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APPROXIMATING A SEQUENCE OF OBSERVATIONS
BY A SIMPLE PROCESS1
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Université Paris Nord, Northwestern University and Tel Aviv University, and HEC

Given an arbitrary long but finite sequence of observations from a finite
set, we construct a simple process that approximates the sequence, in the
sense that with high probability the empirical frequency, as well as the
empirical one-step transitions along a realization from the approximating
process, are close to that of the given sequence.

We generalize the result to the case where the one-step transitions are
required to be in given polyhedra.

1. Introduction. In a seminal work, Baum and Petrie (1966) studied the
following problem. Can one recover a homogenous hidden Markov chain from
a finite sample(x0, x1, . . . , xN) from the chain. They prove that the maximum
likelihood estimate converges to the correct value, asN goes to infinity.

This problem has several applications, including ecology [Baum and Eagon
(1967)], speech recognition [see, e.g., Rabiner (1989)] and identifying gene
structure [see, e.g., Krogh, Mian and Haussler (1994)].

We study the following related problem. Can one find a “simple” process(sn)

that “explains” a given observation(x0, x1, . . . , xN)? More specifically, we are
given a finite sequence(x0, . . . , xN) out of a finite setS, and we would like to find
a simpleS-valued process(sn) that satisfies the following two properties:

(i) under(sn)n≤N , with high probability, the empirical frequency ofs ∈ S is
close to the frequency of stagesm < N such thatxm = s, and

(ii) the conditional law ofsn+1, given (s0, . . . , sn), is close to the empirical
frequency of one-step transitions fromsn to sn+1 in (x0, . . . , xN) (i.e., the
frequency of stagesm < N such thatxm+1 = sn+1 out of the stagesm < N such
thatxm = sn).

Were only the property (i) required, an i.i.d. sequence would do. The simplest
processes that allow for serial correlation are homogeneous Markov chains.
Therefore, a naive solution to this problem is to define(sn) to be the homogeneous
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Markov chain in which the transition froms to s′ is the frequency of stagesm < N

such thatxm+1 = s′ out of the stagesm < N such thatxm = s. It is true that
asymptoticallythis Markov chain satisfies our requirements. However, we wish to
have an approximation at timeN , whereN is the number of observations, and the
naive Markov chain may fail to do so. The concept of a simple process we use is
therefore slightly more complicated: a simple process in our context is apiecewise
homogeneous Markov chain with aboundednumber of pieces. Our basic result
states that, providedN is large enough,everysequence can be explained, in the
above sense, by a piecewise homogeneous Markov chain with at most|S| pieces.
Our proof is constructive, in the sense that we provide an algorithm that produces
the desired piecewise homogeneous Markov chain.

We also analyze a more general question. It is sometimes the case that the
process we construct has to satisfy some exogenous constraints, for example,
the one-step transitions must belong to some pre-defined polyhedra of probability
measures. These polyhedra may reflect some a priori knowledge of the physics of
the problem at hand. We then have to construct a process such that both (i) and (ii)
are satisfied, and, in addition, the conditional law ofsn+1, given(s0, . . . , sn), must
belong to some polyhedronV (sn). So that (ii) will hold, the empirical transitions
along the observed sequence must be close to the given polyhedra. We prove
that under proper conditions, and ifN is large enough, there exists a piecewise
hiddenMarkov chain with a bounded number of pieces that satisfies these three
requirements.

A consequence of our result is the following. Let(zn) be any S-valued
process such that the conditional law ofzn+1, given(z0, . . . , zn), belongs to some
given polyhedronV (zn), a.s. for eachn < N . Assume, moreover, that there is
an irreducible transition functionb such thatb(s, ·) ∈ V (s) for every s. Then,
providedN is large enough, for most realizations(x0, x1, . . . , xN) of (zn) one
can find a piecewise homogeneous hidden Markov chain(sn) with at most|S|
pieces such that both (i) and (ii) above hold, and the conditional law ofsn+1, given
(s0, . . . , sn), belongs toV (sn), a.s. for everyn < N . More precisely, the measure
of the set of realizations that can be explained in the sense we just described goes
to 1 asN goes to infinity. Thus, most realizations from(zn) can be explained by
a simple process. In other words, assumingonly that the sequence(x0, . . . , xN)

is generated by a process that satisfies the given physical constraints, it is very
likely that a simple process can be found, which with high probability has the
same empirical behavior as the given sequence(x0, . . . , xN).

The paper is organized as follows. In Section 2 we define and investigate the
problem with no polyhedral restriction, and in Section 3 we turn to the general
problem.

2. The basic problem. Given a finite setK , we let |K| denote the number
of elements inK , andP (K) denote the space of probability distributions overK .
Throughout the paper we fix a finite setS of states. We use the symbol “⊂” to
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denote strict inclusion. For every subsetC ⊆ S, �C = S \C is the complement ofC
in S.

2.1. Presentation. The basic problem can be stated as follows. A sequence
x = (x0, x1, . . . , xN) in S with finite lengthN +1∈ N is given. Anobservergets to
see this sequence, or at least gets to know the numberNx

s,t = {n < N |(xn, xn+1) =
(s, t)}| of one-step transitions froms to t , for eachs, t ∈ S. The observer wishes
to find asimplestochastic process(zn)n overS, such that any typical realization
of z0, . . . , zN fits the data. We proceed to give a formal meaning to this question
before we state our basic result.

For s ∈ S, denote by

Nx
s = ∑

t∈S

Nx
s,t = |{n < N :xn = s}| and νx(s) = Nx

s

N

the number of stages spent ins along x (excluding xN ), and theobserved
occupancy measureof s, respectively. Theobserved transition functionpx is
defined by

px(s, t) = Nx
s,t

Nx
s

for eachs, t ∈ S s.t.Nx
s > 0.(1)

If Nx
s = 0, the definition ofpx(s, ·) ∈ P (S) is irrelevant.

The most natural notion of a simple process is that of a homogeneous Markov
chain. As is argued in Remark 1 below, this notion is not flexible enough to
allow for a good approximation in finite time. Thus, we introduce the notion of
a piecewise homogeneous Markov chain.

DEFINITION 1. Let K be a positive integer. A processz = (zn)0≤n≤N is a
piecewise homogeneous Markov chain withK piecesif (i) z is a Markov chain and
(ii) there exist integers 0= n0 ≤ n1 ≤ · · · ≤ nK = N such that the random variables
(zn), nk−1 ≤ n < nk , form a homogeneous Markov chain, for eachk = 1, . . . ,K .

The law of anS-valued processz = (zn)n≤N is denoted byPz. If z is a (possibly
nonhomogeneous) Markov chain, we denote bypz

n, n < N , the conditional
distribution of zn+1 given zn. Also, νz

m is the empirical occupancy measurein
the firstm stages:

νz
m(s) = 1

m
|{0 ≤ n ≤ m − 1 :zn = s}|.

We are now in a position to state our basic theorem.

THEOREM 1. For everyε > 0, everyδ ∈ (0, 1
2(4|S|+1)

) and everyζ ∈ (0,2δ),
there existsN0 ∈ N such that the following holds. For everyN ≥ N0 and every
S-valued sequencex = (x0, . . . , xN), there is a piecewise homogeneous Markov
chainz overS, with at most|S| pieces, such that:
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(B1) Pz(| ν
z
N(s)

νx(s)
− 1| ≥ ε) ≤ 1

Nζ for everys ∈ S that satisfiesνx(s) ≥ 1
Nδ .

(B2) Pz-a.s., one has‖pz
n(zn, ·) − px(zn, ·)‖∞ ≤ ε for eachn 
= nk .

Leaving aside the technical qualifications, Theorem 1 has the following
implications. The number of pieces of the approximating process is independent of
the length of the sequencex. In all stages, with the possible exception of at most
|S| of them, the transition function ofz is very close to the observed transition
functionpx . Moreover, for any typical realization of the firstN components ofz,
the empirical occupancy measureνz

N is very close to the observed occupancy
measureνx [restricted to statess whose observed occupancy measureνx(s) is
not negligible].

We stress that we consider realizationsz of the samelength as the sequence.
In that sense, our result is not an asymptotic result, but provides the basis for
a good approximation in finite time, provided the sequence is long enough. Our
proof is constructive, in the sense that we provide an algorithm that can be used to
constructz.

Observe that (B1) and (B2) are not exactly of the same nature. Indeed, (B1)
relates to the samples fromz, while (B2) is a structural property ofz. From the
proof it will be clear that endless variations are possible.

REMARK 1. The naive solution is to consider a Markov chainz with
transition functionpx . However, such a process may fail to yield a good
approximation in finite time. Indeed, letS = {a, b}, and consider the sequence
x = (a, a, . . . , a, b, b, . . . , b, a) that containsN a’s followed byN b’s, and ends
with ana. The transition functionpx is

px(b, a) = px(a, b) = 1− px(b, b) = 1− px(a, a) = 1/N.

Given a Markov chain with transition functionpx and initial statea, the probability
that zn = a, for everyn ≤ 2N + 1, is bounded away from zero. In particular,
condition (B1) will not hold. More generally, no homogeneous Markov chain
satisfies both (B1) and (B2) in this example.

This example highlights the heart of the problem. The naive solution does
satisfy (B1) and (B2) whenpx is sufficiently mixing. However, when it is not,
there is no Markov chain that approximates the given sequence in the sense of
(B1) and (B2).

The proof of Theorem 1 is organized as follows. First, we provide a general
structure result in Section 2.2. WhenC is a subset ofS, andx = (x1, . . . , xN) is
a sequence of elements inS, aC-run is a subsequence(xn1, xn1+1, . . . , xn2) such
that all its elements are inC, while xn1−1 andxn2+1 are not inC (if n1 = 1 or
n2 = N , the last condition is vacuous). Our structure result states that given any
finite sequencex of elements ofS, there is a partition ofS with the property that
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for every atomC of the partition and every proper subsetD of C, the number
of C-runs is much smaller than the number ofD-runs. Thus, the sequence moves
around inside any atom much more quickly than from one atom to another.

We will use the structure result to argue that the observed transition functionpx

associated tox, when restricted to any atom of the partition, is mixing. We then
construct the simple processz that approximatesx. This process will have the
following features: (i) it visits every atomC of the partition onlyonce, (ii) the
duration of the visit toC is

∑
s∈C Nx

s , the observed number of stages spent inC,
and (iii) the transition function ofz during the visit toC is px , properly modified
so as to prevent the chain from exitingC too early.

Section 2.3 contains several results on Markov chains. The proof of Theorem 1
is given in Section 2.4.

2.2. A structure theorem.We here collect some general notation that is in
use throughout the paper. We use the lettersp and q, with possible sub- or
superscripts, to denote transition functions. Probability measures overS are
denoted byµ, empirical occupancy measures overS are denoted byν, while
probability measures overSN are denoted byP. Finally, random variables are often
boldfaced, while generic variables are not.

Let a finite sequencex = (x0, . . . , xN) in S be given. For every two subsets
A,B ⊆ S, we set

Nx
A,B = ∑

s∈A,t∈B

Nx
s,t and Nx

A = Nx
A,S = ∑

s∈A

Nx
s .

These are the number of transitions fromA to B alongx, and the number of visits
to the setA alongx, respectively. ForC ⊆ S, we define

Rx
C = Nx�C,C

+ 1x0∈C.

This is the number ofC-runs alongx [see Feller (1968), II.5]. Plainly,Rx
C\D ≤

Rx
C + Rx

D for everyD ⊂ C, and |Rx
C − Rx�C | ≤ 1. Note also thatRx

C = Nx
C,�C +

1xN∈C .
We now state our structure result.

