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BAYESIAN-MOTIVATED TESTS OF FUNCTION FIT AND THEIR
ASYMPTOTIC FREQUENTIST PROPERTIES

BY MARC AERTS,1 GERDA CLAESKENS2 AND JEFFREY D. HART3

Limburgs Universitair Centrum, K. U. Leuven and Texas A&M University

We propose and analyze nonparametric tests of the null hypothesis that a
function belongs to a specified parametric family. The tests are based on BIC
approximations,πBIC, to the posterior probability of the null model, and may
be carried out in either Bayesian or frequentist fashion. We obtain results on
the asymptotic distribution ofπBIC under both the null hypothesis and local
alternatives. One version ofπBIC, call it π∗

BIC, uses a class of models that
are orthogonal to each other and growing in number without bound as sample
size,n, tends to infinity. We show that

√
n(1−π∗

BIC) converges in distribution
to a stable law under the null hypothesis. We also show thatπ∗

BIC can detect
local alternatives converging to the null at the rate

√
logn/n. A particularly

interesting finding is that the power of theπ∗
BIC-based test is asymptotically

equal to that of a test based on the maximum of alternative log-likelihoods.
Simulation results and an example involving variable star data illustrate

desirable features of the proposed tests.

1. Introduction. Consider a model in which the observed data vectorY has
distributionf (y, g,η), wheref is known,g is an unknown function andη is a
vector of unknown nuisance parameters. We wish to test the null hypothesis thatg

is in a specified parametric familyG = {g( · ; θ) : θ ∈ �} against the nonparametric
alternative thatg /∈ G. This paper proposes a Bayes-inspired test of such a
hypothesis. A version of the test was proposed by Hart (1997) in the special case
of checking the fit of a parametric regression model. The idea is simple. Consider
a sequence of models forg of varying dimensions, one of which is the parametric
(or null) model whose fit is to be tested. The posterior probability,πn, of the null
model is computed, and if this probability is sufficiently low, the null model is
rejected. This test may be carried out in either Bayesian or frequentist fashion.
One may determine a sequence of constantsan such thatan(1− πn) converges in
distribution to a nondegenerate random variable whenH0 is true and the sample
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sizen tends to∞. This allows the frequentist to conduct a valid large sample test
of given size based onan(1−πn). On the other hand, a Bayesian may simply wish
to make a decision based on the value ofπn, irrespective of an a priori type I error
probability.

The idea of using a Bayesian-motivated statistic in frequentist fashion is not
new. Good (1957) proposed that the distribution of a Bayes factor be computed on
the assumption that a sharp null hypothesis is true, andP -values corresponding to
the Bayes factor be used as a significance criterion. Good (1992) gives an extensive
review of compromises between Bayesian and non-Bayesian methodologies.

Lack-of-fit and goodness-of-fit tests based on orthogonal series expansions
and/or smoothing ideas have received considerable attention in the last fifteen or
so years. Many references to this work may be found in the book of Hart (1997).
Seminal references on series-based goodness-of-fit tests, that is, so-called smooth
tests, are Neyman (1937) and Rayner and Best (1989, 1990). More recently,
Ledwina (1994) and Fan (1996) have proposed adaptive versions of Neyman’s
smooth test. Eubank and Hart (1992) and Aerts, Claeskens and Hart (1999) have
studied the so-called order selection test in the contexts of regression and general
likelihood models, respectively. A nonparametric Bayesian goodness-of-fit test has
been proposed by Verdinelli and Wasserman (1998).

The rest of the paper is organized as follows. Section 2 considers frequentist
and formal Bayesian versions of the proposed test, and discusses the choice of
alternative models and specification of priors. Section 3.1 summarizes a simulation
study comparing the power of our test with other omnibus lack-of-fit tests. In
Section 3.2 our methods are applied to the problem of testing for a trend in the
sequence of times between maximum brightnesses of the long-period variable
star Omicron Ceti or Mira. Section 4 presents our theoretical results on the
asymptotic frequentist properties of the proposed tests. Finally, the Appendix
contains mathematical details and proofs of the theorems.

2. Test procedures. To reiterate, we assume that observed dataY have
distributionf (y, g,η) for some functiong and vector of parametersη. We wish
to test the hypothesis, call itH0, that the functiong lies in the parametric family
of functionsG. The model which assumes thatH0 is true will be calledM0. We
consider a collection of alternative models denotedM1, . . . ,MK , where eachMi

corresponds to a different parametric specification for the functiong. These
models need not be nested within each other. Since we wish our test ofH0 to
be nonparametric,K should be fairly “large” and the union ofM0,M1, . . . ,MK

should come close to spanning the space of all possibilities forg. Indeed, we can
envisionK growing with the number of observations inY in such a way that,
asymptotically, the models under considerationdo span all the possibilities.

Our tests ofH0 are based on a posterior probability forM0 or on an
approximation to that probability. These tests run the gamut from a purely
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Bayesian approach based on informative priors to a purely frequentist one that
involves no prior specification at all. In any case, our tests take the form

“rejectH0 whenπn
def= P (M0|y) is sufficiently small.”

A Bayesian will make a decision, or perhaps abstain from doing so, by simply
examiningπn and/or a Bayes factor. On the other hand, a frequentist will wish to
determine the sampling distribution ofP (M0|Y) on the assumption thatH0 is true,
and then rejectH0 at level of significanceα if and only if πn is smaller than an
α quantile of this distribution. The frequentist may well regardπn differently than
a Bayesian. The latter viewsπn as the probability thatH0 is true in light of the
observed data, whereas the former may simply view it as a statistic that contains
evidence about the hypotheses of interest.

In Section 2.1 we turn to the question of choosing alternative models
M1,M2, . . . , a question of relevance to both Bayesians and frequentists. Sec-
tion 2.2 considers a formal Bayesian version of the proposed test, including a
discussion of noninformative priors for the modelsM0,M1, . . . . An asymptotic
version of the test requiring no specification of priors is introduced in Section 2.3.

2.1. Alternative models. We shall consider two main types of alternative
models: those which are guaranteed to contain the true functiong (at least in a
limiting sense) and those which do not necessarily containg but nonetheless lead
to a consistent test for virtually anyg. An example will be helpful to illustrate these
two types. In the sequel, the model forg corresponding to probability modelMj

will be denotedgj . Suppose thatg and each member ofG are continuous functions
over the interval[0,1], which means thatg can be written as

g(x) = g(x; θ) + δ(x),

whereδ has the Fourier series representation

δ(x) =
∞∑

j=0

αj cos(πjx), 0≤ x ≤ 1,

for constantsα0, α1, . . . . This representation forg suggests that we take

gj (x; θ,αj ) = g(x; θ) +
j∑

k=0

αk cos(πkx),(1)

whereαj = (α0, . . . , αj )
T . Of course, this model could be modified to suit a given

situation. For example, ifg is a regression function and the modelG contains an
intercept, then the constant termα0 should be eliminated fromgj . Another model
that would be useful for cases whereg is inherently positive is

gj (x; θ,αj ) = g(x; θ)exp

[ j∑
k=0

αk cos(πkx)

]
.
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Other basis functions can be used as well; popular examples include wavelets
and orthogonal Legendre or Hermite polynomials. Wavelet packets would be
particularly attractive when the most parsimonious basis is unknown to the
investigator.

As j → ∞, functions of the form (1) span the space of all functions that
are continuous on[0,1]. In many settings this property is enough to ensure that
there exist tests based on the modelsM1, . . . ,MK that are consistent against any
continuous alternative toH0, so long asK tends to∞ at an appropriate rate with
the sample size. An example of such a test is given in Aerts, Claeskens and Hart
(1999).

On the other hand, it is possible to construct consistent tests based on sequences
of models that do not contain, even in the limit, the true functiong. Such sequences
can have certain advantages when using the methodology proposed in this paper.
For our tests to be consistent, it is usually enough that the best approximation
to g among the models entertained is not inG. Again suppose thatg is a function
defined on[0,1]. Two candidates forgj are

g(x; θ) + αj cos(πjx) and g(x; θ)exp[αj cos(πjx)].(2)

Now, if g is not inG, but is continuous, then, generally speaking, there will exist ak

such that the MLE ofαk in g(x; θ)+αk cos(πkx) consistently estimates a nonzero
quantity [White (1994)]. Such a property implies the existence of a consistent test.

The alternative models considered could be more or less arbitrary. For example,
in the situation discussed immediately above we could entertain all models of the
form

g(x; θ) + ∑
k∈K

αk cos(πkx),

whereK is a subset of 0,1, . . . ,K for someK . If K grows with sample size,
such alternatives are problematic in that the number of models that must be fitted
is 2K+1, which becomes prohibitively large very quickly.

In the sequel we will mainly be concerned with two classes of alternative
models, ones that arenested and ones we shall callsingletons that contain only
one more parameter thanM0. Nested models are such thatMj is a special case of
Mj+1 for j = 0,1, . . . , while singletons containM0 but are not nested within each
other.

