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NONPARAMETRIC ESTIMATION OF AN ADDITIVE MODEL
WITH A LINK FUNCTION

BY JOEL L. HOROWITZ1 AND ENNO MAMMEN 2

Northwestern University and Universität Mannheim

This paper describes an estimator of the additive components of
a nonparametric additive model with a known link function. When the
additive components are twice continuously differentiable, the estimator is
asymptotically normally distributed with a rate of convergence in probability
of n−2/5. This is true regardless of the (finite) dimension of the explanatory
variable. Thus, in contrast to the existing asymptotically normal estimator,
the new estimator has no curse of dimensionality. Moreover, the estimator has
an oracle property. The asymptotic distribution of each additive component is
the same as it would be if the other components were known with certainty.

1. Introduction. This paper is concerned with nonparametric estimation of
the functionsm1, . . . ,md in the model

Y = F [µ + m1(X
1) + · · · + md(Xd)] + U,(1.1)

whereXj(j = 1, . . . , d) is thej th component of the random vectorX ∈ R
d for

some finited ≥ 2, F is a known function,µ is an unknown constant,m1, . . . ,md

are unknown functions andU is an unobserved random variable satisfying
E(U |X = x) = 0 for almost everyx. Estimation is based on an i.i.d. random
sample{Yi,Xi : i = 1, . . . , n} of (Y,X). We describe an estimator of the additive
componentsm1, . . . ,md that converges in probability pointwise at the raten−2/5

when F and themj ’s are twice continuously differentiable and the second
derivative ofF is sufficiently smooth. In contrast to previous estimators, only two
derivatives are needed regardless of the dimension ofX, so asymptotically there is
no curse of dimensionality. Moreover, the estimators derived here have an oracle
property. Specifically, the centered, scaled estimator of each additive component is
asymptotically normally distributed with the same mean and variance that it would
have if the other components were known.
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Linton and Härdle (1996) (hereinafter LH) developed an estimator of the
additive components of (1.1) that is based on marginal integration. The marginal
integration method is discussed in more detail below. The estimator of LH
converges at the raten−2/5 and is asymptotically normally distributed, but it
requires themj ’s to have an increasing number of derivatives as the dimension
of X increases. Thus, it suffers from the curse of dimensionality. Our estimator
avoids this problem.

There is a large body of research on estimation of (1.1) whenF is the identity
function so thatY = µ + m1(X

1) + · · · + md(Xd) + U . Stone (1985, 1986)
showed thatn−2/5 is the optimalL2 rate of convergence of an estimator of
themj ’s when they are twice continuously differentiable. Stone (1994) and Newey
(1997) describe spline estimators whoseL2 rate of convergence isn−2/5, but the
pointwise rates of convergence and asymptotic distributions of spline and other
series estimators remain unknown. Breiman and Friedman (1985), Buja, Hastie
and Tibshirani (1989), Hastie and Tibshirani (1990), Opsomer and Ruppert (1997),
Mammen, Linton and Nielsen (1999) and Opsomer (2000) have investigated the
properties of backfitting procedures. Mammen, Linton and Nielsen (1999) give
conditions under which a smooth backfitting estimator of themj ’s converges at the
pointwise raten−2/5 when these functions are twice continuously differentiable.
The estimator is asymptotically normally distributed and avoids the curse of
dimensionality, but extending it to models in whichF is not the identity function
appears to be quite difficult. Horowitz, Klemelä and Mammen (2002) (hereinafter
HKM) discuss optimality properties of a variety of estimators for nonparametric
additive models without link functions.

Tjøstheim and Auestad (1994), Linton and Nielsen (1995), Chen, Härdle,
Linton and Severance-Lossin (1996) and Fan, Härdle and Mammen (1998) have
investigated the properties of marginal integration estimators for the case in which
F is the identity function. These estimators are based on the observation that when
F is the identity function, thenm1(x

1), say, is given up to an additive constant by∫
E(Y |X = x)w(x2, . . . , xd) dx2 · · ·dxd,(1.2)

wherew is a nonnegative function satisfying∫
w(x2, . . . , xd) dx2 · · ·dxd = 1.

Therefore,m1(x
1) can be estimated up to an additive constant by replacing

E(Y |X = x) in (1.2) with a nonparametric estimator. Linton and Nielsen (1995),
Chen, Härdle, Linton and Severance-Lossin (1996) and Fan, Härdle and Mammen
(1998) have given conditions under which a variety of estimators based on the
marginal integration idea converge at raten−2/5 and are asymptotically normal.
The latter two estimators have the oracle property. That is, the asymptotic
distribution of the estimator of each additive component is the same as it would be
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if the other components were known. LH extend marginal integration to the case
in which F is not the identity function. However, marginal integration estimators
have a curse of dimensionality: the smoothness of themj ’s must increase as the
dimension ofX increases to achieven−2/5 convergence. The reason for this is
that estimatingE(Y |X = x) requires carrying out ad-dimensional nonparametric
regression. Ifd is large and themj ’s are only twice differentiable, then the bias of
the resulting estimator ofE(Y |X = x) converges to zero too slowly asn → ∞
to estimate themj ’s with an n−2/5 rate. For example, the estimator of Fan,
Härdle and Mammen (1998), which imposes the weakest smoothness conditions
of any existing marginal integration estimator, requires more than two derivatives
if d ≥ 5.

This paper describes a two-stage estimation procedure that does not require
a d-dimensional nonparametric regression and, thereby, avoids the curse of
dimensionality. In the first stage, nonlinearleast squares is used to obtain a series
approximation to eachmj . The first-stage procedure imposes the additive structure
of (1.1) and yields estimates of themj ’s that have smaller asymptotic biases
than do estimators based on marginal integration or other procedures that require
d-dimensional nonparametric estimation. The first-stage estimates are inputs to
the second stage. The second-stage estimate of, say,m1 is obtained by taking one
Newton step from the first-stage estimate toward a local linear estimate. In large
samples, the second-stage estimator has a structure similar to that of a local
linear estimator, so deriving its pointwise rate of convergence and asymptotic
distribution is relatively easy. The main results of this paper can also be obtained
by using a local constant estimate in the second stage, and the results of Monte
Carlo experiments described in Section 5 show that a local constant estimator has
better finite-sample performance under some conditions. However, a local linear
estimator has better boundary behavior and better ability to adapt to nonuniform
designs, among other desirable properties [Fan and Gijbels (1996)].

Our approach differs from typical two-stage estimation, which aims at estimat-
ing one unknown parameter or function [e.g., Fan and Chen (1999)]. In this setting,
a consistent estimator is obtained in the first stage and is updated in the second,
possibly by taking a Newton step toward the optimum of an appropriate objective
function. In contrast, in our setting, there are several unknown functions but we
update the estimator of only one. It is essential that the first-stage estimators of the
other functions have negligible bias. The variances of these estimators must also
converge to zero but can have relatively slow rates. We show that asymptotically,
the estimation error of the other functions does not appear in the updated estimator
of the function of interest.

HKM use a two-stage estimation approach that is similar to the one used here,
but HKM do not consider models with link functions, and they use backfitting
for the first-stage estimator. Derivation of the properties of a backfitting estimator
for a model with a link function appears to be very complicated. We conjecture
that a classical backfitting estimator would have the same asymptotic variance
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as the one in this paper but a different and, possibly, complicated bias. We
also conjecture that a classical backfitting estimator would not have the oracle
property. Nonetheless, we do not argue here that our procedure outperforms
classical backfitting, in the sense of minimizing an optimality criterion such as
the asymptotic mean-square error. However, our procedure has the advantages of
a complete asymptotic distribution theory and the oracle property.

The remainder of this paper is organized as follows. Section 2 provides an
informal description of the two-stage estimator. The main results are presented in
Section 3. Section 4 discusses the selection of bandwidths. Section 5 presents the
results of a small simulation study, and Section 6 presents concluding comments.
The proofs of theorems are in Section 7. Throughout the paper, subscripts index
observations and superscripts denote components of vectors. Thus,Xi is the ith
observation ofX, Xj is thej th component ofX, andX

j
i is theith observation of

thej th component.

2. Informal description of the estimator. Assume that the support ofX is
X ≡ [−1,1]d , and normalizem1, . . . ,md so that∫ 1

−1
mj(v) dv = 0, j = 1, . . . , d.

For any x ∈ R
d define m(x) = m1(x

1) + · · · + md(xd), wherexj is the j th
component ofx. Let {pk :k = 1,2, . . . } denote a basis for smooth functions
on[−1,1]. A precise definition of “smooth” and conditions that the basis functions
must satisfy are given in Section 3. These conditions include∫ 1

−1
pk(v) dv = 0,(2.1)

∫ 1

−1
pj (v)pk(v) dv =

{
1, if j = k,

0, otherwise,
(2.2)

and

mj(x
j ) =

∞∑
k=1

θjkpk(x
j ),(2.3)

for eachj = 1, . . . , d , eachxj ∈ [0,1] and suitable coefficients{θjk}. For any
positive integerκ , define

Pκ(x) = [1,p1(x
1), . . . , pκ(x1),p1(x

2), . . . , pκ(x2), . . . , p1(x
d), . . . , pκ(xd)]′.