THEOREM 2. Let a > 0 and a finite sequencex of elements ofS be given.
There is a partitionC of S such that, for everyC ∈ C:

(P1) Rx
C ≤ (a + 1)|C|.

(P2) For eachD ⊂ C, Rx
D > aRx

C .

PROOF. SinceRx
S = 1, the trivial partitionC = {S} satisfies (P1). Among all

the partitions that satisfy (P1), letC be one with maximal number of atoms, and
setk = |C|, the number of atoms inC. We will prove thatC satisfies (P2). If it
does not, there areC ∈ C, and a proper subsetD of C, such thatRx

D ≤ aRx
C .
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Consider now the partitionC \{C}∪{D,C \D} obtained by further partitioning
the setC into D andC \ D. We show that this new partition, withk + 1 elements,
satisfies (P1) as well, contradicting the maximality ofC. Indeed,Rx

D ≤ aRx
C ≤

(a + 1)k+1, andRx
C\D ≤ Rx

C + Rx
D ≤ Rx

C(a + 1) ≤ (a + 1)k+1. �

As Theorem 2 has its own merit, we provide two comments concerning the
partitionC that satisfies (P1) and (P2).

COMMENT. There need not be aunique partition that satisfies both
(P1) and (P2). Indeed, letS = {0,1} andx = (0,1,0,1, . . . ,0,1) (a sequence of
lengthN +1), and leta > 0 be such thata < N+1

2 ≤ (a +1)2. SinceRx{0} = Rx{1} =
N+1

2 , the two partitions ofS satisfy (P1) and (P2).

COMMENT. Fora ≥ 2, the partition that is defined in the proof of Theorem 2
is unique. To verify this claim, it is enough to check that, given two partitions
C andD that satisfy (P2), the following holds: for everyC ∈ C andD ∈ D , if the
intersectionC ∩ D is nonempty, then it is equal to eitherC or D.

Assume to the contrary thatP = C∩D is a proper subset of bothC andD. Then
one hasNx

P,�D + Nx
P,D\P = Nx

P,�C +Nx
P,C\P = Rx

P − 1xN∈P , Nx
P,C\P + Nx

P,D\P ≤
Rx

P − 1xN∈P , Nx
P,�C ≤ Nx

C,�C = Rx
C − 1xN∈C , andNx

P,�D ≤ Nx
D,�D = Rx

D −1xN∈D. It
follows that

Rx
P − 1xN∈P ≥ Nx

P,C\P + Nx
P,D\P

= 2Rx
P − 2× 1xN∈P − Nx

P,�C − Nx
P,�D

≥ 2Rx
P − Rx

C − Rx
D.

In particular, by (P2),

Rx
C + Rx

D − 1xN∈P ≥ Rx
P > a × max{Rx

C,Rx
D},

a contradiction whena ≥ 2.

2.3. On Markov chains. We here collect a few useful results about Markov
chains. First, we provide a result on the speed of convergence of an irreducible
Markov chain to its invariant measure. Next, we make a few observations on the
expected exit time from sub-domains ofS.

Throughout the present section, a transition functionp over S is given. For
s ∈ S, we denote byPs,p the law of a homogeneous Markov chainz with transition
functionp and initial states, and byEs,p the expectation w.r.t.Ps,p. Forµ ∈ P (S),
Eµ,p = ∑

s∈S µ(s)Es,p is the expectation operator when the initial state is chosen
according toµ.

The hitting time of a setC ⊆ S is TC = min{n ≥ 0 :zn ∈ C} (with min∅ =
+∞). For t ∈ S, we abbreviateT{t} to Tt and we denote byT +

t = min{n ≥
1 :zn = t} thefirst return timeto t .
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2.3.1. Convergence to the invariant measure.

DEFINITION 2. Letγ > 0 be given. The transition functionp is γ -mixing if
Es,p[T +

t ] ≤ γ , for everys, t ∈ S.

Plainly, aγ -mixing transition function is irreducible. The next theorem bounds
the speed of convergence of the empirical occupation measure to the invariant
measure forγ -mixing homogeneous Markov chains. In this statementν̄z

m is the
occupancy measure in stages 1 throughm : ν̄z

m(s) = 1
m

|{1≤ n ≤ m : zn = s}|.

THEOREM 3. Assume that the transition functionp is γ -mixing and letµ be
its invariant measure. Let n ∈ N andε ∈ (0,1/2) be such thatεn > 4γ . Then, for
everys, t ∈ S,

Pt,p

(∣∣∣∣ ν̄
z
n(s)

µ(s)
− 1

∣∣∣∣ ≥ ε

)
<

17γ

nε2 .(2)

REMARK 2. Inspection of the proof shows that inequality (2) holds more
generally for each states ∈ S such that maxt∈S Et,p[T +

s ] ≤ γ .

REMARK 3. Since|ν̄z
n(s) − νz

n(s)| ≤ 1
n
, one has, under the assumptions of

Theorem 3,

Pt,p

(
|νz

n(s) − µ(s)| ≥ εµ(s) + 1

n

)
<

17γ

nε2
.(3)

REMARK 4. It is likely that the bound in Theorem 3 can be substantially
improved, possibly to an exponential bound. Recently, Glynn and Ormoneit (2002)
provided a generalization of Hoeffding’s inequality to uniformly ergodic chains.
However, their ergodicity assumption (A1) is stronger than our mixing assumption,
hence our result does not follow from their statement.

PROOF OFTHEOREM 3. The proof relies on the following two identities:

Es,p[T +
s ] = 1

µ(s)
and µ(s)Vars,p(T +

s ) = 2Eµ,p[Ts] + 1− 1

µ(s)
(4)

[see Aldous and Fill (2002), Chapter 2, identity (22) for the second one]. Since
p is γ -mixing, 1/µ(s) = Es,p[T +

s ] ≤ γ < εn/4, andEµ,p[Ts] ≤ Eµ,p[T +
s ] ≤ γ .

Since 1− 1/µ(s) ≤ 0, we also haveµ(s)Vars,p(T +
s ) ≤ 2γ .

For notational clarity, we setnε = 
nµ(s)(1 − ε)� andnε = �nµ(s)(1 + ε)�.
Note thatnε ≤ nε. Moreover,nε + nε − 1≤ 2nµ(s), so thatnε + nε ≤ 3nµ(s).

On {ν̄z
n(s) ≤ µ(s)(1− ε)} one hasVs,nε ≥ n, whereas on{ν̄z

n(s) ≥ µ(s)(1+ ε)}
one hasVs,nε ≤ n. Therefore, the event{| ν̄z

n(s)

µ(s)
− 1| ≥ ε} is included in the union of
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the two events{Vs,nε ≥ n} and{Vs,nε ≤ n}, so that

Pt,p

(∣∣∣∣ ν̄
z
n(s)

µ(s)
− 1

∣∣∣∣ ≥ ε

)
≤ Pt,p

(
Vs,nε ≥ n

) + Pt,p(Vs,nε ≤ n).(5)

We will prove the result by providing an upper bound on the probability that
Vs,nε ≥ n and on the probability thatVs,nε ≤ n.

Sinceε < 1/2 and sinceεnµ(s) > 4, straightforward manipulations show that

min
{
n − nε

µ(s)
,

nε

µ(s)
− n

}
≥ 3

4
nε and(6)

min
{
n(1− ε2) − nε − 1

µ(s)
,
nε − 1

µ(s)
+ 1− n

}
≥ 1

2
nε.(7)

For s ∈ S andk ∈ N, let Vs,k denote the time of thekth return tos (with Vs,0 = 0),
and letT +

s,k = Vs,k − Vs,k−1 denote the length of thekth visit toS \ {s}.
We distinguish the two casess = t ands 
= t.

CASE 1. s = t .
In this case the random variablesT +

s,k are i.i.d. and share the law ofT +
s . Since

Es,p[T +
s ] = 1/µ(s), one has, by Chebyshev’s inequality and by (6),

Ps,p

(
Vs,nε ≥ n

) = Ps,p

(
Vs,nε − nε

µ(s)
≥ n − nε

µ(s)

)
≤ nεVars,p(T +

s )

(3/4nε)2

and

Ps,p(Vs,nε ≤ n) ≤ Ps,p

(
nε

µ(s)
− Vs,nε ≥ nε

µ(s)
− n

)
≤ nεVars,p(T +

s )

(3/4nε)2
.

Hence, by (5), (4) and sincep is γ -mixing, one obtains

Ps,p

(∣∣∣∣ ν̄
z
n(s)

µ(s)
− 1

∣∣∣∣ ≥ ε

)
≤ (nε + nε)Vars,p(T +

s )

(3/4nε)2
≤ 16× 3× 2γ

9nε2
<

17γ

nε2
.(8)

CASE 2. s 
= t .
By Markov’s inequality and sincep is γ -mixing,

Pt,p(T +
s ≥ ε2n) ≤ γ

nε2 .(9)

By repeating the steps of Case 1 using (7), one has

Pt,p

(
T +

s,1 ≤ ε2n,Vs,nε ≥ n
)

≤ Ps,p

(
T +

s,2 + · · · + T +
s,nε

≥ n(1− ε2)
)

(10)

≤ (nε − 1)Vars,p(T +
s )

(n(1− ε2) − (nε − 1)/µ(s))2 ≤ (nε − 1)Vars,p(T +
s )

(1/2nε)2 ,
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while

Pt,p(Vs,nε ≤ n) ≤ Ps,p(T +
s,2 + · · · + T +

s,nε ≤ n − 1)
(11)

≤ (nε − 1)Vars,p(T +
s )

(1/2nε)2
.

By summing (9)–(11), one obtains

Pt,p

(∣∣∣∣ ν̄
z
n(s)

µ(s)
− 1

∣∣∣∣ ≥ ε

)
≤ 4Vars,p(T +

s )(nε + nε − 2) + γ n

n2ε2
.

Therefore,

Pt,p

(∣∣∣∣ ν̄
z
n(s)

µ(s)
− 1

∣∣∣∣ ≥ ε

)
≤ 4× 2× 2γ + γ

nε2 = 17γ

nε2 ,

as desired. �

2.3.2. Expected exit times.We here analyze the exit time from a given sub-
domain. Our estimates use two new mixing measures for irreducible transition
functions.

Throughout this section we assume that the transition functionp is irreducible
with invariant measureµ. We use repeatedly the inequality

Es,p[T�L] ≤ Es,p

[
T�L∪{t}

] + Et,p[T�L],(12)

which holds for everyL ⊂ S and everys, t ∈ L.

DEFINITION 3. ForC ⊆ S, we define

λp(C) = max
s∈C

Es,p[T�C] and ρp(C) = max
D⊂C

min
s∈D

Es,p[T�D].

Observe that one always hasλp(C) ≥ ρp(C). λp(C) bounds the time it takes to
leaveC. ρp(C) may be interpreted as a measure of how fast a Markov chain with
transition functionp visits each and every state ofC. The following lemma adds
substance to these interpretations. We shall use it to derive further estimates of exit
times.

LEMMA 1. For everyC ⊆ S:

(i) Es,p[T�D] ≤ |D|ρp(C), for everyD ⊂ C and everys ∈ D.
(ii) Es,p[T�C] ≥ λp(C) − (|C| − 1)ρp(C), for everys ∈ C.