2.2. Formal Bayes tests. Corresponding to modelMj , j = 0,1, . . . ,K , are
the nuisance parametersη, parametersθ andαj that specifyg, and the dimension
of (θ ,αj ,η), denotedmj . The likelihood function forMj is L(θ ,αj ,η). Let pj

be the prior probability of thej th model, andπj (θ,αj ,η) the conditional prior
density of(θ ,αj ,η) given that the true model isMj . The posterior probability
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of M0, that is, the basis of our test ofH0, is

P (M0|y) = p0
∫

L(θ0,η)π0(θ0,η) dθ0 dη∑K
j=0pj

∫
L(θ,αj ,η)πj (θ,αj ,η) dθ dαj dη

=
{

1+
K∑

j=1

pj

p0
· Bj

}−1

,

whereBj is the Bayes factor ofMj to M0, that is,

Bj =
∫

L(θ,αj ,η)πj (θ,αj ,η) dθ dαj dη∫
L(θ0,η)π0(θ0,η) dθ0 dη

.

In a subjective Bayesian analysis, the prior probabilitiespj and prior distri-
butionsπj , j = 0,1, . . . ,K , are chosen to represent the investigator’s degree of
belief in the various models and the parameters therein. A Bayesian who wishes
to do an analysis independent of his or her own prior beliefs may wish to use non-
informative priors. In our setting, it is necessary to formulate such priors for the
parameters in each of the modelsM0, . . . ,MK and also to specify “vague” prior
probabilities over these models. We have little to say here about the former prob-
lem since much has already been written about it. There has been much debate
about what is the most appropriate noninformative or reference prior in a given
situation, and, indeed, about whether or notany prior can truly express ignorance
about the underlying parameters. Rather than entering this debate, we refer the in-
terested reader to the excellent review article of Kass and Wasserman (1996) for
further discussion of the problem and many relevant references.

We turn now to the question of assigning vague prior probabilities to the models
M0, . . . , MK . One possibility is to simply give each model the same probability
of 1/(K + 1). In as much asH0 has some special significance (scientific or
otherwise), there may be a prevailing a priori degree of belief in it, expressed by
p0 = π . In this case we could takepj = (1−π)/K , j = 1, . . . ,K , to express lack
of preference for any alternative model.

For some choices of alternative models it is debatable whether assigning them
equal probabilities is really noninformative. When the models are nested with
m0 < m1 < · · · , one could argue that it is natural to put smaller prior probabilities
on the models of larger dimension. Jeffreys (1961) proposed using the improper
prior pj = 1/(j + 1), j = 0,1, . . . , for such problems. A proper noninformative
prior for the positive integers was proposed by Rissanen (1983).

Sometimes one may consider more than one model having a given dimension.
If the distinct model dimensions arem0 < m1 < · · · , then we may assign prior
probability of 2−M(j+1) to the collection of models having dimensionmj and
equal probability to each individual model of that dimension. Such a scheme has
been proposed by Berger and Pericchi (1996).
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It is of some interest to know what formπn takes in various cases. Hart
(1997) obtains an explicit expression for a very accurate approximation toπn in
a regression context where one tests the hypothesis that the regression function is
flat. In most cases, though, it will not be possible to write this probability as an
explicit function of the data. Numerical integration or use of MCMC methods will
then be needed to computeπn.

2.3. Tests free of prior specification. Let m(y) be the marginal distribution
of the dataY. In deriving the well-known BIC for selecting model dimension,
Schwarz (1978) showed that in exponential family models

log
(
P (Mj |y)

)≈ logLj − 1
2mj logn − log(m(y))

= BICj − log(m(y)),

where n denotes the dimension ofy, mj is model dimension andLj is
the likelihood function for modelj evaluated at the MLE. Applying this
approximation to our test statisticP (M0|y) yields

P (M0|y) ≈ 1

1+∑K
j=1 exp(BICj − BIC0)

def= πBIC.

Perhaps the most interesting aspect of this approximation, especially for a
frequentist, is that it is completely free of prior probabilities. The statisticπBIC
would seem to be attractive to frequentists and Bayesians alike. The frequentist
will appreciate the fact thatπBIC requires no specification of priors and is thus
immediately usable as a test ofH0 versus general alternatives. For a Bayesian,
πBIC can serve as a rough and ready approximation to the posterior probability
of M0 when the sample size is large, a property established in various contexts
by Schwarz (1978), Haughton (1988), Kass and Raftery (1995) and Kass and
Wasserman (1995). The reader is cautioned, however, thatπBIC will not always
be an adequate approximation. This is especially true in small to moderate sample
sizes. Furthermore, the approximation can be poor depending on the type of prior
distribution used for the parameters of the modelsM0,M1, . . . ,MK . For more on
this last point, the reader is referred to Kass and Wasserman (1995).

2.4. A frequentist test. LetA = {M1, . . . ,MK} be a collection of models, each
of which contains the null modelM0 as a special case. We consider the test that
rejects the null hypothesis for large values of 1− πBIC, where

πBIC =
{

1+
K∑

j=1

n−(1/2)(mj−m0) exp{Lj /2}
}−1

,

Lj is the log-likelihood ratio 2 log(Lj/L0), and mj denotes the number of
parameters inMj , j = 0, . . . ,K . Some of the theory to be developed later assumes
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that the model is of generalized linear form. In this case, the observed data
are (x1, Y1), . . . , (xn, Yn), where eachxi is a vector of covariates and eachYi a
scalar response. Assuming the covariates to be fixed and the observations to be
independent, the log-likelihood function has the form

�(g, η) =
n∑

i=1

[
Yig(xi) − b

(
g(xi)

)]
/a(η) + c(Yi, η),

wherea(·), b(·) andc(·) are known functions,g is an unknown function andη an
unknown dispersion parameter; see, for example, McCullagh and Nelder (1989).
We consider testing the null hypothesis

H0 :g(x) =
p∑

j=1

θj γj (x)
def= g(x; θ),(3)

where γ1, . . . , γp are known functions andθ = (θ1, . . . , θp)T an unknown
parameter vector. The asymptotic maximizer of the expected log-likelihood

1

n

n∑
i=1

[
b′(g(xi)

)
g(xi; θ) − b

(
g(xi; θ)

)]

with respect toθ is denotedθ0 = (θ10, . . . , θp0)
T , which is the true parameter

vector whenH0 is true and provides a best null approximation tog whenH0 is
false.

Our most general alternativesMj , j = 1,2, . . . , are of the form

gj (x) =
p∑

i=1

θiγi(x) +
j∑

i=1

αivi(x)

for appropriate functionsv1, v2, . . . . To produce test statistics that are meaningful
and powerful, we insist that thevj ’s be orthonormal in the following sense:

n∑
i=1

vj (xi )γk(xi)b
′′(g(xi; θ0)

)= 0, j = 1,2, . . . ; k = 1, . . . , p,(4)

and for allj, k ≥ 1,

1

n

n∑
i=1

b′′(g(xi; θ0)
)
vj (xi )vk(xi) =

{
1, j = k,
0, j 
= k.

(5)

In practice, we may achieve an approximation to (4) and (5) by proceeding
as follows. First, let(θ̂0, η̂0) be the maximizer of the null likelihood function.
We assume that̂θ0 converges in probability toθ0. Now, choose a set of
functions u1, u2, . . . that is a basis for all functions of interest. Then use a
Gram–Schmidt procedure to constructv̂1, . . . , v̂n−p that are linear combinations
of γ1, . . . , γp,u1, . . . , un−p satisfying (4) and (5) withθ0 andvj s replaced bŷθ0
andv̂j s, respectively.
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For generalized linear models, the likelihood ratio statisticLj can be explicitly
obtained as

Lj = 2
n∑

i=1

[Yi(�ij − �i0) − {b(�ij ) − b(�i0)}],

where, forj = 0, . . . ,K ,

�ij = gj (xi; θ̂(Mj), α̂j )

a{η̂(Mj)} .

Note that the maximum likelihood estimatorsθ̂(Mj), η̂(Mj ) andα̂j depend on the
model used.

3. Numerical results. The applicability of the proposed tests is illustrated by
a simulation study in a simple regression setting in Section 3.1 and by an example
involving variable star data in Section 3.2. S-Plus is used for calculations.

3.1. Simulations. We consider normal response data

Yi ∼ N
(
γ (xi), η

)
,(6)

wherexi = (i − 1/2)/n, i = 1, . . . , n. The meanγ (·) is the parameter of interest
and η is the unknown variance parameter. In all settings the sample size was
n = 100 andη = 0.1. We focus on testing for no effect, that is,γ (x) ≡ θ . For
the alternative modelsMj we take

γj (x) = θ + ∑
k∈Kj

φkuk(x), j = 1, . . . ,K,

with Kj a subset of{1, . . . , j} and uk(·) ≡ pk(·), the normalized Legendre
polynomials on the interval[1/(2n),1 − 1/(2n)], k = 1, . . . ,K . To examine the
influence of the choice ofK , all simulations were repeated forK = 10 and
K = 20.