Then forθκ ∈ R
κd+1, Pκ(x)′θκ is a series approximation toµ + m(x). Section 3

gives conditions thatκ must satisfy. These require thatκ → ∞ at an appropriate
rate asn → ∞.
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To obtain the first-stage estimators of themj ’s, let {Yi,Xi : i = 1, . . . , n} be
a random sample of(Y,X). Let θ̂nκ be a solution to

minimize:
θ∈�κ

Snκ(θ) ≡ n−1
n∑

i=1

{Yi − F [Pκ(Xi)
′θ]}2,

where�κ ⊂ R
κd+1 is a compact parameter set. The series estimator ofµ + m(x)

is

µ̃ + m̃(x) = Pκ(x)′θ̂nκ ,

where µ̃ is the first component of̂θnκ . The estimator ofmj(x
j ) for any

j = 1, . . . , d and anyxj ∈ [0,1] is the product of[p1(x
j ), . . . , pκ(xj )] with the

appropriate components ofθ̂κ .
To obtain the second-stage estimator of (say)m1(x

1), let X̃i denote theith
observation ofX̃ ≡ (X2, . . . ,Xd). Definem̃−1(X̃i) = m̃2(X

2
i ) + · · · + m̃d(Xd

i ),
whereX

j
i is the ith observation of thej th component ofX andm̃j is the series

estimator ofmj . Let K be a probability density function on[−1,1], and define
Kh(v) = K(v/h) for any real, positive constanth. Conditions thatK andh must
satisfy are given in Section 3. These includeh → 0 at an appropriate rate as
n → ∞. Define

S′
nj1(x

1, m̃) = −2
n∑

i=1

{Yi − F [µ̃ + m̃1(x
1) + m̃−1(X̃i)]}

× F ′[µ̃ + m̃1(x
1) + m̃−1(X̃i)](X1

i − x1)jKh(x
1 − X1

i )

for j = 0,1 and

S′′
nj1(x

1, m̃) = 2
n∑

i=1

F ′[µ̃ + m̃1(x
1) + m̃−1(X̃i )]2(X1

i − x1)jKh(x
1 − X1

i )

− 2
n∑

i=1

{Yi − F [µ̃ + m̃1(x
1) + m̃−1(X̃i)]}

× F ′′[µ̃ + m̃1(x
1) + m̃−1(X̃i)](X1

i − x1)jKh(x
1 − X1

i )

for j = 0,1,2. The second-stage estimator ofm1(x
1) is

m̂1(x
1) = m̃1(x

1) − S′′
n21(x

1, m̃)S′
n01(x

1, m̃) − S′′
n11(x

1, m̃)S′
n11(x

1, m̃)

S′′
n01(x

1, m̃)S′′
n21(x

1, m̃) − S′′
n11(x

1, m̃)2 .(2.4)

The second-stage estimators ofm2(x
2), . . . ,md(xd) are obtained similarly. Sec-

tion 3.3 describes a weighted version of this estimator that minimizes the asymp-
totic variance ofn2/5[m̂1(x

1) − m(x1)]. However, due to interactions between the
weight function and the bias, the weighted estimator does not necessarily minimize
the asymptotic mean-square error.
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The estimator (2.4) can be understood intuitively as follows. Ifµ̃ andm̃−1 were
the true values ofµ andm−1, the local linear estimator ofm1(x

1) would minimize

Sn1(x
1, b0, b1) =

n∑
i=1

{Yi − F [µ̃ + b0 + b1(X
1
i − x1)

(2.5)
+ m̃−1(X̃i)]}2Kh(x

1 − X1
i ).

Moreover,S′
nj1(x

1, m̃) = ∂Sn1(x
1, b0, b1)/∂bj (j = 0,1) evaluated atb0= m̃1(x

1)

andb1 = 0. S′′
nj1(x

1, m̃) gives the second derivatives ofSn1(x
1, b0, b1) evaluated

at the same point. The estimator (2.4) is the result of taking one Newton step from
the starting valuesb0 = m̃1(x

1), b1 = 0 toward the minimum of the right-hand side
of (2.5).

Section 3 gives conditions under whicĥm1(x
1) − m1(x

1) = Op(n−2/5) and
n2/5[m̂1(x

1) − m1(x
1)] is asymptotically normally distributed for any finited

whenF and themj ’s are twice continuously differentiable.

3. Main results. This section has three parts. Section 3.1 states the assump-
tions that are used to prove the main results. Section 3.2 states the results. The
main results are then−2/5-consistency and asymptotic normality of themj ’s. Sec-
tion 3.3 describes the weighted estimator.

The following additional notation is used. For any matrixA, define the norm
‖A‖ = [trace(A′A)]1/2. DefineU = Y − F [µ + m(X)], V (x) = Var(U |X = x),
Qκ = E{F ′[µ +m(X)]2Pκ(X)Pκ(X)′}, and�κ = Q−1

κ E{F ′[µ +m(X)]2V (X)×
Pκ(X)Pκ(X)′}Q−1

κ whenever the latter quantity exists.Qκ and�κ ared(κ)×d(κ)

positive semidefinite matrices, whered(κ) = κd + 1. Let λκ,min denote the
smallest eigenvalue ofQκ . Let Qκ,ij denote the(i, j) element ofQκ . Define
ζκ = supx∈X ‖Pκ(x)‖. Let {θjk} be the coefficients of the series expansion (2.3).
For eachκ define

θκ = (µ, θ11, . . . , θ1κ, θ21, . . . , θ2κ , . . . , θd1, . . . , θdκ)′.

3.1. Assumptions. The main results are obtained under the following assump-
tions.

ASSUMPTION A1. The data,{(Yi,Xi) : i = 1, . . . , n}, are an i.i.d. random
sample from the distribution of(Y,X), andE(Y |X = x) = F [µ+m(x)] for almost
everyx ∈ X ≡ [−1,1]d .

ASSUMPTIONA2. (i) The support ofX is X.
(ii) The distribution ofX is absolutely continuous with respect to Lebesgue

measure.
(iii) The probability density function ofX is bounded, bounded away from zero

and twice continuously differentiable onX.
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(iv) There are constantscV > 0 and CV < ∞ such thatcV ≤ Var(U |X =
x) ≤ CV for all x ∈ X.

(v) There is a constantCU < ∞ such thatE|U |j ≤ C
j−2
U j !E(U2) < ∞ for all

j ≥ 2.

ASSUMPTION A3. (i) There is a constantCm < ∞ such that|mj (v)| ≤ Cm

for eachj = 1, . . . , d and allv ∈ [−1,1].
(ii) Each functionmj is twice continuously differentiable on[−1,1].
(iii) There are constantsCF1 < ∞, cF2 > 0, and CF2 < ∞ such that

F(v) ≤ CF1 andcF2 ≤ F ′(v) ≤ CF2 for all v ∈ [µ − Cmd,µ + Cmd].
(iv) F is twice continuously differentiable on[µ − Cmd,µ + Cmd].
(v) There is a constantCF3 < ∞ such that|F ′′(v2) − F ′′(v1)| ≤ CF3|v2 − v1|

for all v2, v1 ∈ [µ − Cmd,µ + Cmd].

ASSUMPTION A4. (i) There are constantsCQ < ∞ and cλ > 0 such that
|Qκ,ij | ≤ CQ andλκ,min > cλ for all κ and alli, j = 1, . . . , d(κ).

(ii) The largest eigenvalue of�κ is bounded for allκ .

ASSUMPTIONA5. (i) The functions{pk} satisfy (2.1) and (2.2).
(ii) There is a constantcκ > 0 such thatζκ ≥ cκ for all sufficiently largeκ .
(iii) ζκ = O(κ1/2) asκ → ∞.
(iv) There are a constantCθ < ∞ and vectorsθκ0 ∈ �κ ≡ [−Cθ ,Cθ ]d(κ) such

that supx∈X |µ + m(x) − Pκ(x)′θκ0| = O(κ−2) asκ → ∞.
(v) For eachκ, θκ is an interior point of�κ .

ASSUMPTION A6. (i) κ = Cκn4/15+ν for some constantCκ satisfying
0 < Cκ < ∞ and someν satisfying 0< ν < 1/30.

(ii) h = Chn
−1/5 for some constantCh satisfying 0< Ch < ∞.

ASSUMPTION A7. The functionK is a bounded, continuous probability
density function on[−1,1] and is symmetric about 0.