PROOF. We prove the first statement by induction over|D|. Plainly, the
inequality holds for singletons. Assume it holds for every subset withk elements.
Let D ⊂ C be any subset withk + 1 elements, and lets ∈ D. Chooset ∈ D such
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thatEt,p[T�D] ≤ ρp(C). By (12) and the induction hypothesis, applied toD \ {t},
we have

Es,p[T�D] ≤ Es,p

[
T�D∪{t}

] + Et,p[T�D] ≤ (|D| − 1)ρp(C) + ρp(C).

We now prove the second statement. Lets ∈ C be given, and lett ∈ C be such
thatλp(C) = Et,p[T�C]. If t = s, (ii) trivially holds. Otherwise, by (12) and (i),

Es,p[T�C] ≥ Et,p[T�C] − Et,p

[
T�C∪{s}

] ≥ λp(C) − (|C| − 1)ρp(C),

as desired. �

The following lemma bounds the probability that the process leaves a setC

before it visits some given statet ∈ C.

LEMMA 2. For everyC ⊂ S and everys, t ∈ C, one has

Ps,p(T�C < Tt ) ≤ 2|C| ρp(C)

λp(C) − (|C| − 1)ρp(C)
.(13)

PROOF. If s = t , the left-hand side in (13) vanishes, so that the lemma trivially
holds. Hence we assume from now on thats 
= t , so that|C| ≥ 2, and, therefore,
ρp(C) ≥ 1.

We modify the state spaceS and the transition functionp by collapsing�C to a
single state, still denoted�C, which leads tot in one step. Since this change does not
affect the probability thatT�C < Tt , we still denote the modified transition function
by p. This amounts to assuming thatp(�C, t) = 1, henceE�C,p[Tt ] = 1. By Aldous
and Fill [(2002), Chapter 2, Corollary 10],

Ps,p(T�C < Tt ) = Es,p[Tt ] + Et,p[T�C] − Es,p[T�C]
E�C,p[Tt ] + Et,p[T�C] .(14)

SinceE�C,p[Tt ] = 1, one has, by (12),Es,p[Tt ] ≤ Es,p[T�C∪{t}] + 1. Equation (12)
also implies thatEt,p[T�C] − Es,p[T�C] ≤ Et,p[T�C∪{s}]. Therefore, by Lemma 1(i),
the numerator in (14) is at most

1+ Et,p

[
T�C∪{s}

] + Es,p

[
T�C∪{t}

] ≤ 2(|C| − 1)ρp(C) + 1< 2|C|ρp(C).

On the other hand, the denominator is equal to 1+Et,p[T�C], hence by Lemma 1(ii)
is at leastλp(C) − (|C| − 1)ρp(C). �

ForC ⊂ S, we denote bypC the transition functionp watched onC [see Aldous
and Fill (2002), Chapter 2, Section 7.1]. Formally,

pC(s, t) = p(s, t) + ∑
u/∈C

p(s,u)Pu,p(TC = Tt ) for everys, t ∈ C.(15)
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Sincep is irreducible, the transition functionpC is irreducible, and its invariant
measure coincides with the invariant measureµ of p, conditioned onC :µ(s|C) =
µ(s)/µ(C), for everys ∈ C [see Aldous and Fill (2002)].

The next lemma bounds the time it takes the process to reach a given state
t ∈ C ⊆ S, when watched onC. Thus, it bounds the expected number of stages the
Markov chain with transition functionp spends inC until it reachest for the first
time.

LEMMA 3. For s, t ∈ C, one hasEs,pC
[Tt ] ≤ (|C|−1)ρp(C)

1−maxu∈C Pu,p(T�C<Tt )
.

PROOF. If s = t the lemma trivially holds, as in this caseEs,pC
[Tt ] = 0.

Assume then thats 
= t , so, in particular,|C| ≥ 2. Let t ∈ S be given. For
convenience setα = maxs∈C Es,pC

[Tt ], and lets′ ∈ S achieve the maximum. Since
|C| ≥ 2, s′ 
= t . Therefore, by Lemma 1(i),

α = Es′,pC
[Tt ] ≤ Es′,p

[
T�C∪{t}

] + Ps′,p(T�C < Tt )α

≤ (|C| − 1)ρp(C) + αPs′,p(T�C < Tt ).

Thus, for everys ∈ C,

Es,pC
[Tt ] ≤ α ≤ (|C| − 1)ρp(C)

1− Ps′,p(T�C < Tt )
≤ (|C| − 1)ρp(C)

1− maxu∈C Pu,p(T�C < Tt )
,

as desired. �

We conclude with two results, stated without proof. First, givenC ⊂ S, define

Kp(C) =
∑

s∈C µ(s)∑
s∈C µ(s)p(s, �C )

.(16)

The numerator in (16) is the frequency of stages spent inC, while the denominator
is the frequency of exits fromC. Therefore,Kp(C) is the average length of a visit
to C. In particular, the following holds:

min
s∈C

Es,p[T�C] ≤ Kp(C) ≤ max
s∈C

Es,p[T�C] = λp(C).(17)

Second, straightforward computations show that for everyC ⊂ S,

µ(C)

µ(�C )
≥ mins∈C Es,p[T�C]

maxs∈�C Es,p[TC] .(18)

2.4. Proof of Theorem1. This section is devoted to the proof of Theorem 1.
It is convenient to deal with sequencesx that areexhaustive(Nx

s > 0 for each
s ∈ S) andperiodic (xN = x0). The general result will follow since an arbitrary
sequencex can be extended into an exhaustive and periodic one, by appending at
most|S| elements tox (see details in Section 2.4.3). Observe that for the purpose
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of Theorem 1, all sequences can be assumed to be exhaustive, since states that are
not visited alongx can simply be dropped. Since this assumption cannot be made
to prove the more general theorem of this paper, we prefer not to make it here as
well.

The assumption that the sequence is exhaustive and periodic allows us to make
use of the following lemma whose proof is omitted.

LEMMA 4. Let x = (x0, . . . , xN) be exhaustive and periodic. The observed
transition functionpx is irreducible, and its invariant measure coincides with the
observed occupancy measureνx(s) = Nx

s
N

.

Let ε ∈ (0, 1
2), δ ∈ (0, 1

4|S|+1) and ζ ∈ (0,2δ) be given. We chooseN0 ∈ N

large enough so that (N1)N1−(4|S|+1)δ
0 > 2|S|/ε, and (N2) N

2δ−ζ
0 > 4 ×

17|S|4/ε2. Therefore, we have, in particular, (N3)(N4δ
0 + 1)|S|Nδ−1

0 ≤ ε/(2|S| +
1), (N4) Nδ

0 > max{|S|2/ε,2|S| + 2}, (N5) N2δ
0 ≥ 8/ε and (N6)N4δ

0 ≥ max{1/ε,

10|S|}.
We will prove that the conclusion of Theorem 1 holds for everyN ≥ N0 and

every exhaustive, periodic sequencex. We first apply Theorem 2 to the sequencex,
with a = N4δ, to obtain a partitionC = (S1, . . . , SK) of S that satisfies the
conclusions of that theorem. Observe thata depends on the length of the sequence.
We now proceed as follows. In Section 2.4.1 we argue that the transition function
px is mixing, when watched on any atomSk of C. In Section 2.4.2 we define the
approximating process, and we check that assertions (B1) and (B2) hold.

2.4.1. Properties ofpx
Sk

. Following the notation in use in Section 2.3.2, we
denote bypx

Sk
the transition functionpx , when watched onSk . Since px is

irreducible, so ispx
Sk

. The goal of this section is to prove thatpx
Sk

is N1−3δ-mixing
(see Proposition 1 below). To this end, we first relate the mixing constantsλpx (Sk)

andρpx(Sk) to the features ofx.

LEMMA 5. Let k be such that|Sk| > 1. One has

ρpx(Sk) ≤ max
D⊂Sk

Nx
D

Rx
D − 1

≤ 2

a
λpx (Sk).(19)

Note that the quantity
Nx

D

Rx
D−1 is approximately the average length of a visit toD

along x. Thus, the expected exit time fromD ⊂ Sk is much smaller than the
expected exit time fromSk .

PROOF OFLEMMA 5. Letk be such that|Sk| > 1, and letD ⊆ Sk (hereD may
be equal toSk). By Lemma 4 one hasνx(D) = Nx

D/N and
∑

s∈D νx(s)px(s, �D) =
Nx

D,�D/N . By (16), as long asD ⊂ S, Kpx (D) = Nx
D/Nx

D,�D, so that
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Nx
D

Rx
D

≤ Kpx(D) ≤ Nx
D

Rx
D − 1

.(20)

If D is a strict subset ofSk , (17), the second inequality in (20), (P2) and (N4) yield

min
s∈D

Es,px [T�D] ≤ Kpx (D) ≤ Nx
D

Rx
D − 1

≤ Nx
Sk

aRx
Sk

− 1
≤ 2

a
× Nx

Sk

Rx
Sk

.(21)

The left-hand side inequality in (19) follows by taking the maximum overD ⊂ Sk .
If Sk = S, λpx (Sk) = +∞, and the right-hand side inequality in (19) trivially

holds. Otherwise, when applied toSk , the first inequality in (20) and (17) yield

Nx
Sk

Rx
Sk

≤ Kpx (Sk) ≤ λpx (Sk),(22)

and the right-hand side inequality in (19) follows from (21) and (22).�

PROPOSITION1. If |Sk| ≥ 2, the transition functionpx
Sk

is N1−3δ-mixing.

PROOF. We will prove thatEs,px
Sk

[Tt ] ≤ N1−3δ − 1, for eachs, t ∈ Sk . Let

s, t ∈ Sk be given. By Lemma 3,

Es,px
Sk

[Tt ] ≤ (|Sk| − 1)ρpx (Sk)

1− maxu∈Sk
Pu,px (T�Sk

< Tt )
.

By Lemma 2, the denominator is at least 1− 2|Sk| ρpx (Sk)

λpx (Sk)−(|Sk |−1)ρpx (Sk)
≥ 1

2,

where the inequality holds by Lemma 5 and (N6). Therefore,

Es,px
Sk

[Tt ] ≤ 2|Sk|ρpx (Sk).(23)

By Lemma 5, (P2) and (N4),

ρpx (Sk) ≤ max
D⊂Sk

Nx
D

Rx
D − 1

<
N

N4δ − 1
≤ N1−3δ − 1

2|Sk| .(24)

The result follows by combining (23) and (24).�

2.4.2. The approximating process.We now construct a Markov chainz that
approximates the sequencex. Ideally the chain is composed of|C| pieces, with
the length of piecek being Nx

Sk
. However, to avoid degenerate cases, we take

into account only the atomsSk that are frequently visited, that is, those with
Nx

Sk
≥ N1−δ.

SetK0 = {k :Nx
Sk

≥ N1−δ}, and assume for convenience thatK0 contains the
first |K0| atoms inC, so thatK0 = {1, . . . , |K0|}. Assume, moreover, that the set
S|K0| is the most frequently visited set, so that, in particular,Nx

S|K0| ≥ N/|S|.
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The chainz is a piecewise homogeneous Markov chain with|K0| pieces. The
“extra” stages that are created by the removal of rarely visited atoms inC are added
to piece|K0|. Since piece|K0| is the most frequently visited piece, this will hardly
affect the estimates for that piece.

Formally, we denote bymk the length of piecek. Thus,mk = Nx
Sk

if k < |K0|,
and mk = N − ∑

j<|K0| mj if k = |K0|. In particular, 1≤ mk

Nx
Sk

≤ 1 + |S|2
Nδ . For

k = 1, . . . ,K0, we letpk be a transition function such that

pk(s, t) = px
Sk

(s, t), s ∈ Sk, t ∈ Sk,

pk(s, Sk) = 1, s /∈ Sk.