Define AICj = logLj − mj [Akaike (1974)],

r̂a = arg max
0≤j≤K

AICj and r̂b = argmax
0≤j≤K

BICj .

We compare the singleton (BS ) and nested (BN ) versions of the Bayes-motivated
statisticπBIC (Theorem 1) with some other nonparametric omnibus tests:
the tests

La = Lr̂a and Lb = Lr̂b ,

the “max-test” based on

MS = max
0≤j≤K

Lj − 2 logK + log logK + logπ,
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and, finally, the adaptive Neyman testNA, which is based on the squared discrete
Fourier transform of the residual vector from the fitted null model [Fan and
Huang (2001), Section 2.1]. We also included two parametric likelihood ratio
tests comparing the null modelM0 with the true (unknown) alternative modelMj

(“Oracle” test) and with the “full” model (FM)MK with KK = {1, . . . ,K}.
The testsLa,Lb and BN are all based on a sequence of nested alternative

models with Kj = {1, . . . , j}, j = 1, . . . ,K . Score versions ofLa and Lb

were studied in Aerts, Claeskens and Hart (2000), who established that in the
present scenarioLa converges in distribution toWr̃ andLb to W1, whereWr =
V1 + · · · + Vr , for r = 1,2, . . . ,K, V0 = 0, V1,V2, . . . , VK is a sequence of
independentχ2

1 random variables and̃r is the value ofr that maximizesWr − 2r

overr = 0,1, . . . ,K . The testsBS andMS apply singleton alternative models with
Kj = {j}, j = 1, . . . ,K . The testMS is expected to have power characteristics
similar to those ofBS (Theorem 5).

The definition ofπBIC suggests that the distributions of∑K
j=1 exp(Vj /2)

1+ n−1/2∑K
j=1 exp(Vj/2)

(7)

and ∑K
j=1n(1−j)/2 exp(

∑j
i=1 Vi/2)

1+∑K
j=1n−j/2 exp(

∑j
i=1 Vi/2)

(8)

be used as finite sample corrected approximations to the distributions ofBS

and BN , respectively. ForLb, which converges in distribution to aχ2
1 random

variable, we include a corrected distribution defined as that ofWr̃ , whereWr is as
before and̃r is the value ofr that maximizesWr − r logn overr = 1, . . . ,K .

From a simulation based on 30,000 replications, we obtained critical points
(levelsα = 0.01,0.05,0.10) of the large sample distribution of each test statistic,
except forMS and NA, which are asymptotically distributed with distribution
function exp(−exp(−x/2)) (Theorem 5) and exp(−exp(−x)) [Fan and Huang
(2001), Theorem 1], respectively. The critical values are shown in Table 1.

TABLE 1
Simulated critical points of limiting null distributions

Test K α = 0.10 α = 0.05 α = 0.01

La 10 9.393 13.521 21.028
La 20 9.985 14.871 28.103
Lb 3.460 5.620 10.832
BN 3.728 5.105 8.149
BS 10 8.170 8.724 9.598
BS 20 9.027 9.339 9.795
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TABLE 2
Simulated type I error probabilities for K = 10

Test α = 0.10 α = 0.05 α = 0.01

La 0.100 0.063 0.019
Lb 0.102 0.050 0.010
BN 0.094 0.052 0.010
BS 0.109 0.055 0.012
MS 0.079 0.036 0.006
NA 0.125 0.069 0.017

Although thelimiting distributions ofBN andLb depend onK , the simulations
produced critical points that were identical for both values ofK .

Table 2 shows simulated type I error probabilities for all omnibus tests based on
a simulation of size 5000 withK = 10. The results are very similar forK = 20.
As mentioned in Fan and Huang (2001), the approximation exp(−exp(−x)) is
not so good. This was confirmed in our simulations. The simulated type I error
probabilities of the adaptive Neyman test, based on the simulated critical points
of Table 1 in Fan and Huang (2001), are considerably better (see last line in
Table 2). The true levels of most tests are close to the nominal levels. The max-
test is somewhat conservative, whereas the adaptive Neyman and theLa test are
slightly liberal.

To examine power we consider two types of alternatives:

γ S
m(x) = um(x)(9)

and

γ N
m (x) = 1√

m

m∑
k=1

uk(x),(10)

with m ranging from 1 to 10. These alternative models are ordered in the sense
that they incorporate higher frequency terms asm increases; forγ S

m(x) as single
effects and forγ N

m (x) as nested effects (see Figure 1).
In Figure 2, power results are shown for 1000 data sets generated from the

alternative models (9) and (10), respectively. In all cases, the sample sizen

equals 100 and the level of significance is equal to 0.05. For all omnibus tests,
critical points were calculated using the 5000 simulated data sets under the null
hypothesis, and, hence, each omnibus test has true level very close to 0.05.

Focusing on the upper panels (single effect alternatives), four tests essentially
show constant power: the Oracle test, next the singleton testBS and max-testMS

with almost identical curves (as expected from Theorem 5), and the full model test.
When increasing the value ofK from 10 to 20 (from left to right panel), the power
decreases somewhat, especially for the full model test. The power characteristics
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FIG. 1. Alternative models: upper row γ S
m(x), lower row γ N

m (x), for m = 1, . . . ,10.

of Lb andBN are comparable (with some advantage forLb): they have the highest
power for the first lower frequency terms but their power drops down rapidly, with
very comparable values for both values ofK . The adaptive Neyman test also has
a decreasing trend, but with strikingly higher powers for even alternatives. This
is related to the fact that the cosine based Fourier transform terms enter the sum
in the test statistic first, alternating with the sine terms. Finally, the only test with
an increasing power curve is theLa test. For the single effect alternatives, the
Bayesian-motivated testBS is clearly the best choice.

For the nested effect alternatives (lower panels in Figure 2), only the full model
test has seemingly constant power behavior; but the higher the value ofK (making
the test more omnibus), the less competitive this parametric approach becomes.
The singleton testBS and the max-testMS are again very close and somewhat
comparable to the adaptive Neyman testNA. But their overall performance is
rather poor. The best choices, especially forK large and for alternativesγ N

m (x)

with m < 7, are the Bayesian-motived testBN and theLb test. As for the
single effect alternatives, theLa test seems to be a good choice for (very) high
frequencies.
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FIG. 2. Simulated power curves for alternative models γ S
m(x) (upper panels)and γ N

m (x) (lower
panels).

No single omnibus test is superior for all types of alternatives. This general
statement, which is accepted as a sort of consensus by many statisticians, is
confirmed by this (small) simulation study. It also shows the importance of
additional knowledge, from experts in theapplication area, about the plausibility
of certain types of alternatives.

3.2. Analysis of data from a variable star. Astronomers, both professional
and amateur, have collected masses of data on variable stars [Mattei (1997)].
The length of time between consecutive maximum brightnesses of a star is an
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important quantity to astronomers since it contains information about the age and
other properties of the star. We shall refer to these lengths of time as “pseudo-
periods,” since they tend to fluctuate substantially about the star’s actual period,
which is determined by fitting a periodic function to observations. Of particular
interest is detecting systematic changes, or trends, in a star’s period [Koen and
Lombard (2001)].

Here we will apply the methodology introduced in this paper to test for period
changes in the long-period variable Omicron Ceti, or Mira. Both a frequentist
and a “proper” Bayesian analysis of the data will be done. The data are(j, Yj ),
j = 1, . . . ,76, whereYj is the observed time (in days) between the(j − 1)st and
j th maxima on Mira’s light curve. The light curve is simply Mira’s brightness as a
function of time. A plot of the observed pseudo-periods is given in Figure 3.

Note that we may treatY1, Y2, . . . , as a time series, although the indexj is not
actually time. A model often used by astronomers is as follows:

Yj = P + �j + Ij + εj − εj−1, j = 1,2, . . . ,

whereP is the mean period of the star,�j is a systematic deviation from the mean
period,Ij represents random variation intrinsic to the star, andεj is the error made
in measuring thej th time of maximum brightness.

FIG. 3. Mira pseudo-periods and two estimates of trend. The solid line is a sixth degree polynomial,
the model chosen by BIC. The dashed line is a local linear smooth.
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A common set of assumptions is that theεj s are i.i.d. with mean 0 and variance
σ 2

ε < ∞, theIj ’s are i.i.d. with mean 0 and varianceσ 2
I < ∞, and the two series

are independent of each other. Our model generalizes two aspects of this one. First
of all, we allow for heteroscedasticity among theεj s via the model

Var(εj ) = exp(v0 + v1j), j = 1, . . . ,76.

