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APPROXIMATING A SEQUENCE OF OBSERVATIONS
BY A SIMPLE PROCESS!
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Université Paris NordNorthwestern University and Tel Aviv Universiand HEC

Given an arbitrary long but finite sequence of observations from a finite
set, we construct a simple process that approximates the sequence, in the
sense that with high probability the empirical frequency, as well as the
empirical one-step transitions along a realization from the approximating
process, are close to that of the given sequence.

We generalize the result to the case where the one-step transitions are
required to be in given polyhedra.

1. Introduction. In a seminal work, Baum and Petrie (1966) studied the
following problem. Can one recover a homogenous hidden Markov chain from
a finite sample(xg, x1, ..., xy) from the chain. They prove that the maximum
likelihood estimate converges to the correct valugyagoes to infinity.

This problem has several applications, including ecology [Baum and Eagon
(1967)], speech recognition [see, e.g., Rabiner (1989)] and identifying gene
structure [see, e.g., Krogh, Mian and Haussler (1994)].

We study the following related problem. Can one find a “simple” pro¢ess
that “explains” a given observatiofxg, x1, ..., xy)? More specifically, we are
given a finite sequenday, ..., xy) out of a finite setS, and we would like to find
a simpleS-valued processs,) that satisfies the following two properties:

(i) under (s,),<n, With high probability, the empirical frequency ofe S is
close to the frequency of stages< N such that,, = s, and

(ii) the conditional law ofs, 1, given (so, ..., s,), is close to the empirical
frequency of one-step transitions frosy to s,+1 in (xo,...,xy) (i.e., the
frequency of stages < N such thatx,,.1 = s,+1 out of the stages: < N such
thatx,, = s,).

Were only the property (i) required, an i.i.d. sequence would do. The simplest
processes that allow for serial correlation are homogeneous Markov chains.
Therefore, a naive solution to this problem is to defi)@ to be the homogeneous
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Markov chain in which the transition fromto s’ is the frequency of stages < N

such thatx,, .1 = s’ out of the stages: < N such thatx,, = s. It is true that
asymptoticallythis Markov chain satisfies our requirements. However, we wish to
have an approximation at timé, whereN is the number of observations, and the
naive Markov chain may fail to do so. The concept of a simple process we use is
therefore slightly more complicated: a simple process in our contexgiescawise
homogeneous Markov chain withkeundednumber of pieces. Our basic result
states that, providedy is large enougheverysequence can be explained, in the
above sense, by a piecewise homogeneous Markov chain with at $hqétces.

Our proof is constructive, in the sense that we provide an algorithm that produces
the desired piecewise homogeneous Markov chain.

We also analyze a more general question. It is sometimes the case that the
process we construct has to satisfy some exogenous constraints, for example,
the one-step transitions must belong to some pre-defined polyhedra of probability
measures. These polyhedra may reflect some a priori knowledge of the physics of
the problem at hand. We then have to construct a process such that both (i) and (ii)
are satisfied, and, in addition, the conditional laws,pf,, given(so, ..., s,), must
belong to some polyhedro¥i(s,). So that (ii) will hold, the empirical transitions
along the observed sequence must be close to the given polyhedra. We prove
that under proper conditions, and/f is large enough, there exists a piecewise
hiddenMarkov chain with a bounded number of pieces that satisfies these three
requirements.

A consequence of our result is the following. Lét,) be any S-valued
process such that the conditional lawzpf 1, given(z, ..., z,), belongs to some
given polyhedronV (z,), a.s. for eaclh < N. Assume, moreover, that there is
an irreducible transition functioh such thatb(s, -) € V(s) for everys. Then,
provided N is large enough, for most realizationigg, x1, ..., xy) of (z,) one
can find a piecewise homogeneous hidden Markov clginwith at most|S|
pieces such that both (i) and (ii) above hold, and the conditional lagy,af given
(S0, ...,Sy), belongs toV (s,), a.s. for every: < N. More precisely, the measure
of the set of realizations that can be explained in the sense we just described goes
to 1 asN goes to infinity. Thus, most realizations froim,) can be explained by
a simple process. In other words, assumimdy that the sequencéo, ..., xy)
is generated by a process that satisfies the given physical constraints, it is very
likely that a simple process can beuhd, which with high probability has the
same empirical behavior as the given sequédngge .., xy).

The paper is organized as follows. In Section 2 we define and investigate the
problem with no polyhedral restriction, and in Section 3 we turn to the general
problem.

2. The basic problem. Given a finite setk, we let|K| denote the number
of elements ik, and (K) denote the space of probability distributions oker
Throughout the paper we fix a finite sgtof states We use the symbolc” to
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denote strict inclusion. For every subget S, C = S\ C is the complement of
inS.

2.1. Presentation. The basic problem can be stated as follows. A sequence
x = (x0, X1, ..., xy) in S with finite lengthN 4+ 1 € N is given. Anobservegets to
see this sequence, or at least gets to know the nuMpet= {n < N|(xn, Xp+1) =
(s, 1)}| of one-step transitions fromto ¢, for eachs, r € S. The observer wishes
to find asimplestochastic procesg,), over S, such that any typical realization
of zo, ..., zy fits the data. We proceed to give a formal meaning to this question
before we state our basic result.

Fors € S, denote by

X X . d X Ng
N; _ZNM =|{n<N:x,=s} and vi(s)= N
teS
the number of stages spent in along x (excluding xy), and theobserved
occupancy measuref s, respectively. Thebserved transition functionp”® is
defined by
N.x
1) pr(s, 1) = N—S; for eachs, s € S s.t.NY > 0.
N
If N} =0, the definition ofp™ (s, ) € L (S) is irrelevant.

The most natural notion of a simple process is that of a homogeneous Markov
chain. As is argued in Remark 1 below, this notion is not flexible enough to
allow for a good approximation in finite time. Thus, we introduce the notion of
apiecewise homogeneous Markov chain

DEFINITION 1. Let K be a positive integer. A procegs= (z,)o<n<n IS @
piecewise homogeneous Markov chain vwktipiecesf (i) zis a Markov chain and
(i) there existintegers & ng < n1 < --- <ng = N such that the random variables
(2,), ng—1 <n < ng, form a homogeneous Markov chain, foredck 1, ..., K.

The law of anS-valued process= (z,),<n is denoted byp,. If zis a (possibly
nonhomogeneous) Markov chain, we denote Ay n < N, the conditional
distribution of z,,1 given z,. Also, v}, is the empirical occupancy measuig
the firstm stages:

1
v (s) = ;I{Os n<m-—1:z,=s}|.
We are now in a position to state our basic theorem.

THEOREM 1. For everye > 0, everys € (0, WllH)) and everyt € (0, 29),
there existsNg € N such that the following hold$-or everyN > Ng and every
S-valued sequence = (xg, ..., xn), there is a piecewise homogeneous Markov
chainz over S, with at most S| piecessuch that
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(B1) Py(|AY) _ 11> ¢) < <L for everys € S that satisfies* (s) > .

vX(s)

(B2) P;-a.s., one has| pf(z,, ) — p*(z,, )l , <& for eachn # ny.

Leaving aside the technical qualifications, Theorem 1 has the following
implications. The number of pieces of the approximating process is independent of
the length of the sequenge In all stages, with the possible exception of at most
|S| of them, the transition function of is very close to the observed transition
function p*. Moreover, for any typical realization of the fir&t components of,
the empirical occupancy measurg is very close to the observed occupancy
measurev® [restricted to states whose observed occupancy measutés) is
not negligible].

We stress that we consider realizatianef the samelength as the sequence.

In that sense, our result is not an asymptotic result, but provides the basis for
a good approximation in finite time, provided the sequence is long enough. Our
proof is constructive, in the sense that we provide an algorithm that can be used to
constructz.

Observe that (B1) and (B2) are not exactly of the same nature. Indeed, (B1)
relates to the samples from while (B2) is a structural property &f. From the
proof it will be clear that endless variations are possible.

REMARK 1. The naive solution is to consider a Markov chanwith
transition function p*. However, such a process may fail to yield a good
approximation in finite time. Indeed, I& = {a, b}, and consider the sequence
x=(a,a,...,a,b,b,...,b,a) that containgV a’s followed by N b’'s, and ends
with ana. The transition functionp” is

px(bva) :px(a’b) =1- px(b’b) =1- px(a’a) = 1/N

Given a Markov chain with transition functigr® and initial state:, the probability
that z, = a, for everyn < 2N + 1, is bounded away from zero. In particular,
condition (B1) will not hold. More generally, no homogeneous Markov chain
satisfies both (B1) and (B2) in this example.

This example highlights the heart of the problem. The naive solution does
satisfy (B1) and (B2) when” is sufficiently mixing. However, when it is not,
there is no Markov chain that approximates the given sequence in the sense of
(B1) and (B2).

The proof of Theorem 1 is organized as follows. First, we provide a general
structure result in Section 2.2. Wheéhis a subset of, andx = (x1, ..., xy) is
a sequence of elements §h a C-run is a subsequende,,, x,,+1, - .., X»,) SUCh
that all its elements are i@, while x,,_1 andx,,.1 are not inC (if n1 =1 or
nz = N, the last condition is vacuous). Our structure result states that given any
finite sequence of elements ofS, there is a partition of with the property that
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for every atomC of the partition and every proper subgetof C, the number
of C-runs is much smaller than the numberi®fruns. Thus, the sequence moves
around inside any atom much more quickly than from one atom to another.

We will use the structure result to argue that the observed transition funetion
associated ta, when restricted to any atom of the partition, is mixing. We then
construct the simple procegsthat approximates. This process will have the
following features: (i) it visits every atond’ of the partition onlyonce (ii) the
duration of the visit toC is )", N, the observed number of stages spentin
and (iii) the transition function af during the visit toC is p*, properly modified
S0 as to prevent the chain from exitiagtoo early.