The exact definition ofpk(s, ·) for s /∈ Sk is irrelevant. Thus,pk moves in one step
to Sk and coincides withpx

Sk
there.

We let z be a Markov chain with initial state inS1, and transitionspz
n(s, t) =

pk(s, t) if −1+ ∑
j<k mj ≤ n < −1+ ∑

j≤k mj . (This does not definepz
N−1. The

choice ofpz
N−1 is irrelevant. On the other hand, it definespz−1, which is never

used.) Note thatz is a piecewise homogeneous Markov chain with|K0| ≤ |S|
pieces.

Plainly, the chainz visits each setSk , k ≤ K0, only once, for exactlymk stages:
from stage

∑
j<k mj to stage

∑
j≤k mj − 1 (inclusive).

We now prove that both assertions in Theorem 1 hold.
We start with assertion (B1). Letk ∈ K ands ∈ Sk be given. We discuss three

cases.
If Nx

Sk
< N1−δ, thenνx(s) = Nx

s /N < 1/Nδ, and (B1) trivially holds.

Assume now thatNx
Sk

≥ N1−δ and thatSk = {s} is a singleton. By construction,
the chainz will be in states all through piecek, and only in those stages. In
particular, by (N4),

0 ≤ νz
N(s)

νx(s)
− 1 ≤ mk − Nx

s

Nx
s

≤ |S|2
Nδ

< ε,

and (B1) holds.
Assume finally thatNx

Sk
≥ N1−δ and|Sk| ≥ 2. By (N5) and Proposition 1, the

assumptions of Theorem 3 hold w.r.t.p = px
Sk

, γ = N1−3δ, n = mk ≥ N1−δ and
ε/2. For everyt ∈ Sk , one has, by (N5), Remark 3 and (N2),

Pt,pk

(∣∣∣∣
νz
mk

(s)

νx(s|Sk)
− 1

∣∣∣∣ ≥ ε

)

≤ Pt,pk

(∣∣∣∣
νz
mk

(s)

νx(s|Sk)
− 1

∣∣∣∣ ≥ ε

2
+ 1

mkνx(s|Sk)

)
(25)

≤ 4× 17N1−3δ

mkε
2 ≤ 4× 17N1−3δ

ε2N1−δ
≤ 1

|S| × 1

Nζ
.
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Since the chainz does not visits ∈ Sk , except in piecek, (B1) follows from (25).
We now turn to assertion (B2). Sincez never visits states in

⋃
k /∈K0

Sk , we need
to verify that (B2) holds for statess ∈ ⋃

k∈K0
Sk . Observe that for everyk ∈ K0

and everys ∈ Sk , one has

‖pk(s, ·) − px(s, ·)‖ ≤ ∑
u/∈Sk

px(s, u) =
Nx

s,�Sk

Nx
s

≤ Rx
Sk

Nx
s

.

If Sk = {s} is a singleton, then by Theorem 2(P1) and (N3), the right-hand side is

bounded by(N
4δ+1)|S|
N1−δ < ε. If |Sk| ≥ 2, then sinceNx

s ≥ Rx
s , by Theorem 2(P2) and

(N6), the right-hand side is bounded by
Rx

Sk

Rx
s

≤ Rx
Sk

N4δRx
Sk

< ε.

Since for every stagen in piecek, except the last one,pz
n = pk andzn ∈ Sk ,

Pz-a.s., one has for suchn’s,

‖pz
n(zn, ·) − px(zn, ·)‖ = ‖pk(zn, ·) − px(zn, ·)‖ ≤ ε almost surely.

2.4.3. The case of arbitrary sequences.Our goal now is to prove Theorem 1
for any sequence of observations. We add a few stages to the sequencex—fictitious
observations — in order to obtain a periodic and exhaustive sequencex∗. We then
apply the above analysis to the augmented sequencex∗. Since only few fictitious
observations are needed to changex into a periodic and exhaustive sequence, the
desired result will follow.

We let ε ∈ (0,1/2), δ ∈ (0, 1
2(4|S|+1)

) andζ ∈ (0,2δ) be given. Setδ′ = 2δ ∈
(0, 1

4|S|+1) andε′ = ε − 2ε2.
ChooseN0 ∈ N such that (N1) and (N2) hold forN0 w.r.t. δ′, ε′ andζ (rather

than w.r.t.δ, ε andζ ). We will argue that the conclusion of Theorem 1 holds for
everyN ≥ N0.

Let x = (x0, . . . , xN) be an arbitrary sequence inS, and letS∗ = ⋃N
n=0{xn} ⊆ S

be the set of states visited byx. Consider the sequencex∗ = (x0, x1, . . . , xN,

x∗
1, . . . , x∗

r , x0), wherer = |S| − |S∗| is the number of states not visited byx,
and S \ S∗ = {x∗

1, . . . , x∗
r }. By construction, this new sequence is periodic and

exhaustive. The lengthN∗ + 1 of this sequence isN + r + 2 < N + |S| + 2.
By constructionN∗ satisfies (N1) and (N2) withδ′ andε′. Therefore, there is a

piecewise Markov chain(zn)n≤N∗ such that (B1) and (B2) hold w.r.t.N∗, νx∗
, ε′, δ′

andζ . Observe that each statex∗
j ∈ S \S∗ constitutes a singleton in the partitionC

associated withx∗, and thatNx∗
x∗
j

= 1, so that it is never visited byz.

One can verify that the restriction ofz to the first N stages satisfies
(B1) and (B2) w.r.t.N , νx , ε, δ andζ . The computations are tedious and of no
specific interest, and are therefore omitted.
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3. The general problem.

3.1. Presentation and discussion.We here address the more general problem
of devising an approximating simple process, given structural constraints on the
process. In other words, we wish to construct a simple process within a given
class of processes. The kind of structural constraints we allow for is described
as follows. For eachs ∈ S, we let a nonempty polyhedronV (s) ⊆ P (S) be
given. Recall that apolyhedronis the convex hull of finitely many points. Let
V = (V (s))s∈S denote the product polyhedron, and for everys ∈ S denote by
V ∗(s) the set of extreme points ofV (s).

DEFINITION 4. A V -processis anS-valued processz = (zn)n such that for
everyn ≥ 0 the conditional distribution ofzn, givenz0, . . . , zn−1, is in V (zn−1),
Pz-a.s.

In a sense, one-step transitions are required to satisfy exogeneously given
constraints described by the polyhedraV (s), s ∈ S.

We will weaken the simplicity requirement and introduce the notion of
piecewise homogeneous hidden Markov chain.

DEFINITION 5. A processz = (zn) over S is a (piecewise homogeneous)
hidden Markov chain if there are a finite setS′ and a (piecewise homogeneous)
Markov chainw = (wn) overS × S′ such thatz is the projection ofw overS.

Thus, a hidden Markov chain is the projection of a Markov chain with values in
a product space. Correspondingly, a piecewise homogeneous hidden Markov chain
is the projection of a piecewise homogeneous Markov chain.

We are now in position to describe the problem considered in this section. Given
a sequencex = (x0, . . . , xN) in S with finite lengthN + 1, does there exist a
stochastic processz that (i) is both aV -process and a piecewise homogeneous
hidden Markov chain, and (ii) approximatesx in the sense that both assertions
(B1) and (B2) in Theorem 1 hold?

Without further qualifications, the answer is negative. Indeed, if allV -processes
are transient, assertion (B1) cannot hold. On the other hand, if the sequencex is
not typical, in the sense that the observed transition functionpx is far fromV [i.e.,
px(s, ·) is far from V (s) in the Euclidean norm for somes ∈ S], assertion (B2)
cannot hold. The following two examples illustrate these points. In both examples
V (s) is a singleton for eachs ∈ S, hence there is a uniqueV -process which is a
Markov chain.

EXAMPLE (A nonirreducible Markov chain). LetS = {a, b, c}. DefineV so
that both statesb andc are absorbing, while statea leads with equal probability to
statesb andc. Starting from statea, one of the two sequences(a, b, b, b, . . . , b)
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and (a, c, c, c, . . . , c) results. But if the given sequence is, for example,x =
(a, b, b, b, . . . , b), the uniqueV -process does not satisfy (B1) when starting from
statea.

We shall therefore restrict our study to setsV such that there exists an
irreducible homogeneousV -Markov chain.

EXAMPLE (A nontypical sequence). LetS = {a, b} and defineV so that
both states lead with equal probability toa and b. If the given sequence is
x = (a, a, . . . , a) the uniqueV -process does not satisfy (B2).

We shall therefore limit ourselves to sequences that are typical w.r.t.V , in the
following sense:

DEFINITION 6. LetN ∈ N andδ, ε > 0 be given. A sequencex = (x0, . . . , xN)

is (N, δ, ε)-typical if there existsv = (v(s, ·))s ∈ V such that|1 − v(s,t)
px(s,t)

| < ε for

everys, t ∈ S such that eitherNx
s px(s, t) ≥ Nδ or Nx

s v(s, t) ≥ Nδ.

In Definition 6,Nx
s is the observed number of stages spent ins alongx, and

px is the observed transition function; see Section 2.1.
In words, a sequencex is typical if there is a transition functionv such that

(i) v(s) ∈ V (s) for everys: v is an admissible transition, and (ii)v(s, t) is close
to px(s, t) whenever the transition froms to t occurs frequently, either alongx
or underv. The latter statement is not completely accurate, as we do not use the
invariant distribution ofv, but rather the observed occupancy measure.

The set of(N, δ, ε)-typical sequences is denoted byT (N, δ, ε). Note that the
notion of a typical sequence is relative to the familyV of polyhedra.

Our first theorem states that ifV contains an irreducible transition function, and
if x is typical w.r.t.V , then one can approximatex in a proper sense by a piecewise
homogeneous hidden Markov chain.

THEOREM 4. Assume thatV contains an irreducible transition functionb,
and setB = maxs,t∈S Es,b[Tt ]. Let ψ,η ∈ (0,1) be given. There existδ, ε > 0
andN1 ∈ N such that the following holds. For everyN ≥ N1 and every sequence
x ∈ T (N, δ, ε), there exists aV -piecewise homogeneous hidden Markov chainz,
with at most|S| pieces, such that the following hold:

(G1) Pz(| ν
z
N(s)

νx(s)
− 1| ≥ η) ≤ 1

Nδ for eachs ∈ S such thatνx(s) ≥ 1
Nδ .

(G2) Let N0 = |{n < N :‖pz
n(zn, ·) − px(zn, ·)‖∞ > η}|. ThenEz[N0] ≤ NψB.

Our second theorem states that ifx is generated by aV -process, then with high
probability it is typical.
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THEOREM 5. Letδ, ε > 0 andξ ∈ (0, δ/4) be given. There existsN2 ∈ N such
that, for everyN ≥ N2 and everyV -processz, one has

Pz
(
T (N, δ, ε)

) ≥ 1− 1

Nξ
.

These two theorems can be combined as follows. Let us postulate that we get to
observesomerealization ofsomeV -process. Then, with high probability, we will
be able to find a simpleV -process that typically yields the observed realization.

This section is organized as follows. In Section 3.2 we prove Theorem 5, and
we then turn to the proof of Theorem 4 in Section 3.3.