This model is motivated by analysis of data from 378 variable stars by Hart,
Koen and Lombard (2004), which indicates a tendency for residual variance to
decrease over time, a not unexpected phenomenon since observation methods have
improved with time. A second difference in our model is that we allow theIj ’s to
follow a first order autoregressive [AR(1)] model, that is,

Ij = ρIj−1 + Zj , j = 2, . . . ,76,

where |ρ| < 1 and theZj s are i.i.d. mean 0 random variables with finite
varianceσ 2

Z . Our motivation for using an AR model is to circumvent a false
indication of trend. It is well known that the actual size of a trend test assuming
independent data is usually larger than the nominal size when the data exhibit
positive serial correlation.

We will model the trend�j , j = 1, . . . ,76, as a polynomial of unknown degree,
and takeK = 15 as an upper bound on the degree. To obtain a likelihood function,
we assume that both theεj s andZj s are Gaussian. Therefore, our complete model
says thatY1, . . . , Y76 are jointly normal with means of the form

E(Yj) = β0 + β1j + · · · + βkj
k, j = 1, . . . ,76,

and covariance matrix defined by

Cov(Yi, Yj ) =




σ 2
Z/(1− ρ2) + exp[v0 + v1j ] + exp[v0 + v1(j − 1)],

i = j,

ρσ 2
Z/(1− ρ2) − exp[v0 + v1 min(i, j)], |i − j | = 1,

ρ|i−j |σ 2
Z/(1− ρ2), |i − j | > 1.

We wish to test the hypothesis

H0 :�1 = �2 = · · · = �n = 0.

In our frequentist analysis, two test statistics were computed. One isπBIC for the
nested polynomial models with degrees 0,1, . . . ,15, and the other is

πsingleton=
(

1+
15∑

j=1

exp[log(Lj/Lj−1) − log(76)/2]
)−1

,

whereLj is the maximized likelihood for the degreej polynomial model. The
componentsLj/Lj−1, j = 1, . . . ,15, are approximately independent of each
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other, with thej th component representing the relative increase in likelihood when
stepping from a(j − 1)st to aj th degree polynomial.

The values ofπBIC andπsingletonfor the Mira data were 0.000161 and 0.00265,
respectively. Inasmuch as these quantities are good approximations to posterior
probabilities of no trend, this is already considerable evidence in favor of a
trend. However, we may also use frequentist methods to judge the significance
of these values. A parametric bootstrap was used to approximate the distribution
of the two statistics on the assumption thatH0 is true. Data were generated from
the estimated error model corresponding to the polynomial degree maximizing
BICj , j = 0,1, . . . ,15. The estimated optimal degree was 6, and the maximum
likelihood estimate ofσ 2

Z/exp(v0) at degree 6 was 0. Essentially, this says
that the experimental errors,εj − εj−1, are estimated to be so large that they
completely overwhelm the intrinsic errors,Ij . The maximum likelihood estimate
of v1 at degree 6 was−0.001816. In our bootstrap procedure, we thus generated
observationsY ∗

j according to

Y ∗
j = ε∗

j − ε∗
j−1, j = 1, . . . ,76,

where theε∗
j s are i.i.d. with ε∗

j ∼ N(0,exp(−0.001816j)), j = 0,1, . . . ,76.
(Since the distributions of our likelihood ratios are invariant to a constant mean
and tov0, we took these two parameters to be 0.)

One thousand sets of bootstrap data were generated, and on each one we
computedπ∗

BIC andπ∗
singletonin exactly the same way thatπBIC andπsingletonwere

computed from the original data. Kernel density estimates for the two bootstrap
distributions are shown in Figure 4. In addition, we provide estimates of the
densities ofπBIC,asy andπsingleton,asy, where

πBIC,asy=
(

1+
15∑

j=1

exp

[ j∑
i=1

Vj/2− log(76)j/2

])−1

,

πsingleton,asy=
(

1+
15∑

j=1

exp[Vj/2− log(76)/2]
)−1

and V1, . . . , V15 are i.i.d.χ2
1 random variables. The two latter distributions are

large sample approximations to the null distributions of the two statistics.
The two approximations to the distribution ofπBIC are in close agreement,

while those for πsingleton differ somewhat. The bootstrap distribution has a
heavier left tail than the large sample approximation. EstimatedP -values for
πBIC andπsingletonare 0 and 1/2000, respectively, these being based on the two
bootstrap distributions. So, the frequentist analysis provides strong evidence of a
trend in the Mira pseudo-periods. Estimates of trend are seen in Figure 3.

We now describe a Bayesian analysis of the data. Priors for all model parameters
were determined empirically by fitting distributions to maximum likelihood
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FIG. 4. Approximations to the distributions of πBIC (right) and πsingleton(left). The solid lines are
obtained from a Gaussian bootstrap, and the dashed lines are asymptotic distributions.

estimates for a database of 378 stars, one of which is Mira. The prior for the
polynomial degreek is of particular importance since the prior probability of
the null hypothesis is simply the prior probability ofk = 0. We considered three
different priors fork: uniform over 0,1, . . . ,15,

π1(k) = 1

3.381(k + 1)
, k = 0,1, . . . ,15,

and

π2(k) =
{

0.5, k = 0,

[2(2.381)(k + 1)]−1, k = 1, . . . ,15.

The prior π1 is a truncated version of Jeffreys’ noninformative prior for an
unrestricted positive integer [Jeffreys (1961), page 238], whileπ2 is a modified
version ofπ1 that is “fair” to the null hypothesis, in thatπ2(0) = 0.5. Posterior
probabilities of each polynomial degree were approximated using a modification
of Laplace’s method that accounts for the possibility that the MLE ofσ 2

Z can occur
at its lower boundary of 0. The results are given in Table 3. Regardless of which
prior is used fork, the posterior probability of a trend is at least 0.978, and, hence,
the Bayesian analysis is in basic agreement with our earlier frequentist one.
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TABLE 3
Approximations to posterior probabilities of polynomial degrees k for Mira data. The first row is
obtained using the classical BIC approximation to posterior probabilities, while the other three

are based on a proper Bayesian analysis with different priors for k, as explained in the text

Prior k

for k 0 1 2 3 4 5 6 7 8 9 ≥ 10

BIC 0.000 0.000 0.000 0.000 0.002 0.320 0.489 0.059 0.095 0.030 0.005
Uniform 0.001 0.003 0.001 0.000 0.002 0.107 0.335 0.109 0.189 0.129 0.124
π1 0.009 0.011 0.003 0.001 0.003 0.141 0.377 0.108 0.166 0.102 0.079
π2 0.022 0.011 0.003 0.001 0.003 0.139 0.372 0.106 0.163 0.100 0.080

4. Properties of frequentist tests. We now investigate asymptotic frequentist
properties of the test statistic 1− πBIC. We show how the limiting distribution
of this statistic depends on the class of modelsA, and we study the power of
a version of the test based on singleton models (Section 2.1). It will be shown
that the “singleton” test can detect local alternatives tending to the null at rate√

logn/
√

n, and that its limiting power is completely determined by the largest
Fourier coefficient of the true function. Proofs of all theorems are provided in the
Appendix.

4.1. Limiting distribution under the null hypothesis. Our first two theorems
are quite general in the sense that we only make assumptions about the limiting
behavior of the log-likelihood ratiosLj = 2 log(Lj/L0). These assumptions hold
for a great variety of likelihood models. In the sequel,χ2

k denotes a random
variable having the chi-squared distribution withk degrees of freedom.

The effect ofA is well illustrated in our first theorem, in whichA contains
finitely many models.

THEOREM 1. Let A be a set containing only a finite number of different
models, M1, . . . ,MK , all including the null model M0 as a special case. Denote
by m the minimal set size m = min1≤j≤K(|Mj |), where |M| is the dimension of
model M , and define

Km = {j ∈ {1, . . . ,K} : |Mj | = m
}= {m(1),m(2), . . . ,m(m̃)}.

We assume the following conditions hold:

(i) For j = 1, . . . ,K , the log-likelihood ratio Lj is bounded in probability as
n → ∞.

(ii) (Lm(1), . . . ,Lm(m̃))
D→ (V1, . . . , Vm̃), where V1, . . . , Vm̃ are jointly distrib-

uted random variables each having the χ2
m−m0

distribution.
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It then follows that

n(m−m0)/2(1− πBIC)
D→

m̃∑
j=1

exp
(1

2Vj

)
.

Perhaps the most important aspect of Theorem 1 is the fact that the limit
distribution of 1− πBIC is completely determined by the models inA with the
fewest parameters. In the special case whereA is a finite sequence of nested
models, Theorem 1 implies thatn(m−m0)/2(1 − πBIC) converges in distribution
to exp(1

2χ2
m−m0

), wherem is the number of parameters in the smallest model
in A. This “fewest parameters” phenomenon can also be seen in the BIC-based
goodness-of-fit test proposed by Ledwina (1994), and is a result of the fact that
BIC consistently chooses the null model whenH0 is true. For more discussion on
the phenomenon, see Claeskens and Hjort (2004).

Our next two theorems address cases in which the number of alternative models
tends to∞ with n. Theorem 2 is essentially a corollary to Theorem 1, and, hence,
we do not provide its proof.