Section 2.3 contains several results on Markov chains. The proof of Theorem 1
is given in Section 2.4.

2.2. A structure theorem.We here collect some general notation that is in
use throughout the paper. We use the letterand ¢, with possible sub- or
superscripts, to denote transition functions. Probability measures SHweae
denoted byu, empirical occupancy measures overare denoted by, while
probability measures oveéN are denoted bp. Finally, random variables are often
boldfaced, while generic variables are not.

Let a finite sequence = (xo,...,xy) in S be given. For every two subsets
A, B C S, we set

N} p= Z Ny, and Nﬁ:NXS:ZN;‘.

seEA,teB SEA

These are the number of transitions freto B alongx, and the number of visits
to the setA alongx, respectively. FoC C §, we define

E=NE o+ Txec

This is the number o€-runs alongr [see Feller (1968), I1.5]. PIainIyRé\D <
R¢ + Ry, for every D C C, and|R¢ — Rz| < 1. Note also thaRg = N = +

:I]-XNEC .
We now state our structure result.

THEOREM 2. Leta > 0 and a finite sequence of elements of be given
There is a partitionC of S such thatfor everyC € C:

(P1) R < (a + D)L,
(P2) ForeachD C C, R}, > aR¢.

PROOF  SinceRg = 1, the trivial partitionC = {S} satisfies (P1). Among all
the partitions that satisfy (P1), I€t be one with maximal number of atoms, and
setk = |€C|, the number of atoms i®. We will prove thatC satisfies (P2). If it
does not, there ar€ € C, and a proper subsét of C, such thatR}, < aR(-.
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Consider now the partitio@ \ {C}U{D, C\ D} obtained by further partitioning
the setC into D andC \ D. We show that this new partition, with+ 1 elements,
satisfies (P1) as well, contradicting the maximality@fIndeed,R}, < aR{ <

(@+ DM andRE, , < RE+ R < Ri(a+1) < (@+ DM O

As Theorem 2 has its own merit, we provide two comments concerning the
partition C that satisfies (P1) and (P2).

COMMENT. There need not be anique partition that satisfies both
(P1) and (P2). Indeed, Ie&t= {0,1} andx = (0,1,0,1,...,0,1) (a sequence of
lengthN + 1), and letz > 0 be such that < 24 < (a +1)2. SinceR}, = R}

{0} =
NT”, the two partitions of satisfy (P1) and (P2).

COMMENT. Fora > 2, the partition that is defined in the proof of Theorem 2
is unique. To verify this claim, it is enough to check that, given two partitions
C andD that satisfy (P2), the following holds: for eve€ye ¢ andD € D, if the
intersectionC N D is nonempty, then it is equal to eith€ror D.

Assume to the contrary th& = C N D is a proper subset of bothandD. Then
one haSN;‘,’l—) +Np p\p= N;f +Np ovp=Rp —Liyer, Np o\ p+ Np p\p =
R/;) - II‘XNGP! N;C)’g S Né,’g - Ré - ]lxNeC, andN;’E S Né,ﬁ = R)b - II‘XNGD' It
follows that

Rp —1iyer = Np c\p + Np pyp
= 2R);) - 2 X :H'XNEP - N;’g— N/;’,E
> 2R% — RE — RS,
In particular, by (P2),
R:+ Rp —1yyep > Rp > a x max Ry, Rp},

a contradiction when > 2.

2.3. On Markov chains. We here collect a few useful results about Markov
chains. First, we provide a result on the speed of convergence of an irreducible
Markov chain to its invariant measure. Next, we make a few observations on the
expected exit time from sub-domains$f

Throughout the present section, a transition funciioover S is given. For
s € §, we denote by , the law of a homogeneous Markov chaiwith transition
function p and initial stater, and byE; , the expectation w.r.e ,. Foru € £(S),

Eu.p =2 ses H()Ey , is the expectation operator when the initial state is chosen
according tou.

The hitting time of a setC C S is Tc = min{n > 0:z, € C} (with ming =
+o0). Fort € S, we abbreviateT};; to 7; and we denote b)Tfr = min{n >
1:z, =t} thefirst return timeto ¢.
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2.3.1. Convergence to the invariant measure.

DEFINITION 2. Lety > 0 be given. The transition functiop is y-mixing if
E, 7,71 <y, foreverys,t € S.

Plainly, ay-mixing transition function is irreducible. The next theorem bounds
the speed of convergence of the empirical occupation measure to the invariant
measure fory-mixing homogeneous Markov chains. In this stateménis the
occupancy measure in stages 1 throughyZ, (s) = %|{1 <n<m:.z,=s}|.

THEOREM 3. Assume that the transition functignis y-mixing and letu be
its invariant measureLetn € N ande € (0, 1/2) be such thatn > 4y. Then for
everys,t € S,

(2) Pt,p( Vn(S)

wu(s)

17y
ne?’

—1‘28)<

REMARK 2. Inspection of the proof shows that inequality (2) holds more
generally for each statee S such that maxg Et,p[TSJF] <vy.

REMARK 3. Since|vi(s) — vi(s)| < % one has, under the assumptions of
Theorem 3,

1 17
(3) Pt»p<|"§(5) — ()| =enls) + —) < —Z
n ne

REMARK 4. It is likely that the bound in Theorem 3 can be substantially
improved, possibly to an exponential bound. Recently, Glynn and Ormoneit (2002)
provided a generalization of Hoeffding’s inequality to uniformly ergodic chains.
However, their ergodicity assumption (A1) is stronger than our mixing assumption,
hence our result does not follow from their statement.

PrROOF OFTHEOREM 3. The proof relies on the following two identities:

1 1

(4)  E T 1= o) and u(s)Var, ,(T;") = 2E,, [T, ]+ 1— T
[see Aldous and Fill (2002), Chapter 2, identity (22) for the second one]. Since
pis y-mixing, 1/u(s) = E; p[T,7]1 <y < en/4, andE, ,[Ts] <E, ,[T;" 1 < y.
Since 1- 1/u(s) <0, we also haveu(s)Var;, ,(T,7) < 2y.

For notational clarity, we set, = [nu(s)(1 —¢)] andn® = |[nu(s)(1+ ¢)].
Note thatn, < n®. Moreoverp, +n® — 1< 2nu(s), so thatn, + n® < 3nu(s).

On {vZ(s) < u(s)(1—¢)} one hasVy ,, > n, whereas offivz(s) > u(s)(1+¢)}

one hasVs ,« < n. Therefore, the evemt';’f((j)) — 1] = ¢} isiincluded in the union of
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the two eventgV; ,, > n} and{V; , <n}, so that

o i

We will prove the result by providing an upper bound on the probability that
Vs.n, = n and on the probability that; ,- < n.
Sincees < 1/2 and sincenu(s) > 4, straightforward manipulations show that

- 1’ > 5) =< I:)t,p(vs,n‘g > I’l) + Pt,p(Vs,ng <n).

(6) min{n— e , n —n}2§n8 and
wu(s) p(s) 4
. o me—laf-1 } 1
(7) mm{n<l £%) ORTO) ni = Sne.

Fors € S andk € N, let V; ; denote the time of thith return tos (with V; o = 0),
and Iethfk = Vi.x — Vs.k—1 denote the length of thith visitto S \ {s}.
We distinguish the two cases=r ands # t.

CAsel. s=t.
In this case the random variablfé‘g} are i.i.d. and share the law @f*. Since
Es, p[T,F1=1/u(s), one has, by Chebyshev’s inequality and by (6),

Var, ,(T."
PS,P(VSJZE = I’l) = PS,p(Vs,ng - e e ) < Ne 5’17( s )

—>n —
w(s) = u(s) (3/4ne)?
and
e nt néVars ,(T,")
. po (o s B s plls )
s, p(Vsne <n) < ”’(,u(s) 5. ZM(S) n) = (3/4ne)?

Hence, by (5), (4) and singeis y-mixing, one obtains

vZ(s) ’ ) (ne +n®)Var, ,(T;")  16x3x2y 17y
8) P o —1>e) < —— < :
®) 5’p< w(s) =f)= (3/4ne)? ~  Oneg? = he?
CASE2. s#t.
By Markov’s inequality and since is y-mixing,
2 Y
9) Pt,p(Ts+ >¢&n) < Py

By repeating the steps of Case 1 using (7), one has
Pt,p(TSJ’r1 < &2n, Vs, = 1)
(10) <Pop(Tht -+ 1, 2nd—e?)

< (ng — 1)Vars,p(Ts+) < (ng — 1)Vars,p(Ts+)
T (n(l—e?) — (ne — /()% ~ (1/2ne)? ’
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while
Pt,p(Vs,n£ <n) < Ps,p(TS—E +- 4+ TS—,’;,E <n-1)
- (n® — LVar, ,(T,")
B (1/2n¢)?
By summing (9)—(11), one obtains

u(s) n2g?
Therefore,

o

2.3.2. Expected exit times.We here analyze the exit time from a given sub-
domain. Our estimates use two new mixing measures for irreducible transition
functions.

Throughout this section we assume that the transition fungtienirreducible
with invariant measurg. We use repeatedly the inequality

(12) Es,p[TZ] = Es,p[TZU{t}] + Et,p[TZL

which holds for every. C S and every,r € L.

(11)

ﬁﬁ(s)_l‘>8)<4x2x2y+y_l7y

w(s) - ne? "~ ne?’

as desired. [J

DEFINITION 3. ForC C S, we define

AP(C):rS]l%xES,p[Tg] and pp(C):ngggréllr)]Es,p[TE].

Observe that one always hag(C) > p,(C). 1 ,(C) bounds the time it takes to
leaveC. p,(C) may be interpreted as a measure of how fast a Markov chain with
transition functionp visits each and every state 6f The following lemma adds
substance to these interpretations. We shall use it to derive further estimates of exit
times.

LEMMA 1. ForeveryC C S:
(i) Es p[Tpl <|Dlp,(C), for everyD C C and every € D.
(i) Es plTEl = A,(C) = (IC] = D p,(C), foreverys e C.