3.2. Typical sequences: proof of Theorem5. We here prove Theorem 5. The
proof uses the following large deviation estimate for Bernoulli variables. Let
(Xn)n∈N be an infinite sequence of i.i.d. Bernoulli r.v.s with parameterp, and
set �Xn = ∑n

i=1 Xi/n, for eachn ∈ N. By Alon, Spencer and Erdös [(2000),
Corollary A.14],

P(|�Xn − p| > εp) ≤ 2 exp(−cεpn),

wherecε = min{ε2,−ε + (1+ ε) ln(1+ ε)} is independent ofn andp. Hence, for
k ∈ N,

P
(

sup
pn≥k

|�Xn − p| > εp

)
≤ 2

∞∑
n=
k/p�

exp(−cεpn) ≤ 2 exp(−cεk)

1− exp(−cεp)
.(26)

Observe that for everyε sufficiently small,ε2/3 < cε ≤ ε2/2.
Let δ, ε ∈ (0,1) andξ ∈ (0, δ/4) be given. Chooseξ ′ ∈ (ξ, δ/4) and setε′ =

ε
(1+ε)maxs∈S |V ∗(s)|+ε

. LetN2 ∈ N be large enough so that the following inequalities

are satisfied for eachN ≥ N2: (T1) 2 exp(−cε′Nδ/4)

1−exp(−cε′Nδ/4−1)
≤ 1/Nξ ′

, (T2) Nξ ′−ξ ≥
3|S|2 ∑

s∈S |V ∗(s)|, and (T3)Nδ/2 ≥ 1−ε′
ε′ .

Let N ≥ N2, and let z = (zn)n be a V -process. We start by introducing a
convenient decomposition forz. Recall that fors ∈ S, V ∗(s) is the finite set of
the extreme points ofV (s). For eachn ≥ 0, the conditional distribution ofzn+1,
givenz0, . . . , zn, belongs toV (zn), hence can be written as a convex combination∑

v∈V ∗(zn)
bn(v)v, where the weightsbn(v) are random. We then divide the choice

of zn+1 into two steps. In the first step a pointvn ∈ V ∗(zn) is drawn according to
the weightsbn. Next zn+1 is drawn according tovn. In other words, we simply
view the givenV -process as a processz = ((zn,vn))n, wherevn ∈ V ∗(zn) and the
conditional law ofzn+1, given past values, isvn, for eachn ≥ 0.

Following the notation used in Section 2, we letNz
s,v,t = |{n < N, (zn,vn,

zn+1) = (s, v, t)}| denote the number of one-step transitions froms to t which
occurred through the extreme pointv. We also use a number of derived notions.
For instance,Nz

s,·,t = ∑
v∈V ∗(s) Nz

s,v,t is the number of one-step transitions froms
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to t , Nz
s,v,· =

∑
t∈S Nz

s,v,t is the number of visits tos that are followed by the choice
of the extreme pointv, Nz

s = ∑
v∈V ∗(s),t∈S Nz

s,v,t is the number of visits tos, and
pz((s, v), t) = Nz

s,v,t/Nz
s,v,· is the proportion of transitions tot , out of (s, v). It is

defined only whenNz
s,v,· > 0. Note that the empirical transition function is given

by

pz(s, t) = Nz
s,·,t
Nz

s

=
∑

v∈V ∗(s) Nz
s,v,· pz((s, v), t)

Nz
s

.

Finally, we setuz(s, ·) =
∑

v∈V ∗(s) Nz
s,v,·v

Nz
s

. It is the average point ofV (s) used ats.
SinceV (s) is convex,uz(s, ·) ∈ V (s) for eachs ∈ S. We will show that with high
Pz-probability,uz is close topz in the sense of Definition 6.

We now move to the core of the argument. The following lemma asserts that if
the transition(s, v) �→ t occurs frequently, then with high probability, the observed
probabilitypz((s, v), t) of moving from(s, v) to t is close to the true one,v(t).

LEMMA 6. Let s, t ∈ S andv ∈ V ∗(s) be given. Then

Pz

(
Nz

s,v,·max
{
v(t),pz((s, v), t

)} ≥ Nδ/2 ⇒
∣∣∣∣pz((s, v), t)

v(t)
− 1

∣∣∣∣ ≤ ε′
)

(27)

≥ 1− 3

Nξ ′ .

PROOF. Note first thatNz
s,v,·v(t) < Nδ/4 if v(t) < Nδ/4−1. Assume now that

v(t) ≥ Nδ/4−1. Let (Xn)n≤N be a sequence of i.i.d. Bernoulli r.v.’s with parameter
v(t). By (26) and (T1),

Pz
(
Nz

s,v,·v(t) ≥ Nδ/4 and
∣∣pz((s, v), t

) − v(t)
∣∣ > ε′v(t)

) ≤ 1

Nξ ′ .(28)

Moreover, one has

Pz
(
Nz

s,v,·v(t) < Nδ/4 andNz
s,v,· pz((s, v), t

) ≥ Nδ/2) ≤ 2/Nδ/4.(29)

Indeed, let(Xi) be a sequence of i.i.d. Bernoulli r.v.s with parameterv(t), and set
n = �Nδ/4/v(t)�. By Markov’s inequality, the left-hand side in (29) is at most

Pz

(
max

k : kv(t)<Nδ/4
{X1 + · · · + Xk} ≥ Nδ/2

)
≤ Pz(X1 + · · · + Xn ≥ Nδ/2)

≤ nv(t)/Nδ/2 ≤ 2/Nδ/4.

To conclude, equation (27) follows from (28), (29) and the choice ofξ ′.
Let T ∗ be the set of all realizationsy = (x0, v0, x1, v1, . . . , xN) for which

the implication in (27) holds, for everys, t ∈ S and everyv ∈ V ∗(s). By

Lemma 6 and (T2),Pz(T
∗) ≥ 1 − 3|S|2 ∑

s∈S |V ∗(s)|
Nξ ′ ≥ 1 − 1

Nξ . To conclude the
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proof of Theorem 5, it therefore suffices to show that every sequence inT ∗ is
(N, δ, ε)-typical.

Let y be a sequence inT ∗. Following earlier use, we denote byNy
s the value

of Nz
s at y, and we use a similar convention for other random variables. We shall

verify thaty ∈ T (N, δ, ε).
Let s, t ∈ S be such thatNy

s py(s, t) ≥ Nδ . We will prove that|1−py(s, t)/uy(s,

t)| ≤ ε. The argument is also valid ifNy
s uy(s, t) ≥ Nδ. It is enough to prove that

Ny
s,v,·

∣∣py(
(s, v), t

) − v(s, t)
∣∣ ≤ ε′

1− ε′ N
y
s py(s, t) for everyv ∈ V ∗(s).(30)

Indeed, by summing (30) over allv ∈ V ∗(s), it follows that

|py(s, t)−uy(s, t)| ≤ ∑
v∈V ∗(s)

N
y
s,v,·
N

y
s

∣∣py
(
(s, v), t

)−v(t)
∣∣ ≤ ε′

1− ε′ p
y(s, t)|V ∗(s)|,

which implies, by the choice ofε′, that|py(s, t)−uy(s, t)| ≤ εuy(s, t), as desired.
We letv ∈ V ∗(s) be given and proceed to the proof of (30). IfN

y
s,v,·max{py((s,

v), t), v(t)} ≥ Nδ/2, then, since the implication in (27) holds fory, one has
|v(t) − py((s, v), t)| ≤ ε′v(t). Multiplying both sides byNy

s,v,·, we get

Ny
s,v,·

∣∣py
(
(s, v), t

) − v(t)
∣∣ ≤ ε′Ny

s,v,·v(t)

≤ ε′

1− ε′ N
y
s,v,·py(

(s, v), t
) ≤ ε′

1− ε′ N
y
s py(s, t),

where the last inequality holds sinceNy
s py(s, t) = ∑

v∈V ∗(s) N
y
s,v,·py((s, v), t),

and (30) holds. If, on the other hand,N
y
s,v,·max{py((s, v), t), v(t)} < Nδ/2, then,

sinceN
y
s py(s, t) ≥ Nδ,

Ny
s,v,·

∣∣py
(
(s, v), t

) − v(t)
∣∣ ≤ Nδ/2 ≤ Ny

s py(s, t)/Nδ/2,

and (30) holds by (T3). �

3.3. Proof of Theorem4. We first provide a heuristic overview of the proof.
It will be helpful to contrast it with the proof given in Section 2. In the basic
setup, the given sequencex, or equivalently, the given array(Nx

s,t )s,t∈S of
one-step transitions, was first extended to a periodic and exhaustive sequence.
Next, the structure theorem was used to find a certain partition into atoms. The
approximating process simply visited each atom in turn for a number of stages
equal to the observed one. The transition function of the process was such that
each atom was a recurrent set. It was obtained by watching the observed transition
function on the different atoms. Moving from one atom to another was done in a
single step. These last features allowed for a simple analysis.

At a broad level, the analysis of the general problem is similar. We again start
by extending the given sequencex to a periodic and exhaustive sequencex∗,
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and by applying the structure theorem to obtain a partitionS1, . . . , Sk of S (see
Section 3.3.2). As in Section 2, the approximating process will focus on each atom
in turn.

However, here we are constrained to useV -processes, hence, the former choice
of a transition function may not be feasible. Instead, we introduce the transition
function v ∈ V that is closest topx∗

(we omit details in this sketch). The
approximating process will essentially evolve according tov. To be more precise,
consider a specific phasek. SinceSk need not be recurrent forv, the process may
occasionally exit fromSk . We will then let it evolve according tob, so as to re-
enterSk in a few stages (recall thatb ∈ V is a fixed irreducible transition function).
In a first approximation, the behavior of the approximating process during phasek

can thus be described by the transition function that coincides withv on Sk , and
with b on�Sk .

It turns out that it is convenient to amend this definition as follows. Once
the process exits fromSk , a (fictitious) entry statet in Sk is drawn, according
to the distribution of the entry state under a specific Markov chain (again, we
omit details). The process will evolve according tob until t is reached. It then
switches back tov. Note that this no longer describes a Markov chain, since the
transition function onSk may be eitherb or v, depending upon the circumstances.
This feature is best dealt with by adding a component in the state space, which
keeps track of the current status of the process. This component takes values in
S′ = S ∪ {◦}, where◦ is an additional symbol. Thekth piece of the approximating
process is defined as theS-marginal of a Markov chain overS × S′, whose
transition functionπk is defined as follows. Whenever theS′-component is set
to ◦, theS-component evolves according tov. As long as theS-component remains
in Sk , theS′-component remains equal to◦. When theS-component exitsSk , then
an elementt of Sk is selected with a given probability, and theS′-component of
the Markov chain is set tot . This t is the target of theS-component, which evolves
according tob as long ast is not reached. Oncet is reached, theS′-component is
set to◦. For the purpose of the transition from phasek − 1 to phasek, the exact
definition of the transition function will be slightly different.

The new aspects raise additional difficulties.
First, note that the setN0 that appears in the statement (G2) roughly coincides

with the set of stages in which the process moves according tob. In order to prove
that the cardinality of this set is small compared toN , one needs to prove that
the expected time to reachSk underb is small compared to the expected time to
leaveSk underv. The expected time to leaveSk underpx∗

can be derived from
the sequencex∗. We will thus have to compare the expected exit times fromSk ,
computed underv andpx∗

. To do that, we will use a result on the comparison of
exit times from a given set under close Markov chains.