THEOREM 2. Let M0,M1, . . . be a sequence of nested models containing
numbers of parameters m0 < m1 < · · · , respectively. Assume that under H0 and
as n → ∞,

L1
D→ χ2

m1−m0
.

Furthermore, assume that, as n → ∞, Lj is bounded in probability for each
j = 2,3, . . . . Then there exists a sequence {Kn} tending to infinity such that

n(m1−m0)/2

[
1−

(
1+

Kn∑
j=1

exp(BICj − BIC0)

)−1]
D→ exp

(1
2χ2

m1−m0

)
as n → ∞.

We now assume that the data follow a generalized linear model, as discussed in
Section 2.4. We study the case whereA = AK consists of the singleton models
M1, . . . ,MK discussed at the beginning of Section 2, and we letK tend to infinity
with n. Theorems 1 and 2 show that the asymptotic null distribution ofπBIC
generally depends only on the models having the smallest number of elements.
Therefore, our next theorem is more general than it first appears, since it also
describes the limiting distribution ofπBIC in many cases where the alternatives
consist of singletonsplus other, larger models.

Define the statisticSn by

Sn =
K∑

j=1

exp
( nα̂2

j

2a(η̂0)

)
,
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where

α̂j = 1

n

n∑
i=1

[
Yi − b′(g(xi; θ̂0)

)]
v̂j (xi), j = 1, . . . ,K.

From the definition ofπBIC, we have

√
n(1− πBIC) = S̃n

1+ S̃n/
√

n
,

where S̃n =∑K
j=1 exp(Lj /2). The statisticSn is to S̃n as a score statistic is to

a likelihood ratio statistic. The quantitynα̂2
j /a(η̂0) is known to have the same

limiting distribution as the log-likelihood ratioLj under the null hypothesis and
general regularity conditions, which suggests that under general conditions the
limiting distribution of

√
n(1 − πBIC) is the same as that ofSn. In order to

simplify matters by having an explicit expression for the test statistic, we thus
state Theorem 3 in terms ofSn.

THEOREM 3. Define the constants

aK =
√

π

2
· K√

logK
and bK = KaK√

π

∫ ∞
1

sin(x/aK)

x2
√

logx
dx, K = 1,2, . . . .

Under assumptions A1–A8 in the Appendix,

Sn − aK

bK

D→ S

as n and K tend to infinity, where S has the stable distribution S1(1,1,0), in the
notation of Samorodnitsky and Taqqu (1994).

The most interesting aspect of Theorem 3 is that the limiting distribution ofSn is
not normal. This results from the fact that each term exp(nα̂2

j /[2a(η̂0)]) converges

in distribution to exp(χ2
1/2). Now, exp(χ2

1/2) does not have first moment finite,
and, hence, the classic central limit theorem does not apply toSn. However, the
distribution of exp(χ2

1/2) is in the domain of attraction of the stable distribution
S1(1,1,0), as is easily verified by checking the conditions of Theorem 1.8.1 in
Samorodnitsky and Taqqu (1994).

Some remarks on the size ofK are in order. Ideally, we would allowK to be
as large asn − p. However, our method of proving Theorem 3 allowsK to be
no larger thano(n1/8). Further restrictions onK may be necessary depending on
the choice of basis functions. The key assumptions in this regard are A2 and A8.
Suppose thatu1, u2, . . . are trigonometric functions or Walsh functions [Golubov,
Efimov and Skvortsov (1991)]. Then the boundsBK (in A2) are constant for
every K , and no further restriction onK is required. If the dimension of the
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covariate is 1, andu1, u2, . . . are Legendre polynomials, thenBK = (constant)
√

K

[Szegö (1975), pages 68 and 184] and, again, no further restriction is needed.
It is also worth mentioning that the only assumption among A1–A8 affected by
the dimensionality of the covariatex is A2. The boundsB1,B2, . . . will, in some
cases, tend to increase with the dimensionality of the covariate. For example, if
one uses products of Legendre polynomials as basis functions, thenBK will be of
orderKd/2, whered is the dimensionality ofx. This, of course, will further reduce
the allowable size ofK .

If the practitioner feels it necessary to choose a rather large value ofK , and is
concerned about using the large sample distribution of Theorem 3, then bootstrap
methods could be used to approximate the distribution of the test statistic.

4.2. Power against local alternatives. Here we consider power against local
alternatives, that is, alternatives that tend to the null hypothesis asn → ∞. We
provide rates and constants for local alternatives such that a test based onSn has
power tending to 1 and another rate (and constants) such that the power tends top,
α < p < 1.

THEOREM 4. Let assumptions A1–A8 in the Appendix hold, and assume that
the function g in our generalized linear model (GLM) has the form

gn(x) = g(x; θ0) +
(

γ1 + γ2
√

2 logaK√
n

) m∑
j=1

φjvj (x),

where −∞ < γ1 < ∞ and γ2 ≥ 0 are constants. We assume that one of |φj | is
strictly larger than all others, and define ζ = max1≤j≤m |φj |/√a(η0), where a(η0)

is the dispersion parameter in the GLM. Letting sα be the (1 − α) quantile of the
stable distribution S1(1,1,0) and � the c.d.f. of the standard normal distribution,
it follows that

lim
n→∞P

(
Sn − bK

aK

≥ sα

)
=



α, γ2 < 1/ζ ,
α + (1− α)�(γ1ζ ), γ2 = 1/ζ ,
1, γ2 > 1/ζ .

It is important to note that the limiting power of theSn-based test is determined
by the largest Fourier coefficient of the true function. In contrast, the power of tests
based only onnested alternatives is largely determined by the coefficients of the
smallest alternative models, regardless of whether those coefficients are the largest
ones. [See, e.g., Aerts, Claeskens and Hart (2000).] For this reason tests based
on nested alternatives often have poor power against high frequency alternatives,
since lower frequency models are the default “simplest” models. Owing to the
nature ofSn’s null distribution, it is not too surprising that the power forSn is
determined by the largest Fourier coefficient. LePage, Woodroofe and Zinn (1981)
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show explicitly that the limit of sums converging to a stable law is determined by
the few largest summands.

The connection betweenSn and the largest sample Fourier coefficient becomes
even clearer in the next theorem. We consider the test that rejectsH0 for large
values of

Rn = max
1≤j≤K

[ nα̂2
j

a(η̂0)

]
(11)

and show that its limiting power against the local alternatives of Theorem 4
matches that ofSn. Since Rn is undoubtedly more familiar to most readers
than isSn, this result provides a sort of benchmark for understanding the power
properties ofSn.

THEOREM 5. Let Rn be the statistic defined in (11),and suppose that A1–A8
hold. Then if H0 is true,

lim
n,K→∞P (Rn − 2 logK + log logK + logπ ≤ x)

= exp
(−exp(−x/2)

)
for each x.

Now define xα = −2 log log(1 − α)−1, the 1 − α quantile of the distribution
exp(−exp(−x/2)). When the local alternatives of Theorem 4 hold,

lim
n,K→∞P (Rn − 2 logK + log logK + logπ ≥ xα) = lim

n,K→∞P

(
Sn − bK

aK

≥ sα

)
,

where the latter limit is given in Theorem 4.

4.3. Lindley’s paradox. Lindley’s paradox refers to situations where the
posterior probability of a hypothesis,H0, is very high, say 0.95, and yet a
frequentist test indicates strong evidence againstH0, in that theP -value forH0
is small, say 0.01. Typically a frequentist does not have to deal with Lindley’s
paradox since he or she does not compute posterior probabilities. However,
a frequentist using the tests proposed in Section 3 cannot help but notice it since
the test statistic itself is a posterior probability. A levelα test has the form

“RejectH0 if πn ≤ pn,α,”(12)

with pn,α → 1 as n → ∞. This implies that for large enoughn, a posterior
probability (forH0) of, for example, 0.99, would lead to rejection ofH0!

For frequentists concerned with Lindley’s paradox, a relevant question is “at
what sample size does the paradox begin to manifest itself?” It seems reasonable
to say that the paradox occurs only if we rejectH0 whenH0 is a posteriori more
probable thanHa . Therefore, we may ask at what sample size does the critical
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value of test (12) become larger than 1/2? The BIC approximation to the posterior
probability ofH0 is

πBIC = 1

1+∑K
k=1n−(mk−m0)/2Lk/L0

.

Let us assume thatmk − m0 = 1 for eachk and thatLk/L0, k = 1, . . . ,K , are
asymptotically independent, as is true for the singleton models used in Theorem 3.
WhenH0 is true, the distribution ofπBIC is thus approximated by that of

1

1+ n−1/2∑K
k=1 exp(Vk/2)

,(13)

whereV1, . . . , VK are i.i.d.χ2
1 random variables. Consider the test that rejectsH0

at sample sizen and nominal levelα when πBIC is no more thanpn,K,α ,
the α quantile of the distribution of (13). For purposes of discussion, we will
say that Lindley’s paradox occurs whenpn,K,α ≥ 1/2. Of course,πBIC is only
an approximation to the posterior probability ofH0, but Kass and Wasserman
(1995) provide evidence thatπBIC is an excellent approximation toπn for certain
reference priors. To be on the safe side, we could say that 1/2 < πBIC ≤ pn,K,α

is an example of Lindley’s paradox in cases where one is using the appropriate
reference priors.