PROOF We prove the first statement by induction ové?|. Plainly, the
inequality holds for singletons. Assume it holds for every subset ivélements.
Let D C C be any subset with + 1 elements, and late D. Choose € D such
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thatE; ,[T5] < p,(C). By (12) and the induction hypothesis, applied0, {¢},
we have

Es,p[Tl_)] =< Es,p[Tl_)U{t}] + Et,p[Tl_)] <({D| - 1),0,;(C) + ,Op(C)-

We now prove the second statement. LetC be given, and let € C be such
thati,(C) =E; ,[T¢]. If t =, (ii) trivially holds. Otherwise, by (12) and (i),

Es plTel = Er plTel — B pl Ty = 2p(C) — (IC] = D)pp(0),

as desired.

The following lemma bounds the probability that the process leaves & set
before it visits some given state= C.

LEMMA 2. ForeveryC C S and every, r € C, one has

Pp(C)
Ap(C) = (IC1 = Dpp(C)

(13) Ps,p(TE< T;) < 2|C|

PrROOF If s =¢, the left-hand side in (13) vanishes, so that the lemma trivially
holds. Hence we assume from now on that ¢, so that|C| > 2, and, therefore,
pp(C) = 1. _

We modify the state spac®and the transition functiop by collapsingC to a
single state, still denoted, which leads ta in one step. Since this change does not
affect the probability thalz < T;, we still denote the modified transition function
by p. This amounts to assuming thatC, 1) = 1, henceEg [7;] = 1. By Aldous
and Fill [(2002), Chapter 2, Corollary 10],

Es,p[T}] + Et,p[Tf] - Es,p[TE]
Ec  [Ti]1+E plTE]

SinceEg ,[T]1 =1, one has, by (12E;,p[T;] < E; p[Tey,] + 1. Equation (12)
also implies thak; ,[Tz] — E; ,[TF] < E,’p[TEU{S}]. Therefore, by Lemma 1(i),
the numerator in (14) is at most

1+ By p[Taus] + Esop[Tzup] < 20C1 = Dpp(C) + 1< 2IClpp(C).

On the other hand, the denominator is equaldeg; ,[T#], hence by Lemma 1(ii)
is atleast ,(C) — (IC| = Dp,(C). O

(14) Ps,p(TE <T;) =

ForC c S, we denote by the transition functiop watched orC [see Aldous
and Fill (2002), Chapter 2, Section 7.1]. Formally,

(15) pc(s.0)=p(s,t)+ Y_ p(s,u)P, ,(Tc =T;)  foreverys,t e C.
ug¢gC
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Since p is irreducible, the transition functiopc is irreducible, and its invariant
measure coincides with the invariant measu p, conditioned orC : u(s|C) =
u(s)/u(C), for everys € C [see Aldous and Fill (2002)].

The next lemma bounds the time it takes the process to reach a given state
t € C € S, when watched og'. Thus, it bounds the expected number of stages the
Markov chain with transition functiop spends inC until it reaches for the first
time.

(IC1=D)pp(C)
LEMMA 3. Fors,te C,onehaskg , [T;] < Tmax.cc P”,Z(ngr).

PrRoOOF.  If s =t the lemma trivially holds, as in this cagg ,.[T;] =0.
Assume then that # ¢, so, in particular,|C| > 2. Lett € S be given. For
convenience set = maxcc E;, ,.[7;], and lets’ € S achieve the maximum. Since

|C| > 2,s" #t. Therefore, by Lemma 1(i),

a=Ey pclli] =< ES’,p[Tﬁu{t}] + Py ,(Tg < TH)a
<(Cl=Dpp(C)+aPy ,(Tz < T)).

Thus, for every € C,

C|—1p,(C Cl—=Dp,(C
Ey ol <a < (IC] = D)p,(C) < (IC1 = Dpp(©) ’
1-Py (T <Ty) — 1—maxec Pup(Te <Ty)

as desired. OJ

We conclude with two results, stated without proof. First, givea S, define

ZseC /’L(S) _
Ssec L($)p(s,C)

The numerator in (16) is the frequency of stages spe@t ivhile the denominator
is the frequency of exits fror@'. Therefore K ,(C) is the average length of a visit
to C. In particular, the following holds:

17 minE; ,[T=] < K,(C) <maxE, ,[T=] =X1,(C).
a7 mir s,plTe] < Kp( )_sec s,plTel=2,(C)

(16) Ky(C) =

Second, straightforward computations show that for e¢ety S,

u(C) > Minsec Es,p[TE]

(18) = = '
mw(C) — max g Es plTc]

2.4. Proof of Theoreni. This section is devoted to the proof of Theorem 1.
It is convenient to deal with sequenceghat areexhaustivg N} > 0 for each
s € §) andperiodic (xy = xg). The general result will follow since an arbitrary
sequence can be extended into an exhaustive and periodic one, by appending at
most|S| elements toc (see details in Section 2.4.3). Observe that for the purpose
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of Theorem 1, all sequences can be assumed to be exhaustive, since states that are
not visited alonge can simply be dropped. Since this assumption cannot be made
to prove the more general theorem of this paper, we prefer not to make it here as
well.

The assumption that the sequence is exhaustive and periodic allows us to make
use of the following lemma whose proof is omitted.

LEMMA 4. Letx = (xp,...,xy) be exhaustive and periodidhe observed
transition functionp” is irreducible and its invariant measure coincides with the

X

N}
observed occupancy measwre(s) = -

Let e € (0,3), 6 € (O, 4|S—::.+1) and ¢ € (0,25) be given. We choosé/g e N

large enough so that (NING~“SHD% - 218176 and (N2) NP ¢ > 4 x

17|8|*/£2. Therefore, we have, in particular, (N&VS + 1)ISINS ™ < e/(215! +
1), (N4) N§ > max{|S|?/e, 2|S| + 2}, (N5) N3° > 8/¢ and (N6)N5® > max(1/e,
108}

We will prove that the conclusion of Theorem 1 holds for evary- Ng and
every exhaustive, periodic sequencé&\Ve first apply Theorem 2 to the sequence
with @ = N*®, to obtain a partitionC = (S1,..., Sx) of S that satisfies the
conclusions of that theorem. Observe thaepends on the length of the sequence.
We now proceed as follows. In Section 2.4.1 we argue that the transition function
p* is mixing, when watched on any atofp of C. In Section 2.4.2 we define the
approximating process, and we check that assertions (B1) and (B2) hold.

2.4.1. Properties ofpg . Following the notation in use in Section 2.3.2, we
denote bypgk the transition functionp®, when watched orsy. Since p* is

irreducible, so ig§, . The goal of this section is to prove tha} is N1~ -mixing
(see Proposition 1 below). To this end, we first relate the mixing constgnts;)
andp,x(Sy) to the features af.

LEMMA 5. Letk be such thatSi| > 1. One has
X

N 2
19 +(Sp) < max—=L2— < S, (Sk).
(19) pp(k)_DCskR)é_l_ap(k)

Note that the quantitykﬁl—xli1 is approximately the average length of a visito
D

along x. Thus, the expected exit time frol C Sx is much smaller than the
expected exit time frons.

PROOF OFLEMMA 5.  Letk be suchthaltSy| > 1, and letD C S; (hereD may
be equal ta5;). By Lemma 4 one has* (D) = N;,/N and}_ . p v*(s)p* (s, D) =
Ng 5/N. By (16), aslonga® C S, K« (D) = Ng/Ng 5+ SO that
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x X

<K (D) < Np .
Rx T RL-1

If D is a strict subset ofy, (17), the second inequality in (20), (P2) and (N4) yield
x - Ng, - 2 Ngk

N
21 MinE, ,<[T5] < K »(D) < —2 z .
@) mpEe Tl = Ky )—R;g—l—akgk—l— RY,

(20)

The left-hand side inequality in (19) follows by taking the maximum aver S;.
If Sk =S, Apx(Sk) = +o0, and the right-hand side inequality in (19) trivially
holds. Otherwise, when applied 8, the first inequality in (20) and (17) yield

NS
(22) ka < Kpx(Sk) = Ap(Sk),

and the right-hand side inequality in (19) follows from (21) and (22).

PROPOSITIONL. If |S;| > 2, the transition functiorpy, is N1=3_mixing

PROOF  We will prove thatE, x [T] < N1=3 _ 1, for eachs,t € S. Let
s, t € S, be given. By Lemma 3,

1< ISkl = Dpp>(Sk)
T 1-maxes, Pupr(Tg, <Tp)

E py [Th

By Lemma 2, the denominator is at least-12| S| 50 p(’l’;f‘s")l)p oo = 2
p’

where the inequality holds by Lemma 5 and (N6). Therefore
(23) Es,pgk [T:] < 2|Sklppx (Sk)-
By Lemma 5, (P2) and (N4),

[EEN

NX N Nl—SzS -1
24 Sp) < max D <
(24) PO S e e 1 NB 1~ 25

The result follows by combining (23) and (24)J

2.4.2. The approximating processWe now construct a Markov chainthat
approximates the sequeneeldeally the chain is composed a®| pieces, with
the length of piece being Ng . However, to avoid degenerate cases, we take
into account only the atoms;, that are frequently visited, that is, those with

Nt > Nl 6

N

SetKo = {k:Ng, > N1}, and assume for convenience th&j contains the
first |Kg| atoms inC, so thatKg={1, ..., |Kp|}. Assume, moreover, that the set

S|kl Is the most frequently visited set, so that, in particunégf‘ko‘ > N/|S].
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The chainz is a piecewise homogeneous Markov chain wWiiy| pieces. The
“extra” stages that are created by the removal of rarely visited atotsie added
to piece|Ko|. Since piecéKyp| is the most frequently visited piece, this will hardly
affect the estimates for that piece.