Second, in order to prove (G1), we need to compare the empirical frequency
for which theS-component iss ∈ Sk with the frequency ofs alongx. To this end,
we prove, as in Section 2, that the transition function that is defined byv on Sk
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and byb on �Sk is mixing. We then use a result relative to close Markov chains in
order to compare the invariant distribution of the latter transition function to the
invariant distribution ofpx∗

.

We now describe the organization of the proof. We define the approximating
processz in Sections 3.3.2 and 3.3.3. We then state in Section 3.3.4 two
propositions that readily imply Theorem 4. These two propositions are statements
about the transition functionπk. The subsequent sections are devoted to the proofs
of these propositions. Sections 3.3.5 and3.3.6 contain the statement and the
application to our framework of results on perturbed Markov chains. These results
are used in the last three sections, which conclude the proof.

3.3.1. Fixing parameters. Let ψ,η ∈ (0,1) be given. We here list a number
of conditions onε, δ andN1 under which the conclusion of Theorem 4 holds. We
stress that we do not strive for optimal conditions.

Fix 0 < ε < η/56L < η, with L = ∑|S|
n=1

(|S|
n

)
n|S|.

Chooseβ ∈ (0, 1
2(A

L
)|S| × ε(1−ε)

BL2×|S|4 ), where A = 1/2. Set α = 1
2β|S|L2 and

α′ = α/2−|S|
2|S| . Note thatβ < 1/20|S|2L2, so thatα′ ≥ 2. Chooseψ ′ ∈ (0,ψ),

ξ ∈ (0,ψ ′/(|S| + 1)), δ′ ∈ (0, ξ/2). Finally, chooseδ ∈ (0,min{δ′, (1 − ψ)/2}).
Seta = Nξ .

ChooseN1 ∈ N sufficiently large such that (C1)–(C8) and (A1)–(A7) hold,
for everyN ≥ N1: (C1) Nδ′ ≥ Nδ + 1, (C2)Nδ ≥ 3

ε(1−ε)
, (C3) 2+ 8L|S|(N +

|S|)ψ ′ × (1 + |S|2/Nδ) ≤ Nψ/|S|, (C4) Nξ−δ ≥ 1/η, (C5) N1−δ−ψ ′ ≥ 8BL|S|,
(C6) N1−2δ−ψ ≥ 42(B + 1)|S|/ε2, (C7) εN1+ξ−δ ≥ 2(N + |S|), (C8) Nδ ≥
|S|2(1 + 55εL)/ε, (A1) β(Nξ − 1) ≥ (N + |S|)δ′

, (A2) Nξ − 1 ≥ 1
2β|S| ,

(A3) L(Nξ + 1)|S| ≤ N
ψ ′
∗ , (A4) 17×8

ε2N1−δ (
N

Nξ −1
+ B + 1) ≤ N−δ

L|S|2 , (A5) B(1 +
3ε) (Nξ+1)|S|

N1−δ ≤ 1
2Nδ ≤ ε, (A6) Nψ/|S| ≥ 1+ 2(1+ 3ε)Nδ(Nξ + 1)|S|, (A7) Nξ ≥

18|S|.
We will prove that the conclusion of Theorem 4 holds for everyN ≥ N1 and

every typicalS-valued sequencex of lengthN + 1.

3.3.2. The periodicized sequence.Let x be a(N, δ, ε)-typical sequence. Let
x∗ = (x∗

0, . . . , x∗
N∗) be the periodic and exhaustive sequence that is obtained by

extendingx as we did in Section 2.4.3.
Sincex is typical, we can choose once and for all, for everys ∈ S, an element

v(s, ·) ∈ V (s) such that, for everyt ∈ S,

Nx
s max{px(s, t), v(s, t)} ≥ Nδ �⇒

∣∣∣∣1− v(s, t)

px(s, t)

∣∣∣∣ ≤ ε.(31)

As the next lemma asserts, sincex is typical, so isx∗.

LEMMA 7. x∗ is (N∗, δ′,3ε)-typical.
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PROOF. By (C1),

Nx∗
s max{px∗

(s, t), v(s, t)} ≥ Nδ′
∗ �⇒ Nx

s max{px(s, t), v(s, t)} ≥ Nδ.

In that case, by (C2),|1 − Nx
s,t

Nx∗
s,t

| ≤ ε
3 and |1 − Nx

s

Nx∗
s

| ≤ ε
3. This implies that

|1− px∗
(s,t)

px(s,t)
| = |1− Nx∗

s,t /Nx∗
s

Nx
s,t /N

x
s

| ≤ ε. Together with (31), we deduce that

Nx∗
s max{px∗

(s, t), v(s, t)} ≥ Nδ′
∗ �⇒

∣∣∣∣1− v(s, t)

px∗
(s, t)

∣∣∣∣ ≤ 3ε.(32)

Thus, the extended sequencex∗ is (N∗, δ′,3ε)-typical. �

The following lemma asserts that for every states that is frequently visited,
the observed transition out ofs, px(s, ·) and the transitions out ofs under the
V -Markov chainv, are close.

LEMMA 8. Let s ∈ S be given. If Nx
s ≥ Nξ , then‖v(s, ·) − px(s, ·)t‖∞ ≤ η.

PROOF. Let t ∈ S be given. If max{v(s, t),px(s, t)} ≤ η, then clearly
|v(s, t)−px(s, t)| ≤ η. Otherwise, by (C4),Nx

s max{v(s, t),px(s, t)} ≥ ηNξ ≥ Nδ .
Therefore, by (31) and the choice ofε, |v(s, t) − px(s, t)| ≤ εpx(s, t) < η.

�

3.3.3. The approximating process.We here construct the approximating
hidden Markov chainz. Its properties will be established in later sections.

We apply Theorem 2 to the sequencex∗ anda = Nξ , and obtain a partition
C = (S1, S2, . . . , SK) of S. Let K0 = {k :Nx∗

Sk
≥ N1−δ} be the frequently visited

atoms. For convenience, we assume thatK0 consists of the first|K0| atoms of
the partitionC, so thatK0 = {1, . . . , |K0|}. We assume also thatS|K0| is the most
frequently visited atom, so that, in particular,Nx∗

SK0
≥ N/|S|.

Fork ∈ K0, we define a transition functionπk over� = S×(S∪{◦}) as follows:

1. At state(s,◦), s ∈ Sk . A state s′ ∈ S is first drawn according tov(s, ·). If
s′ ∈ Sk, the chain moves to(s′,◦); if s′ /∈ Sk , a statet ∈ Sk is drawn according
to Ps′,px∗ (TSk

= Tt ) and the chain moves to(s′, t).
2. At state(s, t), s 
= t andt ∈ Sk . A states′ ∈ S is first drawn according tob(s, ·).

If s′ = t , the chain moves to(s′,◦). Otherwise, the chain moves to(s′, t).
3. At state (s, t), s /∈ Sk and t ∈ �Sk ∪ {◦}. A pair (s′, t ′) ∈ � is drawn with

probability b(s, s′) × Ps,px∗ (TSk
= Tt ′). If s′ = t ′, the chain moves to(s′,◦).

Otherwise, the chain moves to(s′, t ′).

Other states are visited with probability 0. Note that theS-marginal of
πk((s, t), ·) is eitherv(s, ·) or b(s, ·) and, in particular, belongs toV (s).
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Plainly, a chain with transition functionπk always moves in a single step to a
state in(S×Sk)∪(Sk ×{◦}). In particular, the third item in the definition ofπk may
possibly be relevant only at the initial stage. Note that theS-coordinate behaves
underπk as described in the overview. Starting fromSk × {◦}, it moves according
to v, unless it exitsSk . In that case, a target state inSk is drawn according to the
distribution of the entry state computed withpx∗

. Then theS-coordinate moves
according tob until it reaches the target state. At this point, the target flag is
removed, and theS-coordinate resumes moving according tov.

The approximating hidden Markov chain has|K0| pieces. The length of piecek
is Nx∗

Sk
, except that of piece|K0|: its length is N − ∑

k<|K0| N
x∗
Sk

, which is

betweenNx∗
S|K0| andNx∗

S|K0| + |S|N1−δ. In piecek the process follows the transition
functionπk . We denote bymk the length of piecek.

Formally, we letw be a piecewise homogeneous Markov chain over� whose
transition function coincides withπk at stages

∑
j<k mj ≤ n <

∑
j≤k mj . We

definez to be the first component ofw, so that it is a piecewise hidden Markov
chain. Thus, for every stagen in piecek, the conditional law ofwn+1 is πk(wn, ·).
The initial state ofw is irrelevant. We will prove that the processz satisfies both
(G1) and (G2).

For the convenience of the proof, the definition of the boundaries of thekth
piece slightly differs from the one in Section 2.4.2.

3.3.4. Two propositions. We here state two propositions relative toπk, without
proof. We next show why Theorem 4 follows from these propositions. As a
consequence, the proof of Theorem 4 reduces to statements about Markov chains.

In Proposition 2 below,νmk
(s,◦) is the empirical frequency of visits to the state

(s,◦) in stages 0 throughmk − 1. Recall thatνx∗
(s|Sk) = νx∗

(s)/νx∗
(Sk).

PROPOSITION2. Let k ∈ K0 be given. For everyω ∈ � and everys ∈ Sk ,

Pω,πk

(∣∣∣∣1− νmk
(s,◦)

νx∗
(s|Sk)

∣∣∣∣ > 55εL
)

≤ 1

2Nδ
.

In effect, Proposition 2 contains two statements. By summation overs ∈ Sk , it
implies that, with high probability, the empirical frequency ofSk × {◦} is close
to one. It also says that the empirical frequency of(s,◦) is close to the observed
frequency ofs along the sequencex∗, when conditioned onSk .

In Proposition 3 below,NSk×{◦} = |{n < mk s.t.wn /∈ (Sk × {◦})}| is the number
of stages in which theS-coordinate of the state evolves according tob rather than
according tov. Recall thatB = maxs,t∈S Es,b[Tt ] is a bound on the expected time
underb to reach any given state.

PROPOSITION3. Let k ∈ K0 andω ∈ � be given. One has

Eω,πk

[
NSk×{◦}

] ≤ 1

|S|BNψ.
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In effect, Proposition 3 asserts that the total number of stages the process spends
outsideSk × {◦} is small. As a consequence, the empirical frequency ofSk × {◦}
is close to one. This statement, however, differs from Proposition 2, since here the
result is phrased in expected terms.

We now show why the conclusions of Theorem 4 follow from Propositions
2 and 3.