Figure 5 displays approximations of the 95th percentile of the distribution
of (13) as a function of

√
n and for different values ofK . The approximations were

obtained by generating 10,000 independent values of (13). The graph indicates

FIG. 5. Approximate 95th percentiles of (13). From top to bottom, the curves correspond to
K = 1,5,10,20, respectively.
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that for a test of nominal level 0.05, Lindley’s paradox is a very large sample
phenomenon when using aK of 10 or more. ForK = 10, values greater than 0.5
are not included in the rejection region untiln is more than 6000. On the other
hand, the paradox can occur forK = 1 whenn is as small as 64. The caseK = 1
is of particular interest since then the distribution of (13) approximates that of our
statistic for testingH0 against a sequence of nested alternatives.

A way of resolving Lindley’s paradox is to use a test of the form

“RejectH0 if πn ≤ min(1/2,pn,α).”(14)

What effect does such a rejection region have on the power and level of the test?
Typically, for all n less than somen0, test (14) will be identical to (12). For
largern, test (14) will have level of significance smaller thanα and, indeed, tending
to 0 asn → ∞. Of course, the smaller rejection region will lead to an attendant
reduction in power. However, in a certain sense the reduction is quite small. It
can be shown that test (14) has power tending to 1 for both fixed alternatives
and local alternatives tending to the null at rate(logn)η/

√
n, whereη > 1/2. For

local alternatives tending to 0 at rate 1/
√

n, though, the power of (14) tends to 0.
Apparently, this is a price that must be paid to avoid Lindley’s paradox.

5. Concluding remarks. A very general means of testing the fit of a
parametric function has been proposed. The parametric model is rejected if its
posterior probability is too small. The test can be carried out in either a Bayesian
or frequentist way. Alternatives to the null hypothesis are modeled by a sequence
of models, which need not be nested. Our simulation study supports the conclusion
that test validity is generally well maintained by use of an asymptotic distribution.
It also shows that our proposed tests can compare favorably with other omnibus
lack of fit tests.

Although some of the theory assumes the model is of the generalized linear
form, the test can be used in a general likelihood context, including discrete or
continuous data and multivariate data with dependence among observations. Our
example using variable star data illustrates the fact that our test can accommodate
dependent data. The applicability and the performance of the method in a variety of
complex settings, including longitudinal and other types of clustered data, is a topic
of current research. In the multiple regression case, where the covariates belong to
a subset ofRd (d > 1), a variety of sequences of alternative models, including
singleton models and variations thereof, can be chosen and it is not clear which
sequence is preferable or leads to optimal power characteristics. An extensive
simulation study in a variety of settings can shed more light on these important
practical issues. Furthermore, a score version of the proposed frequentist test can
be considered, as well as robust versions of it. These variations and extensions are
currently under investigation.



BAYESIAN TESTS OF FIT 2603

APPENDIX

Following are assumptions needed in our proofs of Theorems 3 and 4:

A1. The design pointsx1, . . . ,xn are fixed and confined to a compact subsetS
of R

d for all n.
A2. The functionsγ1, . . . , γp,u1, u2, . . . satisfy the following assumptions:

(i) There existsB∗
1 < ∞ such that

sup
1≤j≤p,x∈S

|γj (x)| < B∗
1 and

(ii) there exists a sequence of positive constants{Bj : j = 1,2, . . .} such
that

sup
1≤j≤K,x∈S

|uj (x)| ≤ BK, K = 1,2, . . . .

A3. The functionsv1, v2, . . . satisfy (4) and (5) and̂v1, v̂2, . . . are constructed from
γ1, . . . , γp, u1, u2, . . . as described at the beginning of Section 3.

A4. Let An,K denote then × K matrix with i, j elementuj (xi). Then we assume
that the diagonal elements ofAT

n,KAn,K/n are all 1, and that the smallest
eigenvalue ofAT

n,KAn,K/n is bounded away from 0 for alln andK .

A5. The dispersion parametera(η0) is positive, and the MLEŝη0 and θ̂0 of η0

andθ0, respectively, are such thatE(a(η̂0) − a(η0))
2 andE‖θ̂0 − θ0‖2 exist

and are eachO(n−1).
A6. Let � be the parameter space forθ . There exists a compact, connected

subsetN of � such thatθ0 ∈ N and, for eachx ∈ S, g(x; θ) is a continuous
function ofθ onN .

A7. The functionb is thrice differentiable with

sup
x∈S,θ∈N

∣∣b′′′(g(x; θ)
)∣∣≤ B∗

2

for some constantB∗
2, the function (ofx) b′′(g(x; θ)) is nonnegative for each

θ ∈ �, and

inf
x∈S,θ∈N

b′′(g(x; θ)
)
> 0.

A8. The number of singleton models,K , tends to infinity withn in such a way
that K ≤ n1/8−a andBKK7/2 ≤ n1/2−a, wherea is any number such that
0 < a < 1/8.

PROOF OFTHEOREM 1. Using the explicit expression of the BIC numbers
for the models under consideration, we can write the test statistic in the following
form:

n(1/2)(m−m0)(1− πBIC) = n(1/2)(m−m0)
∑K

j=1n−(1/2)(mj−m0) exp(Lj /2)

1+∑K
j=1n−(1/2)(mj−m0) exp(Lj /2)

.
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By definition ofm and assumption (i), the denominator is 1+ Op(n−(1/2)(m−m0)),
while the numerator is equal ton−(1/2)(m−m0)

∑m̃
j=1 exp(Lm(j)/2) +

op(n−(1/2)(m−m0)). The result now follows from assumption (ii).�

PROOF OF THEOREM 3. Throughout the proofC1,C2, . . . denote positive
constants that depend on neithern norK . To simplify notation, we have suppressed
the dependence of thevj ’s andv̂j ’s onn.

We may expresŝαj as

α̂j = α̃j + e1j + e2j ,

where, forj = 1,2, . . . ,

α̃j = 1

n

n∑
i=1

[
Yi − b′(g(xi; θ0)

)]
vj (xi),

e1j = 1

n

n∑
i=1

[
Yi − b′(g(xi; θ̂0)

)][v̂j (xi ) − vj (xi)]

and

e2j = 1

n

n∑
i=1

[
b′(g(xi; θ0)

)− b′(g(xi; θ̂0)
)]

vj (xi ).

We may write

Sn =
K∑

j=1

exp(Ujn/2) +
K∑

j=1

exp(Ujn/2)[exp(Rjn) − 1] =
K∑

j=1

exp(Ujn/2) + rKn,

whereUjn = nα̃2
j /a(η0) andRjn = (Vjn − Ujn)/2. Obviously

|rKn| ≤ max
1≤j≤K

|exp(Rjn) − 1|
K∑

j=1

exp(Ujn/2).

The remainder of the proof consists of two main parts:

(a) Showing thatδn = max1≤j≤K |exp(Rjn) − 1| is asymptotically negligible,
and

(b) obtaining the large sample distribution of
∑K

j=1 exp(Ujn/2).

We first consider (a). By Taylor’s theorem,

exp(Rjn) = 1+ Rjn exp(R̃jn)

for R̃jn such that|R̃jn| ≤ |Rjn|, and so

δn ≤ max
1≤j≤K

|Rjn|exp(|Rjn|).
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Now, for all ε > 0, takeε′ such thatε′ exp(ε′) = ε, and so

P

(
K⋂

j=1

{|Rjn| ≤ ε′}
)

≤ P

(
max

1≤j≤K
|Rjn|exp(|Rjn|) ≤ ε

)
.(A.1)

Define

T1j = nα̃2
j

2

(
1

a(η̂0)
− 1

a(η0)

)
, T2j = nα̃j

a(η̂0)
(e1j + e2j )

and

T3j = n(e1j + e2j )
2

2a(η̂0)
.

By (A.1) we have

P

(
max

1≤j≤K
|Rjn|exp(|Rjn|) > ε

)
≤

K∑
j=1

3∑
�=1

P (|T�j | > ε′/3).

Clearly,

P

(
|T1j | > ε′

3

)
≤ P

(
n2/3α̃2

j > 2

√
ε′
3

)
+ P

(
n1/3

∣∣∣∣ 1

a(η̂0)
− 1

a(η0)

∣∣∣∣>
√

ε′
3

)
.

By Markov’s inequality,

P

(
n2/3α̃2

j > 2

√
ε′
3

)
≤ n2/3a(η0)n

−1

2
√

ε′/3
=

√
3a(η0)

2
√

ε′ n−1/3,

where we have usedE(Yi) = b′(g(xi; θ0)), Var(Yi) = a(η0)b
′′(g(xi; θ0)) and A3.