Formally, we denote by, the length of piec&. Thus,m; = Ng‘ if kK <|Kol,

andmy = N — 3, g, m;j if k=|Kol. In particular, 1< & <1+ ‘5| . For
S
k=1,..., Ko, we let p; be a transition function such that ¢

pr(s, 1) = pg, (s, 1), s € S, t € Sk,
pk(S7Sk)=1a S¢Sk

The exact definition opy (s, -) for s ¢ S is irrelevant. Thusp, moves in one step
to Sk and coincides witlpg, there.

We letz be a Markov chain with initial state i1, and transitiong?Z (s, 1) =
prs, ) if =1+3, ym;<n<-1+3%,_,m;. (This does notdefing},_;. The
choice ofpjz\,_1 is irrelevant. On the other hand, it definpsl, which is never
used.) Note thar is a piecewise homogeneous Markov chain wiky| < ||
pieces.

Plainly, the chairz visits each sef, k < Ko, only once, for exactlyn; stages:
from stage}"; _;m; to staged";;, m; — 1 (inclusive).

We now prove that both assertions in Theorem 1 hold.

We start with assertion (B1). Léte K ands € Sy be given. We discuss three
cases.

If N3 < N9, thenv®(s) = NJ /N < 1/N°, and (B1) trivially holds.

Assume now thav¢ > N17% and thatS, = {s} is a singleton. By construction,
the chainz will be in states all through piecek, and only in those stages. In
particular, by (N4),

z _ATX 2
O =N S|
e M 7y 7

N

9’

and (B1) holds.
Assume finally thatvg > N1=% and|Si| > 2. By (N5) and Proposition 1, the

assumptions of Theorem 3 hold w.it= p% , y = N™¥, n = m > N17% and
g/2. For everyt € Sy, one has, by (N5), Remark 3 and (N2),

VZ (s
Pt,pk( mk() —1‘28)

V(5180
(25) <P (Laﬁ)‘4>f D)
=P |10 2 mka(Slsk)

17N1-38 17N1- 35 1 1
<AX ——— <4AX —5—— .
mye? g2N1-8 — |S| N
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Since the chaiz does not visits € Sy, except in piecé, (B1) follows from (25).

We now turn to assertion (B2). Sineenever visits states iQ);¢x, Sk, we need
to verify that (B2) holds for states € U<, Sk- Observe that for every € Ko
and every € Si, one has

X
RX
s, Sk < Sk

IpicCs. ) = p* (.l = 30 pi(s.u) = —F Nr S

ué¢ Sk
If Sx = {s}is a singleton, then by Theorem 2(P1) and (N3), the right-hand side is
bounded b}fw <. If |S¢| = 2, then sincéVy > Ry, by Theorem 2(P2) and
(N6), the right-hand side is bounded Ieki& < NMRX

Since for every stage in piecek, except the Iast ongy: = py andz, € S,
P,-a.s., one has for suatis,

<E€.

Ip2(zn, ") — P* @Zn, ) = Pk (Zn, ) — p*(Z4, )| <&  almost surely.

2.4.3. The case of arbitrary sequenceur goal now is to prove Theorem 1
for any sequence of observations. We add a few stages to the sequeficitious
observations — in order to obtain a periodic and exhaustive sequé&n@éée then
apply the above analysis to the augmented sequehc®ince only few fictitious
observations are needed to changato a periodic and exhaustive sequence, the
desired result will follow.

We lete € (0,1/2), § € (O, 2(4\S|+1)) and¢ € (0, 25) be given. Set’ = 25 €
(O, 4\S|+1) ande’ = ¢ — 2¢2.

ChooseNg € N such that (N1) and (N2) hold fa¥g w.r.t. §’, ¢’ and¢ (rather
than w.r.t.§, e and¢). We will argue that the conclusion of Theorem 1 holds for
everyN > No.

Letx = (xo, ..., xy) be an arbitrary sequencedhand letS* = fl\':o{x,,} cSs
be the set of states visited by Consider the sequenc€ = (xg, x1, ..., XN,
x3,..., x5, x0), Wherer = [S| — |S*| is the number of states not visited by
and S \ §* = {x],...,x;}. By construction, this new sequence is periodic and
exhaustive. The lengtN, + 1 of this sequence i¥y +r +2 < N + |S| + 2.

By constructionV, satisfies (N1) and (N2) with’ ande’. Therefore, there is a
piecewise Markov chaite, ), <y, such that (B1) and (B2) hold w.rx,, v*", ¢, 8’
and¢. Observe that each staat? € S\ §* constitutes a singleton in the partitién

associated with*, and thatN"* =1, so that it is never visited b

One can verify that the’ restriction of to the first N stages satisfies
(B1) and (B2) w.r.t.N, v, g, § and¢. The computations are tedious and of no
specific interest, and are therefore omitted.
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3. Thegeneral problem.

3.1. Presentation and discussionWe here address the more general problem
of devising an approximating simple process, given structural constraints on the
process. In other words, we wish to construct a simple process within a given
class of processes. The kind of structural constraints we allow for is described
as follows. For eachy € S, we let a nonempty polyhedroi (s) € £(S) be
given. Recall that golyhedronis the convex hull of finitely many points. Let
V = (V(s))ses denote the product polyhedron, and for everg S denote by
V*(s) the set of extreme points & (s).

DEFINITION 4. A V-processs an S-valued procesg = (z,),, such that for
everyn > 0 the conditional distribution of,, givenz, ..., z,_1, IS in V(z,-1),
P;-a.s.

In a sense, one-step transitions are required to satisfy exogeneously given
constraints described by the polyhedé&), s € S.

We will weaken the simplicity requirement and introduce the notion of
piecewise homogeneous hidden Markov chain

DEFINITION 5. A processz = (z,) over S is a (piecewise homogeneous)
hidden Markov chain if there are a finite s€tand a (piecewise homogeneous)
Markov chainw = (w,,) overS x S’ such that is the projection ofv overS.

Thus, a hidden Markov chain is the projection of a Markov chain with values in
a product space. Correspondingly, a piecewise homogeneous hidden Markov chain
is the projection of a piecewise homogeneous Markov chain.

We are now in position to describe the problem considered in this section. Given
a sequence = (xq,...,xy) in S with finite length N + 1, does there exist a
stochastic process that (i) is both aV-process and a piecewise homogeneous
hidden Markov chain, and (ii) approximatesin the sense that both assertions
(B1) and (B2) in Theorem 1 hold?

Without further qualifications, the answer is negative. Indeed, if glirocesses
are transient, assertion (B1) cannot hold. On the other hand, if the sequénce
nottypical, in the sense that the observed transition functids far fromV [i.e.,
p*(s,-) is far from V(s) in the Euclidean norm for somee S], assertion (B2)
cannot hold. The following two examples illustrate these points. In both examples
V(s) is a singleton for each € S, hence there is a uniqué-process which is a
Markov chain.

EXAMPLE (A nonirreducible Markov chain). Lef = {a, b, ¢}. DefineV so
that both states andc are absorbing, while stateleads with equal probability to
statesb andc. Starting from stater, one of the two sequencés, b, b, b, ..., b)



2758 D. ROSENBERG, E. SOLAN AND N. VIEILLE

and (a,c,c,c,...,c) results. But if the given sequence is, for examplex
(a,b,b,b,...,b), the uniqueV-process does not satisfy (B1) when starting from
statea.

We shall therefore restrict our study to séfs such that there exists an
irreducible homogeneous-Markov chain.

EXAMPLE (A nontypical sequence). Lef = {a, b} and defineV so that
both states lead with equal probability toand b. If the given sequence is
x=(a,a,...,a)the uniqueV-process does not satisfy (B2).

We shall therefore limit ourselves to sequences that are typical W,rib the
following sense:

DEFINITION 6. LetN € Nand$, ¢ > 0 be given. Asequenoe= (xg, ..., xyN)
is (N, 8, ¢)-typical if there existsv = (v(s, -)); € V such thafl — p”}f;’t))l < ¢ for
everys, t € S such that eitheNZ* p*(s, 1) > N° or NXv(s, t) > N°.

In Definition 6, N; is the observed number of stages spent mlongx, and
p* is the observed transition function; see Section 2.1.

In words, a sequence is typical if there is a transition function such that
(i) v(s) € V(s) for everys: v is an admissible transition, and (i)s, #) is close
to p*(s,t) whenever the transition from to ¢ occurs frequently, either along
or underv. The latter statement is not completely accurate, as we do not use the
invariant distribution ofv, but rather the observed occupancy measure.

The set of(N, §, ¢)-typical sequences is denoted By N, 3, ¢). Note that the
notion of a typical sequence is relative to the faniilyof polyhedra.

Our first theorem states thatWf contains an irreducible transition function, and
if x is typical w.r.t.V, then one can approximaten a proper sense by a piecewise
homogeneous hidden Markov chain.

THEOREM 4. Assume thaV contains an irreducible transition functioh,
and setB = max ;es E; »[T:]. Let ¥, n € (0,1) be given There exist, e > 0
and N1 € N such that the following hold$or everyN > N1 and every sequence
x € T(N,$,¢), there exists & -piecewise homogeneous hidden Markov clzin
with at most S| piecessuch that the following hold
(G1) Py(| ”v’zﬁ((j)) — 1] = n) < 5 for eachs € § such that* (s) > <.

(G2) LetNo = |{n < N:[Ip}(Zs, ) = P* (@, )lloc > 1}|. ThenE,[No] < NV B.

Our second theorem states that iis generated by & -process, then with high
probability it is typical.
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THEOREMb5. Leté, e > 0and& € (0,8/4) be givenThere existdV, € N such
that, for everyN > N> and everyV-process, one has

PAT(N,5,6) 21—
These two theorems can be combined as follows. Let us postulate that we get to
observesomerealization ofsomeV -process. Then, with high probability, we will
be able to find a simpl& -process that typically yields the observed realization.
This section is organized as follows. In Section 3.2 we prove Theorem 5, and
we then turn to the proof of Theorem 4 in Section 3.3.