The assumption that the support ofX is [−1,1]d entails no loss of generality as
it can always be satisfied by carrying out monotone increasing transformations of
the components ofX, even if their support before transformation is unbounded. For
practical computations, it suffices to transform the empirical support to[−1,1]d .
Assumption A2 precludes the possibility of treating discrete covariates with
our method, though they can be handled inelegantly by conditioning on them.
Another possibility is to develop a version of our estimator for a partially
linear generalized additive model in which discrete covariates are included in
the parametric (linear) term. However, this extension is beyond the scope of the
present paper. Differentiability of the density ofX [Assumption A2(iii)] is used
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to insure that the bias of our estimator converges to zero sufficiently rapidly.
Assumption A2(v) restricts the thickness of the tails of the distribution ofU and is
used to prove consistency of the first-stage estimator. Assumption A3 defines the
sense in whichF and themj ’s must be smooth. Assumption A3(iii) is needed
for identification. Assumption A4 insures the existence and nonsingularity of
the covariance matrix of the asymptotic form of the first-stage estimator. This is
analogous to assuming that the information matrix is positive definite in parametric
maximum likelihood estimation. Assumption A4(i) implies Assumption A4(ii)
if U is homoskedastic. Assumptions A5(iii) and A5(iv) bound the magnitudes
of the basis functions and insure that the errors in the series approximations to
themj ’s converge to zero sufficiently rapidly asκ → ∞. These assumptions are
satisfied by spline and (for periodic functions) Fourier bases. Assumption A6
states the rates at whichκ → ∞ and h → 0 asn → ∞. The assumed rate of
convergence ofh is well known to be asymptotically optimal for one-dimensional
kernel mean-regression when the conditional mean function is twice continuously
differentiable. The required rate forκ insures that the asymptotic bias and variance
of the first-stage estimator are sufficiently small to achieve ann−2/5 rate of
convergence in the second stage. TheL2 rate of convergence of a series estimator
of mj is maximized by settingκ ∝ n1/5, which is slower than the rates permitted by
Assumption A6(i) [Newey (1997)]. Thus, Assumption A6(i) requires the first-stage
estimator to be undersmoothed. Undersmoothing is needed to insure sufficiently
rapid convergence of the bias of the first-stage estimator. We show that the first-
order performance of our second-stage estimator does not depend on the choice
of κ if Assumption A6(i) is satisfied. See Theorems 2 and 3. Optimizing the choice
of κ would require a rather complicated higher-order theory and is beyond the
scope of this paper, which is restricted to first-order asymptotics.

3.2. Theorems. This section states two theorems that give the main results
of the paper. Theorem 1 gives the asymptotic behavior of the first-stage series
estimator under Assumptions A1–A6(i). Theorem 2 gives the properties of the
second-stage estimator. Fori = 1, . . . , n, defineUi = Yi − F [µ + m(Xi)] and
bκ0(x) = µ +m(x)−Pκ(x)′θκ0. Let ‖v‖ denote the Euclidean norm of any finite-
dimensional vectorv.

THEOREM 1. Let AssumptionsA1–A6(i) hold. Then:

(a) limn→∞ ‖θ̂nκ − θκ0‖ = 0 almost surely,
(b) θ̂nκ − θκ0 = Op(κ1/2/n1/2 + κ−2), and
(c) supx∈X |m̃(x) − m(x)| = Op(κ/n1/2 + κ−3/2).

In addition:
(d) θ̂nκ − θκ0 = n−1Q−1

κ

∑n
i=1 F ′[µ + m(Xi)]Pκ(Xi)Ui + n−1Q−1

κ ×∑n
i=1 F ′[µ + m(Xi)]2Pκ(Xi)bκ(Xi) + Rn, where‖Rn‖ = Op(κ3/2/n + n−1/2).
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Now letfX denote the probability density function ofX. Forj = 0,1, define

S′
nj1(x

1,m) = −2
n∑

i=1

{Yi − F [µ + m1(x
1) + m−1(X̃i)]}

× F ′[µ + m1(x
1) + m−1(X̃i)](X1

i − x1)jKh(x
1 − X1

i ).

Also define

D0(x
1) = 2

∫
F ′[µ + m1(x

1) + m−1(x̃)]2fX(x1, x̃) dx̃,

D1(x
1) = 2

∫
F ′[µ + m1(x

1) + m−1(x̃)]2[∂fX(x1, x̃)/∂x1]dx̃,

AK =
∫ 1

−1
v2K(v)dv,

BK =
∫ 1

−1
K(v)2 dv,

g(x1, x̃) = F ′′[µ + m1(x
1) + m−1(x̃)]m′

1(x
1)

+ F ′[µ + m1(x
1) + m−1(x̃)]m′′

1(x1),

β1(x
1) = 2C2

hAKD0(x
1)−1

×
∫

g(x1, x̃)F ′[µ + m1(x
1) + m−1(x̃)]fX(x1, x̃) dx̃

and

V1(x
1) = BKC−1

h D0(x
1)−2

×
∫

Var(U |x1, x̃)F ′[µ + m1(x
1) + m−1(x̃)]2fX(x1, x̃) dx̃.

The next theorem gives the asymptotic properties of the second-stage estimator.

THEOREM 2. Let AssumptionsA1–A6 hold. Then:

(a) m̂1(x
1) − m1(x

1) = [nhD0(x
1)]−1{−S′

n01(x
1,m) + [D1(x

1)/D0(x
1)] ×

S′
n11(x

1,m)} + op(n−2/5) uniformly over|x1| ≤ 1 − h and m̂1(x
1) − m1(x

1) =
Op[(logn)1/2n−2/5] uniformly over|x1| ≤ 1.

(b) n2/5[m̂1(x
1) − m1(x

1)] d→N [β1(x
1),V1(x

1)].
(c) If j �= 1, then n2/5[m̂1(x

1) − m1(x
1)] and n2/5[m̂j (x

j ) − mj(x
j )] are

asymptotically independently normally distributed.

Theorem 2(a) implies that asymptotically,n2/5[m̂1(x
1)−m1(x

1)] is not affected
by random sampling errors in the first-stage estimator. In fact, the second-stage



ADDITIVE REGRESSION MODEL WITH A LINK FUNCTION 2421

estimator ofm1(x
1) has the same asymptotic distribution that it would have if

m2, . . . ,md were known and local-linear estimation were used to estimatem1(x
1)

directly. In this sense, our estimator has an oracle property. Parts (b) and (c) of
Theorem 2 imply that the estimators ofm1(x

1), . . . ,md(xd) are asymptotically
independently distributed.

It is also possible to use a local-constant estimator in the second stage. The
resulting second-stage estimator is

m̂1,LC(x1) = m̃1(x
1) − S′

n01(x
1, m̃)/S′′

n01(x
1, m̃).

The following modification of Theorem 2, which we state without proof, gives the
asymptotic properties of the local-constant second-stage estimator. Define

gLC(x1, x̃) = (∂2/∂ζ 2){F [m1(ζ + x1) + m−1(x̃)]
− F [m1(x

1) + m−1(x̃)]}fX(ζ + x1, x̃)|ζ=0

and

β1,LC(x1) = 2C2
hAKD0(x

1)−1

×
∫

gLC(x1, x̃)F ′[µ + m1(x
1) + m−1(x̃)]fX(x1, x̃) dx̃.

THEOREM 3. Let AssumptionsA1–A6 hold. Then

(a) m̂1,LC(x1)−m1(x
1) = −[nhD0(x

1)]−1S′
n01(x

1,m)+op(n−2/5) uniformly
over |x1| ≤ 1 − h and m̂1(x

1) − m1(x
1) = Op[(logn)1/2n−2/5] uniformly over

|x1| ≤ 1.

(b) n2/5[m̂1,LC(x1) − m1(x
1)] d→N [β1,LC(x1),V1(x

1)].
(c) If j �= 1, thenn2/5[m̂1,LC(x1) − m1(x

1)] andn2/5[m̂j,LC(xj ) − mj(x
j )]

are asymptotically independently normally distributed.

V1(x
1) andβ1(x

1) andβ1,LC(x1) can be estimated consistently by replacing
unknown population parameters with consistent estimators. Section 4 gives a
method for estimating the derivatives ofm1 that are in the expressions for
β1(x

1) and β1,LC(x1). As is usual in nonparametric estimation, reasonably
precise bias estimation is possible only by making assumptions that amount
to undersmoothing. One way of doing this is to assume that the second
derivative of m1 satisfies a Lipschitz condition. Alternatively, one can set

h = Chn
−γ for 1/5 < γ < 1. Thenn(1−γ )/2[m̂1(x

1) − m1(x
1)] d→N [0,V1(x

1)],
andn(1−γ )/2[m̂1,LC(x1) − m1(x

1)] d→N [0,V1(x
1)].
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3.3. A weighted estimator.A weighted estimator can be obtained by replacing
S′

nj1(x
1, m̃) andS′′

nj1(x
1, m̃) in (2.5) with

S′
nj1(x

1, m̃,w) = −2
n∑

i=1

w(x1, X̃i){Yi − F [µ̃ + m̃1(x
1) + m̃−1(X̃i)]}

× F ′[µ̃ + m̃1(x
1) + m̃−1(X̃i)](X1

i − x1)jKh(x
1 − X1

i )

and

S′′
nj1(x

1, m̃,w)

= 2
n∑

i=1

w(x1, X̃i)F
′[µ̃ + m̃1(x

1) + m̃−1(X̃i)]2(X1
i − x1)jKh(x

1 − X1
i )

− 2
n∑

i=1

w(x1, X̃i){Yi − F [µ̃ + m̃1(x
1) + m̃−1(X̃i)]}

× F ′′[µ̃ + m̃1(x
1) + m̃−1(X̃i)](X1

i − x1)jKh(x
1 − X1

i )

for j = 0,1,2, wherew is a nonnegative weight function that is assumed for the
moment to be nonstochastic. It is convenient to normalizew so that∫

w(x1, x̃)F ′[µ + m1(x
1) + m−1(x̃)]2fX(x1, x̃) dx̃ = 1

for eachx1 ∈ [−1,1]. Arguments identical to those used to prove Theorem 2 show
that the variance of the asymptotic distribution of the resulting local-linear or local-
constant estimator ofm1(x

1) is

V1(x
1,w) = 0.25BKC−1

h

∫
w(x1, x̃)2 Var(U |x1, x̃)

× F ′[µ + m1(x
1) + m−1(x̃)]2fX(x1, x̃) dx̃.