A bit of algebra shows that, for alln sufficiently large,

P

(
n1/3

∣∣∣∣ 1

a(η̂0)
− 1

a(η0)

∣∣∣∣>
√

ε′
3

)
≤ P

(
|a(η̂0) − a(η0)| > a2(η0)

√
ε′

a(η0)
√

ε′ + √
3n1/3

)
.

By Markov’s inequality and A5, the last probability isO(n−1/3). We have thus
shown that

∑K
j=1P (|T1j | > ε′/3) = O(Kn−1/3).

We turn now to the termsT2j , for which

P

(
|T2j | > ε′

3

)
≤ P

(
n|α̃j ||e1j | > ε′a(η0)

12

)
+ P

(
n|α̃j ||e2j | > ε′a(η0)

12

)

+ P

(
a(η̂0) <

a(η0)

2

)
.
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The third summand in the last term isO(n−1), independent ofj . Letting C1 =
ε′a(η0)/12,

P (n|α̃j ||e2j | > C1) ≤ P
(
n1/3|α̃j | >

√
C1
)+ P

(
n2/3|e2j | >

√
C1
)

≤ a(η0)

C1n
1/3 + P

(
n2/3|e2j | >

√
C1
)
.

We have

e2j = −1

n

n∑
i=1

[(
g(xi; θ̂0) − g(xi; θ0)

)
b′′(g(xi; θ0)

)

+ 1

2

(
g(xi; θ̂0) − g(xi; θ0)

)2
b′′′(g̃i )

]
vj (xi),

where g̃i is betweeng(xi; θ̂0) and g(xi; θ0). The orthogonalityproperties (4)
imply that the last expression is simply−(2n)−1∑n

i=1(g(xi; θ̂0) − g(xi; θ0))
2 ×

b′′′(g̃i)vj (xi ), and so

|e2j | ≤
(

1

n

n∑
i=1

(
b′′′(g̃i )

)2
v2
j (xi)

)1/2

max
1≤i≤n

(
g(xi; θ̂0) − g(xi; θ0)

)2
/2

≤ C2‖θ̂0 − θ0‖2 max
1≤i≤n

|b′′′(g̃i)|√
b′′(g(xi; θ0))

.

It follows that

P
(
n2/3|e2j | >

√
C1
)≤ P (n2/3‖θ̂0 − θ0‖2 > C3) + P

(
max

1≤i≤n
|b′′′(g̃i )| > C4

)
,

whereC3 andC4 are defined so thatC4 exceeds the valueB∗
2 in A7. We now have

P
(
n2/3|e2j | >

√
C1
)≤ C5

n1/3 +P

(
max

1≤i≤n
|b′′′(g̃i)| > C4 ∩ θ̂0 ∈ N

)
+P (θ̂0 ∈ N c).

On the event̂θ0 ∈ N , assumption A6 implies that̃gi = g(xi; θni) for θni ∈ N ,
and, hence, (by A7)P (max1≤i≤n |b′′′(g̃i)| > C4 ∩ θ̂0 ∈ N ) = 0. Along with A5,
we thus have

P
(
n2/3|e2j | >

√
C1
)≤ C5

n1/3
+ C6

n
.

Now consider

P (n|α̃j ||e1j | > C1) ≤ P
(
nc|α̃j | >

√
C1
)+ P

(
n1−c|e1j | >

√
C1
)

≤ a(η0)

C1n1−2c
+ P

(
n1−c|e1j | >

√
C1
)
,
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for c a number in(0,1/2). We may write

e1j =
p+j∑
r=1

(β̂rj − βrj )
1

n

n∑
i=1

[
Yi − b′(g(xi; θ̂0)

)]
ur(xi ),

and so

e2
1j ≤

p+j∑
r=1

(β̂rj − βrj )
2 ·

p+j∑
r=1

(
1

n

n∑
i=1

[
Yi − b′(g(xi; θ̂0)

)]
ur(xi)

)2

def=
p+j∑
r=1

(β̂rj − βrj )
2 · Znj .

Before proceeding, we define some matrix notation. LetA denote the ma-
trix An,K in A4, andW andŴ then×n diagonal matrices with respective diagonal
elementsb′′(g(xi; θ0)) andb′′(g(xi; θ̂0)), i = 1, . . . , n. MatricesB andB̂ are the R
matrices in the QR decompositions ofW1/2A/

√
n andŴ 1/2A/

√
n, respectively.

We then have
p+j∑
r=1

(β̂rj − βrj)
2 ≤ (p + j)max

r,j
(β̂rj − βrj )

2 ≤ (p + j)‖B−1 − B̂−1‖2
2

= (p + j)‖B−1(B − B̂)B̂−1‖2
2

≤ (p + j)‖B − B̂‖2
2

σ 2(B)σ 2(B̂)
,

whereσ(M) denotes the smallest singular value of matrixM. A result of Drmăc,
Omladĭc and Veselíc (1994) implies that

‖B − B̂‖2
2 ≤ (8K3 + √

2K2) · ‖AT WA/n‖2‖AT WA − AT ŴA‖2
2

σ 2(AT WA)
.

Assumptions A2, A4 and A7 and basic properties of matrix norms [Golub and Van
Loan (1996)] now imply that

‖B − B̂‖2
2 ≤ C7

(
8K3 + √

2K2) max
1≤i≤n

(
b′′(g(xi; θ̂0) − b′′(g(xi; θ0)

))2
.

Combining previous results yields

P
(
n2(1−c)e2

1j > C1
)≤ P

(
na(p + j)

(
8K3 + √

2K2)

× max
1≤i≤n

(
b′′(g(xi; θ̂0)

)− b′′(g(xi; θ0)
))2

/σ 2(B̂) > C8

)

+ P
(
n2(1−c)−aZnj >

√
C1
)

≤ (p + j)[C9K
3na−1 + C10n

1−2c−a]
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and
K∑

j=1

P

(
|T2j | > ε′

3

)
≤ C11

(
K

n1/3

)
+ C12

(
K

n1−2c

)

+ C13

(
K

n(1−a)/5

)5

+ C14

(
K

n[a−(1−2c)]/2

)2

.

Taking 1− 2c = (1 − a)/5 = [a − (1 − 2c)]/2 = 1/8 and demanding thatK =
o(n1/8) ensures that the right-hand side above tends to 0.

Since n(e1j + e2j )
2 ≤ 2n(e2

1j + e2
2j ), the term

∑K
j=1P (|T3j | > ε′/3) can

be bounded by a quantity that is asymptotically negligible in comparison to∑K
j=1P (|T2j | > ε′/3). Combining all the previous steps, it now follows thatδn

tends to 0 in probability asn → ∞.
We turn now to step (b) in our proof. We may write

Sn − bK

aK

= SKn + rKn

aK

,

where

SKn =
∑K

j=1 exp(Ujn/2) − bK

aK

.

We will first show thatSKn converges in distribution to a stable law, and then
that rKn/aK converges in probability to 0. Now letFKn be the c.d.f. ofSKn,
andFK the c.d.f. of a random variable having exactly the same form asSKn but
with U1n, . . . ,UKn replaced byZ2

1, . . . ,Z2
K , whereZ1,Z2, . . . are i.i.d. random

variables having the standard normal distribution. Obviously,

FKn(x) = FK(x) + (FKn(x) − FK(x)
)
.

Theorem 1.8, pages 50 and 51 of Samorodnitsky and Taqqu (1994), implies that
FK converges uniformly toF , whereF is theS1(1,1,0) stable law, in the notation
of Samorodnitsky and Taqqu (1994).

Now FK can be written as

FK(x) = P

(
K∑

j=1

exp(Z2
j /2) ≤ aKx + bK

)

= P
(
(Z1, . . . ,ZK) ∈ Ax,K

)
.

Likewise,

FKn(x) = P
(√

n(α̃1, . . . , α̃K)/
√

a(η0) ∈ Ax,K

)
.

Due to the convexity of the exponential function, the setsAx,K are convex for allx
andK , and, hence, we may apply the multivariate Berry–Esséen theorem of Götze
(1991) to obtain the bound

sup
x

|FKn(x) − FK(x)| ≤ C15Kξn,K,
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for all K ≥ 6, where

ξn,K = 1

(na(η0))3/2

n∑
j=1

E
∣∣Yj − b′(g(xj ; θ0)

)∣∣3[ K∑
i=1

v2
i (xj )

]3/2

.

The uniform boundedness ofb′′′(g( · ; θ0)) (A7) now implies that

ξn,K ≤ C16

n3/2

n∑
j=1

[
K∑

i=1

v2
i (xj )

]3/2

≤ BKK3/2C16

n3/2

K∑
i=1

n∑
j=1

[
b′′(g(xj ; θ0)

)
/b′′(g(xj ; θ0)

)]
v2
i (xj )

≤ BKK3/2C17

n1/2

K∑
i=1

1

n

n∑
j=1

b′′(g(xj ; θ0)
)
v2
i (xj )

= BKK5/2C17

n1/2 .