3.2. Typical sequencegproof of Theoren®. We here prove Theorem 5. The
proof uses the following large deviation estimate for Bernoulli variables. Let
(Xn)nen be an infinite sequence of i.i.d. Bernoulli r.v.s with paramegigmland
set X, = >.i 1Xi/n, for eachn € N. By Alon, Spencer and Erdds [(2000),
Corollary A.14],

P(|)_(,, — pl>ep) <2exp—cepn),

wherec, = min{e2, —¢ + (1 + &) In(1+ ¢)} is independent of and p. Hence, for
k€N,

2 exp—cek)

(26) P( sup|X, — pl > SP) <2 Z exp(—cepn) < m

przk n=Ik/p1
Observe that for every sufficiently smallg?/3 < ¢, < £2/2.
Lets,s € (0,1) and& € (0,5/4) be given. Choosé’ € (£,5/4) and sets’ =
. Let N2 € N be large enough so that the following inequalities

e
(I+e) maxes [V*(s)|+¢

. e N%/4 , "
are satisfied for eactv > N»: (T1) % < 1/N&, (T2) N¥ % >

3112 ses [V* ()1, and (T3N/2 > =€,

Let N > No, and letz = (z,),, be aV-process. We start by introducing a
convenient decomposition fa. Recall that fors € S, V*(s) is the finite set of
the extreme points o¥ (s). For eachn > 0, the conditional distribution aof, 1,
givenzy, ..., z,, belongs toV (z,), hence can be written as a convex combination
> vev*(z,) Pn(vV)v, where the weightb, (v) are random. We then divide the choice
of z,,1 into two steps. In the first step a powt € V*(z,) is drawn according to
the weightsb,,. Next z,1 is drawn according t@,. In other words, we simply
view the givenV -process as a process- ((z,, V,))n, Wherev,, € V*(z,) and the
conditional law ofz,,, 1, given past values, ¥,, for eachn > 0.

Following the notation used in Section 2, we Iﬁf’l}’, = |{n < N, (Z,,Vy,
Z,+1) = (s, v, 1)}| denote the number of one-step transitions frormo ¢ which
occurred through the extreme pointWe also use a number of derived notions.
ForinstanceN? ., =", cy«) NZ , ; is the number of one-step transitions fram
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tos,NZ . =>",csNZ , ; is the number of visits te that are followed by the choice

s,v,t
of the extreme point, NZ = 3, cy+(5).res NZ ,, is the number of visits te, and
p%((s,v), 1) =Nz, ,/NZ , is the proportion of transitions tQ out of (s, v). It is
defined only wherN? , . > 0. Note that the empirical transition function is given

by

NI Yieve Ni,. PP((s,0),0)
Nz - N? .

N

Finally, we seu?(s, -) = W It is the average point df (s) used ak.

SinceV (s) is convex,u®(s, -) € V(Ss) for eachs € S. We will show that with high
P,-probability, u? is close top? in the sense of Definition 6.

We now move to the core of the argument. The following lemma asserts that if
the transition(s, v) — ¢ occurs frequently, then with high probability, the observed
probability p*((s, v), ) of moving from(s, v) to ¢ is close to the true one(r).

p*(s, 1) =

LEMMA 6. Lets,re Sandv e V*(s) be givenThen

PA((s,v). 1) 1‘ S g,)

PZ<N§ ,.max{v(r), p((s, v), 1)} = N¥? = o
o v

(27) 3

>1——.
—_ NE/

PROOF  Note first thatNZ , v(r) < N*/4if v(r) < N%/4~1. Assume now that

v(t) > N¥/4~1 Let(X,),<n be a sequence of i.i.d. Bernoulli r.v.'s with parameter
v(r). By (26) and (T1),

(28)  P,(NZ, v(t) = N**and|p?((s, v), 1) — v(1)| > e'v(1))

<
i NE/ .
Moreover, one has

(29)  Pz(NZ, v(t) < N**andNZ  p*((s,v), 1) > N*/?) <2/N%/%.

Indeed, let(X;) be a sequence of i.i.d. Bernoulli r.v.s with paramete), and set
n = |N%4/v(t)|. By Markov’s inequality, the left-hand side in (29) is at most

PZ< max {X1+---+ Xz} > N‘S/z) <Py(X1+ -+ X, > N/?)
k:kv(r)<N3/4

<nv(t)/N%? <2/N%/4.

To conclude, equation (27) follows from (28), (29) and the choic¥ of
Let 7* be the set of all realizations = (xo, vg, x1, v1, ..., xy) for which
the implication in (27) holds, for every,r € S and everyv € V*(s). By

Lemma 6 and (T2)P,(7*) > 1 — W >1-— % To conclude the
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proof of Theorem 5, it therefore suffices to show that every sequenge iis
(N, §, e)-typical.
Let y be a sequence ifi *. Following earlier use, we denote by, the value
of NZ aty, and we use a similar convention for other random variables. We shall
verify thaty € 7 (N, §, ¢).
Lets, r € S be suchthady pY (s, r) > N°. We will prove thail— p¥ (s, 1) /u” (s,
1)| < e. The argument is also valid i¥;'u” (s, ) > N°. It is enough to prove that

8/

1-¢
Indeed, by summing (30) over alle V*(s), it follows that

(30) Nsy’v’,|py((s, v),1) — (s, )| <

NYpY(s, 1) for everyv € V*(s).

y /

, , Niv.o &
1pY(s, ) —u (s, < Y N) P (s, 0, 1) v = T—
veV*(s) s -

p (s, DIV (),

which implies, by the choice af,, that| p” (s, 1) —u” (s, )| < su” (s, 1), as desired.

We letv € V*(s) be given and proceed to the proof of (30)Mf .. max{ p” ((s,
v),1),v(1)} = N%2, then, since the implication in (27) holds for, one has
lv(t) — p¥((s,v), t)| < &v(t). Multiplying both sides by, ., we get

Ny, PP (s 0), 1) —v(@®)| <€'NJ, w(@)
/ /

&
]__gley,v,-py((S, U),l) < T

where the last inequality holds sine& p”(s,1) = ¥ ,cy+(s) Niw,-pY((s, ), 1),
and (30) holds. If, on the other hantiy . max{p? ((s, v), 1), v(t)} < N%2, then,
sinceN; p¥(s,1) > N°,

Ny, PP (s, v),0) —v(@0)] < N2 < NYp¥ (s, 1)/N*/2,
and (30) holds by (T3). O

=<

Ny p’ (s, 1),

3.3. Proof of Theoremt. We first provide a heuristic overview of the proof.
It will be helpful to contrast it with the proof given in Section 2. In the basic
setup, the given sequenocg or equivalently, the given arrayNy ), cs of
one-step transitions, was first extended to a periodic and exhaustive sequence.
Next, the structure theorem was used to find a certain partition into atoms. The
approximating process simply visited each atom in turn for a number of stages
equal to the observed one. The transition function of the process was such that
each atom was a recurrent set. It was obtained by watching the observed transition
function on the different atoms. Moving from one atom to another was done in a
single step. These last features allowed for a simple analysis.

At a broad level, the analysis of the general problem is similar. We again start
by extending the given sequengeto a periodic and exhaustive sequence
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and by applying the structure theorem to obtain a partifipn .., S; of S (see
Section 3.3.2). As in Section 2, the approximating process will focus on each atom
in turn.

However, here we are constrained to Ws@rocesses, hence, the former choice
of a transition function may not be feasiblastead, we introduce the transition
function v € V that is closest top*” (we omit details in this sketch). The
approximating process will essentially evolve according.tdo be more precise,
consider a specific phage SincesS; need not be recurrent fer, the process may
occasionally exit fromS;. We will then let it evolve according tb, so as to re-
entersSy, in a few stages (recall thate V is a fixed irreducible transition function).

In a first approximation, the behavior of the approximating process during phase
can thus be described by the transition function that coincideswith S;, and
with » on Sg.

It turns out that it is convenient to amend this definition as follows. Once
the process exits frons, a (fictitious) entry state in S; is drawn, according
to the distribution of the entry state under a specific Markov chain (again, we
omit details). The process will evolve according#auntil ¢ is reached. It then
switches back ta. Note that this no longer describes a Markov chain, since the
transition function ors; may be eitheb or v, depending upon the circumstances.
This feature is best dealt with by adding a component in the state space, which
keeps track of the current status of the process. This component takes values in
S’ = S U {0}, whereo is an additional symbol. Theth piece of the approximating
process is defined as th&marginal of a Markov chain ove§ x §’, whose
transition functions; is defined as follows. Whenever tt#-component is set
to o, theS-component evolves accordingioAs long as the-component remains
in Sy, the§’-component remains equaléWhen theS-component exitsy, then
an element of S; is selected with a given probability, and t§ecomponent of
the Markov chain is set ta Thist is the target of th&-component, which evolves
according tab as long as is not reached. Onceis reached, th&’-component is
set too. For the purpose of the transition from phase 1 to phase, the exact
definition of the transition function will be slightly different.

The new aspects raise additional difficulties.

First, note that the sé\p that appears in the statement (G2) roughly coincides
with the set of stages in which the process moves accordihgltoorder to prove
that the cardinality of this set is small comparedNo one needs to prove that
the expected time to reacth underb is small compared to the expected time to
leave S; underv. The expected time to leav® underpx* can be derived from
the sequence*. We will thus have to compare the expected exit times fi&m
computed undep and p*". To do that, we will use a result on the comparison of
exit times from a given set under close Markov chains.

Second, in order to prove (G1), we need to compare the empirical frequency
for which theS-component is € S; with the frequency of alongx. To this end,
we prove, as in Section 2, that the transition function that is defined duy Sy
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and byb on S; is mixing. We then use a result relative to close Markov chains in
order to compare the invariant distribution of the latter transition function to the
invariant distribution ofp*".