It follows from Lemma 1 of Fan, Härdle and Mammen (1998) thatV (x1,w) is
minimized by settingw(x1, x̃)2 ∝ 1/Var(U |x1, x̃), thereby yielding

V1(x
1,w) = 0.25BKC−1

h D2(x
1)−1

∫
F ′[µ + m1(x

1) + m−1(x̃)]2fX(x1, x̃) dx̃,

where

D2(x
1) =

∫
Var(U |x1, x̃)−1F ′[µ + m1(x

1) + m−1(x̃)]2fX(x1, x̃) dx̃.

In an application, it suffices to replace the variance-minimizing weight function
with a consistent estimator. For example,F ′[µ + m1(x

1) + m−1(x̃)] can be
estimated from the first estimation stage, Var(U |x1, x̃) can be estimated by
applying a nonparametric regression to the squared residuals of the first-stage
estimate and kernel methods can be used to estimatefX(x1, x̃).
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The minimum-variance estimator is not a minimum asymptotic mean-square
error estimator unless undersmoothing is used to remove the asymptotic bias
of m̂1. This is because weighting affects the bias when the latter is nonnegligible.
The weight function that minimizes the asymptotic mean-square error is the
solution to an integral equation and does not have a closed-form analytic
representation.

4. Bandwidth selection. This section presents a plug-in and a penalized least
squares (PLS) method for choosingh in applications. We begin with a description
of the plug-in method. This method estimates the value ofh that minimizes the
asymptotic integrated mean-square error (AIMSE) ofn2/5[m̂1(x

1) − m1(x
1)] for

j = 1, . . . , d . We discuss only local-linear estimation, but similar results hold for
local-constant estimation. The AIMSE ofn2/5(m̂1 − m1) is defined as

AIMSE1 = n4/5
∫ 1

−1
w(x1)[β1(x

1)2 + V1(x
1)]dx1,

wherew(·) is a nonnegative weight function that integrates to 1. We also define
the integrated squared error (ISE) as

ISE1 = n4/5
∫ 1

−1
w(x1)[m̂1(x

1) − m1(x
1)]2 dx1.

We define the asymptotically optimal bandwidth for estimatingm1 asCh1n
−1/5,

whereCh1 minimizes AIMSE1. Let

β̃1(x
1) = β1(x

1)/C2
h and Ṽ1(x

1) = ChV1(x
1).

Then

Ch1 =
[

1

4

∫ 1
−1 w(x1)Ṽ1(x

1) dx1∫ 1
−1 w(x1)β̃1(x

1)2 dx1

]1/5

.(4.1)

The results for the plug-in method rely on the following two theorems. Theo-
rem 4 shows that the difference between the ISE and AIMSE is asymptotically neg-
ligible. Theorem 5 gives a method for estimating the first and second derivatives
of mj . Let G(�) denote the�th derivative of any�-times differentiable functionG.

THEOREM 4. Let AssumptionsA1–A6 hold. Then for a continuous weight
functionw(·) and asn → ∞, AIMSE1 = ISE1+op(1).

THEOREM 5. Let AssumptionsA1–A6 hold. Let L be a twice differentiable
probability density function on[−1,1], and let{gn :n = 1,2, . . . } be a sequence
of strictly positive real numbers satisfyinggn → 0 andg2

nn
4/5(logn)−1 → ∞ as

n → ∞. For � = 1,2 define

m̂
(�)
1 (x1) = g−1−�

n

∫ 1

−1
L(�)[(x1 − v)/gn]m̂1(v) dv.
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Then asn → ∞ and for� = 1,2,

sup
|x1|≤1

∣∣m̂(�)
1 (x1) − m

(�)
1 (x1)

∣∣ = op(1).

A plug-in estimator ofCh1 can now be obtained by replacing unknown
population quantities on the right-hand side of (4.1) with consistent estimators.
Theorem 5 provides consistent estimators of the required derivatives ofm1.
Estimators of the conditional variance ofU and offX can be obtained by using
standard kernel methods.

We now describe the PLS method. This method simultaneously estimates the
bandwidths for second-stage estimation of all of the functionsmj (j = 1, . . . , d).
Let hj = Chjn

−1/5 be the bandwidth form̂j . Then the PLS method selects
theChj ’s that minimize an estimate of the average squared error (ASE),

ASE(h̄) = n−1
n∑

i=1

{F [µ̃ + m̂(Xi)] − F [µ + m(Xi)]}2,

where h̄ = (Ch1n
−1/5, . . . ,Chdn−1/5). Specifically, the PLS method selects

theChj ’s to

minimize:
Ch1,...,Chd

PLS(h̄) = n−1
n∑

i=1

{Yi − F [µ̃ + m̂(Xi)]}2

+ 2K(0)n−1
n∑

i=1

{F ′[µ + m̂(Xi)]2V̂ (Xi)}(4.2)

×
d∑

j=1

[n4/5Chj D̂j (X
j
i )]−1,

where theChj ’s are restricted to a compact, positive interval that excludes 0,

D̂j (x
j ) = 1

nhj

n∑
i=1

Khj
(X

j
i − xj )F ′[µ̃ + m̂(Xi)]2

and

V̂ (x) =
[

n∑
i=1

Kh1(X
1
i − x1) · · ·Khd

(Xd
i − xd)

]−1

×
n∑

i=1

Kh1(X
1
i − x1) · · ·Khd

(Xd
i − xd){Yi − F [µ̃ + m̂(Xi)]}2.

The bandwidths used for̂V may be different from those used form̂ becauseV̂ is
a full-dimensional nonparametric estimator. We now argue that the difference

n−1
n∑

i=1

U2
i + ASE(h̄) − PLS(h̄)
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is asymptotically negligible and, therefore, that the solution to (4.2) estimates the
bandwidths that minimize ASE. A proof of this result only requires additional
smoothness conditions onF and more restrictive assumptions onκ . The proof can
be carried out by making arguments similar to those used in the proof of Theorem 2
but with a higher-order stochastic expansion form̂ − m. Here, we provide only
a heuristic outline. For this purpose, note that

n−1
n∑

i=1

U2
i + ASE(h̄) − PLS(h̄)

= 2n−1
n∑

i=1

{F [µ̃ + m̂(Xi)] − F [µ + m(Xi)]}Ui

− 2K(0)n−1
n∑

i=1

F ′[µ + m(Xi)]2V̂ (Xi)

d∑
j=1

[n4/5Chj D̂j (X
j
i )]−1.

We now approximateF [µ̃ + m̂(Xi)] − F [µ + m(Xi)] by a linear expansion in
m̂ − m and replacem̂ − m with the stochastic approximation of Theorem 2(a).
(A rigorous argument would require a higher-order expansion ofm̂ − m.) Thus,
F [µ̃ + m̂(Xi)] −F [µ +m(Xi)] is approximated by a linear form inUi . Dropping
higher-order terms leads to an approximation of

2

n

n∑
i=1

{F [µ̃ + m̂(Xi)] − F [µ + m(Xi)]}Ui

that is aU statistic inUi . The off-diagonal terms of theU statistic can be shown
to be of higher order and, therefore, asymptotically negligible. Thus, we get

2

n

n∑
i=1

{F [µ̃ + m̂(Xi)] − F [µ + m(Xi)]}Ui

≈ 2

n

n∑
i=1

F ′[µ + m(Xi)]2 Var(Ui|Xi)

d∑
j=1

[n4/5ChjD0j (X
j
i )]h−1K(0),

where

D0j (x
j ) = 2E{F ′[µ + m(Xi)]2|Xj

i = xj }fXj (x
j )

andfXj is the probability density function ofXj . Now by standard kernel smooth-
ing arguments,D0j (x

j ) ≈ D̂j (x
j ). In addition, it is clear that̂V (Xi) ≈ V (Ui |Xi),

which establishes the desired result.

5. Monte Carlo experiments. This section presents the results of a small set
of Monte Carlo experiments that compare the finite-sample performances of the
two-stage estimator, the estimator of LH and the infeasible oracle estimator in
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which all additive components but one are known. The oracle estimator cannot be
used in applications but provides a benchmark against which our feasible estimator
can be compared. The infeasible oracle estimator was calculated by solving (2.5).

Experiments were carried out withd = 2 andd = 5. The sample size isn = 500.
The experiments withd = 2 consist of estimatingf1 andf2 in the binary logit
model

P(Y = 1|X = x) = L[f1(x
1) + f2(x

2)],
whereL is the cumulative logistic distribution function

L(v) = ev/[1+ ev], −∞ < v < ∞.

The experiments withd = 5 consist of estimatingf1 andf2 in the binary logit
model

P(Y = 1|X = x) = L

[
f1(x

1) + f2(x
2) +

5∑
j=3

xj

]
.

In all of the experiments,

f1(x) = sin(πx) and f2(x) = 
(3x),

where 
 is the standard normal distribution function. The components ofX

are independently distributed asU [−1,1]. Estimation is carried out under the
assumption that the additive components have two (but not necessarily more)
continuous derivatives. Under this assumption, the two-stage estimator has the rate
of convergencen−2/5. The LH estimator has this rate of convergence ifd = 2 but
not if d = 5.