We begin with (G2) and letmk−1 ≤ n < mk . For everys ∈ Sk , one has, by
Theorem 2(P2),Nx

s ≥ Rx{s} > Nξ . Hence, by Lemma 8,|v(s, ·) − px(s, ·)| ≤ η.
By definition of πk, the S-marginal ofpw

n (wn, ·) is equal tov(zn, ·) whenever
wn ∈ Sk ×{◦}. In particular,wn ∈ Sk ×{◦} implies n /∈ N0. Denote byN0,k the
number of visits to states outsideSk ×{◦} during thekth piece. By construction,
Ez[N0,k] ≤ supω∈� Eω,πk

[NSk×{◦}], so that by Proposition 3,

Ez[N0] ≤ ∑
k∈K0

Ez[N0,k] ≤ BNψ,(33)

and (G2) follows.
We next check that (G1) holds. Fixs ∈ S, such thatνx(s) ≥ 1/Nδ. By

constructions ∈ Sk for somek ∈ K0. We introduce the frequencỹνw
mk

(s,◦) =
1

mk
|{mk ≤ n < mk+1 : wn = (s,◦)}| of visits to (s,◦) in piecek. Note that the

differenceNνz
N(s) − mkν̃

w
mk

(s,◦) is the sum of two terms: (i) the total number
of visits to s in phases other thank, and (ii) the total number of visits to{s} × S

during phasek. As a consequence,Nνz
N(s)−mkν̃

w
mk

(s,◦) ≤ ∑
k∈K0

N0,k. By (33),
Markov’s inequality and (C6), one has

Pw

(
Nνz

N(s) − mkν̃
w
mk

(s,◦) > ε
N

Nδ

)
≤ BNδ+ψ−1

ε
≤ 1

2Nδ
.(34)

Note that the conditional distribution ofν̃w
mk

(s,◦), given w0, . . . ,wmk
, coincides

with the distribution ofνmk
(s,◦) under a Markov chain starting fromwmk

and
with transitionπk . Hence, by Proposition 2,

Pw

(∣∣∣∣1− ν̃w
mk

(s,◦)

νx∗
(s|Sk)

∣∣∣∣ > 55εL
)

≤ 1

2Nδ
.(35)

By (34) and (35), the probability that both inequalitiesNνz
N(s) − mkν̃

w
mk

(s,◦) ≤
εN1−δ and|1− ν̃w

mk
(s,◦)

νx∗
(s|Sk)

| ≤ 55εL hold is at least 1− 1
Nδ . On this event, by (C8),

∣∣νz
N(s) − νx∗

(s)
∣∣

≤
∣∣∣∣νz

N(s) − mk

N
ν̃w
mk

(s,◦)

∣∣∣∣ + 1

N
ν̃w
mk

(s,◦)
∣∣mk − Nx∗

Sk

∣∣

+ Nx∗
Sk

N

∣∣ν̃w
mk

(s,◦) − νx∗
(s|Sk)

∣∣
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≤ εN−δ + 1

N
|S|2N−δNx∗

Sk
ν̃w
mk

(s,◦) + Nx∗
Sk

N
× 55εLνx∗

(s|Sk)

≤ ε
N + |S|

N
νx∗

(s) + Nx∗
Sk

N
|S|2N−δ(1+ 55εL)νx∗

(s|Sk) + 55εLνx∗
(s)

≤ 56εLνx∗
(s).

By the choice ofε, this proves (G1).

3.3.5. Perturbation of Markov chains: reminder. We here introduce a result
on perturbations ofMarkov chains due to Solan andVieille (2003). This result
provides an estimate of the sensitivity of the stationary distribution and other
statistical quantities with respect to perturbations of the transition function. This
result will be applied to our setup in the next section.

GivenC ⊆ S with |C| ≥ 2, and an irreducible transition functionp1 overS with
invariant measureµ1, set

ζC
p1 = min

∅⊂D⊂C

∑
s∈D

µ1(s)p1(s, �D ).

This is a variation of the conductance of a Markov chain that was originally defined
by Jerrum and Sinclair (1989) and was used in the study of the rate of convergence
to the invariant measure [see, e.g., Lovász and Kannan (1999) and Lovász and
Simonovits (1990)].

The notion of closeness we use is the following one:

DEFINITION 7. Let p1 be an irreducible transition function onS with
invariant measureµ1, let C ⊆ S with |C| ≥ 2, and letβ, ε > 0. A transition
functionp2 is (β, ε)-close top1 onC if (i) p2(s, ·) = p1(s, ·) for everys /∈ C, and

(ii) |1 − p2(s,t)

p1(s,t)
| ≤ ε for every s, t ∈ C such thatµ1(s)max{p1(s, t),p2(s, t)} ≥

βζC
p1.

This definition is not symmetric since it involves the invariant distribution ofp1,
and not that ofp2. It requires that the relative probabilities of moving froms to t

underp1 and underp2 are close, but only for those one-step transitionss → t that,
on average, occur relatively frequently.

The next result summarizes Theorems4 and 6 in Solan and Vieille (2003). It
asserts that ifp1 andp2 are two transition functions that are close in the sense
of Definition 7, then their invariant measures are close, as well as other statistical
quantities of interest, such as the average length of a visit to a set and the exit time
from a given set. Recall thatL = ∑|S|−1

n=1

(|S|
n

)
n|S| and thatTC is the first hitting

time of the setC. The quantityKp(C) has been introduced in Section 2.3.2.
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PROPOSITION4. Letε ∈ (0,1/2|S|), A > 0, andβ ∈ (0, 1
2(A

L
)|S| × ε(1−ε)

L×|S|4 ) be

given. Let p1 be an irreducible transition function defined overS with invariant
measureµ1. Assume that|C| ≥ 2 and thatPs,p1(T

+
t < T�C) ≥ A for everys, t ∈ C.

Letp2 be(β, ε)-close top1 onC. Then:

(a) All states ofC belong to the same recurrent set forp2. Let µ2 be the
invariant measure ofp2 on that recurrent set.

(b) For everys ∈ C and everyD ⊂ C, one has
∣∣∣∣1− µ2(s|C)

µ1(s|C)

∣∣∣∣ ≤ 18εL,(36)

L−1 ≤ Es,p2[T�D]
Es,p1[T�D] ≤ L and L−1 ≤ Kp2(D)

Kp1(D)
≤ L.(37)

(c) Letχ ∈ (0, βζC
p1] be any number such that, for everys, t ∈ C,

µ1(s)max{p1(s, t),p2(s, t)} ≥ χ �⇒
∣∣∣∣1− p2(s, t)

p1(s, t)

∣∣∣∣ ≤ ε.(38)

Then either

L−1Kp1(C) ≤ Kp2(C) ≤ LKp1(C), or(39)

Kp1(C) ≥ 1

2|S| × µ1(C)

χ
and Kp2(C) ≥ 1

L
× 1

2|S| × µ1(C)

χ
.(40)

3.3.6. Perturbation of Markov chains: application. We here introduce the
auxiliary transition functionqk onS defined by

qk =
{

v onSk,
px∗

on�Sk.

In Lemmas 9 and 10 below, we first check that the conditions of Proposition 4
are fulfilled by qk and px∗

, as soon asSk is not a singleton. Next, relying on
Proposition 4, we provide estimates of the mixing measuresλqk

(Sk) andρqk
(Sk)

(see Proposition 5 below). These estimates will later be used to relate the properties
of qk to those of the transition functionπk over�.

LEMMA 9. If |Sk| ≥ 2, the transition functionqk is (β,3ε)-close topx∗
onSk .

PROOF. By Definition 7 and (32), it suffices to prove thatβζ
Sk

px∗ ≥ Nδ′∗
N∗ . For

eachC ⊂ Sk , one has by (P2) and sincea = Nξ ,

∑
s∈C

νx∗
(s)px∗

(s, �C ) = Rx∗
C − 1xN∈C

N∗
≥ Nξ − 1

N∗
.(41)
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By taking the minimum overC ⊂ Sk , this yieldsζ Sk

px∗ ≥ Nξ−1
N∗ . The result follows

by (A1). �

Recall that we setA = 1/2.

LEMMA 10. If |Sk| ≥ 2, one hasPs,px∗ (T +
t < T�Sk

) ≥ A for everys, t ∈ Sk .

PROOF. Suppose first thats 
= t , so thatPs,px∗ (T +
t < T�Sk

) = Ps,px∗ (Tt < T�Sk
).

By Lemma 2,

Ps,px∗
(
Tt < T�Sk

) ≥ 1− 2|Sk|
ρpx∗ (Sk)

λpx∗ (Sk) − (|Sk| − 1)ρpx∗ (Sk)
.

By Lemma 5,ρps∗ (Sk) ≤ 2
Nξ λpx∗ (Sk), so that by (A7),

Ps,px∗
(
Tt < T�Sk

) ≥ 1− 2|Sk| 2/Nξ

1− 2(|Sk| − 1)/Nξ
≥ 3

4
≥ A.(42)

Suppose now thatt = s. Since|Sk| ≥ 2, px∗
(s,�Sk) ≤ Rx∗

Sk

Rx∗
s

< 1
a

= 1
Nξ , so that by

(42) and (A7),

Ps,px∗
(
T +

s > T�Sk

) = px∗
(s,�Sk) + ∑

t∈Sk\{s}
px∗

(s, t)Pt,px∗
(
Ts > T�Sk

)

≤ 1

Nξ
+ 1

4
≤ 1

2
= 1− A. �

By Lemmas 9 and 10, we can apply Proposition 4 topx∗
andqk with A = 1/2.

Recall thatα = 1/(2β |S|L2).

PROPOSITION 5. Assume that|Sk| ≥ 2. Then λqk
(Sk) ≥ αρqk

(Sk) and

λqk
(Sk) ≥ 1

2L|S|
Nx∗

Sk

N
ψ ′
∗

.

PROOF. We first provide a lower bound onKpx∗ (Sk). By (16), one has

Kpx∗ (Sk)

νx∗
(Sk)

= 1∑
s∈Sk

νx∗
(s)px∗

(s,�Sk)
= N∗

Nx∗
Sk,�Sk

≥ N∗
Rx∗

Sk

.(43)

We now prove the first assertion. ForC ⊂ Sk , by (43) and (P2),

Kpx∗ (Sk) ≥ N∗νx∗
(Sk)

Rx∗
Sk

≥ Nξ N∗
Rx∗

C

νx∗
(Sk) ≥ (Nξ − 1)

νx∗
(Sk)∑

s∈C νx∗
(s)px∗

(s, �C )
,
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where the last inequality follows sinceNξ

NC,C̄+1 ≥ Nξ −1
NC,C̄

. By optimizing overC and

using (A2), this yields

Kpx∗ (Sk) ≥ 1

2β|S| × νx∗
(Sk)

ζ
Sk

px∗
.(44)

Using (39) and (40) withχ = βζ
Sk

px∗ , (44) yields

λqk
(Sk) ≥ Kqk

(Sk) ≥ 1

L
× 1

2β|S| × νx∗
(Sk)

ζ
Sk

px∗
.(45)

Fix C ⊂ Sk . By (45) and (37),

λqk
(Sk) ≥ 1

2β|S|L × νx∗
(C)∑

s∈C νx∗
(s)px∗

(s, �C )
= 1

2β|S|L × Kpx∗ (C)

≥ 1

L
× 1

2β|S|L × Kqk
(C) ≥ 1

L2 × 1

2β|S| × min
s∈C

Es,qk
[T�C].

The first assertion follows by taking the maximum overC.
We now prove the second assertion. By (32) and sinceδ′ < ψ ′, (38) holds with

χ = N
ψ ′−1∗ . We distinguish two cases. IfKpx∗ (Sk) ≥ 1

2|S| × Nx∗
Sk

N∗×χ
, then by (40),

λqk
(Sk) ≥ Kqk

(Sk) ≥ 1

L
× 1

2|S| × Nx∗
Sk

N∗ × χ
= 1

L
× 1

2|S| × Nx∗
Sk

N
ψ ′
∗

,

as desired. If, on the other hand,Kpx∗ (Sk) < 1
2|S|

Nx∗
Sk

N∗×χ
, then by (39) and (43),

λqk
(Sk) ≥ Kqk

(Sk) ≥ 1

L
Kpx∗ (Sk)

≥ 1

L
× N∗νx∗

(Sk)

Rx∗
Sk

≥ 1

L
× Nx∗

Sk

Rx∗
Sk

≥ Nx∗
Sk

L(Nξ + 1)|S| ,

which by (A3) gives the result.�

3.3.7. Proof of Proposition3 when |Sk| ≥ 2. By Proposition 4, there is a
recurrent set forqk that containsSk . Therefore, there is a recurrent set�k ⊂ �

for πk that containsSk ×{◦}. We denote byµπk
the invariant measure ofπk on�k .