We now describe the organization of the proof. We define the approximating
processz in Sections 3.3.2 and 3.3.3. We then state in Section 3.3.4 two
propositions that readily imply Theorem 4hdse two propositions are statements
about the transition functiom,. The subsequent sections are devoted to the proofs
of these propositions. Sections 3.3.5 a@8.6 contain the statement and the
application to our framework of results on perturbed Markov chains. These results
are used in the last three sections, which conclude the proof.

3.3.1. Fixing parameters. Let ¥, n € (0, 1) be given. We here list a number
of conditions ore, § and N1 under which the conclusion of Theorem 4 holds. We
stress that we do not strive for optimal conditions.

Fix0<e <n/56L < n, with L = leSzll (lg‘)nls‘.

Choosep € (0, 3(H)!S! x BSL(le_f;H), where A = 1/2. Seta = Wlle and

o = “/Zz‘gl‘s'. Note thatg < 1/20|S|2L?, so thate’ > 2. Choosey’ € (0, ¥),
£ (0,9 /(S| + 1), 8 € (0,£/2). Finally, choose e (0, min{s’, (1 — v)/2}).
Seta = N¢.

ChooseN; € N sufficiently large such that (C1)—(C8) and (Al)-(A7) hold,
for every N > Ni: (C1) N*' > N° + 1, (C2) N® > 53, (C3) 2+ BLIS|(N +

ISDY" x (1 + |S12/N®) < NV/|S|, (C4) N¥~% > 1/n, (C5) N1=3-¥" > 8BL|S],
(C6) N1-2=V > 42(B + 1)|S|/e?, (C7) eN1T—3 > 2(N + |S]), (C8) N >
ISI2(L + 55¢L)/e, (Al) B(N® — 1) = (N + [SD?, (A2) N¥ — 1> 50,

/ -5
(A3) LIN® + 18T < NI, (A8) 325 (g + B+ D) < A, (AS) B(L+

3e) WAL < Lo <&, (AB) NV/IS| = 1+ 2(1+ 3e) NP (N¢ + 1)IS, (A7) N¢ >
18]S].
We will prove that the conclusion of Theorem 4 holds for evary- N1 and

every typicalS-valued sequenceof lengthN + 1.

3.3.2. The periodicized sequencelet x be a(N, §, ¢)-typical sequence. Let
x* = (xg,...,xy,) be the periodic and exhaustive sequence that is obtained by
extendingry as we did in Section 2.4.3.

Sincex is typical, we can choose once and for all, for every S, an element
v(s, -) € V(s) such that, for every € S,

v(s, 1)
<e.
p*(s,1)

(31) NXYmax{(p*(s,1),v(s,0)} = N° = ‘1—
As the next lemma asserts, sinces typical, so isc*.

LEMMA 7. x*is (N, &', 3¢)-typical
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PrROOF By (C1),

N maxp® (s,1),v(s,0)} = N = NEmax{p*(s,1),v(s, 1)} > N°.
In that case, by (C2)|1 — x’l <% and|l -

s,

Ny
NZ*

| < §. This implies that

P, NG INE :
1- T =11- N.;%,/N;‘ | < e. Together with (31), we deduce that
* * ’ ,t
(32) N maxp* (s,0),v(s,1)} =N — ’1-& < 3e.
p* (s,1)

Thus, the extended sequenceis (N,, §’, 3¢)-typical. [

The following lemma asserts that for every statéhat is frequently visited,
the observed transition out of p*(s,-) and the transitions out of under the
V-Markov chainv, are close.

LEMMA 8. Lets e S be givenlf N* > N¢, then|v(s, ) — p*(s, )lloo < 7.

PROOF Let r € § be given. If maxv(s,1), p*(s,t)} < n, then clearly
lu(s, ) — p* (s, 1)| < . Otherwise, by (C4N} max{v(s, t), p*(s, )} > nN& > N°.
Therefore, by (31) and the choice of |v(s,t) — p*(s,t)| < ep*(s,1) < 1.

O

3.3.3. The approximating processWe here construct the approximating
hidden Markov chairz. Its properties will be established in later sections.

We apply Theorem 2 to the sequenceanda = N¢, and obtain a partition
C=(5,5...,8¢) of S. Let Ko = {k:Ng‘: > N1-%} be the frequently visited
atoms. For convenience, we assume tkigtconsists of the firstKg| atoms of
the partitionC, so thatKg = {1, ..., |Kol}. We assume also thd{x, is the most
frequently visited atom, so that, in particuINg‘;O > N/|S|.

Fork € Kq, we define a transition functior, overQ = § x (SU{o}) as follows:

1. At state(s, o), s € Sx. A states’ € S is first drawn according ta(s, -). If
s" € S, the chain moves t@s’, o); if s” ¢ Sk, a state € S is drawn according
to Ps/,px* (Ts, = T;) and the chain moves @', 7).

2. Atstate(s, 1), s # r andz € ;. A states’ € S is first drawn according to(s, -).
If s’ =1t, the chain moves t&s’, o). Otherwise, the chain moves (g, 7).

3. At state (s, 1), s ¢ Sy and r € S; U {o}. A pair (s',') € Q is drawn with
probability b(s, s”) x Py (Ts, = Tpr). If s" =¢, the chain moves t@s’, o).
Otherwise, the chain moves ¢, t').

Other states are visited with probability 0. Note that thenarginal of
i ((s, 1), -) is eitherv(s, -) or b(s, -) and, in particular, belongs 16 (s).



APPROXIMATING A SEQUENCE 2765

Plainly, a chain with transition function; always moves in a single step to a
state in(S x Si) U (Sx x {o}). In particular, the third item in the definition af may
possibly be relevant only at the initial stage. Note that§heoordinate behaves
underr; as described in the overview. Starting fréinx {o}, it moves according
to v, unless it exitsS;. In that case, a target state$p is drawn according to the
distribution of the entry state computed wigh". Then theS-coordinate moves
according tob until it reaches the target state. At this point, the target flag is
removed, and th§-coordinate resumes moving accordingito

The approximating hidden Markov chain h&%| pieces. The length of piede
is Ni', except that of piecéKol: its length isN — >4k, N3, , which is
betweenNg‘;m anng‘;o‘ +|SIN1%. In piecek the process follows the transition

functionm,. We denote byn; the length of piecé.

Formally, we letw be a piecewise homogeneous Markov chain dvevhose
transition function coincides withr, at stagesy_; <mj=n < > j<kmj. We
definez to be the first component af, so that it |s a piecewise hldden Markov
chain. Thus, for every stagein piecek, the conditional law ofv,, ;1 is i (W,,, -).
The initial state ofw is irrelevant. We will prove that the processatisfies both
(G1) and (G2).

For the convenience of the proof, the definition of the boundaries okttie
piece slightly differs from the one in Section 2.4.2.

3.3.4. Two propositions. We here state two propositions relativerg without
proof. We next show why Theorem 4 follows from these propositions. As a
consequence, the proof of Theorem 4 reduces to statements about Markov chains.
In Proposition 2 belowy,,, (s, o) is the empirical frequency of visits to the state

(s, o) in stages O through;, — 1. Recall thav™" (s|Sg) = v (s)/v*" (Sk).

PROPOSITION2. Letk € Kg be givenFor everyw € 2 and every € S,
U, (8, 0) ) 1
P 1- ——|>55%L
@k (‘ V¥ (5|Sk) = 2N¥

In effect, Proposition 2 contains two statements. By summation soge§y, it
implies that, with high probability, the empirical frequency $if x {o} is close
to one. It also says that the empirical frequencysob) is close to the observed
frequency ofs along the sequence’, when conditioned o8;.

In Proposition 3 be|OV\NS <op = Hn <my s.towy, & (S x {o})}] is the number
of stages in which thé- coordlnate of the state evolves according tather than

according tov. Recall thatB = max ;es E; »[7;] is @ bound on the expected time
underb to reach any given state.

PROPOSITION3. Letk € Ko andw € Q be givenOne has

1
Ew’”k[NSkx{o ] = | | NI/I
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In effect, Proposition 3 asserts that theatemmumber of stages the process spends
outsideS; x {o} is small. As a consequence, the empirical frequenc§,ct {o}
is close to one. This statement, however, differs from Proposition 2, since here the
result is phrased in expected terms.

We now show why the conclusions of Theorem 4 follow from Propositions
2 and 3.

We begin with (G2) and Ietnk_l <n < my. For everys € S, one has, by
Theorem 2(P2)N7 > Rf} > N¢. Hence, by Lemma 8p(s, ) — p*(s, )| <.
By definition of 7z, the S-marginal of p)Y(w,, -) is equal tov(z,, -) whenever
W, € Sx x{o}. In particular,w, € S; x{o} impliesn ¢ Ng. Denote byNgp the
number of visits to states outside x{o} during thekth piece. By construction,
Ez[Nok] < suR,eq Ew,m [Ng ], SO that by Proposition 3,

(33) Ez[Nol < ) E,[Noxl < BNV,
keKg

and (G2) follows.
We next check that (G1) holds. Fix € S, such thatv*(s) > 1/N°. By
constructions € Sy for somek € Ko. We introduce the frequency); (s, o) =

%Hmk <n < mpy1:W, = (s, 0)}| of visits to (s, o) in piecek. Note that the
difference N5 (s) — mkvmk (s, 0) is the sum of two terms: (i) the total number
of visits tos in phases other thaiy and (ii) the total number of visits tp} x §
during phasé. As a consequenca/v (s) — ka);’n"k (s,0) < > kek, Nok- By (33),

Markov's inequality and (C6), one has

. N BNOtV-1 1
(34) PW(NUIZV(S) — mkvn";’k (s,0) > eN—) < . < ek

s
Note that the conditional distribution dﬁ’k (s,0), givenwy, ..., Wy, , coincides
with the distribution ofv,,, (s, o) under a Markov chain starting fronv,,, and
with transitionsr;. Hence, by Proposition 2,

D, (5,0) 1
35 P 1—L‘ 55£L><—.
(39) W(‘ v (sIS0 | = 2N
By (34) and (35) the probability that both inequalitiHs»jzv(s) — m W
eN1% and|1— m 5>

mi (8,0) =

| <55%L hold is at least I 5. On this event, by (C8),

**( 518%)
VZ (s) =" (5)]

Mg .\ x*
_ —vmk(s, o)+ Wo(s, o)|mk NSk |

< v} (s) N

N n’lk

x*

Ny X o1
+T|v (s,0) —v" (5] k)|
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x*

1 . .
<eN7d 4+ N|S|2N_8Nx W (5, 0) + % x 55 Lv*" (5]Sk)

Sk Vmy

N + 1S

SE&——
N

<56sLv* (s).