B-splines were used for the first stage of the two-stage estimator. The kernel
used for the second stage and for the LH estimator is

K(v) = 15
16(1− v2)2I (|v| ≤ 1).

Experiments were carried out using both local-constant and local-linear estimators
in the second stage of the two-stage method. There were 1000 Monte Carlo
replications per experiment with the two-stage estimator but only 500 replications
with the LH estimator because of the very long computing times it entails. The
experiments were carried out in GAUSS using GAUSS random number generators.

The results of the experiments are summarized in Table 1, which shows
the empirical integrated mean-square errors (EIMSEs) of the estimators at the
values of the tuning parameters that minimize the EIMSEs. Lengthy computing
times precluded using data-based methods for selecting tuning parameters in
the experiments. The EIMSEs of the local-constant and local-linear two-stage
estimates off1 are considerably smaller than the EIMSEs of the LH estimator.
The EIMSEs of the local-constant and LH estimators off2 are approximately
equal whereas the local-linear estimator off2 has a larger EIMSE. There is little
difference between the EIMSEs of the two-stage local-linear and infeasible oracle



ADDITIVE REGRESSION MODEL WITH A LINK FUNCTION 2427

TABLE 1
Results of Monte Carlo experiments∗

Empirical IMSE

Estimator κ1 κ2 h1 h2 f1 f2

d = 2
LH 0.9 0.9 0.116 0.015
Two-stage with 2 2 0.4 0.9 0.052 0.015

local-constant
smoothing

Two-stage with 4 2 0.5 1.4 0.052 0.023
local-linear
smoothing

Infeasible oracle 0.6 1.7 0.056 0.021
estimator

d = 5
LH 1.0 1.0 0.145 0.019
Two-stage with 2 2 0.4 0.9 0.060 0.018

local-constant
smoothing

Two-stage with 2 2 0.6 1.3 0.057 0.029
local-linear
smoothing

Infeasible oracle 0.6 2.0 0.057 0.023
estimator

∗In the two-stage estimator,κj andhj (j = 1,2) are the series length and bandwidth
used to estimatefj . In the LH estimator,hj (j = 1,2) is the bandwidth used to
estimatefj . The values ofκ1, κ2, h1 andh2 minimize the IMSEs of the estimates.

estimators. This result is consistent with the oracle property of the two-stage
estimator.

6. Conclusions. This paper has described an estimator of the additive
components of a nonparametric additive model with a known link function.
The approach is very general and may be applicable to a wide variety of other
models. The estimator is asymptotically normally distributed and has a pointwise
rate of convergence in probability ofn−2/5 when the unknown functions are
twice continuously differentiable, regardless of the dimension of the explanatory
variableX. In contrast, achieving the rate of convergencen−2/5 with the only
other currently available estimator for this model requires the additive components
to have an increasing number of derivatives as the dimension ofX increases.
In addition, the new estimator has an oracle property: the asymptotic distribution
of the estimator of each additive component is the same as it would be if the other
components were known.



2428 J. L. HOROWITZ AND E. MAMMEN

7. Proofs of theorems. Assumptions A1–A7 hold throughout this section.

7.1. Theorem1. This section begins with lemmas that are used to prove
Theorem 1.

LEMMA 1. There are constantsa > 0 andC < ∞ such that

P
[

sup
θ∈�κ

|Snκ(θ) − ESnk(θ)| > ε

]
≤ C exp(−naε2)

for any sufficiently smallε > 0 and all sufficiently largen.

PROOF. Write

Snκ(θ) = n−1
n∑

i=1

Y 2
i − 2Snκ1(θ) + Snκ2(θ),

where

Snκ1(θ) = n−1
n∑

i=1

YiF [Pκ(Xi)
′θ]

and

Snκ2(θ) = n−1
n∑

i=1

F [Pκ(Xi)
′θ]2.

It suffices to prove that

P
[

sup
θ∈�κ

|Snκj (θ) − ESnkj (θ)| > ε

]
≤ C̃ exp(−naε2) (j = 1,2)

for any ε > 0, someC̃ < ∞ and all sufficiently largen. The proof is given only
for j = 1. Similar arguments apply whenj = 2.

Define S̃nκ1(θ) = Snκ1(θ) − ESnκ1(θ). Divide �κ into hypercubes of edge-
length �. Let �

(1)
κ , . . . ,�

(M)
κ denote theM = (2Cθ/�)

d(κ) cubes thus created.
Let θκj be the point at the center of�(j)

κ . The maximum distance betweenθκj

and any other point in�(j)
κ is r = d(κ)1/2�/2, andM = exp{d(κ)[log(Cθ/r) +

(1/2) logd(κ)]}. Now
[

sup
θ∈�κ

|S̃nκ1(θ)| > ε

]
⊂

M⋃
j=1

[
sup

θ∈�
(j)
κ

|S̃nκ1(θ)| > ε

]
.

Therefore,

Pn ≡ P
[

sup
θ∈�κ

|S̃nκ1(θ)| > ε

]
≤

M∑
j=1

P
[

sup
θ∈�

(j)
κ

|S̃nκ1(θ)| > ε

]
.
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Now for θ ∈ �
(j)
κ ,

|S̃nκ1(θ)| ≤ |S̃nκ1(θκj )| + |S̃nκ1(θ) − S̃nκ1(θκj )|

≤ |S̃nκ1(θκj )| + CF2ζκr

(
n−1

n∑
i=1

|Yi | + CF1

)

for all sufficiently largeκ and, therefore,n. Therefore, for all sufficiently largen,

P
[

sup
θ∈�

(j)
κ

|S̃nκ1(θ)| > ε

]

≤ P[|S̃nκ1(θκj )| > ε/2] + P

[
CF2ζκr

(
n−1

n∑
i=1

|Yi | + CF1

)
> ε/2

]
.

Chooser = ζ−2
κ . Thenε/2 − CF2ζκr[CF1 + E(|Y |)] > ε/4 for all sufficiently

largeκ . Moreover,

P

[
CF2ζκr

(
n−1

n∑
i=1

|Yi | + CF1

)
> ε/2

]

≤ P

[
CF2ζκrn−1

n∑
i=1

(|Yi | − E|Y |) > ε/4

]

≤ 2 exp(−a1nε2ζ 2
κ )

for some constanta1 > 0 and all sufficiently largeκ by Bernstein’s inequality
[Bosq (1998), page 22]. Also by Bernstein’s inequality, there is a constanta2 > 0
such that

P[|S̃nκ1(θκj )| > ε/2] ≤ 2 exp(−a2nε2)

for all n, κ andj . Therefore,

Pn ≤ 2[M exp(−a2nε2) + exp(−a1nε2)]
≤ 2 exp

{−a2nε2ζ 2
κ + 2dCκn

γ
[
log(Cθ/r) + 1

2 log(2Cκd) + 1
2γ logn

]}
+ 2 exp(−a1nε2),

whereγ = 4/15+ ν. It follows thatPn ≤ 4 exp(−anε2) for a suitablea > 0 and
all sufficiently largen. �

Define

Sκ(θ) = E[Snκ(θ)]
and

θ̃κ = arg min
θ∈�κ

Sκ(θ).
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LEMMA 2. For any η > 0, Sκ(θ̂nκ) − Sκ(θ̃κ ) < η almost surely for all
sufficiently largen.

PROOF. For eachκ , let Nκ ⊂ R
d(κ) be an open set containing̃θκ . Let N̄κ

denote the complement ofNκ in �κ . DefineTκ = N̄κ ∩ �̃κ . ThenTκ ⊂ R
d(κ) is

compact. Define

η = min
θ∈Tκ

Sκ(θ) − Sκ(θ̃κ ).

Let An be the event|Snκ(θ) − Sκ(θ)| < η/2 for all θ ∈ �κ . Then

An ⇒ Sκ(θ̂nκ) < Snκ(θ̂κ ) + η/2

and

An ⇒ Snκ(θ̃κ ) < Sκ(θ̃κ) + η/2.

But Snκ(θ̂nκ) ≤ Snκ(θ̃κ ) by definition, so

An ⇒ Sκ(θ̂nκ) < Snκ(θ̃κ ) + η/2.

Therefore,

An ⇒ Sκ(θ̂nκ) < Sκ(θ̃κ) + η ⇒ Sκ(θ̂nκ) − Sκ(θ̃κ ) < η.

So An ⇒ θ̂nκ ∈ Nκ . SinceNκ is arbitrary, the result follows from Lemma 1 and
Theorem 1.3.4 of Serfling [(1980), page 10].�

Define

bk(x) = µ + m(x) − Pκ(x)′θκ

and

Sκ0(θ) = E{Y − F [Pκ(X)′θ + bκ(X)]}2.

Then

θκ = arg min
θ∈�κ

Sκ0(θ).

LEMMA 3. For anyη > 0, Sκ0(θ̃κ ) − Sκ0(θκ0) < η for all sufficiently largen.