We first prove thatµπk
assigns a significant weight toSk × {◦}.

LEMMA 11. If |Sk| ≥ 2, thenµπk
(Sk × {◦}) ≥ 1− 2B

λqk
(Sk)

≥ 1
2.
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PROOF. By Proposition 5 and (C5), 1− 2B
λqk

(Sk)
≥ 1

2.

We now prove thatµπk
(Sk × {◦}) ≥ 1 − 2B

λqk
(Sk)

. Plainly, E(s,t),πk
[TSk×{◦}] =

Es,b[Tt ] ≤ B for everyt ∈ Sk and everys ∈ S \ {t}.
On the other hand, by Lemma 1(ii), Proposition 5 and by the choice ofβ,

min
s∈Sk

E(s,◦),πk

[
TSk×{◦}

] = min
s∈Sk

Es,qk

[
T�Sk

]

≥ λqk
(Sk) − (|Sk| − 1)ρqk

(Sk) ≥ 1
2λqk

(Sk).

By (18), one gets

µπk
(Sk × {◦})

µπk
(Sk × {◦}) ≤ 2B

λqk
(Sk)

,

henceµπk
(Sk × {◦}) ≤ 2B

λqk
(Sk)

.

We now proceed to the proof of Proposition 3 when|Sk| ≥ 2. Observe first that

min
ω∈Sk×{◦} Eω,πk

[
NSk×{◦}

] = min
ω∈�k

Eω,πk

[
NSk×{◦}

]
.

Sinceµπk
is the invariant measure ofπk over �k , one hasEµπk

,πk
[NSk×{◦}] =

mkµπk
(�k \ (Sk × {◦})). By Lemma 11 this yields

min
ω∈Sk×{◦} Eω,πk

[
NSk×{◦}

] ≤ 2B × mk

λqk
(Sk)

.(46)

Let γ = maxω∈Sk×{◦} Eω,πk
[NSk×{◦}], and let ω1 ∈ Sk × {◦} achieve the

maximum. Since theS-marginal ofπk coincides withb outsideSk × {◦}, one
has, forω ∈ Sk × {◦},

γ = Eω1,πk

[
NSk×{◦}

] ≤ Eω,πk

[
NSk×{◦}

] + Pω1,πk

(
TSk×{◦} < Tω

)
(B + γ ).

By Lemma 2 and Proposition 5,Pω1,πk
(TSk×{◦} < Tω) ≤ 2|S|

α/2−|S| = 1/α′. Since
α′ ≥ 2, one gets, by lettingω vary,

γ ≤ α′

α′ − 1
min

ω∈Sk×{◦} Eω,πk

[
NSk×{◦}

] + B

α′ − 1
(47)

≤ 2 min
ω∈Sk×{◦} Eω,πk

[
NSk×{◦}

] + B.

Finally, for eachω′ ∈ �, by (47), (46), and Proposition 5,

Eω′,πk

[
NSk×{◦}

] ≤ Eω′,πk

[
TSk×{◦}

] + max
ω∈Sk×{◦} Eω,πk

[
NSk×{◦}

]

≤ B + B + 2 min
ω∈Sk×{◦} Eω,πk

[
NSk×{◦}

]

≤ 2B + 4B × mk

λqk
(Sk)

≤ 2B + 8BL|S|Nψ ′
∗ × mk

Nx∗
Sk

.
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Sincemk/N
x∗
Sk

is either 1 (ifk < |K0|) or at most 1+ |S|2/Nδ (if k = |K0|), the
desired result follows by (C3).�

3.3.8. Proof of Proposition2 when |Sk| ≥ 2. To prove Proposition 2 when
|Sk| ≥ 2, we first prove thatπk is mixing (see Lemma 13). We can then apply
Theorem 3 as we did in the proof of Theorem 1. We are therefore able to compare
the empirical frequencyνmk

to µπk
. Sincepx∗

andqk are close, this enables us to
compare the invariant measure ofπk , µπk

, to the invariant measure ofpx∗
, νx∗

.

LEMMA 12. If |Sk| ≥ 2, then, for everyω ∈ �k and everys ∈ Sk , one has

Eω,πk

[
T +

(s,◦)

] ≤ (|Sk| − 1)ρqk
(Sk) + 2B

mint∈Sk
Pt,v(Ts < T�Sk

)
+ 1.

PROOF. The proof is a simple adaptation of the proof of Lemma 3. We repeat
it, with few modifications. Letω ∈ �k ands ∈ Sk be given. Note that

Eω,πk

[
T +

(s,◦)

] ≤ 1+ max
ω′∈�k

Eω′,πk

[
T(s,◦)

]
.(48)

Set γ = maxt∈Sk
E(t,◦),πk

[T(s,◦)]. Let t ∈ Sk \ {s} achieve the maximum in the
definition ofγ . By Lemma 1,

γ = E(t,◦),πk

[
T(s,◦)

] ≤ Et,qk

[
T�Sk∪{s}

] + Pt,qk

(
T�Sk

< Ts

)
(γ + B)

≤ (|Sk| − 1)ρqk
(Sk) + B + γ × max

u∈Sk

Pu,v

(
T�Sk

< Ts

)
.

Therefore

γ ≤ (|Sk| − 1)ρqk
(Sk) + B

minu∈Sk
Pu,v(Ts < T�Sk

)
.(49)

Forω ∈ �k\(Sk × {◦}),
Eω,pk

[
T(s,◦)

] ≤ B + γ.(50)

The result follows from (48)–(50).�

The lemma below is a mixing-type result. It is very similar to Lemma 1.

LEMMA 13. If |Sk| ≥ 2, then, for everyω ∈ �k and everys ∈ Sk ,

Eω,πk

[
T +

(s,◦)

] ≤ 2|S|L N∗
Nξ − 1

+ 4B + 1.

PROOF. We repeat the proof of Proposition 1 with minor adjustments. By
Lemma 12,

Eω,πk

[
T +

(s,◦)

] ≤ (|Sk| − 1)ρqk
(Sk) + 2B

mint∈Sk
Pt,v(Ts < T�Sk

)
+ 1.
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By Lemma 2, the denominator is at least 1−2|Sk| ρqk
(Sk)

λqk
(Sk)−(|Sk|−1)ρqk

(Sk)
≥ 1

2, where

the inequality follows by Proposition 5 and the choice ofβ. Therefore

Eω,πk

[
T +

(s,◦)

] ≤ 2 |Sk|ρqk
(Sk) + 4B + 1.

By (37), Lemma 5 and Theorem 2(P2),

ρqk
(Sk) ≤ Lρpx∗ (Sk) ≤ L max

D⊂Sk

Nx∗
D

Rx∗
D − 1

≤ L
N∗

a − 1
.

The result follows. �

Defineµ◦
πk

(s) = µπk
((s,◦))/µπk

(Sk × {◦}). It is the invariant measure ofπk

conditioned onSk × {◦}.
The following compares the empirical number of visits to(s,◦) to the invariant

measure.

PROPOSITION6. If |Sk| ≥ 2, then

Pω,πk

(∣∣νmk
(s,◦) − µ◦

πk
(s)

∣∣ >
2ε

1− ε
µ◦

πk
(s) + 1

mk

)
≤ 1

2Nδ
.

PROOF. By Remarks 2 and 3, Lemma 13 and (A4), for everyω ∈ �k ,

Pω,πk

(∣∣νmk
(s,◦) − µπk

((s,◦))
∣∣ > εµπk

((s,◦)) + 1

mk

)

≤ 17

ε2mk

(
2|S|L N∗

Nξ − 1
+ 4B + 1

)
≤ 1

2Nδ
.(51)

Sinceµπk
((s,◦)) ≥ 1/2, by Lemma 11, Proposition 5 and by the choice ofβ,∣∣µπk

((s,◦)) − µ◦
πk

(s)
∣∣ ≤ 2µπk

(
�k \ (Sk × {◦})) × µπk

(s,◦)

≤ 4B

λqk
(Sk)

× µπk
(s,◦) ≤ εµπk

(s,◦).

Therefore, if |νmk
(s,◦) − µπk

((s,◦))| ≤ εµπk
((s,◦)) + 1

mk
, then |νmk

(s,◦) −
µ◦

k(s))| ≤ 2ε
1−ε

µ◦
k(s) + 1

mk
. The result follows by (51). �

We are now in a position to prove Proposition 2. Observe that the invariant
measure ofpx∗

conditioned onSk is simplyνx∗
(·|Sk). By Lemmas 9 and 10, and

Proposition 4, ∣∣µ◦
πk

(s) − νx∗
(s | Sk)

∣∣ ≤ 18× 3εLνx∗
(s|Sk).

The claim follows by Proposition 6, the choice ofε and since by (P2) and (C7)

νx∗
(s|Sk) ≥ Rx∗

{s}
N∗ ≥ Nξ

N∗ ≥ 2
εN1−δ ≥ 2

εmk
.
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3.3.9. The singleton case.We here assume thatSk = {s} is a singleton. The
next lemma is an analog of Lemma 11. It bounds from below the invariant
distribution ofπk onSk × {◦}. Its proof is, however, significantly different.

LEMMA 14. One hasµπk
((s,◦)) ≥ 1− B(1+ 3ε)

(Nξ+1)|S|
N1−δ .

PROOF. By Theorem 2(P1),

px∗
(s, S \ {s}) ≤ Rx∗

{s}
Nx∗

s

≤ (Nξ + 1)|S|

N1−δ
.

Using (32), this yields

v(s, S \ {s}) ≤ (1+ 3ε)
(Nξ + 1)|S|

N1−δ
.

We apply (18) top = πk , S = �k andC = {(s,◦)}, and we get

1− µπk
((s,◦))

µπk
((s,◦))

≤ Bv(s, S \ {s}) ≤ B(1+ 3ε)
(Nξ + 1)|S|

N1−δ
.

The desired result follows.�

The rest of the proof for the singleton case follows closely the proof for
|Sk| ≥ 2. We first prove Proposition 2 in that case. By the definition ofπk ,
maxω∈�k

Eω,πk
[T +

(s,◦)] ≤ B + 1. Therefore, using Remark 2 withπk , ε andω =
(s,◦), and by (C6),

Pω,πk

(∣∣νmk
(s,◦) − µπk

((s,◦))
∣∣ > εµπk

((s,◦)) + 1

mk

)
≤ 17(B + 1)

mkε2

≤ 1

2|S|Nδ
.

By Lemma 14 and (A5),|µπk
((s,◦)) − 1| ≤ ε. The conclusion of Proposition 2

follows. Observe that we also deduce thatµπk
((s,◦)) ≥ 1/2.

We now prove Proposition 3. Fixω ∈ �k . Sinceµπk
((s,◦)) ≥ 1/2,

Eω,πk

[
NSk×{◦}

] ≤ Eω,πk

[
T(s,◦)

] + E(s,◦),πk

[
NSk×{◦}

] ≤ B + E(s,◦),πk

[
NSk×{◦}

]
≤ B + 2Eµπk

,πk

[
NSk×{◦}

] ≤ B + 2mk

(
1− µπk

((s,◦))
)
.

By Lemma 14 and (A6) this last quantity is at most

B + 2NB(1+ 3ε)
(Nξ + 1)|S|

N1−δ
≤ BNψ/|S|,

and Proposition 3 follows.
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