Finally, then

sup
x

|FKn(x) − FK(x)| ≤ C18BKK7/2

n1/2 ,

and the right-hand side of the last expression tends to 0 by A8.
Finally, consider

|rKn|
aK

≤ δn

[∑K
j=1 exp(Ujn/2) − bK + bK

aK

]

= δn[Op(1) + bK/aK ]
= op(1) + δnbK/aK.

It is straightforward to show that|bK/aK | ≤ C19logK . Examining our proof
that δn converges in probability to 0 makes it clear thatδn logK does also, and,
hence, the proof is complete.�

PROOF OFTHEOREM 4. For allK > m, we have

Sn − bK

aK

= Wn + Tn,

where

Wn = 1

aK

m∑
j=1

exp(Vjn/2) and Tn =
∑K

j=m+1 exp(Vjn/2) − bK

aK

.
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Obviously

P (Wn + Tn ≥ sα) = P (Tn ≥ sα) + P (Wn + Tn ≥ sα ∩ Tn < sα).

We first consider the case whereγ −1
2 = ζ . Without loss of generality, suppose

the largest|φj | is |φm|, and consider, for anyε > 0,

P

(
1

aK

m−1∑
j=1

exp(Vjn/2) > ε

)
≤ P

(
m−1⋃
j=1

{
exp(Vjn/2) >

aKε

m − 1

})

≤
m−1∑
j=1

P

(
exp(Vjn/2) >

aKε

m − 1

)
.

Now Vjn = nα̂2
j /a(η̂0), where

α̂j = 1

n

n∑
i=1

[
Yi − b′(g(xi; θ̂0)

)]
v̂j (xi )

= 1

n

n∑
i=1

[
Yi − b′(g(xi; θ0)

)]
vj (xi ) + op(n−1/2),

and the last statement follows by arguing as in the proof of Theorem 3. Continuing
from the last expression, we have

α̂j = 1

n

n∑
i=1

[
Yi − b′(gn(xi)

)]
vj (xi)

+ 1

n

n∑
i=1

[
b′(gn(xi)

)− b′(g(xi; θ0)
)]

vj (xi) + op(n−1/2)

= 1

n

n∑
i=1

[
Yi − b′(gn(xi)

)]
vj (xi)

+
(

γ1 + γ2
√

2 logaK√
n

)
φj + O(n−1 logaK) + op(n−1/2).

We may thus write√
nα̂j√

a(η̂0)
= Zjn + (γ1 + γ2

√
2 logaK

) φj√
a(η0)

+ op(1),(A.2)

whereZjn converges in distribution to a standard normal random variable, and
we have used the fact thatη̂0 is consistent forη0 under our local alternatives.
Using (A.2) and the fact thatγ2|φj |/√a(η0) < 1 for j = 1, . . . ,m − 1, it is easy
to verify that

P

(
exp(Vjn/2) >

aKε

m − 1

)
→ 0
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asn → ∞ for eachj = 1, . . . ,m−1. Combined with previous results, this implies
that

∑m−1
j=1 exp(Vjn/2)/aK converges to 0 in probability whenγ −1

2 = ζ , and,
hence, the power has the same limit as

P (Tn ≥ sα) + P
(
exp(Vmn/2)/aK + Tn ≥ sα ∩ Tn < sα

)
.

DefineT̃n by

aK(sα − T̃n) = max
(
1, aK(sα − Tn)

)
.

Using (A.2) and some straightforward algebra, and assuming without loss of
generality thatφm > 0, we have

Zmn + (γ1/γ2 + √
2 logaK

)+ op(1)

≥
√

2 logaK + 2 log(sα − T̃n) �⇒ exp(Vmn/2)/aK + Tn ≥ sα.

By Taylor’s expansion,

√
2 logaK + 2 log(sα − T̃n) = √

2 logaK + log(sα − T̃n)√
Un

,

whereUn is between 2 logaK and 2 logaK + 2 log(sα − T̃n).
For any 0< ε < 1, defineIn,ε = I(−∞,sα−ε)(Tn). Then

P

(
Zmn + γ1

γ2
+ op(1) ≥ | log(sα − T̃n)|In,ε√

2 logaK + 2 logε
∩ In,ε = 1

)

≤ P

(
Zmn + γ1

γ2
+ op(1) ≥ log(sα − T̃n)√

Un

∩ In,ε = 1
)

≤ P

(
exp
(

Vmn

2

)/
aK + Tn ≥ sα ∩ In,ε = 1

)
.

Now, arguing as in the proof of Theorem 3,(Zmn,Tn) converges in distribution
to (Z,T ), whereZ andT are independent with standard normal andS1(1,1,0)

distributions, respectively. SinceaK → ∞, this implies that

| log(sα − T̃n)|In,ε√
2 logaK + 2 logε

= op(1),

and so

P

(
Zmn + γ1

γ2
+ op(1) ≥ | log(sα − T̃n)|In,ε√

2 logaK + 2 logε
∩ In,ε = 1

)

→ P

(
Z ≥ −γ1

γ2
∩ T ≤ sα − ε

)
.

Combining previous results, and by the arbitrariness ofε, we now have

lim inf
n→∞ P

(
exp(Vmn/2)/aK + Tn ≥ sα

)≥ α + (1− α)�(γ1/γ2).(A.3)
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Now, for anyε > 0,

P
(
exp(Vmn/2)/aK + Tn ≥ sα ∩ Tn < sα

)
≤ P

(
exp(Vmn/2)/aK ≥ ε ∩ Tn < sα

)+ P (sα − ε ≤ Tn < sα).

Arguing as we did before, the very last quantity converges to

(1− α)�(γ1/γ2) + P (sα − ε ≤ T < sα),

and, hence, by the arbitrariness ofε,

lim sup
n→∞

P
(
exp(Vmn/2)/aK + Tn ≥ sα

)≤ α + (1− α)�(γ1/γ2).

Combined with (A.3), this yields Theorem 4 for the caseγ −1
2 = ζ .

Whenγ −1
2 > ζ , we may show thatWn tends to 0 in probability using the same

argument that was applied toWn − exp(Vmn/2)/aK in the caseγ −1
2 = ζ .

Forγ −1
2 < ζ , the limiting power is at least

P (Tn ≥ sα) + P
(
exp(Vmn/2)/aK + Tn ≥ sα ∩ Tn < sα

)
,

and if we follow exactly the same steps used in the caseγ −1
2 = ζ , we may establish

that the limiting power is 1. �

PROOF OF THEOREM 5. Let Z1,Z2, . . . be a sequence of i.i.d. standard
normal random variables, and definedK = 2 logK − log logK − logπ . We first
assume thatH0 is true. Since

max
1≤j≤K

Ujn − 2 max
1≤j≤K

|Rjn| ≤ Rn ≤ max
1≤j≤K

Ujn + 2 max
1≤j≤K

|Rjn|

and we have already shown thatδn = max1≤j≤K |exp(Rjn) − 1| is asymptotically
negligible, it suffices to study the distribution of̃Rn = max1≤j≤K Ujn. Let GnK

andGK denote the distribution functions of̃Rn − dK and max1≤j≤K Z2
j − dK ,

respectively. The random variable supx |GnK(x) − GK(x)| is bounded by exactly
the same quantity as was supx |FnK(x) − FK(x)| in the proof of Theorem 3, and,
hence, we need only consider

P

(
max

1≤j≤K
Z2

j ≤ x + dK

)
= [1− 2

(
1− �

(√
x + dK

))]K

=
[
1− 2φ(

√
x + dK )√

x + dK

+ o(K−1)

]K

= [1− e−x/2K−1 + o(K−1)]K
= exp(−e−x/2) + o(1),

which completes the proof in the null case.
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Now assume that the local alternatives of Theorem 4 hold, and define

W1K = max
1≤j<m

Ujn and W2K = max
m<j≤K

Ujn.

As in the proof of Theorem 4, we assume without loss of generality that the largest
value of|φj | is atj = m. Three facts are key in the rest of the proof:

(i) R̃n has the same limiting distribution asRn.
(ii) P (W1K ≥ dK + xα) converges to 0 asn → ∞.
(iii) W2K − dK has a limiting distribution equal to that in the null case.

Proof of (i)–(iii) is not provided here since it closely parallels arguments in the
proof of Theorem 4.

Facts (i) and (ii) imply that

P (Rn − dK ≥ xα) = P (Umn ≥ dK + xα ∪ W2K − dK ≥ xα) + o(1).

As in the proof of Theorem 4, it is easy to check that

lim
n→∞P (Umn ≥ dK + xα) = �(γ1ζ ).

This along with (iii) and the fact thatUmn andW2k are asymptotically independent
implies that

lim
n→∞P (Umn ≥ dK + xα ∪ W2K − dK ≥ xα)

= �(γ1ζ ) + α − �(γ1ζ )α

= α + (1− α)�(γ1ζ ),

which completes the proof.�
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