (P'P/n)~1P'm/n| = 0,(1) by LemmaA.2.
Combining the above results, also noting that> 1 almost surely, we have

d
(37) ||&—a||:0,,(2k,“”+«/?/ﬁ).
=1

To prove part (i) of Theorem 2.2, usin@7) and Assumption 2.3, and also
noting thatg (x, z) = x’B(z) = pX(x, z)’&@, we have

sup 18(x,2) —g(x,2)| < sup [pX(x,2)@—a) + |pX(x,2)a — g(x,2)|
(x,2)€S (x,2)es8

d
< ¢o(K)ll& —al + O(Zk,‘é’)

=1
d
= 0p<§o(K)(Zk,“” + «/E/ﬁ))

=1
Proofs for (ii) and (iii) are similar, and we only prove (ii),

n Y 18, ) — gz )
i=1

=n"Y P& —G|?
<207 H|P@—)|?+ | Pa — G||?)

=2 —a)(P'P/n)@—a)+2 sup [pX(x,2)a —g(x, 2
(x,2)e8

d
=0, (K/n + Zk,_25’>

=1

by (37), Lemma A.1 and Assumption 2.3(i). Thus, we have proved Theorem 2.2.
O

We now present some lemmas that are used in the proofs of Theorems 2.1 and
2.2. We will omit the indicator functiod,, below since Protl,, = 1) — 1 almost
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surely. Following the arguments in Newey (1997), we can assume without loss
of generality thatB = I (B is defined in Assumption 2.2). HenceX (X, Z) =
pX(X,2), and Q = E[pX(x;,z))pX(xi,z;)]1 =1 (I is an identity matrix of
dimensionK); see Newey (1997) for the reasons and more discussion of these
issues. Recall thatX (x, z) is aK x 1 matrix and rewrite each component of this
matrix aspX (x, z) = (p1x (x, 2), ..., pkk (x,2))’.

LEMMA A.1. |Q — Il = 0,(o(K)VK /i) =0,(1), where O = P'P/n.
ProOOFE This is Theorem 1 in Newey (1997)[]

LEMMA A.2. [la; — asl = 0,(X k), where @y = (P'P)"1P'f,
o satisfies Assumption 2.3and f =G or f =m.

PROOF By Lemma A.1, Assumption 2.3 and the fact tha¢P’P)~1P’ is
idempotent,

@ —ap|=II(P'P)"LP'(f — Pay)|

= |I(f — Pay) P(P'P)LQP'(f — Pay)/n|*?

< 0, (V|(f — Pay) P(P'P)LP'(f — Pay)/n|*/?

d
< 0,(VII(f — Pay) (f — Pay)/n||*? = op(Zk,“”>. -
=1

LEMMA A.3. S, = 0,(S i1k ), where f =G or f=m.
PrROOF Note thatf = Pa . By Assumption 2.3 and Lemmas A.1 and A.2,

1 ~ 1 ~
Sp_p= 0 = FR < (1 = PasP+ 1Pl —apP)

d
- 0(21{2‘”) +(ap—ap)(P'P/n)(ay —éy)

=1

d 25 d 26
so(Zkl‘ f)+0,,(1)|af—&f|2=0,,(2k,‘ l). -

=1 =1

LEMMA A.4. (i) S5 = 0,(K/n), (i) Sz = 0,(K/n).
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PrRoOOFE (i) This proof is similar to the proof of Theorem 1 of Newey (1997),

1 / / —1p/
E[S;|1X,Z]1==E[N'P(P'P)"1Pv|X, Z]
n

= 2E[r(P(P'P) 1P EL0X, 70)]
n

< %tr(P(P/P)_lP’) = c(%)

Hence,S; = 0,(K).
(i) follows as in the proof of Lemma A.4(i). [

LEMMA A5, S; = 0,(K/n).

PROOF.  First we show thatP'n/n) = 0,(v/K //n). Recall tha® (x;, z;) =
E(w;ilx;, z;) and n; = 0(x;,z;) — Eg[0(x;,z;)]. Note thatpX(x;,z;) € § and
Eg(n)=0(i.e.n L §).HenceE|P'n/n|?=n"2%; E[pX (x;)Ini|2p¥ (xi)] <
CEpX X)) pX )] = Str{E[pX (X;) pX (x)'1} = (CK /n) = O(K /n), which
implies that(P'n/n) = 0,(~K //n).

Thus, S; = n=Yi'n = (' P/n)(P'P/n)"L(P'n/n) = O0,(K/n)0p(1) =
O0,(K/n) by Lemma A.1 and the fact tha®’'n/n = O,,(«/?/ﬁ) as shown
above. O
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