PROOF. Observe that|Sκ(θ)−Sκ0(θ)| → 0 asn → ∞ uniformly overθ ∈ �κ

becausebκ(x) → 0 for almost everyx ∈ X. For eachκ , letNκ ⊂ R
d(κ) be an open

set containingθκ0. DefineTκ = N̄κ ∩ �κ . ThenTκ ⊂ R
d(κ) is compact. Define

η = min
θ∈Tκ

Sκ0(θ) − Sκ0(θκ0).
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By choosing a sufficiently smallNκ, η can be made arbitrarily small. Choosen

and, therefore,κ large enough that|Sκ(θ) − Sκ0(θ)| < η/2 for all θ ∈ �. Now
proceed as in the proof of Lemma 2.�

DefineZκi = F ′[µ + m(Xi)]Pκ(Xi) andQ̂κ = n−1 ∑n
i=1 ZκiZ

′
κi . ThenQκ =

EQ̂κ . Let Zk
κi [k = 1, . . . , d(κ)] denote thekth component ofZκi . Let Zκ denote

then × d(κ) matrix whose(i, k) element isZk
κi .

LEMMA 4. ‖Q̂κ − Qκ‖2 = Op(κ2/n).

PROOF. Let Qij denote the(i, j) element ofQκ . Then

E‖Q̂κ − Qκ‖2 =
d(κ)∑
k=1

d(κ)∑
j=1

E

(
n−1

n∑
i=1

Zk
κiZ

j
κi − Qkj

)2

=
d(κ)∑
k=1

d(κ)∑
j=1

(
En−2

n∑
i=1

n∑
�=1

Zk
κiZ

j
κiZ

k
κ�Z

j
κ� − Q2

kj

)

=
d(κ)∑
k=1

d(κ)∑
j=1

En−2
n∑

i=1

(Zk
κi)

2(Z
j
κi)

2 − n−1
d(κ)∑
k=1

d(κ)∑
j=1

Q2
kj

≤ n−1E

[
d(κ)∑
k=1

(Zk
κi)

2
d(κ)∑
j=1

(Z
j
κi)

2

]
= O(κ/n).

The lemma now follows from Markov’s inequality.�

Define γn = I (λκ,min ≥ cλ/2), where I is the indicator function. LetŪ =
(U1, . . . ,Un)

′.

LEMMA 5. γn‖Q̂−1
κ Z′

κŪ/n‖ = Op(κ1/2/n1/2) asn → ∞.

PROOF. For anyx ∈ X,

n−2E(γn‖Q̂−1/2
κ Z′

κŪ‖2|X = x) = n−2γnE(Ū ′ZκQ̂−1
k ZκŪ |X = x)

= n−2E[Trace(ZκQ̂−1
κ Z′

κŪ Ū ′)|X = x]
≤ n−2γnCV Trace(Q̂−1

κ ZκZ′
κ)

= n−1CV γnd(κ) ≤ Cκ/n

for some constantC < ∞. Therefore,γn‖Q̂−1/2
κ Z′

κŪ/n‖ = Op(κ1/2/n1/2) by
Markov’s inequality. Now

γn‖Q̂−1
κ Z′

κŪ/n‖ = γn[(Ū ′Zκ/n)Q̂−1/2
κ Q̂−1

κ Q̂−1/2
κ (Z′

κ Ū/n)]1/2.
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Defineξ = Q̂
−1/2
κ Z′

κŪ/n. Letη1, . . . , ηd(κ) andq1, . . . , qd(κ) denote the eigenval-
ues and eigenvectors of̂Q−1

κ . Letηmax= max(η1, . . . , ηd(κ)). The spectral decom-

position ofQ̂−1
κ givesQ̂−1

κ = ∑d(κ)
�=1 η�q�q

′
�, so

γn‖Q̂−1
κ Z′

κ Ū/n‖2 = γn

d(κ)∑
�=1

η�ξ
′q�q

′
�ξ

≤ γnηmax

d(κ)∑
�=1

ξ ′q�q
′
�ξ ≤ γnηmaxξ

′ξ = Op(κ/n).
�

Define

Bn = Q̂−1
κ n−1

n∑
i=1

F ′[µ + m(Xi)]Zκibκ0(Xi).

LEMMA 6. ‖Bn‖ = O(κ−2) with probability approaching1 asn → ∞.

PROOF. Let ξ be the n × 1 vector whoseith component isF ′[µ +
m(Xi)]bκ0(Xi). Then Bn = Q̂−1

κ Z′
κξ/n, and γn‖Bn‖2 = n−2γnξ

′ZκQ̂−2
κ Z′

κξ .
Therefore, by the same arguments used to prove Lemma 5,γn‖Bn‖2 ≤
Cn−1γnξ

′ξ = γnO(κ−4). The lemma follows from the fact thatP(γn = 1) → 1
asn → ∞. �

PROOF OFTHEOREM 1. To prove part (a), write

Sκ0(θ̂nκ) − Sκ0(θκ) = [Sκ0(θ̂nκ) − Sκ(θ̂nκ)] + [Sκ(θ̂nκ) − Sκ(θ̃κ )]
(7.1)

+ [Sκ(θ̃κ ) − Sκ0(θ̃κ )] + [Sκ0(θ̃κ ) − Sκ0(θκ)].
Given anyη > 0, it follows from Lemmas 2 and 3 and uniform convergence ofSκ

to Sκ0 that each term on the right-hand side of (7.1) is less thanη/4 almost surely
for all sufficiently largen. ThereforeSκ0(θ̂nκ) − Sκ0(θκ) < η almost surely for
all sufficiently largen. It follows that‖θ̂nκ − θκ‖ → 0 almost surely asn → ∞
becauseθκ uniquely minimizesSκ . Part (a) follows because uniqueness of the
series representation of each functionmj implies that‖θκ − θκ0‖ → 0 asn → ∞.

To prove the remaining parts of the theorem, observe thatθ̂nκ satisfies the first-
order condition∂Snκ(θ̂nκ)/∂θ = 0 almost surely for all sufficiently largen. Define
Mi = µ + m(Xi) and�Mi = Pκ(Xi)

′θ̂nκ − Mi = Pκ(Xi)
′(θ̂nκ − θκ0) − bκ0(Xi).

Then a Taylor series expansion yields

n−1
n∑

i=1

ZκiUi − (Q̂κ + Rn1)(θ̂nκ − θκ0) + n−1
n∑

i=1

F ′(Mi)Zκibκ0(Xi) + Rn2 = 0,
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almost surely for all sufficiently largen. Rn1 is defined by

Rn1 = n−1
n∑

i=1

{−UiF
′′(Mi) − Ui[F ′′( ˜̃

Mi) − F ′′(Mi)]

+ [3
2F ′′( ˜̃

Mi)F
′(Mi) + 1

2F ′′(M̃i)F
′′( ˜̃

Mi)�Mi

+ 1
2F ′′(M̃i)F

′′( ˜̃
Mi)(�Mi)

2]�Mi

− [
F ′′( ˜̃

Mi)F
′(Mi) − 1

2F ′′(M̃i)F
′(M̃i)

+ F ′′( ˜̃
Mi)F

′′(M̃i)bκ0(Xi)
]
bκ0(Xi)

}
× Pκ(Xi)Pκ(Xi)

′,

whereM̃i and ˜̃
Mi are points betweenPκ(Xi)

′θ̂nκ andMi . Rn2 is defined by

Rn2 = −n−1
n∑

i=1

{
UiF

′′( ˜̃
Mi) + Ui[F ′′( ˜̃

Mi) − F ′′(Mi)]

+ [
F ′′( ˜̃

Mi)F
′(Mi) − 1

2F ′′(M̃i)F
′(Mi)

]
bκ0(Xi)

− 1
2F ′′( ˜̃

Mi)F
′′(M̃i)bκ0(Xi)

2}Pκ(Xi)bκ0(Xi).

Now let ξ denote eitherQ̂−1
κ Z′

κŪ/n or Q̂−1
κ [n−1 ∑n

i=1 F ′(Mi)
2Pκ(Xi) ×

bκ0(Xi) + Rn2]. Note that∥∥∥∥∥n−1
n∑

i=1

UiF
′′(Mi)Pκ(Xi)Pκ(Xi)

′
∥∥∥∥∥

2

= Op(κ2/n).

Then

γn‖[(Q̂κ + Rn1)
−1 − Q̂−1

κ ]Q̂κξ‖2

= γn‖(Q̂κ + Rn1)
−1Rn1ξ‖2

= Trace{γn[ξ ′Rn1(Q̂κ + Rn1)
−2Rn1ξ ]}

= Op(‖ξ ′Rn1‖2)

= Op(ξ ′ξ)Op

{
κ2/n +

∫
[Pκ(x)′(θ̂nκ − θκ0)]2 dx + sup

x∈X
|bκ0(x)|2

}

= Op(ξ ′ξ)Op(κ2/n + κ‖θ̂κ − θκ0‖2 + κ−3).

Settingξ = Q̂−1
κ Z′

κŪ/n and applying Lemma 5 yields‖[(Q̂κ +Rn1)
−1 − Q̂−1

κ ]×
Z′

κŪ/n‖2 = Op[κ3/n + (κ2/n)‖θ̂nκ − θκ0‖2 + 1/(nκ2)]. If ξ = Q̂−1
κ [n−1 ×
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∑n
i=1 F ′(Mi)

2Pκ(Xi)bκ0(Xi)+Rn2], then applying Lemma 6 and using the result
‖Q̂−1

κ Rn2‖ = op(κ−2) yields∥∥∥∥∥[(Q̂κ + Rn1)
−1 − Q̂−1

κ ]
[
n−1

n∑
i=1

F ′(Mi)Zκibκ0(Xi) + Rn2

]∥∥∥∥∥
2

= Op(‖θ̂nκ − θκ0‖2/κ + 1/κ5).