* Nx* * *
P (s)+%|S|ZN—5(1+55eL)uX (s1Sk) + 55 Lv*" (s)

By the choice ok, this proves (G1).

3.3.5. Perturbation of Markov chaingeminder. We here introduce a result
on perturbations oMarkov chains due to Solan andeille (2003). This result
provides an estimate of the sensitivity of the stationary distribution and other
statistical quantities with respect to perturbations of the transition function. This
result will be applied to our setup in the next section.

GivenC C S with |C| > 2, and an irreducible transition functiqﬁ oversS with
invariant measurﬁl, set

C : 1 1 n
= min E , D).
Cpl @CDCCSGDM ()p~(s )

This is a variation of the conductance of a Markov chain that was originally defined
by Jerrum and Sinclair (1989) and was used in the study of the rate of convergence
to the invariant measure [see, e.g., Lovasz and Kannan (1999) and Lovasz and
Simonovits (1990)].

The notion of closeness we use is the following one:

DEFINITION 7. Let p! be an irreducible transition function ofi with
invariant measurg:l, let C € § with |C| > 2, and letB, e > 0. A transition
function p2 is (B, €)-close topt on C if (i) p2(s, ) = p(s, -) for everys ¢ C, and

2
(i) |1 — 28D < ¢ for everys, ¢ € C such thatul(s) max pi(s, 1), p2(s, 1)} >

ps,n
L.

This definition is not symmetric since it involves the invariant distributiopbf
and not that ofp?. It requires that the relative probabilities of moving frento
underp! and undep? are close, but only for those one-step transitiors ¢ that,
on average, occur relatively frequently.

The next result summarizes Theoretand 6 in Solan ah Vieille (2003). It
asserts that ifp! and p? are two transition functions that are close in the sense
of Definition 7, then their invariant measures are close, as well as other statistical
guantities of interest, such as the average length of a visit to a set and the exit time
from a given set. Recall that = "7 (151)n151 and thatT is the first hitting
time of the seC. The quantityk ,(C) has been introduced in Section 2.3.2.
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PROPOSITION4. Lete € (0,1/2/5), A > 0,andg € (0, 3(4)!5! x z(i—rsﬁ‘)‘) be
given Let p! be an irreducible transition function defined ov@mith invariant
measure:!. Assume thaftC| > 2 and thatPS,pl(T,+ <Tg) = Aforeverys,t e C.

Let p? be (B, ¢)-close top! on C. Then

(a) All states ofC belong to the same recurrent set fp?. Let 42 be the
invariant measure op? on that recurrent set
(b) Foreverys € C and everyD C C, one has

2
‘1_ Ml(Slc) <181,
u(s|C)

E T K. 2(D
(37) L 1< | <L and L 1l< p2(D) <
Es,pl[Tl_)] Kpl(D)

(36)

(c) Lety € (O, ﬁg“pcl] be any number such thdor everys, ¢ € C,

p2(s, 1)
38)  wrsymaxpl(s,n), pPs, D} = x = ‘1— | <e.
p(s,1)
Then either
(39) L™K 1(C) < K ,2(C) < LK ,1(C), or
(40) K 1(C)>— x WO g =1yt pHO)
PRI = 28 P28 T

3.3.6. Perturbation of Markov chainsapplication. We here introduce the
auxiliary transition functiory; on S defined by

v on S,
= { p~  onS.
In Lemmas 9 and 10 below, we first check that the conditions of Proposition 4
are fulfilled by ¢, and p*”, as soon asS; is not a singleton. Next, relying on
Proposition 4, we provide estimates of the mixing measuesS;) and p,, (Si)
(see Proposition 5 below). These estimates will later be used to relate the properties
of g, to those of the transition function, over.

LEMMA 9. If |Sx| > 2,the transition functiomy is (8, 3¢)-close top*” on Sj.
_ . ' s N
ProOOF By Definition 7 and (32), it suffices to prove thﬂtpﬁ* > §-- For
eachC c S, one has by (P2) and singe= N¢,

*

RE —liyec _ N¥ -1
N* - N* '

(41) S v ($)p* (5,C) =

seC
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By taking the minimum ove€ c S, this yleldsgs" > NN‘l The result follows
by (A1). O

Recall that we sett =1/2.

LEMMA 10. If |S;]| > 2,0ne hasPS’p,(*(T,Jr <T5)=A for everys, ¢ € Sy.

PROOF  Suppose first that+ ¢, so thalIDWX*(T,Jr <T5) =P, (T <Ts).
By Lemma 2,

Py (S1)
Aoy (S0 = (1St = Dp e (S0

P, o (Ty < Tg) = 1 2/8]

By Lemma 5,0, (Sk) < -2 A .+ (St), SO that by (A7),

2/N¢ .3
42 P (T <Tg)=1-2]S ->A.
( ) S, p ( l‘< Sk)_ | k|1—2(|Sk| 1)/N$ 4
R*
Suppose now that=s. Since|Sy| > 2, p* (s, Sp) < o < % NE, so that by

Y

(42) and (A7),

P (T >Tg)=p" .S+ Y p* (5.0P, e (Ty > Tg)
reSk\{s}

1

< — <Z=1-A.
=Net3=2 O

| =
H

By Lemmas 9 and 10, we can apply Proposition 40 andg; with A =1/2.
Recall thaiw = 1/(28 S| L?).

PROPOSITION 5. Assume that|Si| > 2. Then A, (S;) > apg, (Sx) and

>k
Sk
Ag(Sk) = ZL\SI

PrROOFE We first provide a lower bound ok, (Sk). By (16), one has

43) p (k) 1 N, . N,
VIS0 Eees v 0p 650 Ny T RY

We now prove the first assertion. FGrc S, by (43) and (P2),
N * x* S

Ko (Si) 2 ———— 2 NS 2" () = (NF = 1) - ( k)* _

Rs, ke 2sec VT (9)pT (s, C)

Nov® (Sk)
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where the last inequality follows smg@— N =1 By optimizing overC and
using (A2), this yields
1o v (s
44 oot (S
(44) (k)_2ﬂ|S|X oy

Using (39) and (40) withy = ﬁ; ey (44) yields

11 v (Sk)
X
" 28]8] Sk
p~

(45) )\qk (Sk) = qu (Sk)

Fix C C Sk. By (45) and (37),

(S0 > — v (©) _ Y k.
ha ) 2 IS T e )p . C)  2BISIL

1 1
> St X K, (C) > —s x
=1 % 2gsiL KO =2 X 3575

The first assertion follows by taking the maximum oger
We now prove the second assertion. By (32) and s&‘neew (38) holds with

, then by (40),

X m|n Es.q[TE]
seC

-1
Jf’ . We distinguish two cases. K e (k) = 2\S| N XX

e K sne L L M 1 1 N
— X — =— X — X —%,
wi = R = oS S Nexx L 28] Y

X*

as desired. If, on the other haﬂd «(Sp) < 250 NNXX then by (39) and (43),

1
Mgi(Sk) 2 Ky (Sk) = 7K o (Si)

1 NoYeo 1 Ny Ny

1
= — = =7 * ’
~L Ry, L~ Ry ~ L(N$+ DN

which by (A3) gives the result.(J

3.3.7. Proof of Proposition3 when|S;| > 2. By Proposition 4, there is a
recurrent set fog, that containsS,. Therefore, there is a recurrent et C
for ; that containsS x {o}. We denote by.,, the invariant measure af, on ;.
We first prove thaj,, assigns a significant weight 3 x {o}.

LEMMA 11. If [Sk| > 2,thenuy, (Sk x {o}) > 1— Aqk(sk) > 3.
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PROOF By Proposition 5 and (C5), % 5 (5) > %

We now prove thau,, (Sx x {o}) > 1 — T (50 (S) Plainly, E 1),z [Tse x(o)] =
Es.»[T:] < B for everyr € S; and every € S\ {t}

On the other hand, by Lemma 1(ii), Proposition 5 and by the choigk of

?gln Es,0, nk[Tskx{ }] pg'srk‘ Es,qk[Tik]

> g (SK) = Skl = D) pg (S) = 52, (S0).
By (18), one gets
p (S x o)) _ 2B
Mnk(Sk x {o}) T Ag (Sk)’
henceu, (Sk x {o}) < % (Sk)
We now proceed to the proof of Proposition 3 whép > 2. Observe first that

i B [Nrey] = min B m [Ny

Since uy, is the invariant measure ofy oveer, one hasEﬂnk ﬂk[NSkX o}]
miia, (2% \ (Sk x {o})). By Lemma 11 this yields

(46) min  E, z [Nsxrer] < 2B x

W€ Sk x{o}

mg

Mgy (Sk)

Let ¥ = MaX,es, x (o) Ew,m [Ny oyl and let w; € S; x {o} achieve the
maximum. Since theS-marginal ofr; coincides withb outside S, x {o}, one
has, forw € S; x {o},

V= Ewl»ﬂk [NSkX{o ] = Ew»ﬂk[NSkx{o ] + Pwl,ﬂk (TSkx{o < Tw)(B + V)