It follows from these results that

θ̂nκ − θκ0 = n−1Q̂−1
κ

n∑
i=1

F ′[µ + m(Xi)]Pκ(Xi)Ui

+ n−1Q̂−1
κ

n∑
i=1

F ′[µ + m(Xi)]2Pκ(Xi)bκ0(Xi) + Rn,

where‖Rn‖ = Op(κ3/2/n + n−1/2). Part (d) of the theorem now follows from
Lemma 4. Part (b) follows by applying Lemmas 5 and 6 to part (d). Part (c) follows
from part (b) and Assumption A5(iii). �

7.2. Theorem2. This section begins with lemmas that are used to prove
Theorem 2. For anỹx ≡ (x2, . . . , xd) ∈ [−1,1]d−1, set m−1(x̃) = m2(x

2) +
· · · + md(xd), andb̄κ0(x̃) = µ + m−1(x̃) − P̄κ(x̃)θ̄κ0, where

P̄κ (x) = [1,0, . . . ,0,p1(x
2), . . . , pκ(x2), . . . , p1(x

d), . . . , pκ(xd)]′
and

θ̄κ0 = (µ,0, . . . ,0, θ21, . . . , θ2κ , . . . , θd1, . . . , θdκ)′.

In other words,P̄ andθ̄κ0 are obtained by replacingp1(x
1), . . . , pκ(xd) with zeros

in Pκ andθ11, . . . , θ1κ with zeros inθκ0. Also define

δn1(x̃) = n−1P̄κ(x̃)′Q−1
κ

n∑
j=1

F ′[µ + m(Xj )]Pκ(Xj )Uj

and

δn2(x̃) = n−1P̄κ (x̃)′Q−1
κ

n∑
j=1

F ′[µ + m(Xj )]2Pκ(Xj )bκ0(Xj ).

Forx1 ∈ [−1,1] and forj = 0,1 define

Hnj1(x
1) = (nh)−1/2

n∑
i=1

F ′[µ + m1(x
1) + m−1(X̃i)]2(X1

i − x1)j

× Kh(x
1 − X1

i )δn1(X̃i ),
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Hnj2(x
1) = (nh)−1/2

n∑
i=1

F ′[µ + m1(x
1) + m−1(X̃i)]2(X1

i − x1)j

× Kh(x
1 − X1

i )δn2(X̃i)

and

Hnj3(x
1) = −(nh)−1/2

n∑
i=1

F ′[µ + m1(x
1) + m−1(X̃i )]2(X1

i − x1)j

× Kh(x
1 − X1

i )b̄κ0(X̃i).

Let V (x) = Var(U |X = x).

LEMMA 7. For j = 0,1 and k = 1,2,3, Hnjk(x
1) = op(1) as n → ∞

uniformly overx1 ∈ [−1,1].

PROOF. The proof is given only forj = 0. Similar arguments apply forj = 1.
First considerHn01(x

1). We can write

Hn01(x
1) =

n∑
j=1

aj (x
1)Uj ,

where

aj (x
1) = n−3/2h−1/2

n∑
i=1

F ′[µ + m1(x
1) + m−1(X̃i)]2

× Kh(x
1 − X1

i )P̄κ(X̃i)
′Q−1

κ F ′[µ + m(Xj )]Pκ(Xj )

≡ n−3/2h−1/2
n∑

i=1

Kh(x
1 − X1

i )Aij (x
1).

Define

ā(x1) =
∫

F ′[µ + m1(x
1) + m−1(x̃)]2P̄κ (x̃)fX(x1, x̃) dx̃.

Then arguments similar to those used to prove Lemma 1 show thataj (x
1) =

(h/n)1/2[ā(x1) + rn]′Q−1
κ F ′[µ + m(Xj )]Pκ(Xj ), wherern is uncorrelated with

the Uj ’s and ‖rn‖ = O[(logn)/(nh)1/2] uniformly over x1 ∈ [−1,1] almost
surely. Moreover, for eachx1 ∈ [−1,1], the components of̄a(x1) are the Fourier
coefficients of a function that is bounded uniformly overx1. Therefore,

sup
|x1|≤1

ā(x1)′ā(x1) ≤ M(7.2)
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for some finite constantM and allκ = 1, . . . ,∞. It follows from (7.2) and the
Cauchy–Schwarz inequality that∥∥∥∥∥ā(x1)′(h/n)1/2

n∑
j=1

UjQ
−1
κ F ′[µ + m(Xj )]Pκ(Xj )

∥∥∥∥∥
2

≤ M

∥∥∥∥∥(h/n)1/2
n∑

j=1

UjQ
−1
κ F ′[µ + m(Xj )]Pκ(Xj )

∥∥∥∥∥
2

.

But

E

∥∥∥∥∥(h/n)1/2
n∑

j=1

UjQ
−1
κ F ′[µ + m(Xj )]Pκ(Xj )

∥∥∥∥∥
2

= O(h),

so it follows from Markov’s inequality that∥∥∥∥∥ā(x1)′(h/n)1/2
n∑

j=1

UjQ
−1
κ F ′[µ + m(Xj )]Pκ(Xj )

∥∥∥∥∥ = Op(h1/2)

uniformly over x1 ∈ [−1,1]. This and‖rn‖ = O[(logn)/(nh)1/2] establish the
conclusion of the lemma forj = 0, k = 1.

We now prove the lemma forj = 0, k = 2. We can write

Hn02(x
1) = (nh)−1/2

n∑
i=1

F ′[µ + m1(x
1) + m−1(X̃i)]2Kh(x

1 − X1
i )P̄κ(X̃i)

′Bn,

where

Bn = n−1Q−1
κ

n∑
j=1

F ′[µ + m(Xj )]2Pκ(Xj )bκ0(Xj ).

Arguments like those used to prove Lemma 6 show thatE‖Bn‖2 = O(κ−4).
Therefore,

sup
|x1|≤1

|Hn02(x
1)| = sup

|x1|≤1
(nh)−1/2

n∑
i=1

Kh(x
1 − X1

i ) · Op(κ−2)

= Op(n1/2h1/2κ−2)

= op(1).

For the proof withj = 0, k = 3, note that

sup
|x1|≤1

|Hn03(x
1)| = sup

|x1|≤1
(nh)−1/2

n∑
i=1

Kh(x
1 − X1

i ) · Op(κ−2)

= op(1). �
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Let Pκ(x
1, X̃) = [1,p1(x

1), . . . , pκ(x1),p1(X
2), . . . , pκ(X2), . . . , p1(X

d),

. . . , pκ(Xd)]′ and bκ(x1, X̃i) = µ + m1(x
1) + m−1(X̃i) − Pκ(x

1, X̃i)θκ0. De-
fine

δn3(x
1, X̃i) = n−1Pκ(x

1, X̃i)
′Q−1

κ

n∑
j=1

F ′[µ + m(Xj )]Pκ(Xj )Uj

and

δn4(x
1, X̃i) = n−1Pκ(x1, X̃i)

′Q−1
κ

n∑
j=1

F ′[µ + m(Xj )]2Pκ(Xj )bκ0(Xj ).

Also, for j = 0,1 define

Lnj1(x
1) = (nh)−1/2

n∑
i=1

UiF
′′[µ + m1(x

1) + m−1(X̃i)](X1
i − x1)j

× Kh(x
1 − X1

i )δn3(x
1, X̃i),

Lnj2(x
1) = (nh)−1/2

n∑
i=1

UiF
′′[µ + m1(x

1) + m−1(X̃i)](X1
i − x1)j

× Kh(x
1 − X1

i )δn4(x
1, X̃i),

Lnj3(x
1) = −(nh)−1/2

n∑
i=1

UiF
′′[µ + m1(x

1) + m−1(X̃i )](X1
i − x1)j

× Kh(x
1 − X1

i )bκ0(x
1, X̃i),

Lnj4(x
1) = (nh)−1/2

n∑
i=1

{F [µ + m1(X
1
i ) + m−1(Xi)]

− F [µ + m1(x
1) + m−1(X̃i)]}

× F ′′[µ + m1(x
1) + m−1(X̃i )](X1

i − x1)j

× Kh(x
1 − X1

i )δn3(x
1, X̃i),

Lnj5(x
1) = (nh)−1/2

n∑
i=1

{F [µ + m1(X
1
i ) + m−1(Xi)]

− F [µ + m1(x
1) + m−1(X̃i)]}

× F ′′[µ + m1(x
1) + m−1(X̃i )](X1

i − x1)j

× Kh(x
1 − X1

i )δn4(x
1, X̃i)
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and

Lnj6(x
1) = −(nh)−1/2

n∑
i=1

{F [µ + m1(X
1
i ) + m−1(Xi)]

− F [µ + m1(x
1) + m−1(X̃i)]}

× F ′′[µ + m1(x
1) + m−1(X̃i)](X1

i − x1)j

× Kh(x
1 − X1

i )bκ0(x
1, X̃i).

LEMMA 8. As n → ∞,Lnjk(x
1) = op(1) uniformly overx1 ∈ [−1,1] for

eachj = 0,1, k = 1, . . . ,6.