By Lemma 2 and Proposition B, i (Tgqer < Tw) = a/22|S‘|S\ =1/a’. Since
a’ > 2, one gets, by letting vary,
o B
< min E N
V= o' — 1 weSi x{o} wnk[ Skx{o}]+ot/—l

(47)
<2 min E, g, [NW] +B.

we Sy, x{o}
Finally, for eachw’ € , by (47), (46), and Proposition 5,
Ev n[Nsxier] = B[ Tsixtol] + Max oz [Ngspey]

W€ Sk x{o}

<B+B+2 min Ewﬂk[NW]

we Sy x{o}
s
)»qk(Sk)

< 2B +8BLIS|NY x

<2B+4B x

x* :
Sk
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Sincem; /N is either 1 (ifk < |Kol) or at most 1+ |S|?/N? (if k =|Kol), the
desired result follows by (C3).0

3.3.8. Proof of Proposition2 when|Sx| > 2. To prove Proposition 2 when
|Sk| > 2, we first prove thatr; is mixing (see Lemma 13). We can then apply
Theorem 3 as we did in the proof of Theorem 1. We are therefore able to compare
the empirical frequency,,, 10 (. Sincep*” andg are close, this enables us to

compare the invariant measuremf, 1, , to the invariant measure q»f‘*, T

LEMMA 12. If |S;| > 2,then for everyw € Q; and every € S, one has

(ISl — D) pg, (Sk) + 2B
vaﬂk[T(_;o)] = — # .
’ MiN; s, Pt,v(Ts < Tfk)

PrROOF The proof is a simple adaptation of the proof of Lemma 3. We repeat
it, with few modifications. Letv € ; ands € S; be given. Note that

(48) EomlTd o] <14 maxEy 7 [Tis.0)]-
’ o' €Q
Sety = maxes, E¢.0).n [T(5,0)]- Lett € S \ {s} achieve the maximum in the
definition ofy. By Lemma 1,
¥ =Ew,0.mlTs,0] = Bt Ts,upy) + Proae (Ts, < Ts) (v + B)
< (ISk] = D pg (Sx) + B +y x ITE%XPM,U(TE,{ <Ty).
k
Therefore

- ISkl — D g, (Sx) + B
- minueSk Pu,v(Ts < TE,{) .

(49)

Forw € Qi\ (S x {o}),
(50) Ew,pk[T(s,o)] =< B + V-
The result follows from (48)—(50).

The lemma below is a mixing-type result. It is very similar to Lemma 1.
LEMMA 13. If |Sk| > 2,then for everyw € Q and every € S,

Ny
Eonl T o)) < 2|S|Lﬁ +4B 4+ 1.

PROOF We repeat the proof of Proposition 1 with minor adjustments. By
Lemma 12,

(ISl = D pg, (Sk) + 2B
minteSk Pt,v(Ts < T§k) '

vaﬂk[T(::,o)] =
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Pa; (Sk)
ISk —Dgr S0 =
the inequality follows by Proposition 5 and the chmceﬁoﬂ'herefore

Eow i [T(f0)] < 21Sk1 pg, (Sk) +4B + 1.
By (37), Lemma 5 and Theorem 2(P2),

By Lemma 2, the denominator is at least 2|5y | T S0~ Where

x*

N
S) <Lp »(Sy) <L max—L2— <L )
Pg(Sk) = Lp e (Sk) PSR —1~ a1

The result follows. O

Defineuj’,k(s) = U, ((5,0))/1r, (Sk x {o}). It is the invariant measure ofy
conditioned onS; x {o}.

The following compares the empirical number of visitg4po) to the invariant
measure.

PROPOSITIONG. If |Si| > 2,then

2¢ 1 1
P ([ 5:0) = 3, O] > T8, 0+ 25 ) = .

PrROOF By Remarks 2 and 3, Lemma 13 and (A4), for everg .,

1
Pory (|vmk<s, 0) — iy ((5, 0))| > &1tm (5, 0)) + m—k)

(51) < i(2|S|L

. ~|—4B+1)
ecm

-1 2N3
Sincepy, ((s, 0)) > 1/2, by Lemma 11, Proposition 5 and by the choicgof

|1 ((55,0)) — 3 ()| < 24, (2 \ (Sk X {0})) X fry (5, 0)

< X U (8,0) < el (5, 0).
A (S T i

Therefore, if|vmk(s o) o (5, 0N < epr, ((5,0)) + mlk, then [vy, (s, 0) —
Uy ()| < 1= sﬂk(s) + = The result follows by (51). O
We are now in a position to prove Proposition 2. Observe that the invariant

measure op*" conditioned onS; is simply v*" (-|Sx). By Lemmas 9 and 10, and
Proposition 4,

|12, () — v (s | Sk)| < 18x BeLv™ (s]S).
The claim foIIows by Proposition 6, the choice ofand since by (P2) and (C7)

.S} NE 2 L
vslS) = R e M s 2 s 2
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3.3.9. The singleton case.We here assume thaj, = {s} is a singleton. The
next lemma is an analog of Lemma 11. It bounds from below the invariant
distribution ofrr;, on S; x {o}. Its proof is, however, significantly different.

LEMMA 14. One hasuy, ((s,0))>1— B(1+ 3¢ )(N;,TIQ‘S‘-

PrROOF By Theorem 2(P1),

Rx* (N + 1)ISI
P S\ D = T = T

Using (32), this yields

(N® + D)l
N1-6
We apply (18) top = 7y, S = Q¢ andC = {(s, o)}, and we get

1— pm (G5, 0)) NE LD
m < Bu(s,S\ {s}) <B(1+ 3€)W'

The desired result follows.d

v(s, S\ {s}) = (1 +3e)

The rest of the proof for the singleton case follows closely the proof for
|Skx| = 2. We first prove Proposition 2 in that case. By the definitionzpf
maX,cq, Ew,,,k[T;fo)] < B + 1. Therefore, using Remark 2 witky,, ¢ andw =
(s, 0), and by (C6),

1 17(B+1)
P ([ (5:) = (5. D) = e (5,00 4 - ) = = 20
mg mgé
1
< —.
~ 2|S|N?
By Lemma 14 and (A5)|ur, ((s, o)) — 1] < e. The conclusion of Proposition 2
follows. Observe that we also deduce that ((s, o)) > 1/2.
We now prove Proposition 3. Fix € €. Sinceur, ((s, o)) > 1/2,

Eo, 7 [Nsoxer] = Eone[Tis,0)] + Es,0),m[Ngrxgp] < B + Es,0),m [Nsxpy]
< B+2E,, x [Nzl < B+ 2mi(1— px (s, 0)).
By Lemma 14 and (A6) this last quantity is at most

(N¥ +D)lS!

i < BNV/ISI,

B+ 2NB(1+ 3)

and Proposition 3 follows.



APPROXIMATING A SEQUENCE 2775

Acknowledgments. We thank Ehud Lehrer, Sean Meyn, Laurent Saloff-Coste
and Ron Shamir for their suggestions and references. We also thank an anonymous
referee whose suggestions were most helpful and substantially improved the
presentation.

REFERENCES

ALDous, D. J. and F.L, J. A. (2002). Reversible Markov chains and random walks on graphs.
Available at www.stat.berkeley.edu/users/aldous.

ALON, N., SPENCER J. H. and RDOS, P. (2000).The Probabilistic Method2nd ed. Wiley, New
York.

Bauwm, L. E. and BRGON, J. A. (1967). An inequality with applitens to statistical estimation for
probabilistic functions of Markov processes and to a model for ecolugj).. Amer. Math.
Soc.73 360-363.

BAauM, L. E. and REETRIE, T. (1966). Statistical inference forgpabilistic functions of finite state
Markov chainsAnn. Math. Statist37 1554—1563.

FELLER, W. (1968).An Introduction to Probability Teory and Its Applicationd, 3rd ed. Wiley,
New York.

GLYNN, P. W. and ®MONEIT, D. (2002). Hoeffdings inequality for uniformly ergodic Markov
chains.Statist. Probab. Let66 143-146.

JERRUM, M. and SNCLAIR, A. (1989). Approximating the permaner&lAM J. Comput.18
1149-1178.

KROGH, A., MIAN, I. S. and FhUSSLER, D. (1994). A hidden Markov model that finds genes in
E. coli DNA. Nucleic Acids Researc@®? 4768-4778.

LovAsz, L. and KANNAN, R. (1999). Faster mixing via average conductanc@rbt. 31st Annual
ACM Symposium on Theory of Comput2&2—287. ACM, New York.

LovAsz, L. and SMONOVITS, M. (1990). The mixing rate of Markov chains, an isoperimetric
inequality, and computing the volume. Rroc. 31st Annual Symposium on Foundations
of Computer Scienck346-354. EEE, Piscataway, NJ.

RABINER, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition.Proc. IEEE77 257-286.

SoLAN, E. and MEILLE, N. (2003). Perturbed Markov chaink.Appl. Probab40 107-122.

D. ROSENBERG

LABORATOIRE D'A NALYSE GEOMETRIE
ET APPLICATIONSINSTITUT GALILEE

UNIVERSITEPARIS NORD

AVENUE JEAN BAPTISTECLEMENT

93430 ILLETANEUSE

FRANCE

E-MAIL : dinah@math.univ-paris13.fr

E. SOLAN

MEDS DEPARTMENT

KELLOGG SCHOOL OFMANAGEMENT

NORTHWESTERNUNIVERSITY

EVANSTON, ILLINOIS 60208

USA

AND

SCHOOL OFMATHEMATICAL SCIENCES

TEL AvIV UNIVERSITY

TEL Aviv 69978

ISRAEL

E-MAIL : eilons@post.tau.ac.il
e-solan@kellogg.northwestern.edu

N. VIEILLE

DEPARTEMENTFINANCE ET ECONOMIE
HEC

1 RUE DE LA LIBERATION

78351 HUY-EN-JOSAS

FRANCE

E-MAIL : vieille@hec.fr