PROOF. The proof is given only forj = 0. The arguments are similar for
j = 1. By Theorem 1,δn4(x

1, X̃i) is the asymptotic bias component of the
stochastic expansion ofPκ(x

1, X̃i)(θ̂nκ − θκ0) and isOp(κ−3/2) uniformly over
(x1, X̃i) ∈ [−1,1]d . This fact and standard bounds on

sup
|x1|≤1

n∑
i=1

|Ui |Kh(x
1 − X1

i )

and

sup
|x1|≤1

n∑
i=1

Kh(x
1 − X1

i )

establish the conclusion of the lemma forj = 0, k = 2,5. For j = 0, k = 3,6,
proceed similarly using

sup
|x1|≤1

|bκ0(x
1)| = O(κ−2).

Forj = 0, k = 4, one can use arguments similar to those made forHn01(x
1) in the

proof of Lemma 7. It remains to considerLn01(x
1) = Dn(x

1)Bn, where

Dn(x
1) = (nh)−1/2

n∑
i=1

UiF
′′[µ + m1(x

1) + m−1(X̃i)]Kh(x
1 − X1

i )Pκ(x1, X̃i)

and

Bn = n−1Q−1
κ

n∑
j=1

F ′[µ + m(Xj )]2Pκ(Xj )Uj .

Now, E‖Bn‖2 = O(κn−1), andDn(x
1) contains elements of the form

(nh)−1/2pr(x
1)

n∑
i=1

UiF
′′[µ + m1(x

1) + m−1(X̃i )]Kh(x
1 − X1

i )
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and

(nh)−1/2
n∑

i=1

Uipr(X
�
i )F

′′[µ + m1(x
1) + m−1(X̃i)]Kh(x

1 − X1
i )

for 0 ≤ r ≤ κ , 2 ≤ � ≤ d . These expressions can be bounded uniformly over
|x1| ≤ 1 by terms that areOp[(logn)1/2|pr(x

1)|] andOp[(logn)1/2], respectively.
This gives

sup
|x1|≤1

‖Dn(x
1)‖2 = Op(κ logn).

Therefore,

sup
|x1|≤1

|Ln01(x
1)|2 ≤ sup

|x1|≤1
‖Dn(x

1)‖2‖Bn‖2 = op(1).
�

LEMMA 9. The following hold uniformly over|x1| ≤ 1− h:

(nh)−1S′′
n01(x

1, m̃) = D0(x
1) + op(1),

(nh)−1S′′
n21(x

1, m̃) = AKh2D0(x
1)[1+ op(1)]

and

(nh)−1S′′
n11(x

1, m̃) = h2AKD1(x
1)[1+ op(1)].

PROOF. This follows from Theorem 1(c) and standard bounds on

sup
|x1|≤1

n∑
i=1

Ur
i (X1

i − x1)sKh(x
1 − X1

i )

for r = 0,1, s = 0,1,2. �

Define�m1(x
1) = m̃1(x

1) − m1(x
1), �m−1(x̃) = µ̃ − µ + m̃−1(x̃) − m−1(x̃)

and�m(x1, x̃) = �m1(x
1) + �m−1(x̃).

LEMMA 10. The following hold uniformly over|x1| ≤ 1− h:

(a) (nh)−1/2S′
n01(x

1, m̃) = (nh)−1/2S′
n01(x

1,m)+ (nh)1/2D0(x
1)�m1(x

1)+
op(1),

(b) (nh)−1/2S′
n11(x

1, m̃) = (nh)−1/2S′
n11(x

1,m) + op(1).

PROOF. Only (a) is proved. The proof of (b) is similar. For eachi =
1, . . . , n, let m∗(x1, X̃i) and m∗∗(x1, X̃i) denote quantities that are between
µ̃ + m̃1(x

1) + m̃−1(X̃i) andµ + m1(x
1) + m−1(X̃i). The values ofm∗(x1, X̃i)
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andm∗∗(x1, X̃i) may be different in different uses. A Taylor series expansion and
Theorem 1(c) give

(nh)−1/2S′
n01(x

1, m̃) = (nh)−1/2S′
n01(x

1,m) +
4∑

j=1

Jnj (x
1)

+ n(nh)−1/2O

[
sup

(x1,x̃)∈X

‖�m(x1, x̃)‖3
]

= (nh)−1/2S′
n01(x

1,m) +
4∑

j=1

Jnj (x
1) + op(1)

uniformly over|x1| ≤ 1− h, where

Jn1(x
1) = 2(nh)−1/2

n∑
i=1

F ′[µ + m1(x
1) + m−1(X̃i)]2Kh(x

1 − X1
i )�m1(x

1),

Jn2(x
1) = 2(nh)−1/2

n∑
i=1

F ′[µ + m1(x
1) + m−1(X̃i)]2

× Kh(x
1 − X1

i )�m−1(X̃i),

Jn3(x
1) = −2(nh)−1/2

n∑
i=1

{Yi − F [µ + m1(x
1) + m−1(X̃i)]}

× F ′′[m∗(x1, X̃i)]Kh(x
1 − X1

i )�m(x1, X̃i),

Jn4(x
1) = 2(nh)−1/2

n∑
i=1

F ′[µ + m1(x
1) + m−1(X̃i)]

× {F ′′[m∗(x1, X̃i)] + 2F ′′[m∗∗(x1, X̃i)]}
× Kh(x

1 − X1
i )[�m(x1, X̃i)]2.

It follows from Theorem 1(d) and Lemma 7 thatJn2(x
1) = 2

∑3
k=1Hn0k(x

1) +
op(1) = op(1) uniformly over |x1| ≤ 1 − h. In addition, it follows from
Theorem 1(c) that for some constantC < ∞,

Jn4(x
1) < C(nh)−1/2

n∑
i=1

Kh(x
1 − X1

i )

[
sup

(x1,x̃)∈X

‖�m(x1, x̃)‖2
]

= Op

[
(nh)1/2 sup

(x1,x̃)∈X

‖�m(x1, x̃)‖2
]

= op(1)
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uniformly over |x1| ≤ 1 − h. Now considerJn3(x
1). It follows from Assump-

tion A3(v) that

Jn3(x
1) = −2(nh)−1/2

n∑
i=1

{Yi − F [µ + m1(x
1) + m−1(X̃i)]}

× F ′′[µ + m1(x
1) + m−1(X̃i)]

× Kh(x
1 − X1

i )�m(x1, X̃i)

+ Op

[
(nh)1/2 sup

x∈X
|�m(x1, x̃)|2

]

=
6∑

k=1

Ln0k(x
1) + Op

[
(nh)1/2 sup

x∈X
|�m(x1, x̃)|2

]
+ op(1)

uniformly over|x1| ≤ 1 − h. Therefore,Jn3(x
1) = op(1) uniformly by Lemma 8

and Theorem 1(c), and

(nh)−1/2S′
n01(x

1, m̃) = (nh)−1/2S′
n01(x

1,m) + Jn1(x
1) + op(1)

uniformly over|x1| ≤ 1− h.
Now considerJn1(x

1). Set

J̃n1(x
1) = 2(nh)−1/2

n∑
i=1

F ′[µ + m1(x
1) + m−1(X̃i)]2Kh(x

1 − X1
i ).

It follows from Theorem 2.37 of Pollard (1984) that̃Jn1(x
1) − E[J̃n1(x

1)] =
o(logn) almost surely asn → ∞. In addition, E[(nh)−1/2J̃n1(x

1)] =
D(x1) + O(h2). Therefore,

Jn1(x
1) = (nh)1/2D0(x

1)�m1(x
1) + O[logn�m1(x

1)]
= (nh)1/2D0(x

1)�m1(x
1) + op(1)

uniformly over|x1| ≤ 1− h. �

PROOF OFTHEOREM 2. By the definition ofm̂1(x
1),

m̂1(x
1) − m1(x

1)

= m̃1(x
1) − m1(x

1)(7.3)

− S′′
n21(x

1, m̃)S′
n01(x

1, m̃) − S′′
n11(x

1, m̃)S′
n11(x

1, m̃)

S′′
n01(x

1, m̃)S′′
n21(x

1, m̃) − S′′
n11(x

1, m̃)2 .

Part (a) follows by applying Lemmas 9 and 10 to the right-hand side of (7.3).
Define

w = [nhD0(x
1)]−1{−S′

n01(x
1,m) + [D1(x

1)/D0(x
1)]S′

n11(x
1,m)}.
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Methods identical to those used to establish asymptotic normality of local-linear
estimators show thatE(n2/5w) = β1 + o(1), Var(n2/5w) = V1(x

1) + o(1) and
n2/5[m̂1(x

1) − m1(x
1)] is asymptotically normal, which proves part (b).�

PROOF OFTHEOREM 4. It follows from Theorem 2(a) that

n4/5
∫

1−h≤|x1|≤1
w(x1)[m̂1(x

1) − m1(x
1)]2 dx1 = op(1).

Now consider

n4/5
∫
|x1|≤1−h

w(x1)[m̂1(x
1) − m1(x

1)]2 dx1.

By replacing the integrand with the expansion of Theorem 2(a), one obtains
a U -statistic in Ui conditional onX1, . . . ,Xn. This U -statistic has vanishing
conditional variance. �

PROOF OF THEOREM 5. Use Theorem 2(a) to replacêm1 with m1 in the
expression form̂(�)

1 . The result now follows from standard methods for bounding
kernel estimators. �
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